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Abstract:  We consider a simple overlapping-generations model with risk-averse financial agents 
subject to moral hazard.  Efficient contracts for such financial intermediaries involve back-
loaded late-career rewards.  Compared to the analogous model with risk-neutral agents, risk 
aversion tends to reduce the growth of agents' responsibilities over their careers.  This 
moderation of career growth rates can reduce the amplitude of the widest credit cycles, but it also 
can cause small deviations from steady state to amplify over time in rational-expectations 
equilibria.  We find equilibria in which fluctuations increase until the economy enters a 
boom/bust cycle where no financial agents are hired in booms. 
 

1.  Introduction and review of previous paper 

 This paper shows how problems of moral hazard in financial intermediation can cause 

macroeconomic fluctuations in a stationary nonstochastic economic environment even when 

financial agents are risk averse.  A previous paper (Myerson, 2012) showed how such credit 

cycles can be sustained over an infinite time horizon when financial agents are risk neutral.  Risk 

neutrality is a natural simplifying assumption, but the optimal contracts for risk-neutral agents 

look rather extreme, with agents receiving incentive payments only at the end of their careers and 

then only if their investments have been successful in every period.  When we assume that agents 

are risk averse, the analysis becomes more complicated, but the resulting optimal contracts seem 

more realistic, as risk-averse financial agents will get substantial rewards in every period when 

they supervise investments.  Remarkably, we also find that the economy can become even more 

unstable when financial agents are risk averse. 

 Together with the previous paper, this paper is part of a growing theoretical literature 

since Bernanke and Gertler (1989) that explores how macroeconomic instability can be driven by 

microeconomic agency problems of moral hazard and adverse selection.  References to many 

important papers in this literature are listed by Myerson (2012).  This paper and Myerson (2012) 

are particularly intended to show how such instability can be driven by the simplest kinds of 

moral-hazard problems which might reasonably be expected to apply whenever an agent is 

responsible for large investments of other people's savings. 

                                                 
1 This paper has benefited from helpful discussions with Balazs Szentes and Fernando Alvarez.  
Author's address:  Economics Dept, University of Chicago, 1126 East 59th Street, Chicago, IL 60637 USA.   
Email: myerson@uchicago.edu  [Current version: June 9, 2014.] 
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 Let us first review the main points from the previous paper.  Since Becker and Stigler 

(1974) and Shapiro and Stiglitz (1984), it has been well understood in agency theory that 

dynamic moral-hazard problems with limited liability are efficiently solved by promising large 

end-of-career rewards for agents who maintain good performance records.  At any point in time, 

a rational agent can be motivated to exert hidden efforts by the possibility of future rewards but 

not by earlier rewards that have already been received.  Thus, an end-of-career reward can be 

most effective, because it can motivate efforts at every period of an agent's career. 

 But standard assumptions about the discounting of future rewards imply that the 

motivating value of any specific end-of-career reward will become greater as the agent gets 

closer to the end of her career.  Thus, under efficient moral-hazard incentive contracts, agents' 

responsibilities should be expected to grow over time during their careers.  Myerson (2012) 

showed that, when such efficient agency contracts are imbedded in a general dynamic model of 

the whole economy, this expected career growth of financial agents' responsibilities can cause 

general equilibria to be dynamically unstable. 

 The back-loading of moral-hazard agency rents requires that financial agents must 

anticipate some kind of long-term relationship with investors.  The aggregate value of these 

relationships for mid-career financial agents at any point in time may be considered as a state of 

the dynamic economy, and this state can change over time.  When trusted mid-career financial 

agents are relatively scarce, investment is reduced, and the result is a recession.  A larger cohort 

of new young agents may be then recruited to help fill the gap.  But competitive recruitment of 

new agents cannot fully remedy such an undersupply of financial intermediation, because the 

moral-hazard incentive constraints imply that agents can be hired efficiently only as part of a 

long-term career plan in which their expected responsibilities tend to grow during their careers.  

Because of this expected growth of agents' responsibilities, a large adjustment to reach steady-

state financial capacity in one period would create excess financial capacity in the future.  Thus, 

in the model of Myerson (2012), the recovery from a recession must move gradually up into a 

boom, when the economy will have an excess of financial intermediaries relative to what can be 

sustained in the steady state.  This boom, in turn, will contain the seeds of a future recession that 

will occur after the large cohort of financial agents retires. 

 In the model with risk-neutral agents of Myerson (2012), a financial agent can manage 

one investment of any size in each of n periods in her career, after which the agent may retire to 
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enjoy end-of-career rewards in her last (n+1'th) period of life.  An ample supply of new young 

agents is assumed to be available in every period, but they will be only hired under efficient n-

period incentive contracts.  Expected profit rates for investments in each period will depend on 

aggregate investment in that period according to a given investment-demand function, which is 

stationary and nonstochastic.  Aggregate investment is determined by the availability of trusted 

financial agents who must supervise it, including both young agents who get new n-period 

contracts this period and older mid-career agents who are working under previously agreed 

contracts.  Investment funds are elastically supplied and so, in equilibrium, investors can only 

earn normal returns after paying agents' rewards.  This equilibrium condition implies that 

expected profit rates over any interval of n periods must sum to a constant that is just what it 

takes to cover the agents' expected moral-hazard rents over an n-period career.  The dynamic 

equilibria of Myerson (2012) are characterized by cycles that repeat every n periods.  There is a 

steady-state equilibrium that applies for one vector of initial conditions, but the economy has no 

tendency toward (or away from) steady state from any other initial conditions. 

 In this paper, we drop the risk-neutrality assumption of the previous paper, and instead 

we consider risk-averse agents whose utility in any period is their current consumption raised to 

some exponent θ that is less than 1.  Nonlinear utility is much harder to analyze, and so the 

analysis is simplified here by considering only the simple overlapping-generations case of n=2.  

That is, each financial agent can manage investments in two periods, first as a young agent, then 

as an old agent, after which the agent has one period of retirement.  So in this model, the 

dynamic state of the economy in any period is the aggregate value of the mid-career investment-

management positions that have been promised to old agents under contracts that were signed in 

the preceding period, when they were young. 

 At the micro-agency level, the effect of risk aversion in this model is to reduce the 

expected rate of growth of agents' responsibilities during their careers, because optimal contracts 

will include significant incentive payments in each period of an agent's career, not only at the 

end.  As this expected growth of responsibilities is what makes the model dynamically unstable, 

one might conjecture that economic instability would be reduced as the expected career growth 

rate is reduced.  In one sense this conjecture might be true, as we can find examples (see Figures 

2 and 6) where the amplitude of equilibrium cycles with risk aversion is less than the amplitude 

of the widest possible cycle with risk neutrality (with all other parameters the same).  But in 
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another important sense this conjecture is false, because we find here that small deviations from 

the steady state tend to grow larger over time in the model with risk aversion.  That is, the steady 

state is not locally stable in our model with risk-averse agents.  Such amplification of small 

deviations from steady state does not occur in the risk-neutral model of Myerson (2012), where 

initial conditions that are close to steady state yield cycles that stay close to steady state. 

 This new form of instability of equilibria with risk aversion occurs because, in the 

calculations of investors who might hire a young agent with a two-period contract, a lower 

expected growth of the risk-averse agent's investment responsibilities tends to reduce the weight 

on the profit rate for investments in the agent's second period.  So the equilibrium condition of 

zero expected net profits for competitive investors implies that, in any period when new young 

agents are hired, any deviation of profit rates from the steady-state level in this period must be 

balanced by a larger deviation of profit rates in the next period.  Thus, in a dynamic equilibrium 

with rational expectations, deviations from steady-state profit rates must grow until the economy 

reaches a maximal cycle in which new young agents are only hired every other period.  That is, 

for a wide range of parameters, inequality of opportunities across periods has a natural tendency 

to increase in the dynamic equilibria of our economy. 

 The plan of this paper is as follows.  The formal model of a dynamic economy with risk-

averse financial agents is defined in Section 2.  Equilibria of the model are characterized in 

Section 3.  In particular, we find in Section 3 a broad parametric class of examples where the 

steady state is locally unstable and the dynamic economy tends toward an extreme cycle of peaks 

and troughs, in which new agents are hired only after the economy has fallen into a recession.  In 

Section 4, we examine efficiency properties of these dynamic equilibria, and we consider some 

policies that a government could use to reduce generational inequalities and stabilize the 

economy.  Section 5 shows how some results may extend to economies where risk-averse agents 

serve more than two periods.  Section 6 analyzes a related model in which financial agents are 

risk neutral but have different discount rates from investors.  This related model offers a useful 

perspective on our main model with risk-averse agents because, like risk aversion, making agents 

more patient also reduces their expected career growth of responsibilities.  (So readers may want 

to look at Section 6 before other sections.)  Conclusions are summarized in Section 7. 

 Appendix A provides details on how optimal contracts can be computed for our model 

with risk-averse agents.  Appendix B presents a method for computing dynamic equilibria in the 
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regular case where the steady state is locally unstable. 

 

2.  The model  

 We consider a simple dynamic economy in discrete time, with one commodity which in 

any period can be either consumed or invested in a project that will yield returns in the next 

period.  This economy is on an island in a world where funds for investment are freely mobile.  

But all investment in this island economy must be managed by local agents who live on the 

island and who are subject to moral-hazard temptations to mismanage investments.  Each agent 

lives three periods and can manage one project in each of her first two periods.  In her third 

period, the agent must retire, as she cannot take responsibility for a project that will yield its 

returns after the end of her life. 

 We assume here that an agent's utility in any period is some exponential power θ of the 

agent's current consumption, where this utility parameter θ satisfies θ < 1, with θ≠0.  (The case 

of logarithmic utility is not explicitly considered here but can be subsumed by limits as θ→0.)  

Agents discount their future utility by the per-period discount factor δ, where  0 < δ < 1.  Let us 

consider an agent who will work in periods t and t+1 and then retire in period t+2.  Such an agent 

wants to maximize the expected total discounted value of her lifetime utility 

  (c0
θ + δc1

θ + δ2c2
θ)/θ, 

where each cs > 0 denotes the agent's consumption in period t+s.  (Dividing by θ here guarantees 

that utility is increasing in consumption even when θ is negative, as  d/dcs (cs
θ/θ) = cs

θ−1 > 0.)  

With θ<1, this θ power of consumption is a concave utility function with constant relative risk 

aversion, and so we can refer to these agents as risk averse.  Even though they face no actual risk 

in this model, their decreasing marginal utility of consumption in each period is significant here. 

 Investment projects on the island come in a wide range of sizes, where the size of an 

investment project at time t is the amount invested in it at time t.  Regardless of size, an agent 

can manage only one project in any period.  The agent always has a hidden choice to either 

manage her project well or to mismanage it.  Mismanagement of a project diverts a γ fraction of 

the invested amount into the agent's personal funds available for current and future consumption, 

where 0<γ<1.  The mismanagement of an investment at any period t would become evident in 

the next period t+1, but by then the agent could have fled with any personal funds to live and 
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consume in some safe haven abroad for the rest of her life.  Savings from these funds could be 

invested at the market interest rate, which is assumed to be 1/δ−1 per period. 

 Thus, under an incentive plan that would pay an agent enough to consume cs in period t+s 

when the agent manages an investment project of size hs≥0, mismanagement of this project 

would increase the agent's current available funds to cs+γhs, but these funds would then have to 

cover all the agents' consumption for the rest of her life abroad.  For mismanagement in the 

agent's first period when s=0, the optimal constant consumption that the agent could achieve with 

the funds c0+γh0 over three periods at the δ discount factor would be (c0+γh0)/(1+δ+δ2), which 

over the next three periods would yield utility 

  (1+δ+δ2)[(c0+γh0)/(1+δ+δ2)]θ/θ = (1+δ+δ2)1−θ(c0+γh0)
θ/θ. 

For mismanagement in the agent's second period when s=1, the optimal constant consumption 

that the agent could achieve with the funds c1+γh1 over two periods at the δ discount factor 

would be (c1+γh1)/(1+δ), which over the next two periods would yield utility 

  (1+δ)[(c1+γh1)/(1+δ)]θ/θ = (1+δ)1−θ(c1+γh1)
θ/θ. 

 For an investment h in any period t, the returns in period t+1 will be (1+pt)h/δ if the 

agent manages the investment well, but the returns will be 0 if it fails.  Thus, the expected 

t-discounted return from a well-managed investment h at period t is  (1+pt)h.  With pt≥0 and γ<1, 

mismanaged investment projects will never be worthwhile. 

 We assume that this economy is an island in a larger world where the global supply of 

investment funds is perfectly elastic at the discount factor δ as long as global investors can get 

nonnegative expected net discounted profits, after paying the agents in a way that will motivate 

them to manage investments appropriately.  We may let It denote the total aggregate investment 

in this economy in any period t.  Increasing production costs or shifting terms of trade may tend 

to decrease the expected returns from investments in periods when total aggregate investment is 

greater.  So we assume that, in any period t, the expected profit rate pt is related to current 

aggregate investment It by a given decreasing investment-demand function 

  It = I(pt) ≥ 0. 

 We assume that, at every period t, there is a large and ample supply of new young agents 

who are qualified and eager to start managing large investments of other people's funds.  Thus, at 

any time t, investors can hire young agents to manage investments over the next two periods, 
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with two-period contracts that are designed optimally for investors, subject to the constraints that 

the agent must have an appropriate incentive to manage any investment well.  In hiring a young 

agent at time t, the investors' contracting problem may be written as follows:  

[1]      maximize  h0pt + δh1pt+1 − c0 − δc1 − δ2c2 

      subject to  (h0,c0,h1,c1,c2) ≥ 0,  h0 = 1,             (nonnegativity, normalization) 

      (c1
θ + δc2

θ)/θ ≥ (1+δ)[(c1+γh1)/(1+δ)]θ/θ               (moral hazard at t+1) 

      (c0
θ + δc1

θ + δ2c2
θ)/θ ≥ (1+δ+δ2)[(c0+γh0)/(1+δ+δ2)]θ/θ      (moral hazard at t) 

Here in each period t+s, hs is the size of the investment project that the agent is to manage and cs 

is the amount paid to the agent for current consumption under the planned contract.  With the 

expected profit rates pt and pt+1 for the agent's first and second investments, after subtracting the 

cost of incentive pay for the agent, the investors' expected discounted net profit is as shown in 

the objective function to be maximized in this optimization problem.  This objective is linear 

because we assume that investors are risk neutral with respect to the returns from this contract, as 

each investor's share in it may be a small part of a well-diversified portfolio. 

 We can normalize the initial investment h0 to equal 1 here, because the contracting 

problem [1] is otherwise homogeneous in the contract (h0,c0,h1,c1,c2).  Notice that, with this 

normalization, the optimal contracts in this problem do not depend on pt. 

 If investors could earn positive expected profits from a feasible contract this period, they 

would want to hire more young agents and increase investments, thus driving profit rates down 

until investments with new young agents earn zero expected profits over their careers.  So let 

Y(pt+1) be the first-period profit rate pt at which investors could just expect to break even in 

hiring a young agent with an optimal contract when the expected profit rate for second-period 

investments will be pt+1.  Thus, we have 

  Y(pt+1) = c0 + δc1 + δ2c2 − δh1pt+1, 

for any (c0,h1,c1,c2) that form an optimal contract in problem [1] with the normalization h0=1.  

This Y is a decreasing function. 

 Let  G(pt+1) = h1/h0  for an optimal solution of the contracting problem [1].  That is, 

G(pt+1) is the expected growth in agents' responsibilities from young at time t to old at time t+1, 

when pt+1 is the anticipated profit rate for investments period t+1.  This G is an increasing 

nonnegative-valued function.  By the envelope theorem, 
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  Y′(pt+1) = −δG(pt+1).  

 Because utility is a nonlinear function of consumption, it may be more convenient to 

measure an agents' welfare in terms of the constant-equivalent consumption that would yield the 

same expected utility if consumed now and in every future period of the agent's life.  Given any 

optimal solution to the contracting problem [1] above, we may let v1 denote the constant 

equivalent consumption for the old agent beginning in period t+1.  That is, v1 satisfies 

  (1+δ)v1
θ/θ = (c1

θ +δc2
θ)/θ  and so  v1 = [(c1

θ +δc2
θ)/(1+δ)]1/θ. 

The formula makes v1 linearly homogeneous in c1 and c2.  If we renormalized the optimal 

contracting problem to some other value of h0, the old agent's constant-equivalent consumption 

v1 would linearly co-vary with the contract variables (h0,c0,h1,c1,c2). 

 So let  H(pt+1) = h1/v1  for an optimal solution (h0,c0,h1,c1,c2) to the contracting problem 

[1].  That is, when the profit rate on investments at time t+1 is pt+1, H(pt+1) will be the old agents' 

investment responsibilities at time t+1 per unit of constant-equivalent consumption that has been 

contractually promised to them (for appropriately managing investments in the previous period 

when they were young).  This H is an increasing nonnegative-valued function. 

 In the case of pt+1 = 0, we may get a strictly positive value of h1 in some optimal solutions 

to problem [1], but then there would be alternative optima with smaller h1, as the investors would 

lose nothing by reducing their profitless investments in period t+1.  In that case, we could 

reinterpret G and H at 0 as multi-valued functions or correspondences, each of which can take at 

0 any value in some interval which always includes  G(0) = 0  and  H(0) = 0. 

 We are assuming that investors can hire young agents in any period t, under optimal 

contracts to manage investments in periods t and t+1 when investments have the expected profit 

rates pt and pt+1.  Let Jt denote the total investments in the economy that are managed by young 

agents in period t.  If profits pt in period t were greater than Y(pt+1), then investors could expect 

positive surplus by hiring young agents to invest more, thus decreasing pt.  So in equilibrium, in 

any period t, we must have  pt ≤ Y(pt+1),  and if Jt > 0 then we must have  pt = Y(pt+1).  Then, 

under optimal contracts, the aggregate investment responsibilities of young agents from period t 

should grow to JtG(pt+1) in period t+1 when they are old agents. 

 Initial contracts may promise some total constant-equivalent consumption V0 to old 

agents in period 1.  Given this initial condition, an equilibrium is a sequence of profit rates pt and 

young investment responsibilities Jt for each period t∈{1,2,3,...} that satisfy 
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[2]  I(p1) = V0H(p1) + J1,   I(pt+1) = JtG(pt+1) + Jt+1,   

  Jt ≥ 0,  0 ≤ pt ≤ Y(pt+1),  and  [pt − Y(pt+1)]Jt = 0,  ∀t ∈ {1,2,3,...}. 

 

3.  Analysis of dynamic equilibria 

 The function Y(pt+1), which determines equilibrium profit rates in period t for young 

agents to be hired then, is a decreasing continuous function of the next-period profit rate pt+1, and 

Y(0) > 0.  So between 0 and Y(0), there exists a steady-state profit rate p* such that 

  p* = Y(p*). 

To keep things interesting, let us assume that investment is positive in the steady state, that is  

I(p*) > 0.  Then in a steady-state equilibrium, investors would hire new young agents each period 

to manage aggregate investments J* such that 

  J* = I(p*)/(1+G(p*)), 

while old agents would manage G(p*)J*.  This steady-state equilibrium can apply when the 

initial condition is  V0 = V* = G(p*)J*/H(p*). 

 The dynamics of equilibria from other initial conditions near the steady state depend 

critically on the expected growth ratio G(p*).  There are three broad cases to consider: when 

G(p*) is less than 1, when G(p*) is between 1 and 1/δ,  and when G(p*) is greater than 1/δ.  

Figure 1 shows where these three cases occur for different values of the risk-aversion parameter 

θ and the discount factor δ.  (G(p*) does not actually depend on the moral-hazard parameter γ.)  

The case of G(p*) ≤ 1 is found in the region above the solid line in Figure 1, where δ is relatively 

high and θ is low.  The case of G(p*) ≥ 1/δ is found only in the strip on the right between the 

dotted lines in Figure 1, where θ  is never less than 0.5.  For all other parametric values, in a 

wide region including all cases of sufficiently low δ for θ≤0.5, we get the intermediate case of 1 

< G(p*) < 1/δ, which yields particularly interesting equilibrium dynamics. 

[Insert Figure 1 about here] 

 The simplest case to consider first is when  G(p*) ≤ 1  so that, in a steady state, agents' 

responsibilities would not be expected to increase in their second period.  In this case, an 

equilibrium from any initial condition V0 always has  pt+1 = p*  for all t≥1.  In such an 

equilibrium, we must have  

  Jt+1 + G(p*)Jt = I(p*) = (1+G(p*))J*,  and so  Jt+1 − J* = −G(p*)(Jt − J*)   
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for all t≥1.  We can construct such a bounded sequence, with all  Jt ≥ 0  when  G(p*) ≤ 1.  (If  

V0 ≤ I(p*)/H(p*)  then we start at  p1 = p*  with  J1 = I(p*)−V0H(p*).  Otherwise, if  

V0 > (p*)/H(p*), we may start with J1=0 at some  p1 < p*  satisfying  V0 = I(p1)/H(p1).)  Thus, 

the steady state is a stable equilibrium when  G(p*) ≤ 1. 

 In the rest of this paper we will focus generally on the cases where G(p*)>1, so that we 

get equilibria with nontrivial dynamics.  It is useful to consider first what the dynamics would 

look like in a neighborhood of the steady state p*, where 

  Y(p) ≈ Y(p*) + Y′(p*)(p−p*) = p* − δG(p*)(p−p*). 

So when profit rates are near p* and investors are willing to hire new agents each period (Jt>0), 

the update equation  pt = Y(pt+1)  implies 

[3]  pt − p* = Y(pt+1) − p* ≈ −δG(p*)(pt+1 − p*). 

The negative coefficient here tells us that the profit rates must cycle around the steady state, 

going above and below it in alternating periods.  In the case where  G(p*)>1/δ,  this 

approximate equality implies that  |pt − p*| > |pt+1 − p*|,  and so dynamic equilibria near the 

steady state will tend to converge toward the steady state.  But in the case where 1<G(p*)<1/δ, 

this approximate equality tells us that  |pt − p*| < |pt+1 − p*|, and so equilibrium credit cycles that 

start near steady state p* must tend to increase in amplitude, moving away from p*. 

 In the corresponding model with risk-neutral agents, the expected growth ratio of agent's 

responsibilities from one period to the next (G(p)) is always equal to 1/δ, the reciprocal of the 

agents' discount factor (see Myerson, 2012, and Section 6 here).  But when agents are risk 

averse, we can get examples where G(p*) can be greater or less than 1/δ.  It may be particularly 

interesting to look at an example where  1 < G(p*) < 1/δ. 

 To illustrate this case, let us consider a baseline example with parameters2 

[4]  θ = 0.5,  δ = 0.5,  γ = 0.25,  I(p) = 1.5max{1−p/0.7, 0}. 

(In a model where an agent's career spans two periods, each period could be interpreted as 20 

years, so that a per-period discount factor of δ=0.5 would correspond to an annual discount 

factor of (0.5)1/20 = 0.966, or an annual discount rate of 3.4%, which seems quite reasonable.)  

Optimal contracts and dynamic equilibria for this example can be computed with formulas from 

the Appendix.  The steady-state profit rate for this example is  p* = 0.231.  In the optimal 

                                                 
2 All calculations are available in a spreadsheet at http://home.uchicago.edu/~rmyerson/research/rabankers.xls . 



 11 

contract for a young agent managing one unit of investment h0 = 1 with next-period's profit rate 

being p*, the agent's first period consumption is c0 = 0.038 (much less than the γh0=0.25 that the 

agent could take by mismanaging).  If the agent's first-period investment is well managed, then 

the old agent next period will consume c1=0.275, will get to manage h1=1.727, and will be 

promised retirement consumption c2=1.021 after managing another investment well.  (The 

prospect of consuming this c1 and c2 yield the same utility for the old agent as the constant-

equivalent consumption v1 = 0.472 in both periods.)  With the given investment demand curve, 

aggregate investment in steady state is  I(p*) = 1.004,  of which total amount managed by young 

agents each period is  J* = 0.368.  The initial aggregate value of the constant-equivalent 

consumption promises to old agents that would lead to the steady-state equilibrium is 

V* = 0.174. 

 Table 1 shows optimal contracts for the steady-state profit rate p* are shown for other 

values of the utility exponent θ, holding fixed δ = 0.5 and γ = 0.25.  With these parameters, the 

case of  1 < G(p*) < 1/δ is satisfied for all θ between −1.47 and 0.73, which includes our above 

example [4] where θ=0.5.  

[Insert Table 1 about here] 

 The growth ratio at steady state is for this example [4] is  G(p*) = h1 = 1.727,  and so this 

example indeed satisfies  1 < G(p*) < 1/δ = 2.  Thus, its dynamic equilibria must cycle away 

from the steady state, even when the initial conditions are very close to the steady state.  An 

example of such a dynamic equilibrium is shown in Figures 2, 3 and 4.  Here the initial condition 

at period 1 is V0 = 0.180,  which is about 3% above the steady-state V*=0.174, and the initial  p1 

= 0.229  is less than 1%  below the steady-state p*.  But the cyclical deviations from steady state 

grow until the equilibrium enters an absorbing cycle after period T=25.  Let us now consider the 

nature of this absorbing cycle. 

[Insert Figures 2, 3, and 4 about here] 

 The update equation pt=Y(pt+1), which we have used to characterize the evolution of 

profit rates (and which is approximated by condition [3] near the steady state), applies only in 

periods where investors are willing to hire new young agents in this economy.  So when the 

update equation yields unstable dynamics, the amplification of deviations from steady state can 

end when the economy enters an extreme cycle in which either there are regularly-occurring 
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periods in which investors do not hire any new young agents, or the update equation itself must 

become stable.  In fact, the first of these possibilities has been found in all known examples, and 

so it may be called the regular case.  But this author has not been able to rule out the second 

alternative possibility.  The following fact summarizes this result. 

 Fact 1.   Suppose that 1 < G(p*) < 1/δ.  Then either (in the regular case) there exists an 

extreme cycle (q1.q2) such that 

  q0 = Y(q1),  G(q1) = I(q1)/I(q0),  q1 < p* < q0, 

  and  p < Y(Y(p)) for all p such that q1 ≤ p < p*; 

or else (the alternative case) there exists a cycle (r0,r1) with Ĵ0≥0 and Ĵ1≥0 such that 

  r0 = Y(r1),  r1  = Y(r0),  Ĵ0+G(r0)Ĵ1 = I(r0),  Ĵ1+G(r1)Ĵ0 = I(r1). 

 Proof.  With  G(p*) > 1,  we have  G(p*) > I(p*)/I(Y(p*)) = 1.  But with  G(0) = 0 ≤ 

I(0)/I(Y(0)),  there must exist some q1 such that 0 ≤ q1 < p*  such that  G(q1) = I(q1)/I(Y(q1)).  

With G(p*) < 1/δ,  we have  |Y′(p*)| = δG(p*) < 1,  and so the derivative d/dp Y(Y(p)) = 

Y′(Y(p))Y′(p)  at p* is  (Y′(p*))2 < 1.  So we have p < Y(Y(p))  for all p<p* in some 

neighborhood of p*.   If this neighborhood includes q1 then the regular case is satisfied with 

q0=Y(q1).  If not, the lower bound of the neighborhood would be some r1 < p* such that 

  r1 = Y(Y(r1)) and G(r1) > I(r1)/I(Y(r1)) > 1. 

But then  r0 = Y(r1) > p*  would also satisfy   

  G(r0) > G(p*) > 1 > I(r0)/I(r1) = I(r0)/I(Y(r0)),   

and so the alternative case could be satisfied with  Ĵ1 = [G(r1)I(r0)−I(r1)]/[G(r1)G(r0)−1]  and  

Ĵ0 = [G(r0)I(r1)−I(r0)]/[ G(r1)G(r0)−1].  QED 

 In the regular case, the economy has a cyclical equilibrium in which the profit rates pt 

alternate between this q0 and q1.  In any period t when pt = q0, investors hire young agents to 

manage the total aggregate investments  Jt = I(q0).  Then in the next period t+1, the profit rate is 

pt+1 = q1, and then old agents manage all the investments  I(q1) = G(q1)Jt,  but there is no new 

hiring of young agents  Jt+1 = 0.  In this period t+1, investors know that the next period in the 

cycle will have profit rate pt+2 = q0, and so the regularity condition  Y(q0) = Y(Y(q1)) > q1 = pt+1  

implies that the current profit rate pt+1 is strictly less than the lowest profit rate Y(q0) at which 

investors could break even from new hires.  Thus, investors do not want to hire any new agents 
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in this cycle when the profit rate is q1.  But as q1 < p* < q0, the periods with profit rate q1 are 

relative boom periods, in which old agents manage more aggregate investment than in the 

preceding recession period, when all these agents were young. 

 For our example [4], the regular case applies with an extreme cycle (q0,q1) such that 

  q1 = 0.141 < p* = 0.231 < q0 = Y(q1) = 0.302,   

  I(q1)/I(q0) = 1.198/0.853 = 1.404  = G(q1),  q1 < Y(q0) = 0.165. 

There exists a cyclical equilibrium in which the profit rates pt alternate between this q0 and q1.  In 

a recession period when the profit rate is q0, all agents are young newly hired agents, with 

optimal contracts in which h0=1, c0=0.052, h1=1.404, c1=0.314, c2=0.768.  Then in the 

subsequent boom period with profit rate q1, no new agents are hired, but the old agents manage 

40% more aggregate investment than in the preceding period when they were young. 

 In the dynamic equilibrium shown in Figures 2, 3, and 4, deviations from the steady state 

p* grow until the economy enters the extreme cycle after period 25.  Figure 2 shows the time 

series of profit rates pt for this equilibrium, and Figure 3 is a cob-web diagram showing how the 

pt=Y(pt+1) equation can cause the profit rates spiral away from the steady state in this dynamic 

equilibrium.  In the early periods when the profit rate is near p*, the magnitude of profit-rate 

deviations from p* grow by about 16% each period, as  −1/Y′(p*) = 1/(δG(p*)) = 1.16.  The 

oscillations grow as long as new agents can be hired in every period, but then, after period 25, 

the economy enters the extreme cycle in which new agents are hired only in even-numbered 

periods.  Then for all even t>25, we get  pt = q0 = 0.302 and pt+1 = q1 = 0.141. 

 Figure 4 shows the aggregate investment amounts I(pt) that correspond to these profit 

rates and also shows how this aggregate investment is divided among investments managed by 

young agents and investments managed by old agents.  In this figure, we can see that an extreme 

inequality of opportunity between generations is spontaneously developing even before the limit 

cycle is reached.  For example, from period 8 to 9 in this equilibrium, aggregate investment I(pt) 

increases by less than 3%, but the total investment that is managed by young agents Jt+1 shrinks 

by almost 23%, as the large cohort of young agents from period 8 crowds out new young agents 

in period 9.  After period 25, in the extreme limit cycle, the aggregate investment amounts 

alternate between I(q0)=0.853 and I(q1)=1.198, which are respectively 15% below and 19% 

above the steady state I(p*)=1.004. 

 Such dynamic equilibria that converge to an extreme limit cycle can be found for any 
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regular economy with 1 < G(p*) < 1/δ.  See Appendix B for the proof of this fact, which also 

shows how such dynamic equilibria can be computed, by a construction that works backwards in 

time from the period before the equilibrium enters the extreme limit cycle. 

 Fact 2.  Suppose that  1 < G(p*) < 1/δ  and a cycle (q0,q1) exists as in the regular case 

from Fact 1.  For any initial condition V0 other than V*, there exists an equilibrium that begins 

with this initial condition and, within finitely many periods, enters the extreme (q0,q1) cycle.  

 Figure 1 shows the parametric range where we get G(p*) > 1/δ.  This case can apply for 

some δ when θ > 0.5, and it applies for all δ between 0 and 1 when θ > 0.807.  Examples of 

optimal steady-state contracts in this range can be found in the upper rows of Table 1 where θ = 

0.9 or θ=0.8.  In this parametric range where θ is only slightly less than 1, the agents are close to 

risk neutral, and optimal contracts have almost completely back-loaded incentives, with the agent 

getting very little income before retirement.  Then with  c0 ≈ 0  and  c1 ≈ 0,  the binding incentive 

constraints yield 

  δc2
θ ≈ (1+δ)1−θ(γh1)

θ  and  δ2c2
θ ≈ (1+δ+δ2)1−θ(γh0)

θ, 

and so we get 

  δG = δh1/h0 ≈ [(1+δ+δ2)/(δ+δ2)]1/θ−1, 

Thus, in this case where θ is only slightly less than 1, we can get δG(p*) > 1 and so G(p*) > 1/δ. 

 In this case with G(p*) > 1/δ, condition [3] tells us that we can get cycles around the 

steady state which dampen over time.  To be specific, let us consider an example which differs 

from our baseline example [4] only in that the utility exponent is θ = 0.9,  instead of 0.5.  As 

shown in Table 1, this example has G(p*) = 2.151 > 1/δ,  with δ=0.5. 

[Insert Figure 5 about here] 

 Figure 5 shows the aggregate investments for a dynamic equilibrium for an economy 

with θ=0.9 and all other parameters as in our baseline [4], starting from the worst initial 

condition V0=0.  The cycles of this dynamic equilibrium gradually attenuate toward the steady 

state, which is locally stable as G(p*)>1/δ.  But although the cycles dampen over time for this 

example, the worst cycle in equilibrium is actually more extreme than the extreme cycles that we 

found in Figures 2, 3, and 4.  In Figure 5, investment at the peak in period 2 is 49% greater than 

at the trough in period 1.  In contrast, the unstable dynamics in Figure 4 have cycles in which the 
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peak investment I(q2) is 40% greater than at the trough I(q1).  Thus, although the economy with 

high θ may be more stable in the long run, its short-term response to shocks may actually be 

somewhat more volatile than an economy with a lower θ. 

 Although the alternative case in Fact 1 has not been found for parameters where 

G(p*)<1/δ, it can be found for some parameters where G(p*)>1/δ.  With all other parameters as 

in the baseline [4], when  0.735 ≤ θ ≤ 0.793  we can find pairs (q0,q1) and (r1,r2) that satisfy the 

local conditions for both the regular and alternative cases in Fact 1: 

      q0 = Y(q1),  G(q1) = I(q1)/I(q0),  q1 < Y(q0) < p* < q0 ; 

      r1 = Y(r0) < p* < r0 = Y(r1),  Ĵ0+G(r0)Ĵ1 = I(r0),  Ĵ1+G(r1)Ĵ0 = I(r1),  Ĵ0 ≥ 0,  Ĵ1 ≥ 0. 

For example, with θ=0.75 and all other parameters as in the baseline [4], these conditions have 

solutions with  q1 = 0.080,  q0 = 0.274,  r1 = 0.123,  r0 = 0.240.  For this economy, we can find 

dynamic equilibria that converge to the steady state p*=0.183 from any initial profit rate p1 that 

is between r1 and r0; but we can find other dynamic equilibria that converge instead to the 

extreme (q0,q1) cycle, starting from an initial profit rate that is less than r1 or greater than r0.  

 Table 1 shows that more risk-averse agents with lower utility exponent θ tends to get 

more pre-retirement consumption c0 and c1, which reduces the growth ratio G(p*) below 1/δ 

when θ≤0.73, with other parameters are as in our baseline [4].  In the interval  −1.47 ≤ θ ≤ 0.73  

where the steady state is locally unstable, decreasing θ tends to decrease the amplitude of the 

extreme cycle even as it increases the rate with which small deviations from the steady state can 

grow.  For example, when we change the utility exponent to θ = −1, keeping all other parameters 

as above, the equilibrium limit cycle has investment at the peak which is only 5.7% greater 

investment at the trough; but small deviations of the profit rate from the steady state p* tend to 

grow in magnitude by about 87% each period, as 1/(δG(p*)) = 1.868.  

[Insert Figure 6 about here] 

 Figure 6 shows how the various cycles depend on the utility exponent parameter θ, 

holding fixed the other parameters δ=0.5, γ=0.25, and I(p)=1.5max{1−p/0.7, 0}.  The amplitude 

of the extreme cycle (the difference between its high and low profit rates) becomes small as θ 

decreases toward -1.47, below which the only equilibrium is the steady state.  In the interval 

0.735 ≤ θ ≤ 0.793, the steady state is locally stable but a stable extreme cycle also exists, and we 
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also find an unstable intermediate cycle corresponding to the alternative case described in Fact 1. 

 

4.  Efficiency and stabilization policies 

 Our dynamic equilibria induce spontaneous inequalities across generations.  In periods 

when investment is reduced by a scarcity of trusted financial agents, workers and consumers 

(who have not been explicitly introduced into the model) may suffer, but other generations will 

enjoy greater welfare in the boom periods.  When all generations are considered, however, these 

dynamic equilibria satisfy a natural efficiency property which can now be described. 

 Suppose that the investment demand curve I(p) is continuous, has I(0) finite, has some 

p̄>0 such that I(p)=0 for all p≥p̄, and is strictly decreasing for p between 0 and p̄.  Then for any 

aggregate investment K between 0 and I(0) there exists a unique p = I−1(K) between 0 and I(0) 

such that K=I(p), and we can let 

  W(K) = dk)k(I
K

0
1∫ − . 

Here W(K) includes the total cumulative value of increasing investment from 0 to K when each 

unit increase is evaluated at its marginal value if there were no more investment. This value 

W(k) is greater than the investors' total revenue I−1(K)K because the investment demand curve is 

downward sloping.  This surplus from the downward slope of I(•) must correspond to surplus 

welfare for others individuals who consume output from or supply inputs to the investment 

activity, and for whom the terms of trade become more favorable as aggregate investment 

increases.  Thus, W(K) can be interpreted as a measure of aggregate welfare for investors and 

other consumer or suppliers when total investment is K.  (See also Myerson, 2012, pp. 859-860.) 

 For any planned consumption vector c(t) = (c0(t),c1(t),c2(t)) offered to agents whose 

careers start in period t, the maximal investments h0=f0(c(t)) and h1=f1(c(t)) that the agents can 

incentive-compatibly manage in periods t and t+1 are determined by the functions 

  f0(c(t)) = [(c0(t)
θ + δc1(t)

θ + δ2c2(t)
θ)1/θ (1+δ+δ2)1−1/θ − c0(t)]/γ, 

  f1(c(t)) = [(c1(t)
θ + δc2(t)

θ)1/θ (1+δ)1−1/θ − c1(t)]/γ. 

With these functions characterizing feasible investments as a function of prospective incentive 

payments, for any given promised constant-equivalent consumption for old agents at period 1, 

consider the following optimization problem. 
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[5]  maximize  ( )[ ]∑ ≥
− −−−−−−+δ1t 21010

1t )2t(c)1t(c)t(c))1t(c(f))t(c(fW  

  subject to  c(t) = (c0(t),c1(t),c2(t)) ≥ 0,  ∀t,             (nonnegativity) 

  c1(0)θ +δc2(0)θ = (1+δ)V0
θ.      (initial promise to cohort 0) 

The objective here is to maximize the sum of discounted welfare W from investments in each 

period minus the costs of incentive payments to the agents in each period, when the investments 

f0(c(t))+f1(c(t−1)) that are managed by the two cohorts of agents at period t are the most that they 

can be trusted to manage with these incentive payments. 

 Fact 3.  An equilibrium {pt,Jt} that satisfies [2] must correspond to an optimal solution 

{c(t)} that maximizes the sum of discounted welfare less cost of agents' incentive pay in [5], with  

I(pt) = f0(c(t)) + f1(c(t−1)),  Jt = f0(c(t)),  and  G(pt+1)Jt  = f1(c(t))  for all t≥1. 

 Proof.  With  I(pt) = f0(c(t)) + f1(c(t−1)),  the definition of W implies that   

  W′(f0(c(t))+f1(c(t−1))) = I−1(f0(c(t))+f1(c(t−1))) = pt. 

Notice that W(f0(c(t))+f1(c(t−1))) is a concave differentiable function of the vectors c(t) and 

c(t−1), because f0 and f1 are concave functions and W is increasing and concave.  So the 

maximization problem [5] has a concave differentiable maximand.  Thus, {c(t)} is an optimal 

solution of problem [5] if it is an optimal solution of the problem where the objective in [5] is 

replaced by its local linear approximation: 

  [ ]∑ ≥
− −−−−−−+δ1t 2101t0t

1t )2t(c)1t(c)t(c))1t(c(fp))t(c(fp . 

This linear problem can be decomposed into choosing c(t), for each t≥1, to maximize 

  ptf0(c(t)) + δpt+1f1(c(t)) − c0(t) − δc1(t) − δ2c2(t) 

and choosing c(0) to maximize  p1f1(c(0)) − c1(0) − δc2(0)  subject to  c1(0)θ +δc2(0)θ = (1+δ)V0
θ.  

But these decomposed problems for the various c(t) are essentially equivalent to the competitive 

investors' problem [1] without the normalization h0=1, and so the solutions in each case are just 

multiples of the normalized solutions of [1] .  So with Jt=f0(c(t)), we get an optimal solution of 

[5] when, for each t≥1, c(t) is a Jt-multiple of an optimal solution of competitive investors' 

problem [1], and  f1(c(0)) = V0H(p1).  QED 

 Although Fact 3 implies that our equilibria satisfy an overall efficiency property, the 

boom/bust cycles can entail severe inequalities of welfare across generations, and policies to 
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reduce this inequality could potentially benefit those groups who would suffer in a recession.  So 

let us now consider what kinds of macroeconomic interventions by the government could 

stabilize this economy when a dynamic equilibrium would take it into a recession. 

 One natural conjecture is that a credit cycle might be dampened by offering a subsidy for 

investments in a recession period, financed by bonds to be paid from taxes on production in the 

subsequent boom period.  Such a policy could increase production in the current recession, but it 

would not stabilize the economy.  In a recession period, a scarcity of old agents causes both 

lower investment and higher recruitment of new young agents, who in turn cause the subsequent 

boom in the next stage of the credit cycle.  A general subsidy for investments in the recession 

period would increase current investment by increasing the recruitment of young agents, but the 

increased size and responsibilities of this new cohort of agents would then tend to exacerbate the 

cycle in the future.  Making the cohort larger would tend to crowd out more young agents in the 

next period, which in turn would cause a deeper recession in the period after that.  In fact, to 

move the future path of the economy toward the steady state, the tax would have to be on 

investments in the recession period, and the subsidy would be for investments in the subsequent 

boom period. 

 For example, consider a recession period in the extreme (q0,q1) cycle for the example in 

our baseline example [4], where θ=0.5, δ=0.5, γ = 0.25, I(p) = 1.5max{1−p/0.7, 0}.  Suppose that  

V0 = 0,  so that the economy starts in an extreme recession period starts with no old agents.  

Recall that, in the extreme cycle for this example, aggregate investment in recession periods I(q0) 

is 15% below steady state I(p*), but investment in boom periods I(q1) is 19% above steady state. 

 Now consider introducing a net tax τt on investments in periods t=1,2, where a subsidy 

corresponds to a negative tax.  Let pt denote the pre-tax profit rate in period t, which will be on 

the given investment-demand curve.  Suppose that the goal of stabilization is to have the 

economy in the steady-state path from period 3 onwards, and so we require 

  p3 = p*  and  J2 = J* = I(p*)/(G(p*)+1). 

To have recruiting of agents in periods 1 and 2, we must have 

  p1−τ1 = Y(p2−τ2)  and  p2−τ2 = Y(p3). 

So with Y(p*)=p*, we get  p1−τ1 = p2−τ2 = p*.  That is, investments in each period must have 

expected after-tax profit rates (before paying the agents) that are just equal to the steady-state 

rate p*. Then with V0=0 and the given investment-demand function I, we get 
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  0 + J1 = I(p1) = I(p*+τ1),  G(p2−τ2)J1 + J2 = G(p*)J1 + J*= I(p2) = I(p*+τ2). 

Finally, budget balancing requires 

  τ1I(p1) + δτ2I(p2) = 0. 

These equations have the solution  τ1=0.199,  τ2 = −0.168,  J1 = 0.577.  So a 19.9% tax on 

investments in the recession period 1 and a balanced 16.8% subsidy on investments in the boom 

period 2 can put the economy in the steady-state from period 3 onwards, but only after period-1 

investment I(p1) is 42% below steady state I(p*), and period-2 investment I(p2) is 36% above 

steady state.  These fluctuations are much bigger than the (q0,q1) cycle without stabilization.  So 

this plan is stabilization by extreme austerity in period 1. 

 For a stabilization policy that yields a less extreme initial depression, we may consider 

instead subsidizing investments in period 1 by agents who will not go on to manage any 

investments in period 2.  It is, after all, the lack of such investments that causes the recession.  

Private investors will not undertake such investments with management by short-term agents 

without a subsidy, but the government could sponsor such investments.  As such investments are 

considered here with the goal of stabilizing the economy, we may refer to these investments with 

an inefficient short-term management contracts as "Keynesian" investments. 

 So in the same example as before, suppose that some amount K1 of Keynesian investment 

that is financed by a tax τ1 on all other investment in period 1.  The minimal agency cost for one-

period management contracts is Y(0) per unit investment.  This minimal cost is achieved by 

using young agents who can enjoy high consumption in the next two periods if their project 

succeeds in period 1, even though they will not manage investments in period 2.  Then the 

budget-balance condition is 

  τ1(I(p1)−K1) = (Y(0)−p1)K1. 

If the goal is to put the economy in the steady state in period 2, then we must have  p2 = p*  and  

J1 = J*.  The investment-demand curve with V0=0 gives us  I(p1) = 0 + J1 + K1.  The condition for 

competitive hiring of young agents J1>0 is  p1−τ1 = Y(p2) = p*.  Thus we need 

  I(p*+τ1) = J* + K1  and  τ1I(p*+τ1) = (Y(0)−p*)K1. 

A solution can always be found with  0 < τ1 < Y(0)−p*.  For our example [4], we have 

Y(0)=0.382, and these equations have solution  τ1 =0.083,  K1 = 0.457.  Thus, Keynesian 

investment financed by current taxes can put this economy in the steady state after one period of 

recession in which aggregate investment I(p1) is 18% below steady state I(p*). 
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 Spreading the cost of the Keynesian investment over more periods could bring the 

economy to steady state with a less severe initial recession.  For our example [4], if the cost of 

Keynesian investment in period 1 were paid by taxes in periods 1 and 2, then the economy could 

be put into steady state at period 3 with investment tax rates  τ1 = τ2 = 0.067  to finance  K1 = 

0.576.  This Keynesian investment K1 and tax rate  τ1 = τ2 = τ  satisfy the equations 

  (Y(0)−p*)K1 = τ[I(p*+τ) + δI(p*+τ)], 

  I(p*+τ) = J* + G(p*)[I(p*+τ) − K1]. 

So this policy would stabilize the economy after a two-period recession in periods 1 and 2, when 

aggregate investment would be 14.3% below steady state, which is slightly less severe than the 

trough of the extreme cycle without stabilization. 

 Finally, let us consider one other class of stabilization policies.  Instead of subsidizing 

some special Keynesian investments by taxing unregulated private investments, the government 

might simply regulate all investment in period 1.  For macroeconomic stabilization, the 

government might regulate all the contracts that investors offer young agents in period 1, to 

restrict the growth of responsibilities in period 2 that can be promised to agents who manage 

successful investments in period 1. 

 In such contract regulation, let η denote the regulatory upper bound on the size of 

investment that an agent can be asked to manage when old in period 2, per unit managed by the 

agent when young in period 1.  Then the standard optimal contracting problem for investors who 

hire young agents in period 1 with h0=1 is to choose (c0,h1,c1,c2) to 

[6]  maximize  h0p1 + δh1p2 − c0 − δc1 − δ2c2 

  subject to  (h0,c0,h1,c1,c2) ≥ 0,  h0 = 1,  h1 ≤ ηh0, 

  (c1
θ +δc2

θ)/θ ≥ (1+δ)[(c1+γh1)/(1+δ)]θ/θ, 

  (c0
θ +δc1

θ +δ2c2
θ)/θ ≥ (1+δ+δ2)[(c0+γh0)/(1+δ+δ2)]θ/θ. 

 For investors to break even under these regulated contracts, this contracting problem 

must have optimal value 0; and this condition can determine p1 from p2 for any given η.  When 

the recession period 1 has no old agents (V0=0) and the η regulatory constraint binds, the cohort 

of young agents who are hired under such contracts to manage I(p1) in period 1 will be expected 

to manage ηI(p1) in period 2.  To put the economy in steady state in period 2, we need  p2 = p*  

and  J2 = J*,  and so 
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  ηI(p1) = I(p*) − J*. 

Thus, to stabilize the economy, the regulatory parameter η must be chosen so that this equation 

is satisfied with the p1 that yields optimal value 0 in the contracting problem with p2=p*.  For our 

example [4], these conditions have the solution  η = 0.736  and  p1 = 0.297.  So this policy could 

stabilize this economy after a one-period recession in period 1 when aggregate investment I(p1) 

is 14.0% below the steady state I(p*). 

 

5.  Extensions to the case where agents serve more than two periods 

 Similar results have been found in Myerson (2012) for the case where risk-neutral agents 

manage investments in more than two periods.  While the greater complexity of nonlinear utility 

functions has prevented me from fully solving such multi-period models here, I can show that at 

least some of our results about the local instability of the steady state can be extended to models 

where agents serve many periods. 

 Suppose now that an agent whose career starts in period t can manage investments in the 

n periods from t to t+n−1, and then has one period of retirement at t+n.  Let cs and hs denote the 

agent's paid consumption and investment responsibilities at time t+s.  In the steady state, where 

profit rates are some constant p*, investors who plan make payments worth some given value C 

to the agent would want to use an efficient incentive plan where (h0,...,hn−1,c0,...,cn) solve 

[7]  maximize  ∑ −∈ δ}1n,...,0{s s
sh  

  subject to  (h0,...,hn−1,c0,...,cn) ≥ 0,   ∑ ∈ δ}n,...,0{s s
sc = C,   and 

  ( ) ( ) θδ≤θγ+δ ∑∑ ∈
θ−θθ−

∈
− /)c(/hc }n,...,s{r r

sr
ss

1

}n,...,s{r
sr ,  ∀s∈{0,...,n−1}. 

 Let (h0,...,hn−1,c0,...,cn) denote an optimal solution to this problem [7] when the parameter 

C is adjusted so that the linearly-rescaled solution has h0 = 1.  The steady-state profit rate p* at 

which investors could just break even is then 

  p* = ( )∑ −∈ δ}1n,...,0{s s
sh/C . 

In the steady state, the aggregate investment for a new cohort of young agents in each period t is  

J* = I(p*)h0/(h0 + h1 +...+ hn−1), and then they manage hsJ* in each period t+s for s∈{0,...,n−1}. 

 Now, assuming an economy that was in steady state, let us try to analyze what would 
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happen if some temporary unanticipated shock caused the size of some cohorts' responsibilities 

to deviate slightly from steady state in a few (less than n) time periods ending at some period T.  

For any period t during the shock or thereafter, let μt = Jt−J* denote the deviation of young 

agents' responsibilities from steady state, and let πt=pt−p* denote the deviation of the profit rate 

from steady state.  Let us assume a nonzero shock μT ≠ 0 at time T, at least.  We may say that the 

small shock has small consequences if, in equilibrium after T, profit rates will stay close enough 

to p* that investors will keep hiring new agents in every period with an optimal incentive plan 

that is close to the solution of [7]. 

 Our first question is, if the deviations μt during the shock are small enough, can the 

steady-state profit rate p* be maintained thereafter?  This continuation of p* would require that, 

in each period after T, the deviations from steady-state investment responsibilities of different 

cohorts must always cancel out.  With profit rates staying at p*, the solution to problem [7] 

remains the optimal contract at every period after T.  So the steady-state profit rate p* can be 

maintained only if the μt deviation satisfy 

[8]  ∑ −∈ −μ}1n,...,1,0{s stsh  = 0,  ∀t>T. 

Given any vector of shocks (μT−(n−1), ..., μT), μt is determined for all t>T by these linear 

difference equations [8].  If, for some initial shock vectors, these linear equations [8] have 

solutions that grow without bound, then we can find arbitrary small shocks that would compel 

the profit rate to deviate from the steady state.  Such divergence can be shown when the 

following (n−1)-degree polynomial in x has any real or complex root with magnitude greater 

than one: 

[9]  ∑ −∈
−−

}1n,...,1,0{s
s1n

sxh  = 0  for some complex number x such that |x|>1. 

For the case of n=2 (with all hs>0 and h0=1), this divergence condition [9] is satisfied when  

G(p*) = h1 > 1. 

 Suppose now that condition [9] guarantees that arbitrarily small shocks can force profit 

rates to deviate from the steady state p*.  We now ask whether the profit rates after such small 

shocks may at least be kept within some arbitrarily small neighborhood of p*.  With sufficiently 

small profit-rate deviations πt, the solution to [7] would remain approximately optimal for 

investors hiring new agents at every period t.  So by the envelope theorem, the local first-order 

condition to maintain zero expected profits for investors from hiring new agents at any period 
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t>T would be 

[10]  ∑ −∈ +πδ}1n,...,1,0{s st
s

sh = 0,  ∀t>T.  

Given any vector of shocks (πT+1, ..., πT+n−1), πt+n can be determined for all t>T by these linear 

difference equations [10] (with δn−1hn−1 > 0).  Thus, divergence of profit rates from the 

neighborhood of the steady state can be proven if all nonzero solutions to these linear difference 

equations in π become unbounded over time.  Such divergence can be shown when all real and 

complex roots of the following (n−1)-degree polynomial in x have magnitudes greater than one: 

[11]  |x|>1 for every complex number x such that  ∑ −∈ δ}1n,...,1,0{s
ss

s xh = 0. 

For the case of n=2, this divergence condition [11] is satisfied when  δG(p*) = δh1 < 1.  

[Insert Figure 7 about here] 

 Figure 7 shows the optimal investment responsibilities in a solution of [7] for the case of 

when agents can manage investments in n=10 periods, their utility exponent is θ=0.5, the moral-

hazard coefficient is γ=0.25, and the discount factor is δ=0.8706 = 0.25(1/n),  so that an agent's 

initial discounting of payoffs from retirement is still δn = 0.25 (as in our previous benchmark 

case with n=2 and δ=0.5).  Investment responsibilities at each period in this optimal contract are 

      (h0,h1,...h9) = (1, 1.302, 1.628, 1.957, 2.259, 2.492, 2.6, 2.509, 2.127, 1.338). 

This solution corresponds to a steady-state profit rate p* = 0.0409.  An agent's responsibilities 

are expected to increase steadily in the first seven periods, but then the responsibilities decrease 

in the last three periods before retirement.  It can be shown that the divergence conditions [9] and 

[11] are both satisfied for this example.  (The largest roots of [9] are 0.264±1.015i, which have 

magnitude 1.042, and the smallest roots of [11] are 0.770±0.712i, which have magnitude 1.049.)  

Thus, the steady state in this example is locally unstable, in the sense that arbitrarily small shocks 

near the steady state must eventually lead to dynamic equilibrium paths that differ significantly 

from the steady state, in the sense investors are not willing to hire new agents under incentive 

contracts that are even close to the steady-state solutions of [7]. 

 This local instability of the steady state can also be verified for examples with θ from 

−0.4 to 0.7, keeping the other parameters (n, δ, γ) fixed as above.  If we increase the number of 

periods to n=100, keeping δn=0.25 with θ=0.5 and γ=0.25, the optimal incentive plan [7] yields 

an path of investment responsibilities over an agent's career that looks similar to Figure 7 (with a 
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steady state profit rate p*=0.004 per period), and the same local instability of the steady state can 

be verified also for this example. 

 

6.  A related model with risk-neutral agents but different discount factors  

 To understand the effects of risk aversion in the above model, in this section let us 

consider a related model where agents are risk neutral (θ=1), but let us now allow that agents 

may have a discount factor δ1 that is different from investors' discount factor δ0.  In this section 

let us also assume that agents cannot save but must consume all income in the period that it is 

received.  As above, an agent could steal a fraction γ of the amount invested.  So when a young 

agent is hired to manage investments in periods t and t+1, with profit rates pt and pt+1, the 

investors want to choose the agent's investments hs and consumption allowances cs for each 

period t+s to solve the following constrained optimization problem:  

[12]  maximize  h0pt + δ0h1pt+1 − c0 − δ0c1 − δ0
2c2 

  subject to  (h0,c0,h1,c1,c2) ≥ 0,  h0 = 1, 

  c1 + δ1c2 ≥ c1+ γh1,     (incentive constraint at t+1) 

  c0 + δ1c1 + δ1
2c2 ≥ c0 + γh0.    (incentive constraint at t) 

 With risk neutrality, this optimal contracting problem becomes a simple linear 

programming problem which must have a corner solution.  For profit rates satisfying  

  γδ0/δ1 ≥ pt+1 ≥ max{0, γδ0/δ1 − γ}, 

the optimal solution is to fully back-load the agent's payments and have 

  h0 = 1,  c0 = 0,  c1 = 0,  c2 = γ/δ1
2,  and  h1 = 1/δ1. 

(With pt+1 in this interval, the optimality of this solution can be verified by standard Kuhn-

Tucker conditions with Lagrange multipliers  λ1 = δ0pt+1/γ  and  λ0 = (δ0/δ1)
2−(δ0/δ1)pt+1/γ  for 

the binding incentive constraints at periods t+1 and t.)  The upper bound on pt+1 here implies that 

investors cannot profit from hiring old agents for just one period at time t+1.  The lower bound 

implies that investors who have promised a position worth u1 to an old agent in period t+1 would 

want to ask the agent to manage  h1 = u1/γ  for a payment of u1/δ1 in period t+2, rather than pay 

the u1 debt immediately at t+1.  We find equilibrium profit rates in this interval. 

 At this optimal solution, the investors' optimal value is 

  h0pt + δ0h1pt+1 − c0 − δ0c1 − δ0
2c2 = pt + (δ0/δ1)pt+1 − γ(δ0/δ1)

2. 
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For this solution to apply in a steady-state equilibrium where pt = pt+1 = p*, this optimal value 

must be 0 for competitive investors when they hire a new agent at time t, and so we get 

  p* = γ(δ0/δ1)
2/(1 + δ0/δ1). 

It can be verified that this steady-state p* strictly satisfies the above bounds on pt+1. 

 Thus, for equilibria in an interval around the steady state, the zero-profit equilibrium 

condition for competitive investors to hire new agents in any period t is 

[13]  pt + (δ0/δ1)pt+1 = γ(δ0/δ1)
2 = p* + (δ0/δ1)p*. 

That is, in any period t when investors are willing to hire new agents under the optimal two-

period contract, we must have  

[14]  pt+1 − p* = −(δ1/δ0)(pt − p*). 

 This equation [14] tells us that, in the region near the steady state where new agents are 

hired every period, the dynamics depend critically on the ratio δ1/δ0.  When  δ1 = δ0,  we can get 

constant cycling around the steady state, with new agents hired every period (as in the previous 

paper of Myerson, 2012).  If  δ1 < δ0  (agents less patient than investors) then deviations of pt 

from p* tend to shrink over time, and so the economy is dynamically stable.  But if  δ1 > δ0  

(agents are more patient than investors) then the steady state must be locally unstable, because 

small deviations from p* must grow.  Such equilibria are shown in Figures 8 and 9, for an 

example where all parameters are as in the baseline case [4] (with γ=0.25 and I(p) = 

1.5max{1−p/0.7, 0}) except that now θ=1 and the risk-neutral agents' discount factor is changed 

to be either smaller (δ1=0.4 in Figure 8) or larger (δ1=0.6 in Figure 9) than the investors' fixed 

discount factor δ0 = 0.5.  

[Insert Figures 8 and 9 about here] 

 It may at first seem puzzling that making the agents more patient can cause dynamic 

instability.  Under the optimal back-loaded contracts, agents must be motivated by late-career 

rewards, which become less costly (for any given initial responsibilities) as agents become more 

patient.  Indeed, we can see in Figures 8 and 9 that more patient agents (with larger δ1) are 

associated with lower equilibrium profit rates.  In Figure 8 with less patient agents, the steady-

state profit rate (approximated on the right) is  p* = 0.174,  and the highest profit rate (starting 

from the worst initial condition V0 = 0 on the left) is  pmax = 0.313.  In Figure 9 with more patient 

agents, the steady-state profit rate (approximated on the left) is  p* = 0.095, and the highest profit 
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rate (in the recessions of the extreme cycle on the right) is  pmax = 0.174. 

 To understand the source of the dynamic instability with more patient agents here, we 

must recognize where the ratios of discount factors came from in equations [13] and [14].  In the 

equilibrium expected-profit equation [13], the factor δ0 represents the investors' discounting of 

future profits.  The factor 1/δ1 in equation [13] represents the expected growth of an agent's 

responsibilities in her second period compared to the first period.  That is, in the optimal back-

loaded contract, the expected investment responsibility h1 of an agent in her second period is 

1/δ1 times the agent's investment responsibility h0 in her first period.  So making δ1 larger means 

that a young agent's responsibilities do not need to be so much smaller than her expected older 

responsibilities, as her expected discounted value of the late career reward which motivates her 

good behavior in both periods is less discounted when she is young. 

   When δ1=δ0, the investors' discounting of the future exactly cancels out the expected 

growth of the agent's responsibilities, so that profit rates from both periods contribute equally to 

the investors' expected discounted value of profits from their contract with the agent.  (Cycles 

with δ1=δ0=0.5 are shown in gray in Figure 2.) 

 But when the agent is more patient, with δ1 > δ0, the investors' discounting of the future 

becomes a stronger effect than the agent's expected growth of responsibilities, and so the 

investors' expected discounted value of profits in [13] becomes more sensitive to the current 

profit rate pt than to the future profit rate pt+1.  So with δ1>δ0, in a dynamic equilibrium with 

rational expectations, any deviation of pt from the steady-state p* must be balanced by a larger 

deviation of pt+1 in the opposite direction.  Thus, with δ1>δ0, oscillating deviations from the 

steady state must grow until we reach periods when investors are not willing to hire any new 

young agents, so that equations [13] and [14] no longer apply.  Increasing δ1 would increase the 

rate at which the oscillations amplify around the steady state, but it would also decrease the 

amplitude of the limit cycle to which the oscillations converge. 

 Now let us return to the model with risk-averse agents that is the main focus of this paper.  

Risk aversion makes the optimal contracting problem nonlinear, and so we no longer get a corner 

solution with full back-loading of rewards.  In our model with risk-averse agents, the optimal 

incentive plan pays them a positive amount c0 and c1 in each period when they have investment 

responsibilities.  But less back-loading of rewards can imply that there is also less increase of 

agents' expected responsibilities in going from young to old.  Thus, like an increase in agents' 



 27 

patience, making the agents risk averse can reduce their expected growth of responsibilities from 

young to old.  And when agents' expected responsibility-growth ratios become smaller, investors 

become relatively less sensitive to future profit rates, and so they need greater counter-deviations 

in future profit rates to compensate for any deviation in the present.  Thus, risk aversion can 

yield the same kind of dynamic instability that we found, in this section, with risk-neutral agents 

who are more patient than investors. 

 

7.  Conclusions  

 From the most general perspective, we should recognize the basic fact that employers 

regularly need to make commitments of long-term relationships with agents whom they hire to 

fill certain kinds of important responsible positions.  Any new hiring into such positions then 

must depend on long-term estimates of future returns in the economy, and the existing 

commitments that employers have previously made with mid-career agents must be considered 

as part of the dynamic state of the economy at any point in time.  Clearly such long-term 

employment relationships have the potential to greatly complicate economic dynamics.  This 

paper and its predecessor (Myerson, 2012) have considered simple models to show how basic 

natural assumptions about such long-term employment relationships can imply persistent 

aggregate fluctuations in a dynamic economy.  The key insight underlying these results is that, 

unlike standard assumptions of depreciation in capital theory, standard assumptions in agency 

theory can make a long-term employment relationship an investment that becomes more 

productive over time, as an agent's responsibilities may increase with seniority. 

 We have considered models of a simple dynamic economy in which investors can only 

invest through risk-averse financial agents who are subject to moral hazard.  Because of this 

moral hazard, optimal incentive contracts typically involve substantial late-career rewards for 

good service, and so the agents must have long-term relationships with investors.  These 

relationships can create complex macroeconomic dynamics in which agents' contractual 

positions or wealth form the state of this dynamic system. 

 In the recessions of our models, productive investment is reduced by a scarcity of trusted 

financial intermediaries.  Competitive recruitment of new financial agents cannot fully remedy 

such undersupply, because agents can be efficiently hired only with long-term contracts in which 

their responsibilities are expected to grow during their careers.  So a large adjustment to reach 
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steady-state financial capacity in one period would create oversupply in future periods. 

 For new agents to be hired each period, low profit rates must be followed be higher 

expected rates in a later period, which must be followed in turn by lower expected rates.  

Optimal contracts for risk-averse agents typically include some consumption rewards earlier in 

the agent's career, in addition to the large late-career rewards, and so agents may have less 

expected growth of responsibilities than in the corresponding risk-neutral case.  But this effect 

can actually make the dynamic economy even less stable, in the sense that small deviations from 

steady state tend to amplify over time.  Thus, in the absence of any fiscal policies for 

macroeconomic stabilization, the economy can spontaneously develop large cyclical inequalities 

across generations. 

 

Appendix A.  Computation of optimal contracts  

 We are considering the problem of designing an optimal incentive contract for an agent 

who is young in period t, can manage investments also as an old agent in period t+1, and will 

then retire in period t+2.  This problem can be decomposed into a young-agent incentive problem 

and old-agent incentive problem, if we add a variable v1 that measures the young agent's 

anticipated future welfare in periods t+1 and t+2.  So let us define v1 to be the constant-

equivalent consumption that would yield the same utility for the agent in periods t+1 and t+2, 

satisfying the equation 

  (1+δ)v1
θ/θ  = (c1

θ + δc2
θ)/θ, 

where c1 and c2 denote the agent's anticipated consumption in periods t+1 and t+2.  Then the 

decision variables in the young-agent incentive problem are the investment h0 managed by the 

young agent in period t, the consumption c0 for the young agent in period t, and the constant-

equivalent consumption v1 for the agent in the next two periods if she manages her first 

investment well.  Then, taking the promised constant-equivalent consumption v1 as given, the 

old-agent incentive problem determines the investment h1 managed by the agent in period t+1, 

the consumption c1 for the old agent in period t+1, and the consumption c2 that is promised for 

the retired agent in period t+2 if she also manages her second investment well. 

 Let us consider first the old-agent incentive problem:  Taking the promise v1 as given, 

the old-agent incentive problem is to choose (h1,c1,c2)≥0 so as to  

  minimize  c1 + δc2 − h1pt+1  
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  subject to  (c1
θ + δc2

θ)/θ = (1+δ)v1
θ/θ  (promise keeping) 

  (c1
θ + δc2

θ)/θ ≥ (1+δ)[(c1+γh1)/(1+δ)]θ/θ  (incentive constraint at t+1). 

The incentive constraint must be binding, or else we could increase h1.  Now let  ψ = c1/v1.  

Then the equations  (ψv1)
θ + δc2

θ = (1+δ)v1
θ   and  (1+δ)v1

θ = (ψv1+γh1)
θ(1+δ)1−θ  yield 

  c2 = v1[(1 + δ − ψθ)/δ]1/θ  and  h1 = v1(1 + δ − ψ)/γ. 

So the objective is to choose 0 ≤ ψ ≤ 1 to 

  minimize v1{ψ + δ1−1/θ(1+δ−ψθ)1/θ − pt+1(1+δ−ψ)/γ}. 

Differentiating with respect to ψ, the first-order conditions for an optimum are 

  1 + pt+1/γ = δ1−1/θ(1+δ−ψθ)1/θ−1ψθ−1 = δ(θ−1)/θ[(1+δ)/ψθ−1](1−θ)/θ 

This minimum is achieved at 

  ψ = {(1+δ)/[1+δ(1+pt+1/γ)θ/(1−θ)]}1/θ. 

With pt+1≥0 and θ≤1, this optimal ψ satisfies 0 ≤ ψ ≤ 1.  With this optimal ψ, the net cost per unit 

promised v1 in period t+1 is 

  N(pt+1) = ψ + δ1−1/θ(1+δ−ψθ)1/θ − pt+1(1+δ−ψ)/γ. 

In equilibrium, we can only have pt+1 such that this net cost is nonnegative N(pt+1)≥0, or else 

investors would hire old agents to manage investments for just one period. 

 Next, the young-agent incentive problem is to choose (h0,c0,v1)≥0 so as to  

      maximize  pth0 − c0 − δN(pt+1)v1  subject to  h0=1  and 

      (c0
θ + (δ+δ2)v1

θ)/θ ≥ (1+δ+δ2)[(c0+γh0)/(1+δ+δ2)]θ/θ        (incentive constraint at t). 

Let v0 denote the agent's constant-equivalent consumption over her entire life, so that  

  (1+δ+δ2)v0
θ/θ = [c0

θ + (δ+δ2)v1
θ]/θ. 

The incentive constraint at t must be binding, or else v1 could be reduced, and so 

  v0 = (c0+γh0)/(1+δ+δ2) > 0. 

 Let ζ denote the ratio of the young agent's consumption over her overall constant-

equivalent consumption, so that ζ = c0/v0.  Then with the binding incentive constraint, we get 

  v1 = v0[(1+δ+δ2−ζθ)/(δ+δ2)]1/θ  and  h0 = v0(1+δ+δ2−ζ)/γ. 

For feasibility, we must have 0 ≤ ζ ≤ 1+δ+δ2 and also  ζ ≥ (1+δ+δ2)1/θ  if θ<0.  Then the expected 

net profit can be rewritten 

  v0{pt(1+δ+δ2−ζ)/γ − ζ − δN(pt+1)[(1+δ+δ2−ζθ)/(δ+δ2)]1/θ}. 
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We are searching for the profit rate  pt = Y(pt+1)  at which the value of this expected net profit is 

zero at the optimal solution.  We know that v0>0 with any feasible incentive plan that has h0=1.  

So the expected net profit can be strictly positive if and only if there is some feasible ζ such that 

the coefficient of v0 in this expected profit formula is positive.  That is, at the critical profit rate 

pt = Y(pt+1)  such that investors just expect to break even in hiring a young agent at time t, we 

must have 

[15]  0 = maximum  pt(1+δ+δ2−ζ)/γ − ζ − δN(pt+1)[(1+δ+δ2−ζθ)/(δ+δ2)]1/θ 

where the maximim is over all feasible ζ.  (In effect, we have renormalized our problem with the 

equation v0=1, instead of h0=1.) 

 It is straightforward to verify that the expected net profit in equation [15] could be made 

strictly positive with ζ=1 if we had pt > (1+δN(pt+1))γ/(δ+δ2).  Thus the profit rate pt=Y(pt+1) that 

yields a zero maximum in equation [15] must satisfy   

  0 ≤ pt ≤ (1+δN(pt+1))γ/(δ+δ2). 

For any pt, the maximum expected net profit is achieved where ζ satisfies the first-order 

conditions 

  (1+pt/γ)(δ+δ2)1/θ/(δN(pt+1)) = (1+δ+δ2−ζθ)1/θ−1 ζθ−1 = [(1+δ+δ2)/ζθ − 1](1−θ)/θ, 

and so the optimal ζ is 

  ζ = (1+δ+δ2)1/θ/{1+[(δ+δ2)1/θ(1+pt/γ)/(δN(pt+1))]
θ/(1−θ)}1/θ. 

Thus, to find pt=Y(pt+1), we can search over the interval from 0 to (1+δN(pt+1))γ/(δ+δ2) to find 

where this optimal ζ  yields the zero expected net profit in equation [15]. 

 The full optimal solution to the original incentive problem with h0=1 and pt=Y(pt+1) can 

then be computed from the optimal ζ by the equations 

  v0 = γh0/(1+δ+δ2−ζ), 

  v1 = v0[(1+δ+δ2−ζθ)/(δ+δ2)]1/θ, 

  c1 = v1{(1+δ)/[1+δ(1+pt+1/γ)θ/(1−θ)]}1/θ, 

  h1 = [v1(1+δ) − c1]/γ, 

  c2 = {[(1+δ)v1
θ−c1

θ]/δ}1/θ. 

 

Appendix B.  Construction of unstable dynamic equilibria in the regular case 

 Fact 2.  Suppose that  1 < G(p*) < 1/δ  and a cycle (q0,q1) exists as in the regular case 
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from Fact 1.  For any initial condition V0 other than V*, there exists an equilibrium that begins 

with this initial condition and, within finitely many periods, enters the extreme (q0,q1) cycle.  

 Proof.  First let us check the easy case when  V0 ≥ I(Y(q0))/H(Y(q0)).  In this case we get 

an equilibrium that begins with  J1 = 0  and with the  p1 ≤ Y(q0)  that satisfies  I(p1)/H(p1) = V0  

(notice that I(p1)/H(p1) is a decreasing function of p1 and is unbounded as p1 approaches 0 with 

H(0)=0), and thereafter continues in the extreme (q0,q1) cycle beginning with p2 = q0. 

 So it remains for us to show how to find equilibria in which the initial promise to old 

agents at period 1 is any V0 such that  

  0 ≤ V0 < I(Y(q0))/H(Y(q0)). 

Let T denote the first period when no new agents are hired, and so JT = 0.  After period T, the 

equilibrium will follow the (q0,q1) cycle, with  pT+t = q0,  JT+t = I(q0),  pT+t+1 = q1,  and  JT+t+1 = 0 

for every odd positive t.  Now consider any pT such that 

  q1 ≤ pT ≤ Y(q0) = Y(Y(q1)). 

The condition pT≤Y(q0) implies that the equilibrium can continue in the (q0,q1) cycle after period 

T, starting with JT=0 and pT+1=q0.  With JT=0, we can recursively compute the equilibrium 

backwards in time from T by the formulas 

  pT−t−1 = Y(pT−t)  and  JT−t−1 = [I(pT−t) − JT−t]/G(pT−t).  

 We now show that these pT−t and JT−t values will be nonnegative, so that this sequence 

(pT−t, JT−t) can satisfy our equilibrium conditions for all t,.  With Y decreasing, from the initial pT 

between q1 and Y2(q1), the p sequence must inductively satisfy, for each nonnegative integer s, 

  Y2s(q1) ≤ pT−2s ≤ Y2s+2(q1) ≤ p* ≤ Y2s+3(q1) ≤ pT−2s−1 ≤ Y2s+1(q1).  

With regularity, Y2s(q1) is an increasing sequence and Y2s+1(q1) is a decreasing sequence, both 

converging to p* as s→+∞.  So the pT−t are bounded away from 0, and pT−t→p* as t→∞.  With 

JT=0, we get JT−1 = I(pT)/G(pT) ≥ 0.  Then, for any integer t≥0 we get   

  JT−t−2 = [I(Y(pT−t))G(pT−t) − I(pT−t) + JT−t]/[G(pT−t)G(pT−t−1)] ≥ 0,   

because  pT−t ≥ q1  and so  I(Y(pT−t))G(pT−t) ≥ I(pT−t).  So the JT−t are all nonnegative.  Thus, our 

(pT−t, JT−t) values satisfy the conditions for an equilibrium before the (q0,q1) cycle starts at T+1. 

 With pT−t→p*,  the recursive formula for JT−t−1 implies that (JT−t−1−J*)/(JT−t−J*) must 

converge to −1/G(p*).  So with  G(p*) > 1,  the JT−t sequence must converge to J* as t→+∞. 
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 Among the possible pT between q1 and Y2(q1), the extreme case of pT=q1 yields  

pT−2 = Y2(q1)  and  JT−2 = [I(Y(q1))−I(q1)/G(q1)]/G(Y(q1)) = 0,  which is the same as the (pT, JT) 

for the opposite extreme case of pT=Y2(q1).  So the equilibrium for pT=q1 is the same as the 

equilibrium for pT=Y2(q1) two periods later.  Thus, as we trace out the different equilibrium paths 

for pT between q1 and Y2(q1), each (pT−t,JT−t) pair traces out a continuous curve that connects at 

the Y2(q1) end with the (pT−t−2,JT−t−2) curve at its q1 end.  As we vary t over all nonnegative 

integers, the curves from the odd t and the even t must connect in the limit at (p*,J*). 

 For any t≥0, the total promises VT−t−1 to old agents that would justify starting this 

equilibrium path at period T−t are 

  VT−t−1 = JT−t−1G(pT−t)/H(pT−t) = [I(pT−t) − JT−t]/H(pT−t). 

We get  VT−1 = I(Y(q0))/H(Y(q0))  in the case of  pT = Y(q0) = Y2(q1).  We get  VT−2 = 0  in the 

case of  pT = q1.  So as we vary pT between q1 and Y(q0) and vary t over all positive integers, 

these VT−t−1 values cover the interval from 0 to I(Y(q0))/H(Y(q0)).  Thus, we can find some pT 

and t̂ that matches VT−t̂−1 to any given V0 in this interval, and then we can let  T = t̂+1  and apply 

the computed equilibrium.  QED. 

 As an example of the algorithm described in the above proof, Figures 2, 3, and 4 show a 

dynamic equilibrium that enters the extreme (q0,q1) cycle after period T=25, where the 

equilibrium profit rate  pT = 0.153  is halfway between  q1 = 0.141  and Y(q0) = 0.165. 

 In the case when G(p*)>1/δ, dynamic equilibria that converge to the steady state can be 

computed from a selected initial profit rate p1 by recursively solving the equations  pt = Y(pt+1)  

for pt+1 forward from t=1.  Then, picking a distant future period T after profit rates have 

converged very close to the steady state p*, we can estimate that the young-agent investments JT 

there should be close to the steady state J*, and then we can compute earlier Jt from JT ≈ J* by 

recursively applying  Jt−1 = (I(pt)−Jt)/G(pt)  backward in time from t=T. 
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θ p* Y(p*) h₀ c₀ h₁ c₁ c₂ 
1 0.125 -1 1 0 2 0 1 

0.9 0.147 -1.075 1 0.000 2.151 0.012 1.200 
0.8 0.172 -1.041 1 0.002 2.083 0.089 1.218 
0.7 0.194 -0.978 1 0.009 1.955 0.170 1.157 
0.6 0.214 -0.917 1 0.022 1.834 0.232 1.087 
0.5 0.231 -0.864 1 0.038 1.727 0.275 1.021 
0.3 0.260 -0.777 1 0.070 1.554 0.329 0.909 
0.1 0.282 -0.712 1 0.098 1.424 0.356 0.824 
-0.1 0.299 -0.662 1 0.123 1.324 0.371 0.758 
-0.5 0.325 -0.591 1 0.160 1.183 0.381 0.664 
-1 0.346 -0.535 1 0.193 1.071 0.383 0.591 
-2 0.372 -0.473 1 0.232 0.946 0.376 0.510 
-4 0.395 -0.419 1 0.269 0.838 0.364 0.441 

 

Table 1.  Dependence of steady-state contracts on utility exponent θ, with  δ=0.5 and  γ=0.25. 
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Figure 1.  Conditions for existence of cycles around the steady state (G(p*)>1) depend on the 
discount factor δ and the utility exponent θ. 
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Figure 2.  Profit rates in a dynamic equilibrium with parameters θ=0.5, δ=0.5, γ=0.25, 
I(p) = 1.5max{1−p/0.7, 0}, and with the initial V0 3% from steady state V*.  (The widest cycle 
and steady state with risk-neutral agents are shown in gray, for comparison.) 
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Figure 3. Divergence of profit rates pt=Y(pt+1) in a cob-web diagram. 
(Parameters:  θ=0.5, δ=0.5, γ = 0.25, I(p) = 1.5max{1−p/0.7, 0}.) 
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Figure 4.  Development of generational inequalities between investments managed by young 
agents Jt and old agents I(pt)−Jt over time.  (Same parameters as Figure 2.) 
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Figure 5.  Investments managed by young agents Jt and old agents I(pt)−Jt in a dynamic 
equilibrium with V0 = 0, θ=0.9, δ=0.5, γ=0.25, I(p) = 1.5max{1−p/0.7, 0}. 
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Figure 6.  Bifurcation diagram showing profit rates in cyclical periods for the extreme cycle 
(with −1.47 ≤ θ ≤ 0.793), an unstable intermediate cycle (with 0.735 ≤ θ ≤ 0.793), and the steady 
state (all θ) with parameters  δ = 0.5,  γ = 0.25,  I(p) = 1.5max{1−p/0.7, 0}.  
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Figure 7.  Relative size of investment responsibilities and consumption for agents over a career 
of n=10 periods, in steady state with θ=0.5, δ=0.250.1=0.871, γ=0.25, and p*=0.0409. 
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Figure 8.  Profit rates in a dynamic equilibrium with risk-neutral agents having discount factor 
δ1=0.4, while investors' discount factor is δ0=0.5, with  γ=0.25, I(p) = 1.5max{1−p/0.7, 0}. 
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Figure 9.  Profit rates in a dynamic equilibrium with risk-neutral agents having discount factor 
δ1=0.6, while investors' discount factor is δ0=0.5, with γ=0.25, I(p) = 1.5max{1−p/0.7, 0}. 
 
 


