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CHAPTER 8 

Bayesian equilibrium and 
incentive-compatibility: 
an introduction 

Roger B. Myerson 

1 Introduction 

Two kinds of incentive constraints limit people's ability to reach mutually 
beneficial agreements in social and economic affairs. First, when one 
person has unverifiable private information that is not available to the 
others, then he cannot be compelled to reveal that information honestly 
unless he is given the correct incentives. Second, when a person controls 
some private decision variable that others cannot control or monitor, 
then he cannot be directed to choose any particular decision or action 
unless he is given the incentive to do so. That is, a social contract or 
coordination system may not be feasible if it gives people incentives to lie 
about their information or to cheat in their actions. An organization must 
give its members the correct incentives to share information and act 
appropriately. An individual cannot be relied upon to testify against 
himself or to exert efforts for which he will not be rewarded. 

It is widely recognized by economists and other social scientists that 
this need to give correct incentives may be quite costly for society. In the 
insurance industry, for example, the inability to get individuals to reveal 
unfavorable information about their chances of loss is known as adverse 
selection, and the difficulty of getting fully insured individuals to exert 
efforts against their insured losses is known as moral hazard. These 
factors generally prevent the insurance industry from offering risk-averse 
individuals the full insurance that they would like to buy. Arrow [1970] 
has written a seminal analysis of these issues and their impact on markets 
for riskbearing. u 
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A theory of incentives must go beyond simply telling us that c~rtain 
ideal forms of social organization are infeasible because they_ v1ol~te 
incentive constraints, and that incentive constraints cause losses m soc~al 
welfare. We also need to know how to minimize these losses. That 1s, 
given a social welfare function, we may want !O fi?d the best co_ntract_ or 
social system that maximizes social welfare subject_ to the~~ 1~centive 
constraints. This essay shows how the theory of Bayesian eqmhbnum and 
incentive-compatibility can be used to actually fi~d such opt~mal contrac~s • 

The basic object of analysis in this essay 1s a Bayesian game with 
incomplete information, as defined by Harsanyi [1967-68]. In the nota­
tion used here, we suppose that there are n players in the game, and that 
they are numbered 1, 2, .. . , n. For each player_ i in{~,. 2, .... ' n}, we 
let Di denote the set of possible actions or strategic decisions available t? 
player i in the game. We let Ti denot~ t~e set of possibl~ types for player z. 
Each type ti in Ti is a complete descnpt1on of one po~s1ble state of player 
i's private information and beliefs about any uncertain f~c~~rs releva~t to 
the game (for example, about the preferences and ab1hties of va~10us 
players). That is, a player's type is supposed to ~e a rand~m variable 
summarizing all information that he may have that 1s not available to the 

other players . . . . . . 
Let D denote the set of possible combmat10ns of dec1s10ns available to 

then players, and let T denote the set of possible types of then players, so 

that 

D = D 1 X • • • X Dn, 

T = T1 X • • • X Tn. 

(1.1) 

(1.2) 

Let T -i denote the set of possible combinations of types for all players 
other than i, so 

(1.3) 

Except in Section 2, we will usually assume tha_t _D and Tare fini~e sets. 
Let p/Lilti) denote the subjective probab1~1ty _that player z woul~ 

assign to the event that Li in T -i is the combmation of ot~~r players 
types if i's actual type were ti. · We let u/d, t) denote utihty payoff 
(mea~ured in some von Neumann- Morgenstern utility scale) that ~l~yer 
i would get if d = ( d1: . . . , dn) were the combination of . de~1S1ons 
chosen by the n players and t = (t1 , ... , tn) were the combmat10n of 

the players' types. . . . 
Thus, in general, we say that r is a Bayesian game 1ff 1t 1s of the form 

r = (D1, . . . 'Dn, T1, .. . ' Tn, P1, ... 'Pn, U1, ... 'Un) (1. 4) 
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where, for each i, Di and Ti are nonempty sets, Pi is a function specifying a 
probability distribution (p/ · I tJ) over T _i for each ti in Ti, and ui is a 
function mapping D x Tinto the real numbers IR. In a Bayesian game, we 
assume that the structure of r in (1.4) is common knowledge among all 
the players; we also assume each player i knows his own actual type in Ti. 
(Following Aumann [1976], we say that a fact is common knowledge iff 
everyone knows it, everyone knows that everyone knows it, and so on, 
including every statement of the form "Everyone knows that everyone 
knows that .. . everyone knows it".) 

Bayesian games are important for economic theory because they give 
us a general model for situations involving moral hazard and adverse 
selection. The goal of this essay is to provide a general introduction 
to the analysis of Bayesian games. In Section 2, I try to show why 
the Bayesian game model is (in principle) the appropriate model for 
any game with incomplete information, following the work of Harsanyi 
[1967 - 68] and Mertens and Zamir [1985]. In Section 3, I discuss equiva­
lence relations between Bayesian games. In Section 4, I argue that 
Bayesian equilibrium is the appropriate solution concept for Bayesian 
games, if the players cannot communicate. For games in which the 
players can communicate, I define Bayesian incentive compatibility in 
Sectio

0

n 5, to characterize the set of feasible coordination mechanisms for 
the players. An incentive-efficient mechanism is one that is Pareto un- ' 
dominated within the set of incentive-compatible mechanisms. In Sec­
tions 6- 8 I develop necessary and sufficient conditions that can be used 
to actually compute incentive-efficient mechanisms. Section 6 is devoted 
to the special case in which there are only informational incentive con­
straints ( the case of pure adverse selection); Section 7 is devoted to the 
case in which there are only strategic incentive constraints (pure moral 
hazard); and Section 8 covers the general case. 

2 Modeling games with incomplete information 

We say that there is incomplete information in a game if, at the time when 
the players choose their strategies for playing the game, they have differ­
ent private information about their preferences and abilities . This term 
was introduced by von Neumann and Morgenstern [1944]. (They also 
used the term imperfect information, to describe games in which the 
players may get different private information during the course of the 
game, but all players begin the game with the same information. The 
distinction · between the two terms seems to depend on whether the 
players actually could have planned their strategies in the game before 
learning their private information.) The real understanding and analysis 
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of games with incomplete information began with the work of Harsanyi 
[1967- 68], who introduced the basic definition of a Bayesian game and 
argued that it is the appropriate model for games with incomplete 
information. Mertens and Zamir [1985] developed a rigorous mathemati­
cal formulation of Harsanyi's argument. In this section, we review the 
ideas of these two important papers, using a formulation based on (but · 
slightly different from) that of Mertens and Zamir. Armbruster and Boge 
[1979] have also considered a related formulation. · 

A model of a game with incomplete information must include vari­
ables that describe what private. information each player might have that 
is unavailable to other players. In Harsanyi's Bayesian games, these 
variables are the players' types. Thus, player i's type must specify every­
thing that player i knows that is not common knowledge among all 
players. For example, if player i's only private information is his reserva­
tion wage rate, then we can let his set of possible types Ti be a subset of 
the real numbers, where each ti in Ti is a possible value of player i's 
reservation wage. On the other hand, if some players do not know what 
are i's beliefs about other players' reservation wages, then player i's type 
must be expanded to include as well parameters that specify player i's 
beliefs about other players' reservation wages. In this case, Ti might have 
to be a set of vectors, rather than a set of numbers. 

The basic question to be considered in this section is the following. 
When we are trying to model some real-world situation in which players 
have incomplete information, can we always find type sets (T1, ••• , Tn) 
that are large enough to characterize all of the possible private informa­
tion and beliefs that a player might have relevant to the game? To answer 
this question, we must consider what are the uncertainties that may arise 
in the structure of a game, and we must show that the players' beliefs 
about all these uncertainties can be specified within the type sets of some 
Bayesian game. 

There are several basic issues in a game about which players might 
have different information: how many players are actually in the game; 
what actions or strategic decisions are available to each player; how the 
outcome of the game depends on the actions chosen; and what are the 
players' preferences over the set of possible outcomes. Harsanyi showed 
that all of these issues can be modeled in a unified way. Uncertainty about 
whether a particular player is "in the game" can be converted into 
uncertainty about the set of feasible decisions, by always including the 
player in the game but then giving him only one decision ( = "non parti­
cipation ") when he is supposed to be " out of the game." Uncertainty 
about whether a particular decision is feasible for player i can in turn be 
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converted into uncertainty about the outcome, by saying that player i will 
get a very bad (negative) payoff if he uses a decision that is supposed to be 
infeasible. Uncertainty about outcomes and uncertainty about prefer­
ences can be unified by modeling each player's utility function directly 
from the space of decision combinations into utility payoffs (representing 
the composition of an outcome function, that maps decision combina­
tions into outcomes, and a utility function, that maps outcomes into a von 
Neumann-Morgenstern utility scale for the player). 

So let {l, 2, ... , n} be the set of players, let Di be the set of possible 
actions or strategic decisions for player i, and let D be the set of possible 
combinations of decisions, as in (1.1). To be consistent with the preceding 
discussion, we might say that n is the maximal number of players, and Di 
is the maximal set of feasible decisions for player i. 

To model the uncertainty in the game, we must put some unknown 
parameter 0 into the utility functions. Thus, we let w/d, 0) denote the 
utility payoff to player i if d = (d1, ••• , d 11 ) is the combination of 
actions chosen by the n players and if 0 is the value of this unknown 
parameter. We let H denote the set of possible values of 0, and we refer to 
Has the domain of basic uncertainty in the game. If Dis finite, we can 
assume without loss of generality that His a subset of [R111°1, because the 
only role of 0 is to specify the n utility functions from D into the real 
numbers IR. Furthermore, if the players' utility functions are bounded, then 
we can assume that H is a subset of the nlDJ-dimensional unit cube. 

These structures (D 1, ... , Dn, H, w 1, ••• , wn) are not sufficient 
to describe the game with incomplete information, because they do not 
tell us what are the players' beliefs or information about the unknown 
parameter 0. The subjectivist theory of Bayesian decision making, as 
developed by Savage [1954], Raiffa [1968], and others, emphasizes that 
any individual must have a subjective probability distribution over the 
possible values of any parameter that he does not know. That is, if player i 
does not know 0, then he must at least have some subjective probability 
distribution over H that summarizes his beliefs about this unknown 
parameter 0. His subjective probability distribution for 0 can be mea­
sured by asking him questions about which gambles depending on 0 he 
would prefer. (For example, to assess a player's subjective probability of 
the event that 0 is in a set 'I', where 'I' <;;;;: H, we would ask him, for what 
objective probability of getting an increase of one utility unit indepen­
dently of 0 would he be just barely willing to give up a prospect of gaining 
one extra utility unit if 0 is in 'I'.) Our description of a player as a rational 
decision maker will be incomplete until we specify these subjective 
probabilities. 
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We let qf represent player i's subjective probability distribution over 
H. That is, for any 'l' ~ H, q}('l') is i's subjective probability for the event 
that 0 E 'l'. We refer to qf as the first-order beliefs of player i. 

In a game, a player's optimal decision will generally depend on what he 
expects the other players to do. And what he expects the other players to 
do will depend on what he thinks they believe. Thus we must now ask, 
what does player i think are the other n - l players' first-order beliefs? 
Subjectivist decision theory implies that each player i must have a subjec­
tive probability distribution for these unknown first-order beliefs (qf, 
. . . , q}_ 1, <Ji+ 1 , ... , q J) as well as for 0 denote this subjective 
probability distribution. We refer to qf as the second-order beliefs of 
player i. But now there are third-order beliefs (beliefs about the other 
players' second-order beliefs) to be assessed, and so on. We seem to be 
getting into an infinite regress. 

Mertens and Zamir [1985] have shown that it is possible to keep track 
of this infinite hierarchy of beliefs within a consistent mathematical 
model, so that there does exist a Bayesian game with type sets that are 
sufficiently large to include all of a player's possible beliefs of all orders. 
To see how this is done, we must use some relatively sophisticated 
mathematics. Readers with less mathematics are encouraged to skim or 
even omit the rest of this section, as nothing in Sections 3 through 8 will 
depend on it. 

Given any metric space X, we let a(X) denote the set of all probability 
distributions on X that are defined on the set of Borel-measurable subsets 
of X. We give a(X) the weak topology, which is defined so that J f(x)p(dx) 
is a continuous function of p in a(X) for every bounded continuous 
f: X ----',• R If Xis compact, then a(X) is also compact and metrizable. 
Billingsley [1968] gives a full development of this result. 

Now, let Qf denote the set of i's possible first-order beliefs (probability 
distributions over H); that is, 

Qf = a(H). (2.1) 

We can inductively define Qf, the set of possible k-order beliefs of player 
i, for k = 2, 3, 4, ... , by 

(2.2) 

where 

Q k -:- 1 = Qk-1 X ••• X Q-k-1 X Q-k-1 X •• (x) Qk-1 
-1 1 1-l 1+1 n · 

That is, a k-order belief for player i is a probability distribution over the 
possible values of 0 and the other players' (k - 1)-order beliefs. By 
induction, if His compact, then every Qf is also a compact set (with the 
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w~ak topology). We let qf denote the actual k-order beliefs of player i, in 
Qi. 

A player's k-order beliefs determine his beliefs of all orders lower than 
k, through a series of functions <t>f- 1: Qf----',• Qf-1, which can be 
defined inductively: The function <t>f is defined by 

[ <f>i( qT) ]('l') = q;('l' X Q~J, Vqf E Qf, V'l' ~ H. (2.3) 

That is, the first-order beliefs <t>f (qf) that correspond to second-order 
beliefs qf are just the marginal distribution of qf on H. We inductively 
define M- 1(q7), for every k? 3 and every qf in Qf, by 

(<t>f-1(qf) )('l') = qfe{(e, [qj - 1]r1i) I ( (e, [<t>j- 2(qj- 1)]r1J E 'l'}), 

't/'l' ~ H X Q~i- 2
. (2.4) 

That is, the probability under <f>7- 1(q7) of a set of (k - 2)-order beliefs 
is the probability under qf of the (k - 1)-order beliefs that are mapped 
into the set by the functions cpj-2

• By the laws of probability, each 
player's first-order beliefs must be the marginal distribution of his second­
order beliefs on H, so qf = <t>f (qf) for each player i. Each player i also 
knows that q} = <t>}(qJ) for every other player j (since i knows that j's 
beliefs satisfy the laws of probability), and this fact implies that qf = 
<l:>T(qf) for player i. Continuing inductively, we conclude that 

qf- 1 = <t>f- 1
( q7) \Ji, 'tJ k ? 2, 

because it is common knowledge that every player's beliefs satisfy the 
laws of probability. 

We let Q'; denote the set of all possible beliefs of all orders for player i, 
that is 

Q'; = {qi = (qf, qf' ... ) E X Qf I qf-l = M- 1(q7), 't/k } . 
k = l (2 .5) 

In the terminology of Mertens and Zamir [1985], Q'; is the universal 
belief space for player i generated by H, the domain of basic uncertainty. 
Mertens and Zamir have shown that, if His compact, then the universal 
belief space generated by His also a compact topological space ( with the 
product topology). 

Any qi in Q'; induces a probability distribution on H x Q~i, where 

Q
00

_i = Q1 X • • • X Qi- I X Qi+l X • • • X Q~, 

and we let Pl· I qJ denote this probability distribution. If 'l' is any closed 
subset of H x Q00

- i, then the induced probability of 'l' is 
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P;('l'\qi) = lim qf({0, (qj- 1)j=ji) \ (0, (qi)di) E 'I'}). (2.6) 
k----+OO 

(Here qf denotes the k-order component of qi, and qj- 1 denotes the 
(k - 1)-order component of qi.) In fact, Mertens and Zamir have shown 
that P;( I·) is a homeomorphism between Qc;' and a(H x Q

00-J That 
is, player i's universal belief space Qc;' includes all possible (Borel­
measurable) beliefs about the basic uncertainty in H and the other 
players' infinite hierarchies of beliefs in ~r-i· 

Notice now that the random variable 0 cannot directly influence any 
player's behavior in the game, except to the extent that players have 
information about 0 that is expressed in their beliefs ( q 1, ... , q n). So 
we can integrate the basic uncertainty variable out of the probability and 
utility functions without losing any structures relevant to predicting 
players' behavior. For any qi in Qc;', we let p;( · I q) be the marginal 
probability distribution of Pi(· \qi) on Q

00

-i· For any q = (q1, ... , qn) 
in X n=

1
Qj, we let u;(d, q) denote the conditional expectation of 

w;(d, ~), under the conditional probability distribution for 0 induced by 
qi, given that q_i (the vector of actual beliefs of players other than i) is 
equal to the vector q_i = ((q 1 , ... , qi-1, qi+I, ... , qn). That is, 

we may write: 

Pi('l' \qi) = P;(H X '1' \qi), (2.7) 
n 

u;(d, q) = Eqi(w;(d, 0) \q- i = q_i), Vi' V d E D' V q E X Q'j'. 
j=l 

(2.8) 

Thus at last we get the universal Bayesian game, 

r00 = (D1, ... , Dn, Q~, · · · , Q:, Pi, · · · , Pn, U1, · · · , Un). 

For each i and each qi in Qc;', Pi(· I qi) is a probability distribution over 
Q00- i , and ui is a function from D x ( X J=l Q';) into IR; so r is indeed a 
Bayesian game. By construction, Qc;' is large enough to include all 
possible private information or beliefs that player i might have about the 

· preferences and beliefs of all players in the game. 
At this point, however, we must admit that our model seems to have 

gotten out of hand. Compact or not, Qc;' is an extremely complex mathe­
matical object, by any standards of intuition. We started out to describe 
games in which players have some uncertainty about each others' prefer­
ences and beliefs. We found that, in such games, the beliefs of each player 
consist of an infinite sequence of subjective probability distributions over 
sets of probability distributions. The higher-order beliefs of a player 
could be critical to determining how he plays the game, so game-theoretic 
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analysis requires that, for each player, this whole sequence of subjective 
probability distributions must be specified by a variable in our model. But 
the set of all such sequences of probability distributions is too large for 
practical analysis, either by game theorists or by the players in the game! 
Thus, for a tractable and relevant model, the players' beliefs must be 
restricted to some smaller subsets of universal belief space. 

The way to limit the explosion of uncertainty about beliefs about 
beliefs is to assume that it is common knowledge that the beliefs of each 
player i are in some set Ti that is a small subset of Q°f'. This idea is the key 
insight of Harsanyi's classic paper. If each set Ti is tractably small (finite, 
or parameterized by a single variable in IR, for example) the result will be a 
manageable model which can give useful insights. 

For it to be common knowledge that the actual type of each player i is 
in Ti, the set T1 x · · · x Tn must be a belief-closed subset of Q~ x 
· · · x Q:;, in the sense that 

(2.9) 

where T _i is as in (1.3). That is, (2.9) asserts that every type in Ti puts 
probability 1 on the event that every other player j has beliefs correspond­
ing to some type in Ti. 

Mertens and Zamir have shown that finite belief-closed subsets are 
dense among the belief-closed subsets of Q~ x · · · x Q:, in a topol­
ogy that seems natural ( the Hausdorff topology for closed sets). This 
result suggests that there may be "almost" no loss of generality in assum­
ing that the players' beliefs are in such a finite belief-closed subset. 
(However, it remains to be shown whether any solution concepts are 
continuous in this particular topology.) 

Thus, let us assume that there is such a finite belief-closed set T = 
T1 x · · · x Tn such that it is common knowledge that every player i has 
beliefs that correspond to some point in Ti. Then we can refer to Ti as the 
set of possible types for player i; and by restricting the functions Pi and ui 
to the domain T ~ Q~ x · · · x Q:, we get a finite Bayesian gamer as 
in (1.4). 

In general, of course, the type sets (T1, ... , Tn) in a Bayesian game · 
r do not actually need to be specified as subsets of universal belief space. 
For example, as remarked above, if a player's only private information is 
his reservation wage rate, then we can simply let Ti be a set of the real 
numbers, where each ti in Ti is a possible value of i's reservation wage. 
Given any Bayesian game r as in (1.4), for every type ti in Ti, the 
corresponding infinite hierarchy of beliefs (i's beliefs about the other 
players' types, his beliefs about their beliefs, and so on) can be computed 
from the probability functions (p 1, •• . , Pn); so Ti is isomorphic to a 
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subset of a universal belief space, even if it is not identified as such. The 
purpose here of developing the concept of universal belief space was only 
to verify that any game situation with incomplete information can in 
principle be modeled as a Bayesian game, by letting each Ti equal Q'f° if 
no smaller sets will do . On the other hand, we must recognize that the 
complexity of universal belief space implies that the Bayesian-game 
model will in practice be applicable only to those game situations where 
there is enough common-knowledge structure so that each player's pri­
vate information can be described within a small and tractable set of 
types. 

3 Consistent beliefs and equivalent Bayesian games 

Harsanyi defined the beliefs (p1 , . .. , Pn) to be consistent iff there 
exists a probability distribution p* on the set T such that each players' 
conditional distribution, given his own type, is identical to that which 
would have been computed from p* by Bayes theorem; that is, 

(3 .1} 

where 

Pi (ti) = L p*(t), 
t _ ;E_T_ ; (3.2) 

(We use here the convention that, whenever t, L i, and ti appear in the 
sanie formula, then tis the vector of types with fh component ti and all 
other compon~nts as in Li.) Harsanyi has argued that we might expect 
that most Bayesian games that describe real situations ought to be 
consistent, because the players' types may have been jointly determined 
before the game by some chance event governed by the distribution p*. 

We have been careful not to speak of "i's subjective probability 
distribution over T/ ' at any point in this discussion. This is because player 
i already knows his type when the game begins . Even if there had been a 
time before the game when he did not know his type ( and there might not 
have been any such time, for example if the type is his or her gender), the 
subjective probability distribution that he would have assessed for his 
own type cannot have any decision-theoretic significance in the play of 
the game. However, if there had been a time before the game when no 
player knew his type and if all players had the same prior beliefs p* , then 
the type-conditional beliefs (p1 , . . . , Pn) should be consistent with p*. 

Interpersonal comparisons of utility cannot be given decision-theoretic 
significance. That is, there is no decision-theoretic meaning for a state­
ment such as "a movie gives me more utility than an opera gives you ," 

' . 
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because neither of us could ever be forced to choose between being me at 
~ movie _or being you at an opera. Now, for games with incomplete 
mformation, we assume that each player already knows his own type 
before he makes any decisions relevant to the game . Thus, when the 
game is played, intertype comparisons of utility are also decision the­
oretically meaningless. When a player already knows his type, he cannot 
be asked to choose it. We cannot ask a player , "Would you prefer to be an 
opera fan at the opera or be a non-opera-fan at the movies?", when he 
already knows whether he is an opera fan or not. 

Thus, the utility scales of different types can be specified sepa­
rately. From basic decision theory, it is well known that von Neumann ­
Morgenstern utility scales can only be defined up to increasing linear 
transformations. Thus we say that two Bayesian games with the same 
decision sets and type sets 

f = (D1, · · · , Dn , T1, · · · , Tn, P1, · · _' , Pn, U1, · · · , Un) 
and 

f = (D1 , · · · , Dn, T1 , · _- · , Tn , P1, · · · , Pn, U1, · · · , Un) 

a~e ut!lity equi~alent iff they have the same conditional probability dis­
tnbutions (so Pi = Pi for all i) and there exist numbers altJ and blti), 
for each i and each ti in Ti, such that 

\/deD, \/te T. 

That _is , utility-equivalent Bayesian games differ only in that the utility 
functions of some types of some players may be linearly rescaled. The 
Bayesian equilibria and incentive-compatible mechanisms ( to be defined 
later) of two utility-equivalent games will be the same. . 

. W~en~ver ·a player chooses an action or decision in a Bayesian game, 
his c~i~enon for the best decision is that it should give him the highest 
conditionally expected utility, given his actual type. Expected utility is 
computed b~ multiplying utilities times probabilities and then summing 
over all possible values of the unknowns. For e~ample, if some function 
er: T ~ D det_e~mined how the players' decisions depend on their types, 
then the conditionally expected utility for type ti of player i would be 

L PlLi ltJ ui(cr(t), t). 
t _ ;ET_ ; 

We define zi: D x T ~ IR by 

zld, t) = Pi(t-i I tJ uld, t), Vd ED, Vt ET, 

and we call zi the evaluation function for player i. (See Wilson [1968] and 
Myerson [1979b] for the origins of this term.) Because only this product 
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of probability times utility matters in computing expected utilities, we say 
that two Bayesian games are probability equivalent iff they have the same 
decision sets Di and type sets Ti and evaluation functions zi for all players; 
that is, 

\Ji, . \Jd ED, \Jt E T. 

Probability equivalence is important because it assures us that consist­
ency of beliefs is not an issue of basic importance in studying general 
Bayesian games. In particular, if the type sets are all fi~ite, then a_ny 
Bayesian game is probability equivalent to another Bayesian game with 
consistent beliefs, and even with stochastically independent types for the 
n players. Simply let 

1 
p/Li ltJ = - and Did, t) = I Lil p/LiltJ u/d, t). 

ILil 

Consistency of beliefs can be important only when we also want to make 
some restrictions on the form of the utility functions, such as when we 
assume that there is transferable utility, or that one player's utility de­
pends ~nly on his own type, or that utility funtions are continuous in 
strategies and types. (This last condition would only be relevant when 
infinite type sets are considered. See Milgrom and Weber [1985] for a 
comprehensive analysis of this issue.) 

In fact, a more general equivalence relation can be ~efined among 
Bayesian games. We say that two Bayesian games rand r with the sam~ 
decision sets and type sets are evaluation equivalent iff, for every player z, 
there exist functions ai: Ti ~ IR and bi: T ~ 1R such that a/tJ > 0 for 
every ti and 

\JdED, \JtE T. 

Notice that the additive constant can depend on all players' types, while 
the multiplicative constant can only depend _on i_'s typ~. All our s~l~t_ion 
concepts (Bayesian equilibrium and Bayesian mcentive com~atibihty) 
will be invariant under any evaluation-equivalent transformation of the 
game. It can be shown that evaluation equivalence is the most_general 
equivalence relation that preserves each type~s pre_ferenc~ ordermg over 
coordination mechanisms ( which will be defmed m Section 5). 

4 Bayesian equilibrium 

The decision or action chosen by a player in a Bayesian game will 
generally depend on his type. However, other players do not know pla~er 
i's actual type, so in choosing their actions they must be concerned with 
what actions would be chosen by each of player i's possible types. An 
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equilibrium of a Bayesian game is a set of conjectures about how each 
player would choose his action as a function of his type, such that each 
type of each player is maximizing his conditionally expected utility given 
his own type and the functional conjectures about the other players. 
Formally, ( cr1, ... , er n) is a Bayesian equilibrium of the Bayesian game 
riff, for every player i, cri is a function from Ti to Di such that, for every ti 
in Ti , 

= max I PiCt-i ltJ u/(cr_/t_J, dJ, t). 
d;ED; f _ ;ET_ ; ( 4.1) 

(Here cr(t) = (cr1(t1), ... , crn(tn)), and 

(cr- i(LJ, di)= (cr1(t1), ... , cri-l(ti-1), di, cri+1(ti+1),. •., crn(tn).) 

Equation ( 4.1) asserts if player i were of type ti and he expected the other 
players to select their actions according to their er/·) rules, then the 
action er/ti) would be optimal for him, in that it maximizes his condition­
ally expected utility. 

Bayesian equilibrium is the fundamental solution concept for Bayesian 
games with incomplete information. Our goal, as theorists analyzing a 
Bayesian game, must be to predict how each player will choose his 
decision as a function of his type. Without knowing his type, we cannot 
hope to predict his actual decision; we can only predict how his decision 
functionally depends on his type in Ti. If the players themselves also 
understand these predictions, then, unless the predictions constitute a 
Bayesian equilibrium, at least one type of one player would expect to do 
better by using some unpredicted decision. Thus, a prediction of the 
players' behavior can be rationally self-fulfilling if and only if it is a 
Bayesian equilibrium. 

For a simple two-player example, suppose _that D1 = {x1, Y1}, D2 = 
{x2, Y2}, T1 = {l} (so player 1 has only one possible type and no private 
information), T2 = {2a, 2b}, p 1(2a jl) = 0.6, p 1(2b ll) = 0.4, and the 
payoffs (u1 , u2) depend on the actions and player 2's type through the 
following two bimatrices: 

t2 = 2a t2 = 2b 
Xz Y2 Xz Y2 

X1 1, 2 0, 1 Xi 1, 3 0,4 

YI 0, 4 1, 3 Yi 0, 1 1,2 
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In this game, x2 is a dominant strategy for type 2a, and y2 is a dominant 
strat~gy for type 2b. P~ayer 1 wants to get either (x1, x2 ) or (y1, Yi), and 
he t~~n~s that typ_e 2a is more likely than 2b. Thus, the unique Bayesian 
eqmhbnum of this game is 

cr1(l) = Xi, cri(2a) = x 2 , . ai(2b) = y2 • 

Thi~ exa°:ple is of interest_ b~cause it illustrates the danger of analyzing 
each bimatnx separately, as if it were a game with complete information, 
when the game is really one of incomplete information. If it were com­
mon knowledge that player 2's type was 2a, then the players would be in 
the left bimatrix, where the unique equilibrium is (x1, x2). If it were 
common knowledge that 2's type was 2b, then the players would be in the 
right bimatrix, where the u~ique equilibrium is (y1, y2). Thus, if we 
looked only at the full-information Nash equilibria of the two bimatrices 
then we_ might make the prediction "the outcome of this game will b~ 
(x1, x~) if pla_ye: 2's type is 2a and will be (y1, y2) if player 2's type is 2b." 
. This prediction would be absurd, however, for the actual game with 
i~complete i~for1!1ation, in ~hich player 1 does not initially know player 
2 s type . Notice first that this prediction ascribes two different actions to 
player 1, depending on 2's type (x1 if 2a, and y1 if 2b). So player 1 could 
not behave as predicted unless he got some information from player 2. 
But player 2 prefers (y1, Y2) over (x1, x2) if he is 2a, and he prefers 
(x1, x2) over (Yi, Y2) if he is 2b. Thus, even if we revised the game to 
allow communication between the players before player 1 chooses among 
X1 and X2, player 2 would never communicate the information needed to 
fulfill this prediction, because it always gives him his less-preferred 
outcome. Instead, he would rather manipulate his communications to get 
the outcomes (y1 , y2 ) if 2a, and (x1, x2 ) if 2b. 

5 Bayesian games with communication 

When_ we defined Bayesian equilibrium as the solution concept for 
Bayesian games, we assumed that each player's decision in a Bayesian 
game could depend only on his own type. Let us now consider what can 
happen if t~e players are allowed to communicate in a given Bayesian 
game f, as m (1.4). To simplify our analysis, we will henceforth assume 
that the decision sets Di, as well as the type sets Ti, are all finite sets. 

L~t us suppos~ first that the players communicate with the help of a 
mediator, who first asks each player to report his type, and who then 
recommends a strategic action to each player. The mediator's recommen­
dations may depend on the players' reports in a deterministic or random 
fashion. We let µ(d1, ... , dn I t1 , ... , tn) denote the conditional 
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probability that the mediator would recommend to each player i that he 
should use action di, if each player j reported his type to be t1. Obviously, 
these numbers µ(d i t) must satisfy the following probability constraints: 

I µ(c it) = 1 and µ(d lt) ~ 0, 
CED 

(5.1) 

In general, any functionµ: D x T ~ Ill that satisfies (5.1) will be called 
a mechanism ( or coordination mechanism) for the Bayesian game f. 

If every player reports his type honestly and obeys the recommenda­
tions of the mediator, then the expected utility for type ti of player i from 
mechanism µ would be 

UlµltD = L L plLiltD µ(d lt) uld, t). 
(5.2) 

We must allow, however, that each player could choose to lie about his 
type or disobey the mediator's recommendation. That is, we assume that 
the players' types cannot be verified by the mediator, and each selection 
of an action di in Di can ultimately be controlled only by player i. 1hus, 
the coordination mechanism µ induces a communication game f µ in 
which each player must select his type report and his plan for choosing an 
action in Di as a function of the mediator's recommendation. Formally, 
f µ is itself a Bayesian game, of the form 

f µ = (D1, ... , Dn, T1, ... , Tn, Pl, ... , Pn, U1, · · · , Un) 

where 

bi = {(si, 8i) I si E Ti and 8i: Di~ Di}, and 

ul ( (si, 81), ... , (sn, sn) ), t) 

L L plLi ltD µ(d ls1, ... ,sn) ul(81(d1), 
f _ ;ET_; dED 

• • . , 8n(dn) ), t). 

A strategy (si, 8i) in Di represents a plan by player i to report si to the 
mediator, and to then choose his action in Di as a function of the 
mediator's recommendation according to 8i, so that he would do 8ldi) if 
the mediator recommended di. We assume that each player communi­
cates with the mediator separately and confidentially, so that player i's 
action cannot depend on the recommendations to the other players. 

Suppose, for example, that the true type of player i were ti, b~t that he 
chose to use the strategy (si, 8J in the communication game f µ· If all 
other players were expected to report their types honestly and choose 
their actions obediently to the mediator, then i's expected utility would be 
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U7(µ, Bi, si/tJ = L L pi(t_i/tJ µ(d/t_i, sJ ui((d-i, 8i(dJ), t). 
l_;ET_; deD (5.3) 

[Here (d-i, Bi(dJ) = (dI, ... , di-I, BldJ, di+I, ... , dn) and Ct-i, sJ 
= (tI, · · · , ti-I, Si, ti+I, • · · , tn).] 

Bayesian equilibrium is still the appropriate solution concept for a 
Bayesian game with communication, except that we must now consider 
the Bayesian equilibria of the induced communication game f µ, rather 
than just the Bayesian equilibria off. We say that a mechanism µ is 
(Bayesian) incentive compatible iff it is a Bayesian equilibrium for all 
players to report their types honestly and to obey the mediator's recom­
mendations when he uses the mechanismµ . (Hurwicz [1972] introduced 
the phrase incentive compatible in a non-Bayesian context, with a some­
what different meaning. Bayesian incentive compatibility was first de­
fined by d'Aspremont and Gerard-Varet [1979]. In this essay, this term is 
always used in the Bayesian sense.) Thus, µ is incentive compatible iff 

Vi, 't/ti E Ti, 't/si E Ti, 't/8i: Di-,) Di. 

(5.4) 

If the mediator uses an incentive-compatible mechanism and each player 
communicates independently and confidentially with the mediator, then 
no player could ever gain by being the first one to lie to the mediator or 
disobey his recommendations. Conversely, we cannot expect all the 
players to participate honestly and obediently in a coordination mecha­
nism unless it is incentive compatible. 

In general, there I?ay be many different Bayesian equilibria of a 
communication game f µ, even ifµ is incentive compatible. Furthermore, 
we could consider more general classes of coordination mechanisms, in 
which the messages sent and received by each player i are not necessarily 
in the sets Ti and Di. However, for any given coordination mechanism 
and for any given Bayesian equilibrium of the induced communication 
game, there exists an equivalent incentive-compatible mechanism, in 
which every type of every player gets the same expected utility ( when all 
players are honest and obedient) as in the given Bayesian equilibrium of 
the given mechanism. In this sense, there is no loss of generality in 
assuming that the players communicate with one another through a 
mediator who first asks each player to reveal all of his private information 
(his "type"), and who then gives each player only the minimal informa­
tion needed to guide his action, in such a way that no player has any 
incentive to lie or cheat. This result has been observed by many writers 
independently and it is known as the revelation principle. (See Dasgupta, 
Hammond, and Maskin [1979], Holmstrom [1977], Myerson [1979a, 
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1982], Rosenthal [1978], Harris and Townsend [1981], Forges [1982] and, 
in a non-Bayesian context, Gibbard [1973].) 

For any given equilibrium of any given mechanism, the mediator can 
construct such an equivalent incentive-compatible mechanism as follows. 
First, he asks each player to (simultaneously and confidentially) revea_l 
his type. Next, the mediator computes what reports would have been sent 
by the players, with these revealed types, in the given equilibrium. Then, 
he computes what recommendations or messages would h~ve bee~ re­
ceived by the players, as a function of these reports, m the given 
mechanism. Then, he computes what actions would have been carried 
out by the players, as a function of these recommendations (and the 
revealed types) in the given equilibrium. Finally, the mediator tells each 
player to do the action computed for him in thi~ _las_t step. Thus,_ the 
constructed mechanism simulates the given eqmhbnum of the given 
mechanism. To check that this constructed mechanism is incentive com­
patible, notice that any player who could gain by disobeying the mediator 
in the constructed mechanism could also gain by similarly disobeying his 
equilibrium strategy in the given mechanism, which is impossible (by 
definition of equilibrium). 

The set of all incentive-compatible mechanisms is a closed convex set, 
characterized by a system of inequalities (5.1) and (5.4), which are linear 
inµ. On the other hand, it is generally a difficult problem to characterize 
the set of all Bayesian equilibria of any given Bayesian game. Thus, by the 
revelation principle, it may be easier to characterize the set of all Bayesian 
equilibria of all communication games induced from r, than i_t is: to 
compute the set of Bayesian equilibria off, or of any one commumcat10n 
game f µ- This observation explains why the revelation principle can be 
so useful. 

For example, let us reconsider the two-player game shown in the 
preceding section. Suppose now that the players can communicate, either 
directly or through a mediator or through some tatonnement process, 
before they choose their actions in DI and D 2 . In the induced communica­
tion game, could there ever be a Bayesian equilibrium giving the out­
comes (xI, x2 ) if player 2 is type 2a, and (YI, y2 ) if player 2 is type 2b, as 
naive analysis of the two bimatrices separately might suggest? The ~ns~er 
is No, by the revelation principle. If there were such a co~mum~at~on 
game, then there would be an incentive-compatib~e mech_am~m achievmg 
the same results. But this would be the mechamsm satisfymg 

and it is not incentive compatible, since player 2 could gain by lying about 
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his type. In fact, there is only one incentive-compatible mechanism for 
this example and this mechanism is µ *, defined by 

µ*(x1, x2ll, 2a) = 1, µ*(x1, Y2ll, 2b) = 1. 

Of course, µ * is equivalent to the unique Bayesian equilibrium of this 
game without communication. 

In general, it may be possible for all players to increase their expected 
utility with effective communication. Suppose that there is some given 
social welfare function that we want to maximize. By the revelation 
principle, the maximum value that can be achieved by an incentive­
compatible mechanism is also the maximum that can be achieved among 
all Bayesian equilibria of all communication games that can be induced 
from r. 

We say that a mechanism µ is incentive efficient iff µ is incentive 
compatible and there does not exist any other incentive-compatible 
mechanism µ such that 

Vi E {1, ... , n}, Vti E Ti, (5.5) 

with at least one strict inequality. That is, ifµ is incentive efficient, then 
there is no Bayesian equilibrium of any communication game that gives 
higher expected utility to some types of some players without giving lower 
expected utility to at least one type of some player. Conversely, ifµ is not 
incentive efficient then it is common knowledge that all players would 
prefer to use some incentive-compatible coordination mechanism. Incen­
tive efficiency is thus the basic normative concept for welfare analysis of 
coordination mechanisms. See Holmstrom and Myerson [1983] for a 
more detailed discussion of this concept. 

The main goal of the rest of this essay will be to develop more useful 
conditions for characterizing the incentive-efficient mechanisms. In the 
next two sections, we will do this for two special cases. First, we will 
consider Bayesian collective-choice problems, which are situations in 
which the incentive constraints are purely informational (pure adverse­
selection problems). Then we will consider games with complete infor­
mation, in which the incentive constraints are purely strategic (pure 
moral hazard problems). 

6 Bayesian collective-choice problems 

A Bayesian collective-choice problem differs from a Bayesian game in 
that we are given a set of possible outcomes that are jointly feasible for all 
the players together, rather than a set of strategic decisions or actions for 
each player separately. That is, a Bayesian collective-choice problem is 
any f 0 such that 
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r0 = (C, T1, ... 'Tn, P1, ... 'Pn, U1, ... 'Un) (6.l) 

where C is the set of possible outcomes or social choices; each Ti is the set 
of possible types for player i; each Pi is a functio~ specifying i's co~di­
tional probability distribution over T-i for each ti m ~i; and each ui is_ a 
function specifying i's utility payoff ul c, t) for every cm C and every t m 
T = T1 X • • • X Tn . 

When we discussed Bayesian games with communication in the preced-
ing section, we assumed that the choice of an action in ?i was inalienabl_y 
controlled by player i. That is, we assumed that player t cou}d_not commit 
himself to choosing some particular di when some other di m D; would 
give him higher expected utility. (For example, this assumption wo~ld be 
appropriate if Di were a set of unobservable effo~t level~ t~at t must 
choose among when he performs some task, as m a pnnc1pal-a_gent 
problem.) Now, if we assume instead that the pla~e~s can ~ooperat1vely 
determine their actions in D1 x · · · x Dn with Jomtly bmdmg agree­
ments, then the Bayesian gamer becomes a Bayesian collective-choice 
problem [ 0 with C = D1 X • • • X Dn. 

For another example, to model an exchange economy as a Bayesian 
collective-choice problem, we could let C be the Set of all possible net 
trades among the players. . 

In any Bayesian collective-choice problem as in (6.1), the problem 1s to 
find efficient or optimal mechanisms for determining the chosen _outc?~e 
in Casa function of the players' types. We shall assume that C 1s a fm1te 
set but that random mechanisms are allowed. Thus a mechanism for r

0 

ca~ be defined as any function µ: C x T ~ 1R such that 

L µ(elt) = 1, µ(cit)?! 0 
eeC 

Ve EC, Vt ET, 
(6.2) 

where µ( c It) is interpreted as the probability that c will be the chosen 
outcome if t = (t1 , ... , tn) is a vector of types reported by n ~layers_- As 
in (5.2) and (5.3), the expected utility for type t; from mechamsm µ if all 
players report their types honestly is 

U;(µ lt;) = L L p;(t-ilt;) µ(c it) u;(c, t); 
t_;eT_; ceC 

(6.3) 

and the expected utility for t; if he reports S; while the other players are 
honest is 

.Ur(µ, s;lt;) = L L p;(t-;lt;) µ(clL;, s;) u;(c, t). 
t _;eT_; ceC 

(6.4) 

The mechanism µ is incentive compatible iff honest reporting b~ all 
players is a Bayesian equilibrium of the game induced by µ; that 1s, 
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Vie {l, ... , n}, \:/tie Ti, \:/si e Ti. (6.5) 

These definitions (6.3) - (6.5) are the same as (5.2)-(5.4) except that 
there is no longer any question of players disobeying recommended 
actions. In fact, one can easily construct a Bayesian game with n + l 
players that is equivalent to the collective c,hoice problem r 0

, in the sense 
of generating the same set of incentive-compatible mechanisms. (Let 
Di = {0} for every i in {1, ... , n}, Dn+l = C, Tn+1 = {0}, and Un+ 1 

(d, t) = 0 for every d and t.) The revelation principle holds for Bayesian 
collective-choice problems, just as for Bayesian games with communica­
tion . We say that µ is an incentive-efficient mechanism for r 0 iff µ is 
incentive compatible and is not dominated by any other incentive­
compatible mechanism, in the sense of (5.5). 

To simplify our formulas, we will henceforth assume that the players' 
beliefs are consistent with a common prior p*, as in (3.1). Furthermore, 
we will assume that the players' types are independent random variables 
in the common prior; that is, 

n 

p*(t) = fl pi(ti), \:/t E T, 
i=l 

where pi(tJ is the marginal probability that player i is type ti. (As was 
remarked in Section 3, any Bayesian collective-choice problem is proba­
bility equivalent to another Bayesian collective-choice problem in which 
beliefs are consistent with such an independent common prior.) 

Suppose now that A and a are vectors of the form 

A = [[>-../tJ]reTl'J= t, a = [[ahi lti)]seTteTl'J=1 
f I I I' f I 

(read " I" here as "given") such that 

>-../tJ > 0 and ahi l() ;?: 0, \:Ji e {1, ... , n}, \:/ti e Ti. (6.6) 

Then let us define v/c, t, >-.., a) by the following formula: 

v/c, t, >-.., a) = [ [>-../ti) + I a/si I tJ] u/c, t) 

- I a i(ti lsJ u/c, (Li, sJ )J/pi(tJ. 
S;ET; (6.7) 

We shall refer to v/c, t, >-.., a) as player i's virtual utility for outcome c in 
state t, with respect to the parameters>-.. and a. This definition (6.7) may 
seem obscure at first, but it is important because it permits us to state the 
following characterization of incentive-efficient mechanisms. 

Theorem 1: Suppose thatµ is an incentive-compatible mechanism for f 0
• 

Then µ is incentive efficient if and only if there exist vectors >-.. and a 

satisfying (6.6), such that 
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alsijti)[Vi(µjtJ - Vt(µ, siltD] = 0, 

and 
n n 

L µ(cit) L vlc , t, >-.., a) =max L vlc, t, >-.., a), 
ceC i=l ceC i=l 

t e T. 
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(6.8) 

(6.9) 

To prove this theorem, observe first that the set of all incentive­
compatible mechanisms satisfying (6.2) and (6.5) is a compact convex 
polyhedron. Thus, by the supporting hyperplane theo~em of co~vex 
analysis, a mechanism µ is incentive efficient if and only 1f there ex1s~s a 
positive vector 'J\. such that µ is an optimal solution to the followmg 

problem 
n 

maximize L L >-..ltD Vlµ I ti) 
µ, i=l t;ET; 

(6.10) 

subject to (6.2) and (6.5). 

We interpret ahi lti) as the dual variable or Lagrange multiplier for 
the incentive constraint (6.5) that asserts that player i should not expect to 
gain by reporting type si if his true type is ti. Then the Lagrangian function 
for problem (6.10) is 

n 

L L [>-..lti)Vlµ lti) + L ahi ltJ(Vlµlti) - Vt(µ, si lti))] 
i=l t;ET; S;ET; 

n 

= L p*(t) L µ(c It) L vlc, t, >-.., a). 
teT ceC i=l 

(6.11) 

That is, the Lagrangian for ( 6.10) equals the expected s~m o~ the players' 
virtual utilities. The virtual utility functions were defmed m (6.7) pre­
cisely so that this equation (6.11) would hold, as may _be verifi~d by 
straightforward algebra. (See Myerson [1984a,b~ ~or an mtr~duct1on to 
the role of virtual utility in the theory of bargammg under mcomplete 

information.) 
Condition (6.8) in Theorem 1 asserts that, if the dual variable ahiltD 

is positive then the associated incentive constraint must be binding. 
Condition (6.9) asserts that µ(· It) maximizes the sum ~~ the playe_rs' 
virtual utilities in each state t, subject only to the probab1hty constramt 
(6.2). Thus, the conditions in Theorem 1 assert that µ and a for_m a 
saddlepoint of the Lagrangian function, and so µ must be an optimal 
solution to ( 6.10). This completes the proof of Theorem l. 

An incentive-efficient mechanism may be inefficient ex post ( after the 
players have revealed their types) because of the cost of s~tisfying ince~­
tive constraints. However, an incentive-efficient mechanism must maxi-
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mize ex post the sum of the players' virtual utilities (with respect to some 
A. and a), so the mechanism will be ex post efficient in terms of these 
virtual utility functions. Thus, the key to understanding ex post ineffi­
ciency in incentive-efficient mechanisms is to understand how virtual 
utility differs from real utility. 

If A. and a satisfy the conditions of Theorem 1 for an incentive-efficient 
mechanism µ and if ah i I ti) > 0, then we say that type ti jeopardizes type 
si in the mechanism µ. That is, ti jeopardizes si if the constraint that ti 
should not be tempted to claim to be si is binding and has a positive 
Lagrange multiplier. Notice that, in (6.7), a player's virtual utility is a 
positive multiple of his real utility minus a positive linear combination of 
the utilities of the types that jeopardize his actual type. That is, the virtual 
utility of a type ti differs from the real utility in that it exaggerates the 
difference from the other types that jeopardize ti. So to understand how 
the costs of incentive compatibility should be borne in an incentive­
efficient mechanism, we need to recognize which types are jeopardized 
by which. 

There are many situations in which a player's types can be naturally 
ranked in some order, say from "best" to "worst." In such situations, we 
can often_ guess that the better types are jeopardized by the worse types, 
but not vice versa, so that the worst type is not jeopardized by any other. 
In fact, it often happens that each type is jeopardized only by the next­
worse type . Optimal auctions in Harris and Raviv [1981] have this 
structure, where the unjeopardized type of bidder is the one with the 
highest reservation price. 

To illustrate these ideas, suppose that a firm is negotiating with a 
potential employee, who may either be a "good" type of worker or a 
"bad" type. We may expect that the bad type jeopardizes the good type; 
that is, the firm may have difficulty preventing a bad worker from 
claiming to be good. So the virtual utility of the good type will exaggerate 
the difference from the bad type. If there is some useless educational 
process that would be slightly unpleasant for a good worker, but would be 
intolerably painful for a bad worker, then the good worker may get 
positive virtual utility from this education, so as to exaggerate his differ­
ence from the bad type. As in Spence's [1973] labor-market equilibria, an 
incentive-efficient mechanism may force a good worker to go through this 
costly and unproductive educational process (as if he enjoyed it), before 
he is hired. On the other hand, it seems unlikely that a good worker would 
be tempted to claim that he is bad in such negotiations. So the bad type of 
worker is not jeopardized, and the bad type's virtual utility is just a 
positive multiple of his real utility. Thus, if the worker is bad, the 
incentive-efficient mechanism should be ex post efficient (in terms of 
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both real and virtual utility), and the bad worker should not suffer 
through any unproductive educational process. 

For another simple example, consider a bargaining problem between 
one seller of a commodity (player 1) and one buyer (player 2) in a 
bilateral monopoly situation. The seller has one unit available, and he 
knows whether it is good quality (type "la") or bad quality (type "lb"). If 
it is good quality, then it is worth $40 per unit to the seller and $50 per unit 
to the buyer. If it is bad quality, then it is worth $20 per unit to the seller 
and $30 per unit to the buyer. The buyer thinks that the probability of 
good quality is .2. · 

. To formulate this example, we let T1 = {la, lb}, T2 = {2} (so that the 
variable t2 can be ignored, since it has only one possible value), and 

C = {(x, y) I 0 ~ y ~ l, x E IR}. 

Here, for each (x, y) in C, we interpret x as the amount of money paid by 
the buyer to the seller, and y as the amount of the commodity delivered by 
the seller to the buyer. The probability and utility functions are 

pf(la) = .2, pi(lb) = .8, 

u1( (x, y), la) = x - 40y, 

u1((x, y), lb)= x - 20y, 

u2( (x, y), la) = 50y - x, 

uz( (x, y), lb) = 30y - x. 

( C is an infinite set in this example, but all of our results will still apply.) 
In this example, ex post efficiency would require that the seller should 

always sell his unit of the commodity, no matter what his type is, since the 
commodity is always worth $10 more to the buyer. However, it can 
be easily shown that there is no incentive-compatible mechanism that is 
ex post efficient and gives nonnegative expected utility to the buyer 
and to both types of the seller (i.e., such that Uz(µ) ;;:: 0, V 1 (µIla) ;;:: 
0, U1(µ I lb) ;;:: 0). 

For this example, let A. and a be 

A.i(la) = .3, A. 1(lb) = .7, A.2 = 1, a 1(la llb) = .1, a 1(lblla) = 0. 

By (6.7), the virtual utility functions for these parameters are 

v
1
((x, y), la, A., a)= [.3u 1((x, y), la) - .1 u1((x, y), lb)]/.2 = x - 50y 

vz( (x, y), la, A., a) = uz( (x, y), la) = 50y - x, 

u
1
((x, y), lb, A., a)= (.7 + .1) u1((x, y), lb)/.8 = x - 20y, 

vz( (x, y), lb, A., a) = uz( (x, y), lb) = 30y - x. 

Roger Myerson
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That is, the bad type of seller (lb) jeopardizes the good type (la), so the 
good type's virtual utility exaggerates the difference from the bad type 
and has a virtual reservation price of $50 (instead of $40) for the com­
modity. With this A and a, virtual ex post efficiency would require only 
that all of the commodity must be sold to the buyer if it is of bad quality; 
there are no virtual gains from trade between the buyer and a good-type 
seller. Thus, this X. and a will satisfy the conditions of Theorem 1 for any 
mechanism µ such that all the commodity is sold to the buyer if the seller's 
type is lb, and the constraint that the lb-type seller should not claimto be 
"la" is binding. For example, consider µ such that 

µ(30, 1 I lb) = 1, µ(50/3, 1/3 I la) = 1 

(that is, the bad type sells all of his commodity for $30, and the good 
type sells one-third of his supply at a price of $50 per unit). This mecha­
nism satisfies both of the preceding conditions (check that U1(µI lb) = 
Vi(µ, lal lb) = 10), and so it is incentive efficient, even though the 
seller cannot sell two-thirds of his commodity if it is good. 

7 Correlated equilibria of games with complete information 

If the players have no private information (so that each has only one 
possible type) then the Bayesian game reduces a game in strategic form 
(or normal form) with complete information. That is, we get 

(7.1) 

where each u/ ·) is a function from D = D 1 x x Dn into R For such 
games, we can derive a characterization of incentive-efficient mecha­
nisms closely analogous to Theorem 1. 

For a game with complete information, a coordination mechanismµ is 
just a probability distribution over D, satisfying 

L µ(e) = 1 and µ(d) ?: 0, 
eeD 

Vd ED. 
(7.2) 

(There are no longer any alternative types for the mechanism to depend 
on.) Th·e condition of incentive compatibility, (5.4), reduces to 

(7.3) 

(Here D_i = D 1 x · · · X Di-l X Di+l X • • • X Dn and d = (d-i, 
dJ) To interpret this condition, suppose that a mediator randomly 
selected a joint action in D, selecting d with probability µ(d), and each 
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player i was then informed only as to which action di was his component 
of the mediator's selection. Then (7 .3) asserts that each player's optimal 
action is to do what the mediator has told him, if all other players are also 
e~pected to obey the mediator's recommendation. (To see this, first 
divide both sides of (7.3) by the marginal probability of di being selected; 
that is, 

Then the left-hand side and right-hand side are player i's conditionally 
expected utility from using di and ei, respectively, given that the mediator 
recommended di.) 

Conditions (7 .2) and (7 .3) are also the definition of a correlated 
equilibrium, due to Aumann [1974]. Thus, the concept of an incentive­
compatible mechanism is just a generalization of Aumann's concept of 
correlated equilibrium, and the two concepts coincide for games with 
complete information. 

In this context, a mechanism µ is incentive efficient if and only if there 
exists a vector A = (>-.. 1 , ... , "-n) such that every "-i > 0 and µ is an 
optimal solution to the following problem. 

n 

maximize L L "-i µ(d) uld) 
µ i= l deD (7.4) 

subject to (7.2) and (7.3). 

The following theorem, analogous to Theorem 1, is derived by a standard 
Lagrangian analysis of (7.4), letting J3/ ei I di) denote the Lagrange multi­
plier for the constraint (7 .3) that says that player i should not be tempted 
to do ei when told to do di. 

Theorem 2: Suppose thatµ is a correlated equilibrium. Then µ is incentive 
efficient if and only if there exist vectors X. and J3 such that 

"-i > 0 and J3/eil dJ ?: 0, Vi, Vdi e Di, Vei e Di; (7.5) 

(3;(e;jd;) [d_~-; µ(d)(u;(d) - u;(d- ;, e;))] = 0, 

(7.6) 

and 

n n 

L µ(d) L v/d, X., J3) = max L v/d, X., J3); 
deD i=l deD i=l (7.7) 



{ 
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where we define the virtual utility functions v/ ·) by 

v/d, 'A, ~) = 'Aiui(d) + I ~/ei l dJ(u/d) - u/d-i, ei) ). 
e;ED; (7.8) 

Here condition (7.6) asserts that if ~/eilA) > 0 then the constraint 
that "i should not gain by doing ei when told to do d/' is binding. 
Condition (7. 7) asserts that µ puts all probability weight on the joint 
actions that maximize the sum of the players' virtual utilities. 

If~/ ei I di) > 0 then we may say that action ei jeopardizes action di for 
player i. Then i's virtual utility v/d, 'A, ~) is a positive multiple of his real 
utility u/ d) minus a positive linear combination of what he would get if he 
changed to some other action that jeopardizes di . Thus, player i's virtual 
utility when he does di differs from his real utility in that it exaggerates the 
difference from wr.at he would get from other actions that jeopardize di. 

To understand these results, let us consider an example based on one 
of Aumann [1974]. There are two players, D 1 = {x 1, y 1}, D2 = {x2 , y2}, 

and the utility payoffs ( u1, u2 ) are as follows: 

5, 1 0, 0 

4, 4 1, 5 

There are three Nash equilibria of this game: (x 1, x2), (y 1, y2), and a 
randomized Nash equilibrium in which each player gives equal probabil­
ity to his two strategies. In the randomized equilibrium, all four outcomes 
have equal probability, and each player gets expected utility 2.5 . 

The best symmetric payoff in this example is (4, 4), but the players 
cannot achieve this because (y 1, x2 ) is not an equilibrium. Player 1 would 
choose x1 if he expected player 2 to choose x2 . However, with com­
munication, the players can make self-enforcing plans of action that give 
them both higher expected utility than 2.5. For example, they could agree 
to toss a coin and then choose (x 1, x2) if it is heads and (y1 , y2) if it is tails. 
This plan of action is self-enforcing, even though the coin toss has no 
binding impact on the players. (Player 1 could not gain by choosing x 1 

after tails, since player 2 is then expected to choose y2). Thus, this plan is 
a correlated equilibrium, and it gives each player an expected utility of 3. 

With the help of a mediator, the players can achieve even higher 
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expected utility in a correlated equilibrium. Suppose that the mediator 
randomizes among outcomes according to µ, where 

µ(x1, x2) = µ(y1, x2) = µ(y1, Y2) = -¼, µ(x1, Y2) =0. 

When the mediator tells each player separately which of his actions was in 
the randomly selected pair, then it is self-enforcing for both players to use 
the action designated by the mediator. For example, if player 1 is told 
"y1", then he thinks that it is equally likely that player 2 has been told 
"x2 " or "y2"; so y 1 would be as good as x1 for player 1 (both give 
expected utility 2.5) if he expects that player 2 will also do as he is told. 
Thus, µ is a correlated equilibrium, and it gives each player an overall 
expected utility of 3.33. 

In fact, this mechanism µ is incentive efficient, so that (3.33, 3.33) is 
the highest symmetric expected-utility allocation that the players can 
achieve in any correlated equilibrium. To check that µ is incentive 
efficient, let 

"'-1 = "'-2 = 1, ~1(x1 IY1) = ~iCY2lx2) = 1, ~1(y1 lx1) = ~i(x2IY2) = 0. 

Then the virtual utility functions ( v1 , v2 ) are 

5.00, 1.66 0,0 

3.33, 3.33 1.66, 5.00 

and µ puts all weight on the outcomes that maximize v1 + v2 . Further­
more, as required by (7 . 6), µ satisfies without slack the two incentive 
constraints that have positive Lagrange multipliers. 

8 General conditions for incentive efficiency 

In Myerson [1982], a class of Bayesian incentive problems were defined in 
a way which includes strategic-form games, Bayesian collective-choice 
problems, and Bayesian games, all as special cases. Formally, a Bayesian 
incentive problem is any r of the form 

f = (Do, D1, · · ·, Dn, T1, · · ·, Tn,PI, · · · ,Pn, U1, ···,Un) 
(8.1) 

where D0 is a set of enforceable or public actions, and, for each i in 
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{1, ... , n}, Di, Ti, Pi, and ui are as in a Bayesian game, except that now 
the domain of the utility function ui is 

D X T = (Do X D1 X • • • X Dn) X (T1 X • • • X Tn)-

That is, a general Bayesian incentive problem differs from a Bayesian 
game in that there may be some publicly controllable actions, as well as 
the privately controlled actions in D 1 , D2 , ... , Dn. For example, sup­
pose that the players are managers of different divisions in a firm. For 
each player i, his type in Ti may represent his private information about 
the production function in his division, and his private action in Di may be 
his level of effort in carrying out his management responsibilities. The 
public actions in D0 may be specifications of how the firm's capital 
resources are to be allocated to the divisions, and how each manager is to 
be paid as a function of output. 

In general, all decision variables that the players can control co­
operatively, or about which they can make binding promises, should be 
components of the "public actions" in D0 . Any decision variables that 
player i controls inalienably, or about which he cannot make any prom­
ises that conflict with his own utility-maximizing behavior, must be com­
ponents of the "private actions" in Di· 

Thus, a Bayesian collective-choice problem is just a Bayesian incen­
tive problem in which each player i has only one possible private action 
("doing nothing"), so that jDJ = 1 and the variable di can be ignored . On 
the other hand, a Bayesian game is just a Bayesian incentive problem in 
which IDol = 1. (Actually, any Bayesian incentive problem could be 
reduced to a Bayesian game, by introducing an (n + l)th player "0" who 
controls the action in D0 as his private action, has no private information, 
and has u0(d, t) = 0 for all d and t.) 

The definitions of incentive-compatible and incentive-efficient mecha­
nisms for a Bayesian incentive problem are the same as for a Bayesian 
game, except that now in equations (5.1) - (5.4) we let 

D = Do X D1 X • • • X D n, d = ( do, di, • • • , dn), and 

(d-i, oi(dJ) = (do, d1, ... , di-1, o/dJ, di+I, ... , dn)-

The following theorem generalizes Theorems 1 and 2 to the general 
case of the Bayesian incentive problem. We assume that D and Tare 
finite sets, and that the players' beliefs are consistent with an independent 
common prior p*, as in Theorem 1. 

Theorem 3: Suppose that µ is an incentive-compatible mechanism for the 
Bayesian incentive problem r, as above. Thenµ is incentive efficient if and 
only if there exist vectors A, a, and -y such that 
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A/ti)> 0, ahiltJ ~ 0, "li(ei jdi, si, ti)~ 0 
Vti e Ti , Vsi e Ti, Vdi e Di, Vei e Di; 

Vi e{l , ... , n}, 
(8.2) 

Vi , Vdi e Di, Vsi e Ti, Vti e Ti; 

LL L p/t_i jti) µ(djt_i , si) -y/eijdi, si, tJ u/(d- i, eJ , t) 
t _; d e; 

= max Vt(µ, oi, Si I ti) , Vi , Vsi e Ti, Vti e Ti ; 
'o;:Dr"""7D; 

0 = ahiltJ [V/µjti) - max Vi(µ,~\, sijti)], Vi , Vsi e Ti, 

Vti e Ti; and 
n n 

L µ(dlt) L v/d, t, "-, a, -y) = max L v/d, t, A, a, -y), 
dED i=l dED i=l 

v;(d, t, A, 0<, -y) = [[ A;(t;) + ~ 0<;(s; lt;)] u;(d, t) 

- L ai(tilsJ L "li(ei ldi, ti, sJ u/(d-i, eJ, (t_i, sJ)]/pi(tJ 
S; e,-

(8.3) 

(8.4) 

(8.5) 

Vt ET, 
(8.6) 

(8.7) 

As before, these conditions are derived from the Lagrangian condi­
tions for an optimization problem, to maximize 

I I >../tJ Vlµlti) 
i f;ET; 

subject to the probability constraints (5.1) and the incentive constraints 
(5.4). Let a?(oi , silt) denote the Lagrange multiplier of the incentive 
constraint that type ti of player i should not be tempted to claim that he is 
type si and then to disobey his recommended action according to M · ). 
Let us choose a and -y so that they satisfy (8.2), (8.3) , 

a/silti) = :Z: a?(oi, si ltJ, 
'o;:Dr"""7D; (8.8) 

and 

"li(eijdi, si, ti) alsilti) = L aW\, sijtJ, Vi, Vdi e Di , 
{'o;i'o;(d;)=e;} 

Vei e Di , Vti e h Vsi e Ti. (8.9) 

(If ahi I ti) = 0 then we can choose -y( ·I· , si, rJ so that it also satis­
fies (8.4).) Then the Lagrangian function of this optimization problem 

· can be written 



258 Roger B. Myerson 

n 

= L p*(t) L µ(di t) L vld, t, A, ex, -y). 
d i=l 

The conditions of Theorem 3 follow directly from this equation and the 
saddlepoint conditions of Lagrangian analysis. 

To interpret the conditions in Theorem 3, think of "Yi(eildi, si, t) as 
the probability that player i would choose action ei if he were cheating 
when his type was ti, he reported si, and he was told to do di. Condition 
(8.4) asserts that using "Yl ·I·, si, ti) should be an optimal plan for type 
ti after reporting si. Condition (8.5) asserts that cxhi It) can be posi­
tive only if type ti would be willing to report type si. (We may have 
cxlti It) > 0, if type ti would be willing to disobey the mediator's recom­
mended actions after reporting honestly.) Formula (8. 7) extends the 
virtual utility formula ( 6. 7) for Bayesian collective-choice problems. The 
virtual utility of type ti differs from the real utility in that it exaggerates 
the difference from the types that jeopardize (, when they use their 
optimal disobedience plans "Yi· By (8.6) an incentive-efficient mechanism 
must maximize the sum of the players' virtual utilities, in every state t. 
Thus, the conditions of Theorem 3 can give us some intuition as to the 
qualitative nature of incentive-efficient mechanisms, even though these 
conditions may be too complex to apply numerically in many problems. 
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