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Bayesian equilibrium is still the appropriate solution concept for
Bayesian game with communication, except that we must now conside
the Bayesian equilibria of the induced communication game I',, rathe
than just the Bayesian equilibria of I'. We say that a mechanism p i
(Bayesian) incentive compatible iff it is a Bayesian equilibrium for al
players to report their types honestly and to obey the mediator’s recom
mendations when he uses the mechanism . (Hurwicz [1972] introduce
the phrase incentive compatible in a non-Bayesian context, with a some
what different meaning. Bayesian incentive compatibility was first de
fined by d’ Aspremont and Gérard-Varet [1979]. In this essay, this term i
always used in the Bayesian sense.) Thus, w is incentive compatible if

Ul(“’lt!) = Ul*(p“’ 8!'? Si’ti)’ Vl? Vti € Ti7 VS,‘ € 711‘9 VS,‘: Di - Di‘
(5.4

If the mediator uses an incentive-compatible mechanism and each playe1
communicates independently and confidentially with the mediator, ther
no player could ever gain by being the first one to lie to the mediator o1
disobey his recommendations. Conversely, we cannot expect all the
players to participate honestly and obediently in a coordination mecha-
nism unless it is incentive compatible.

In general, there may be many different Bayesian equilibria of a
communication game I, , even if p is incentive compatible. Furthermore,
we could consider more general classes of coordination mechanisms, in
which the messages sent and received by each player i are not necessarily
in the sets 7; and D,. However, for any given coordination mechanism
and for any given Bayesian equilibrium of the induced communication
game, there exists an equivalent incentive-compatible mechanism, in
which every type of every player gets the same expected utility (when all
players are honest and obedient) as in the given Bayesian equilibrium of
the given mechanism. In this sense, there is no loss of generality in
assuming that the players communicate with one another through a
mediator who first asks each player to reveal all of his private information
(his “type”), and who then gives each player only the minimal informa-
tion needed to guide his action, in such a way that no player has any
incentive to lie or cheat. This result has been observed by many writers
independently and it is known as the revelation principle. (See Dasgupta,
Hammond, and Maskin [1979], Holmstrom [1977], Myerson [1979a,
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irris and Townsend [1981], Forges [1982] and,
Gibbard [1973].)
m of any given mechanism, the mediator can
tincentive-compatible mechanism as follows.
o (simultaneously and confidentially) reveal
‘computes what reports would have been sent
:vealed types, in the given equilibrium. Then,
endations or messages would have been re-
a function of these reports, in the given
putes what actions would have been carried
inction of these recommendations (and the
tequilibrium. Finally, the mediator tells each
mputed for him in this last step. Thus,'the
nulates the given equilibrium of the given
this constructed mechanism is incentive com-
‘er who could gain by disobeying the mediator
sm could also gain by similarly disobeying his
: given mechanism, which is impossible (by

ompatible mechanisms is a closed convex set,
finequalities (5.1) and (5.4), which are lme@r
s generally a difficult problem to characterize
bria of any given Bayesian game. Thus, by t'he
be easier to characterize the set of all Bayesian
:ation games induced from I', than i_t is' to
1equilibria of I', or of any one communication
explains why the revelation principle can be

:onsider the two-player game shown in the
now that the players can communicate, either
ator or through some tatonnement process,
ionsin D; and D5. In the induced communica-
:r be a Bayesian equilibrium giving the out-
type 2a, and (y,, y») if player 2 is type 2b, as
1atrices separately might suggest? The answer
inciple. If there were such a commum‘catl.on
inincentive-compatible mechanism achieving
would be the mechanism satisfying

L pOn. »201,26) = 1;

atible, since player 2 could gain by lying about
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These definitions (6.3)—(6.5) are the same as (5.2)—(5.4) except that
there is no longer any question of players disobeying recommended
actions. In fact, one can easily construct a Bayesian game with n + 1
players that is equivalent to the collective choice problem I'?, in the sense
of generating the same set of incentive-compatible mechanisms. (Let
D; = {0} for every i in {1, ..., n}, Dysqy = C, T,y = {0}, and u,
(d, ) = Ofor every d and t.) The revelation principle holds for Bayesian
collective-choice problems, just as for Bayesian games with communica-
tion. We say that . is an incentive-efficient mechanism for I'? iff p is
incentive compatible and is not dominated by any other incentive-
compatible mechanism, in the sense of (5.5).

To simplify our formulas, we will henceforth assume that the players’
beliefs are consistent with a common prior p*, as in (3.1). Furthermore,
we will assume that the players’ types are independent random variables
in the common prior; that is,

p*() = [1 pf@), VeeT,
i=1

where p;(¢;) is the marginal probability that player i is type #. (As was
remarked in Section 3, any Bayesian collective-choice problem is proba-
bility equivalent to another Bayesian collective-choice problem in which
beliefs are consistent with such an independent common prior.)
Suppose now that A and « are vectors of the form
N = [[Nt))ier)i=1, a= [[ai(si|ti)]sieT.,teT]r;=1

[AN N

(read *|” here as ‘“‘given”) such that
)\,'(t,') >0 and a,'(s,'lt,') = O, Vie {1, ey n}, Vt, € T,’. (66)
Then let us define vi(c, t, A\, o) by the following formula:

vie, LN o) = [[N(r) + D ailsi|1)] uide, 1)

se€T,

= > oltils) uie, (i )N/ pi ().
seT; (67)
We shall refer to vi(c, ¢, N, ) as player i’s virtual utility for outcome ¢ in
state ¢, with respect to the parameters N and «. This definition (6.7) may
seem obscure at first, but it is important because it permits us to state the
following characterization of incentive-efficient mechanisms.

Theorem 1: Suppose that w is an incentive-compatible mechanism for I'°.
Then . is incentive efficient if and only if there exist vectors N\ and o
satisfying (6.6), such that
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) — Uz*(“" Silti)] = 0, i7 S; € Ti7 e Ti7 (68)

(c, t, N, =max vic, t, N, ), teT.
}l(c7 OL) o ;=§:1 1( (69)

is theorem, observe first that the set of all incentive-
chanisms satisfying (6.2) and (6.5) is a compact convex
hus, by the supporting hyperplane theorem of convex
hanism p is incentive efficient if and only if there exists a
\ such that p is an optimal solutien to the following

e S S M) Udwln) (6.10)

i=1 1eT,;
t to (6.2) and (6.5).

t oy(s;|#;) as the dual variable or Lagrange multiplier for
»nstraint (6.5) that asserts that player i should not expect to
ng type s; if his true type is ;. Then the Lagrangian function
3.10) is

) () U|t) + 2 (s t)(Uiw|t) — Uf (s, s:l1))]

seT;

* p
g; p*() EC el ) ; vc, £, N, @) 6.11)
grangian for (6.10) equals the expected sum of the players’
;. The virtual utility functions were defined in (6.7) pre-
this equation (6.11) would hold, as may be verified by
d algebra. (See Myerson [1984a,b] for an introduction to
tual utility in the theory of bargaining under incomplete

6.8) in Theorem 1 asserts that, if the dual variable (s t)
-n the associated incentive constraint must be binding.
9) asserts that p(-|f) maximizes the sum of the playe.rs’
s in each state ¢, subject only to the probability constraint
he conditions in Theorem 1 assert that p and « form a
f the Lagrangian function, and so p must be an optimal
.10). This completes the proof of Theorem 1.

se-efficient mechanism may be inefficient ex post (after the
evealed their types) because of the cost of satisfying inceq-
ts. However, an incentive-efficient mechanism must maxi-
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., T;, p;, and u; are as in a Bayesian game, except that now
the utility function u; is

M= (Do X Dy X =+ X Dy) X (Ty X+ XT,).

eral Bayesian incentive problem differs from a Bayesian
1ere may be some publicly controllable actions, as well as
ontrolled actions in Dy, D,, . . . , D,. For example, sup-
olayers are managers of different divisions in a firm. Foi
his type in 7; may represent his private information about
function in his division, and his private action in D; may be
‘ort in carrying out his management responsibilities. The
in Dy may be specifications of how the firm’s capital
o be allocated to the divisions, and how each manager is tc
inction of output.

all decision variables that the players can control co-
- about which they can make binding promises, should be
f the “public actions in D,. Any decision variables that
s inalienably, or about which he cannot make any prom-
ct with his own utility-maximizing behavior, must be com-
: “private actions’ in D,.
yesian collective-choice problem is just a Bayesian incen-
n which each player 7 has only one possible private actior
1g”"), so that|D;] = 1and the variable d; can be ignored. Or
[, a Bayesian game is just a Bayesian incentive problem ir
1. (Actually, any Bayesian incentive problem could be
ayesian game, by introducing an (n + 1)th player “0”” whc
tion in Dy as his private action, has no private information
t) = 0 for all d and ¢.)
ons of incentive-compatible and incentive-efficient mecha:
lyesian incentive problem are the same as for a Bayesiar
that now in equations (5.1)—(5.4) we let

Do X Dy X +++ XD, d=(dy,d,-"-,d,), and
3(d)) = (do, dy, . . ., di—y, 3(dy), disrs . . ., dy).

ng theorem generalizes Theoiems 1 and 2 to the genera
yesian incentive problem. We assume that D and T are
that the players’ beliefs are consistent with an independen:
'p*, as in Theorem 1.

ppose that . is an incentive-compatible mechanism for the
itive problem T, as above. Then . is incentive efficient if anc
xist vectors N\, a, and vy such that
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N(t) >0, asi|t) =0, vleld, s 1) =0 Vie{l,...,n},

Vt,‘ € T,', VS,' € T,', Vd, € Di’ Ve,' € D,, (82)
2 ’Y,’(C,‘|d[, Sis li) = 1’ Vla le € Di! VS[ € Ti, th € Tl;
eeD, (83)

> > 2 pit-ilt) wdleo, s)) yiled i sis 1) ui(d—i, €, 1)

= max Uf(u, 3, si|t), Vi, Vs; e T;, Vi e Tj;

8:D—D, . (8.4)
0= (li(sl'lt,') [U,(}L|t,) — max U,*(p.,, 6,‘, S,“ti)], Vl, VS,' € T,',
8/‘
Vi, e T;; and (8.5)

n

> owdlt) D, vdd, t, N, a,y) = max Y vdd, t, \, a, ), VieT,
deD izl deD i=1 (8.6)

Ui(dv tv )\9 a, 'Y) = |:|:)‘i(ti) + E (1,-(S,~|t,‘)‘| ui(d7 t)

- 32 odti]s) ; vie:ld;, ti, s;) u((d—;, ), (t—, )1/ P (). 8.7)

As before, these conditions are derived from the Lagrangian condi-
tions for an optimization problem, to maximize

> > M) Udplt)

i 1eT;

subject to the probability constraints (5.1) and the incentive constraints
(5.4). Let of(3;, s;|t;) denote the Lagrange multiplier of the incentive
constraint that type ¢; of player i should not be tempted to claim that he is
type s; and then to disobey his recommended action according to 3,(+).
Let us choose a and vy so that they satisfy (8.2), (8.3),

alsi|t) = E a?(d;, s;| 1), Vi, Vs; e T;, Vt; e T},

8;:D—D; (88)
and
vieild, i, 1) ads:|t) = > o?(3;, si|t), Vi, Vd; € D,
{B1d(d)=e}
Ve,' € D,‘, VZ[‘ € T,‘, VS,‘ € T,‘. (89)

(If o,(s;|t;) = 0 then we can choose y(+|-, s;, r;) so that it also satis-
fies (8.4).) Then the Lagrangian function of this optimization problem
can be written
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> 2 M) Ulplr) + 2 > ; of (8, sil ) Ul plt)

/ - Uk(w, 8, silt;
= > p*0) > wd|)) 3 vld, 1, \, a, ).
t d i=1

The conditions of Theorem 3 follow directly from this equation and th
saddlepoint conditions of Lagrangian analysis.

To interpret the conditions in Theorem 3, think of yi(e;|d;, s;, t;) a
the probability that player i would choose action e; if he were cheatin
when his type was #;, he reported s;, and he was told to do d;. Conditio
(8.4) asserts that using v,(+|-, s;, ;) should be an optimal plan for typ
t; after reporting s;. Condition (8.5) asserts that o,(s;|#;) can be pos
tive only if type #; would be willing to report type s;. (We may hav
o (t;|t;) > 0, if type #; would be willing to disobey the mediator’s recomr
mended actions after reporting honestly.) Formula (8.7) extends th
virtual utility formula (6.7) for Bayesian collective-choice problems. Th
virtual utility of type ¢; differs from the real utility in that it exaggerate
the difference from the types that jeopardize ¢;, when they use thei
optimal disobedience plans v;. By (8.6) an incentive-efficient mechanisr
must maximize the sum of the players’ virtual utilities, in every state .
Thus, the conditions of Theorem 3 can give us some intuition as to th
qualitative nature of incentive-efficient mechanisms, even though thes
conditions may be too complex to apply numerically in many problems
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