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1. Introduction

This paper develops a model of investment decisions in which uncertainty about a one-time change in tax policy induces 
the firm to temporarily stop investing—to adopt a wait-and-see policy. The basic idea is that uncertainty about a future tax 
rate creates uncertainty about the profitability of the investment. If the uncertainty is likely to be resolved in the not-too-
distant future, the firm rationally delays committing resources to irreversible projects. After the uncertainty is resolved, the 
firm exploits the tabled projects, generating a temporary investment boom. The size of the boom depends on the realization 
of the fiscal uncertainty, with lower realizations of the tax rate producing larger booms.

This type of delay may help explain the severity of some recessions. For example, during the early years of the Great 
Recession there was a great deal of uncertainty about the form and cost of health care reform, as well as other aspects of 
tax policy. The decline in investment over this period was significantly steeper and more prolonged than during other post-
war recessions, and uncertainty about fiscal policy may have been a contributing factor. For another example, Shlaes (2009)
argues uncertainty about policy was important during the Great Depression, while Field (2003) offers evidence that many 
new inventions were accumulated during the 1930s: products and processes were discovered but not immediately imple-
mented. The argument applies to other types of policies as well. Uncertainty about a major tariff reform or a substantial 
devaluation of the exchange rate could produce similar effects in an economy where international trade is important.
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In the model studied here investment has two inputs, projects and cash. Projects can be thought of as specific investment 
opportunities, as in McDonald and Siegel (1986) and Jovanovic (2009). For a retail chain or a service provider, projects might 
be cities or locations where new outlets could be built. For a manufacturing firm, a project might be the construction of a 
new plant. For a real estate developer, a project might be a parcel of land that could be built on. The key feature of a project 
is that it is an investment opportunity not freely available to others: it is exclusive to one particular investor, or likely to be 
so. This feature is important in generating delay: the investor is willing to wait because—at least with high probability—the 
opportunity will still be available later.

Both projects and liquid assets can be stored, and a “wait-and-see” policy—delay—is defined as a situation where the 
stocks of both projects and cash are positive. When is delay an optimal strategy? Proposition 4, the main result of the 
paper, answers this question: an optimal response to uncertainty about future policy always involves a period of delay. That 
period is short if the extent of uncertainty is small, and it does not begin immediately if the uncertainty is in the distant 
future, but delay is always part of the optimal strategy. Perfectly anticipated policy changes, on the other hand, may lead 
investors to accumulate one input or the other, but not both.

The rest of the paper is organized as follows. The related literature is discussed in Section 2, and Section 3 provides 
an overview of the model. In Section 4 the model is described in more detail, and the transition after the tax change is 
studied. Section 5 analyzes the firm’s strategy before the tax change. The main result is Proposition 4, which shows that 
uncertainty about the new tax policy necessarily leads to delay. Section 6 extends the model to allow a Poisson arrival date, 
and Proposition 5 shows that the main result carries over, provided the arrival rate is not too small. Section 7 contains a 
numerical example, and Section 8 concludes. All proofs are in Appendix A, and Appendix B describes the computational 
procedure.

2. Related literature

The literature on investment under uncertainty is vast. The model here is most closely related to four strands of it.
The first strand consists of early papers that look at decisions about one or more investment projects, studying various 

types of uncertainty. The decision is about when to exercise an option.
In an early contribution Cukierman (1980) looks at the decision problem of a firm whose single project is characterized 

by an unknown scale parameter, drawn from a known distribution. Each period the firm receives a signal about the parame-
ter and updates its beliefs. The firm must decide when to invest—how long to wait and receive more information—and how 
much to invest. The paper shows that an increase in the variance of the distribution from which the parameter is drawn 
(weakly) increases the number of periods that investment is delayed.

Bernanke (1983) studies a dynamic inference model, in which investment opportunities arrive every period and the 
underlying distribution from which these are drawn is, at random dates, replaced with a new one. When this happens, 
investors learn about it slowly, by observing the outcomes of previous investment decisions. Therefore, after a switch occurs 
there is likely to be at least one period when investors are very uncertain which distribution is in place. The paper provides 
an example in which the switch from one distribution to another necessarily produces at least one period in which investors 
adopt a “wait and see” strategy and no investment takes place.

McDonald and Siegel (1986) return to the decision problem of a firm with a single potential investment project. The 
expected net return from the project evolves over time according to a known stochastic process, and the option to invest 
expires at a finite date T . Thus, the firm’s problem involves a tradeoff between waiting for the net return to grow, and 
risking that it will shrink. The optimal strategy consists of a return threshold that declines over time, and the optimal 
strategy is to invest at the first date when the expected return meets or exceeds the threshold.

A successor to these contributions is the model in Pindyck (1988), which looks at a firm with an infinite sequence of 
“growth options” in an environment with ongoing demand shocks. At each instant the firm decides whether to exploit an 
option, with each project yielding one unit of capital. Investment is irreversible, and if future demand is insufficient to cover 
operating costs, excess capital is idle.

All of these contributions involve decisions about when to exercise an option. By contrast, the present paper studies the 
decision to create options that can be exercised later. The firm receives a constant stream of projects, and the decision is 
about when to stop investing and instead hold projects for future investment. The uncertainty is about a one-time event, 
and all of the accumulated options are exercised when the uncertainty is resolved.

The present paper is also closely related to a second strand of the investment literature, which obtains periods of inaction 
and times of lumpy investment as outcomes. A classic paper here is Abel and Eberly (1994), which extends the earlier 
models of investment under uncertainty to include fixed costs, irreversibility, and a wedge between the purchase and sale 
prices of capital. The uncertainty takes the form of a shock to profitability, a combination of demand and cost shocks. The 
result is a model with an inaction region and, if fixed costs are present, lumpy investment decisions.

Models with fixed costs and lumpy adjustment have also been used to study a wide variety of specific questions about 
business investment, as well as questions about demand for housing and other consumer durables, and business hiring 
decisions.2 Bertola and Caballero (1990) extend the investment model to look at its aggregate implications, and Thomas
(2002) asks whether lumpy adjustment at the firm level changes the properties of a standard real business cycle model.

2 See Dixit and Pindyck (1994) and Stokey (2008) for more detailed discussions of this literature.
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Compared with these models, the present setup gets lumpy adjustment through a different route. Since projects are 
required for investment and projects can be stored, an investment “spike” occurs when the shock is realized and the 
accumulated projects—options—are exploited.

A third strand of the literature looks at models of ongoing aggregate or idiosyncratic productivity shocks, and studies the 
effects on firm-level and aggregate investment.

Jovanovic (2009) studies an RBC model with “investment options” that are similar to the projects here, and an aggregate 
TFP shock of the standard type. Periods with high realizations for the TFP shock produce investment booms, as in the 
standard RBC model. Such periods also produce an increase in Tobin’s q, the value of installed capital, as investment options 
become scarce.

Bloom (2009) studies a model with idiosyncratic shocks to firms’ profitability, together with fixed costs and partial 
irreversibilities. These features imply that each firm’s optimal policy involves (S, s) bands for investment and hiring. In this 
setting, an “uncertainty shock,” an increase in the variance of the distribution of the profitability shocks, widens the (S, s)
bands for all firms. This widening of the bands creates a temporary decline in investment, since almost no firms are at the 
boundary of the new bands. A reduction in uncertainty narrows the bands, producing a temporary boom.

Arellano et al. (2012) obtain similar results in a model with financial frictions. In their setup firms must borrow to 
finance production, before they know the realization of the relevant demand shock, and they must default if they cannot 
repay the loan. Since default is costly, an increase in uncertainty prompts firms to scale back production.

In contrast to these papers, the analysis here focuses on a one-time shock. The model here produces firm-level behavior 
similar to that in Bloom, without fixed costs. As noted above, the fact that a (scarce) project is required for investment plays 
a similar role. And in contrast to Arellano, Bai and Kehoe, the model here does not require financial frictions. Indeed, here 
the firm acquires liquid assets during the period of delay, in anticipation of investment later. This feature accords well with 
the experience during the Great Recession, when many large firms acquired substantial hoards of cash.

Finally, the present paper is loosely related to a large body of empirical work looking at the effect of fiscal shocks, “news 
shocks,” and “uncertainty shocks,” including recent papers examining their role in explaining the Great Recession.

Shocks to fiscal policy have long been recognized as an important source of cyclical variation, as in Baxter and King
(1993), McGrattan (1994, 2012), and elsewhere. Later work has found evidence that “news shocks” also have aggregate 
effects, as in Beaudry and Portier (2004, 2006, 2007), Jaimovich and Rebelo (2009), Schmitt-Grohé and Uribe (2012), and 
Barsky and Sims (2011). Although this work looks at news about productivity growth, presumably news about fiscal policy 
would have similar announcement effects.

More recently, a number of recent papers have looked for evidence of real effects from “uncertainty shocks,” changes in 
the variance of the shock of interest. The conclusions here have been mixed, with some studies finding a substantial impact, 
as in Alexopoulos and Cohen (2009), Fernández-Villaverde et al. (2012), Baker et al. (2013), and Bloom et al. (2012), and 
others finding small effects, as in Born et al. (2013), Bachmann and Bayer (2013), and Born and Pfeifer (2013).

The present paper suggests a new hypothesis for empirical work: that the resolution of significant one-time policy 
uncertainty should produce a substantial investment boom.

3. Overview

The model uses an investment technology designed to produce an option value. Briefly, the key features are that each 
investment opportunity is exclusive to the firm, there is an intensity decision that is irreversible, and there are storage 
possibilities that permit delay. The rest of this section describes these features in more detail.

First, investment requires a project, as well as an input of cash. As noted above, projects should be thought of as specific 
investment opportunities. For retailers they might be new locations for outlets, for manufacturers they might be new plants, 
and so on. The key feature of a project is that it is available only to one particular investor. Hence that investor can 
wait to make a decision about how best to exploit it. This exclusivity assumption could be relaxed to some extent. For 
example, similar conclusions would hold if projects had a positive hazard rate of becoming available to other investors. The 
assumption cannot be dropped altogether, however. If a specific project were immediately available to multiple investors, 
there would be Bertrand-like competition to be the first to exploit it, precluding the possibility of delay.

Second, the intensity of investment in a project is an irreversible decision. Specifically, all investment in a particular 
project must take place at a single date: the capital cannot be increased or decreased later on. Thus, investment intensity 
has a putty-clay character: it is flexible ex ante but fixed ex post. This feature could also be relaxed. A model with costly 
reversibility would deliver similar conclusions, at the cost of added complexity.

Third, the firm can accumulate projects, and those projects do not depreciate. A positive depreciation rate or a positive 
probability of becoming obsolete could be incorporated, but storability is key for creating an option value.

Fourth, the total cost of investment is linear in the number of projects for a fixed intensity and strictly convex in the 
intensity for a fixed number of projects. Strict convexity in the intensity is critical for making projects a valuable commodity. 
Without it, investment could be concentrated on a small set of projects, at no additional cost.

Finally, the firm cannot borrow, although it can hold stocks of liquid assets. The interest rate on liquid assets is less 
than the discount rate for dividends, however. Thus, in the absence of uncertainty holding liquid assets is unattractive, 
and the firm pays out dividends as quickly as possible. But in the presence of uncertainty, liquid assets can be attractive 
as a temporary investment while waiting for the uncertainty to be resolved. The assumption of a low interest rate on 
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liquid assets makes the firm’s dividend policy determinate, and the no-borrowing assumption is primarily for convenience. 
Allowing the firm to borrow at an interest rate higher than the discount rate would make the firm’s financing decision more 
complex, and reduce or eliminate the incentive to hold liquid assets. Investment decisions would be qualitatively the same 
however, and the firm would borrow only to accelerate investment.

Formally, time is continuous, and new projects arrive at a constant rate μ. At each date a firm chooses n, the number 
of projects (a flow), and i, the intensity of investment in each project. Total investment is the product I = ni (a flow). The 
cost of implementing a project with intensity i > 0 is g(i), where the function g is strictly increasing and strictly convex. 
Hence cost minimization implies that the firm chooses the same intensity for all projects implemented at the same date, 
and investing at the total rate I = ni has total cost ng(i) = ng(I/n) (a flow) if it is allocated across n projects. If projects 
and liquid assets have been accumulated, there may also be a discrete investment with intensity ı̂ , where the number of 
projects n̂, the increment to capital n̂ı̂ , and the total cost n̂g(ı̂) are masses. This type of investment is discussed in more 
detail later.

The role played by projects can be seen in a two-period example, t = 1, 2, with a project inflow of μ = 1 in each period, 
and k0 given. The firm chooses the investment scale in each period, 0 ≤ n1 ≤ 1 and 0 ≤ n2 ≤ 2 −n1, as well as the intensities, 
i1, i2 ≥ 0. The capital stock and total investment costs are then

kt = (1 − δ)kt−1 + nt it , t = 1,2,

TC = n1 g(i1) + 1

1 + ρ
n2 g(i2).

If the firm uses the projects as they arrive, choosing n1 = n2 = 1, total investment costs in the option model are g(ii) +
g(i2)/ (1 + ρ), as usual. But if the firm chooses to concentrate investment in the second period, if n1 = 0 and n2 = 2, with 
total investment I2 > 0 in the second period, the option model reduces total cost from g(I2) to 2g(I2/2). Because it allows 
(forward) smoothing over time, the option model reduces the cost of delay.

Projects allow intertemporal substitution in a way that the standard convex adjustment cost model does not. In the 
standard model the total cost of investment It is kt G(It/kt), where kt is the capital stock and the function G is strictly 
convex. With this formulation the total cost of investment over several periods can be reduced only by keeping investment 
It smooth over time. Indeed, this formulation was introduced for the express purpose of keeping aggregate investment 
smooth in the presence of fluctuations in the environment. But the micro data analyzed in Doms and Dunne (1998) shows 
quite clearly that at the firm level, investment is very lumpy. Fixed costs of adjustment are one way to match this data; the 
model here offers an alternative route.

Installed capital k produces the net revenue flow π(k) and depreciates at the constant rate δ > 0. The revenue from 
installed capital is taxed at a flat rate τ , and uncertainty about τ is the only risk the firm faces. We will study the effect 
of uncertainty about a one-time tax reform that is expected in the future. Two assumptions about timing are considered. 
In the first, the date T of the tax reform is known, and only the new tax rate is uncertain. In the second, the date of the 
reform is stochastic, with a Poisson arrival time. In both cases the new tax rate τ̂ is drawn from a known distribution F (·).

The following assumptions are maintained throughout:

– dividends are discounted at the constant rate ρ > 0;
– liquid assets held by the firm earn interest at the constant rate 0 ≤ r < ρ;
– the firm cannot borrow: all investment is from retained earnings, and the dividend must be nonnegative;
– capital cannot be sold: gross investment must be nonnegative;
– the firm receives a constant flow μ > 0 of new projects;
– the revenue function π is strictly increasing, strictly concave, and twice differentiable, with π(0) = 0, π ′(0) = ∞, and 

limk→∞ π ′(k) = 0;
– the cost function g is strictly increasing, strictly convex, and twice differentiable, with g(0) = 0, g′(0) ≥ 0, and 

limi→∞ g′(i) = ∞;
– the time horizon is infinite.

4. The model and the transition after T

Consider a one-time tax reform, announced at date t = 0, that will take effect at T > 0. There are no changes in the tax 
rate during the interval [0, T ), and after the single reform there are no further changes. The new tax rate is not announced 
at t = 0, however. Instead, the firm knows only that it will, at T , be drawn from a known distribution F . The ultimate goal 
is to characterize the firm’s optimal investment on [0, T ), in anticipation of the change. As usual, however, it is convenient 
to start by looking at decisions after T , when the new rate τ̂ is in effect.

We will compare the firm’s optimal strategy in the option model with the behavior of a benchmark firm that cannot 
accumulate projects. For the benchmark firm the scale of investment at every date, before and after T , is equal to the inflow 
of projects. In the option model the state variable for the firm is s = (k,a,m), where k > 0 and a, m ≥ 0 are its stocks of 
capital, liquid assets, and projects. For the benchmark firm the state variable is (k,a).
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4.1. The firm’s problem at T

At date T the new tax rate τ̂ is announced and takes effect. Consider the optimal investment strategy for a firm with 
state sT , where kT > 0 and aT , mT ≥ 0. If aT , mT > 0, the firm’s decision problem has two parts. First, it can make a one-time 
discrete adjustment (DA), using some or all of its stocks of cash and projects to produce an increment to its capital stock. In 
particular, it can invest in a mass of projects n̂ ≥ 0, with intensity ı̂ ≥ 0, producing a mass of new capital goods Î = n̂ı̂ . The 
cost of this investment, n̂g(ı̂), must be financed out of its stock of liquid assets. In addition, the firm can use any remaining 
liquid assets to pay a discrete dividend D̂ . After these one-time adjustments, if any, the rest of the firm’s decision is a 
standard (continuous) control problem.

The discrete adjustment 
(

D̂, ı̂, n̂
)

and the subsequent dividend flow, investment intensity, and project flow {D(t), i(t),
n(t)}∞t=T are chosen to maximize the present discounted value of the firm’s total dividends. Let v(sT ; τ̂ ) denote the maxi-

mized value of the firm, and let ŝT =
(

k̂T , âT ,m̂T

)
denote the firm’s state after the DA. Then

v
(
sT ; τ̂ )≡ max

⎡⎣D̂ +
∞∫

T

e−ρ(t−T )D(t)dt

⎤⎦ (1)

s.t. k̂T = kT + n̂ı̂,

âT = aT − D̂ − n̂g(ı̂),

m̂T = mT − n̂,

0 ≤ D̂, ı̂, n̂, âT ,m̂T , (2)

k̇ = ni − δk,

ȧ = ra + (1 − τ̂
)
π(k) − D − ng(i),

ṁ = μ − n,

0 ≤ D, i,n,a,m, all t > T . (3)

The benchmark firm faces a similar problem except that it cannot accumulate projects. Hence it cannot make a DA to its 
capital stock at T , and after T its scale of investment is equal to the inflow of projects at every date. Thus, its problem is 
as in (1)–(3), but with mT = n̂ = m̂T = 0, and [n(t) ≡ μ, m(t) ≡ 0, t > T ]. Let w 

(
kT ,aT ; τ̂ ) denote the maximized value of 

the benchmark firm.
For any constant tax rate τ̂ ≥ 0, the option and benchmark models have the same steady state (SS), which is unique and 

has ass = 0, mss = 0, and(
1 − τ̂

)
π ′ (kss)= (ρ + δ) g′(iss),

kss = μ

δ
iss,

Dss = (1 − τ̂
)
π(kss) − μg(iss), (4)

where kss , iss , and Dss are strictly decreasing in τ̂ . As will be shown below, for any kT > 0 and aT , mT ≥ 0, the solution to 
(1)–(3) converges asymptotically to the SS.

Before proceeding, however, it is useful to bound the ranges for the capital stock and the tax rate. Let k = kss(0) be the 
SS capital stock when the tax rate is τ̂ = 0. Only nonnegative tax rates are of interest, so k is a natural upper bound on the 
set of capital stocks. Then define τ > 0 as the tax rate for which investment to maintain the capital stock at k just exhausts 
after-tax profits,

(1 − τ )π(k) − μg(δk/μ) = 0.

For any lower tax rate and smaller capital stock, τ ∈ [0, τ ] and k ∈ (0,k], after-tax revenue is sufficient to finance investment 
to maintain the capital stock, a fact that simplifies some arguments later on. In the numerical examples in Section 7, τ is 
about 60%.

4.2. The transition after T in the benchmark model

Propositions 1–3 describe the transition after the new tax rate τ̂ is realized. It is convenient first to characterize the 
solution for the benchmark model, and then describe how the option of storing projects alters that solution.

The benchmark solution has a partial ‘bang-bang’ form with two critical values for capital. While the capital stock k(t) is 
below the first critical value, κ L , all earnings are invested and the dividend is zero. While k(t) is above the second critical 
value, κU , all earnings are paid out as dividends and there is no investment. While k(t) is between the two critical values, 
both investment and the dividend are positive.
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Fig. 1. Phase diagram for the benchmark model, a = 0.

Proposition 1. For any τ̂ ∈ [0, τ ], kT ∈ (0,k], and aT ≥ 0, the solution to the benchmark version of (1)–(3) has the following properties.

(a) The capital stock k(t) converges monotonically to kss, and i(t), D(t) are continuous along the transition path.
There are two critical values for capital, with 0 < κ L < kss < κU ≤ ∞. If g′(0) > 0, then κU < +∞, and if g′(0) = 0, then 
κU = +∞.

(b) If aT = 0, then a(t) = 0, all t ≥ T , and
for k(t) ∈ (0, κ L

)
, D(t) = 0 and i(t) > 0 is strictly increasing;

for k(t) ∈ (κ L,kss
)
, D(t) > 0 is strictly increasing and i(t) > 0 is strictly decreasing;

for k(t) ∈ (kss, κU
)
, D(t) > 0 is strictly decreasing and i(t) > 0 is strictly increasing;

for k(t) > κU , D(t) > 0 is strictly decreasing and i(t) = 0.
(c) If aT > 0 and kT ≥ κ L , then D̂ = aT , âT = 0, and the transition is as in (b).
(d) If aT > 0 and kT < κ L , there is a continuous and strictly decreasing function α(kT ), kT ∈ (0, κ L], with α(κ L) = 0, such that

D̂ = 0 and âT = aT for aT ≤ α(kT );
D̂ = aT − α(kT ), and âT = α(kT ) for aT > α(kT ).

In either case a(t) is strictly decreasing while a(t) > 0, and a(t) reaches zero while k(t) < κ L . Thereafter a(t) = 0 and the rest of 
the transition is as in (b).

Let q = (qk,qa) denote the costate variables. Fig. 1 shows the projection of the phase diagram on (k,qk)-space, with 
a(t) ≡ 0. The value k = kss(0) is indicated on the horizontal axis. The k̇ = 0 and q̇k = 0 loci are the dotted curves, and the 
stable manifold SM is the solid curve. The broken curve, χ(k), is the threshold where the firm becomes cash constrained. 
Above that curve the firm is constrained, with qa > 1 and D = 0. Below it the firm is unconstrained, with qa = 1 and D > 0. 
The critical value κ L is defined by the intersection of SM and χ(k). In this example κU > k, so the region where i∗ = 0 does 
not appear in the figure.

If the initial asset stock is zero, aT = 0, the transition is along SM in Fig. 1, and liquid assets are never acquired. If initial 
assets are positive, aT > 0, there are two possibilities. If kT ≥ κ L , the relevant portion of SM lies below χ(k), in the region 
where qa = 1. Thus, the firm’s profit flow is sufficient to finance investment at the desired rate with funds left over for a 
dividend. Hence the entire initial asset stock is paid as a dividend, D̂ = aT , and rest of the solution is unchanged.

If kT < κ L , the firm’s profit flow is insufficient to finance investment at the desired rate. In this case the initial dividend is 
less than the asset stock, 0 ≤ D̂ < aT , and the remaining assets are used for investment. Thus, the solution involves a(t) > 0
over a finite period. Let T̂ denote the date when assets are depleted. Since q̇a/qa = (ρ − r) > 0, for t ∈ [T , T̂ ), it follows that 
qa(T̂ ) > 1, which implies k(T̂ ) < κ L .

4.3. The transition after T in the option model

Next consider a firm with the option to store projects. Proposition 2 describes a key feature of the transition: stocks of 
liquid assets and projects are never held simultaneously. Thus, the DA (D̂, ̂ı, ̂n) exhausts at least one of the initial stocks, so 
the subsequent transition begins with âT = 0 or m̂T = 0 or both, and at least one stock is zero at every later date as well. 
In addition, the post-DA stock of liquid assets can be positive only if the post-DA capital stock is less than κ L .

Proposition 2. For any τ̂ ∈ [0, τ ], kT ∈ (0,k], and aT , mT ≥ 0, the solution to (1)–(3) has the property that: âT m̂T = 0 and 
a(t)m(t) = 0, all t > T . In addition âT > 0 implies k̂T < κ L .
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Fig. 2. a: Number of projects n̂, b: intensity ı̂ , c: total cost n̂g(ı̂), d: shadow value of cash q̂aT .

The proof of the last claim is immediate. If k̂T ≥ κ L the firm is not liquidity constrained, and q̂aT = 1. Hence any excess 
cash is paid out immediately as a dividend, and âT = 0.

The next result describes potential post-DA transitions in the option model. In accord with Proposition 2, attention is 
limited to initial conditions with âT m̂T = 0, with k̂T < κ L if âT > 0. The transitions involve two new thresholds, κ0, κM . If 
the capital stock lies outside the interval 

[
κ0, κM

]
and a = 0, the firm accumulates projects. For capital stocks below κ0 the 

firm is cash constrained, and it accumulates projects in order to fund them later, at higher intensities, after its cash flow 
has improved. For capital stocks above κM the firm is decumulating capital, and it hoards projects to use later to reduce 
the cost of replacement investment.

Proposition 3. For any τ̂ ∈ [0, τ ], k̂T ∈ (0,k], âT , m̂T ≥ 0, with âT m̂T = 0, and with k̂T < κ L if âT > 0, the solution to (1)–(3), 
involves two thresholds κ0, κM , in addition to those described in Proposition 1, with κ0 < κ L < kss < κM < κU .

(a) If âT = m̂T = 0, then a(t) = 0, all t > T . For k̂T = [κ0, κM
]

the solution is as in Proposition 1. For k̂T < κ0 and k̂T > κM , the 
transition involves accumulating and then decumulating projects.

(b) If m̂T > 0 and âT = 0, then a(t) = 0, all t > T . The initial stock of projects is exhausted in finite time and remains at zero 
thereafter. Decumulation begins immediately if k̂T ∈ (κ0, κM

)
. If k̂T < κ0 or k̂T > κM , additional projects may be accumulated 

before decumulation begins.
(c) If m̂T = 0 and âT > 0, then k̂T < κ L . The solution has an initial phase during which the entire inflow of new projects is funded, all 

revenue is used for investment, and the initial stock of assets is gradually drawn down. During this phase n = μ, m = 0, D = 0, 
and ȧ < 0. When the stock of liquid assets is exhausted, the rest of the transition is as in (a). In particular, if k < κ0 at this point, 
the solution involves accumulating and then decumulating projects.

If m̂T = 0, the post-DA transition in the option model is the same as a transition in the benchmark model for interme-
diate levels of the capital stock, k ∈ [κ0, κM

]
. Only for capital stocks outside this range does the firm accumulate projects 

after date T . If m̂T > 0, the firm immediately starts decumulating projects if k̂T ∈ [κ0, κM
]
. For capital stock outside this 

range, it accumulates more projects before tapping into the stock.

4.4. The DA at T

The firm’s choice about the DA at T depends on the realized tax rate τ̂ , with lower rates producing an incentive for 
higher investment intensity.

For fixed kT > 0 and positive stocks of both assets, aT , mT > 0, Fig. 2 shows, qualitatively, how values for the DA and the 
shadow value of cash depend on the realized tax rate τ̂ . In particular, the four panels display the number of projects n̂, the 
intensity of investment ı̂ , the total cost of investment n̂g(ı̂), and the post-DA costate value q̂aT .
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In each panel the range for τ̂ is divided into three regions, low, moderate and high, relative to other values in the support 
of F . (The initial tax rate τ may be higher or lower than all these values, or anywhere in the middle.)

For low realizations of τ̂ , Region A, the firm would like to invest in the accumulated projects with a high intensity, but 
it is cash constrained. In this region the DA exhausts the firm’s stock of liquid assets, n̂g(ı̂) = aT . No initial dividend is paid, 
D̂ = aT − n̂g(ı̂) = 0, and cash is at a premium, q̂aT > 1. In this region n̂ is strictly increasing in τ̂ , while ı̂ and q̂aT are 
strictly decreasing. Some projects remain after the DA, m̂T = mT − n̂ > 0, and these are gradually used during some interval 
of time after T . No dividend is paid during this interval: all earnings are used for investment. When the stock of projects is 
exhausted the solution (k,qk) lies on SM(τ̂ ), and the remaining transition is as in the benchmark model.

For moderate realizations of τ̂ , Region B, the DA uses the entire stock of projects, n̂ = mT and m̂T = 0. The intensity 
of investment continues to decline with τ̂ in this region. The firm is not cash constrained, however, so q̂aT = 1, and the 
excess liquid assets are paid as an initial dividend, D̂ = aT − n̂g(ı̂) > 0. The post-DA state lies on SM(τ̂ ), and the rest of the 
transition is as in the benchmark model. Since q̂aT = 1, the post-DA capital stock satisfies k̂T ≥ κ L(τ̂ ).

For high realizations of τ̂ , Region C, neither the stock of projects nor the stock of liquid assets is exhausted by the 
discrete investment, m̂T = mT − n̂ > 0, and D̂ = aT − n̂g(ı̂) > 0. (Indeed, for τ̂ sufficiently large, n̂ = 0 is possible.) The 
shadow value of cash is q̂aT = 1, and the excess assets are paid as a one-time dividend. As in Region A, the post-DA stock 
of projects m̂T > 0, is gradually used over some time interval after T . When the stock is exhausted, (k,qk) lies on SM(τ̂ ).

Note that while the intensity ı̂ of the DA is decreasing in τ̂ over the entire range in Fig. 2, the scale n̂ is increasing in 
Region A, constant in Region B, and decreasing in Region C. Thus, a stock of projects remains after the DA in Regions A 
and C. The economic motive for holding investment options after T is different in the two regions, however. In Region A 
the firm is accumulating capital, but it is cash constrained. Thus, it holds some projects back in order to finance them later, 
out of retained earnings, at higher intensities. In Region C the firm is reducing its capital stock, and it hoards projects to 
reduce the cost of replacement investment later on. As we will see below, there must be positive probability of a realization 
in Region A, where cash is exhausted by the DA and qaT (τ̂ ) > 1. The firm does not accumulate excessively large stocks of 
cash.

Note, too, that the firm does not hold liquid assets after date T . Although liquid assets remain after the discrete invest-
ment in Regions B and C, they are paid immediately as a dividend.

5. The firm’s strategy on [0, T )

Next consider the firm’s strategy during the time interval [0, T ). Assume that when the reform is announced at t = 0, the 
firm has no initial stocks of liquid assets or projects, a0 = m0 = 0, and its initial capital stock is at or below the steady state 
for the old tax rate, k0 ≤ kss(τ ). Values for k0 near kss(τ ) represent mature firms, while smaller values represent younger 
firms. The new tax rate τ̂ , which takes effect at T , is drawn from the known distribution F (τ̂ ), and there are no further 
changes thereafter. If F puts unit mass on a single point, the change is deterministic.

Since there are no initial stocks of liquid assets or projects, there can be no DA or discrete dividend at t = 0. Hence the 
firm chooses {(D, i,n)}T

t=0 to solve

max

T∫
0

e−ρt D(t)dt + e−ρT Eτ̂

[
v(s(T ); τ̂ )

]
s.t. (3), (5)

where the expectation uses F . The necessary conditions for an optimum are as before, and the terminal conditions are

lim
t↑T

qk(t) = Eτ̂

[
qkT
(
τ̂
)]

,

lim
t↑T

qx(t) ≥ Eτ̂

[
qxT
(
τ̂
)]

, w/ eq. if xT > 0, x = a,m, (6)

where qxT (τ̂ ), x = k, a, m, are the initial costate values for the problem in (1)–(3), given the initial state (kT ,aT ,mT ) =
(k(T ),a(T ),m(T )) and the realized tax rate τ̂ . Thus, the costate for capital approaching date T , before the uncertainty is 
resolved, must equal its expected value ex post. The costates for liquid assets and projects may exceed their expected ex 
post values if the stock is zero.

5.1. The period of delay

The main result of the paper is the next proposition, which states that in the option model, uncertainty about the new 
tax rate always leads to a period of delay: there is an interval of time before T during which investment ceases.

Proposition 4. Suppose a tax change at T > 0, drawn from the distribution F , is announced at t = 0. Unless F puts unit mass at a 
single point, there exists 	 > 0 such that n(t)i(t) = 0, for t ∈ (T − 	, T ).
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The proof is by contradiction and the main idea is straightforward. Suppose the contrary. Because g is convex, smoothing 
the intensity of investment across projects reduces the total cost. Delaying some projects from a short period before T until 
after T permits this type of smoothing. Of course, if the uncertainty is small in magnitude, the period of delay is short. 
Thus, if T is large, the period of delay may not begin at t = 0.

Proposition 4 implies that aT , mT > 0, so all three conditions in (6) must hold with equality. One important feature of the 
solution is clear from that fact and Fig. 2: the firm’s optimal strategy before T necessarily produces a positive probability of 
being cash constrained when τ̂ is realized. Since liquid assets are acquired before T , the necessary conditions imply that qa
is increasing on (0, T ). Since qa(0) ≥ 1, it follows that qa(T ) > 1. At date T , the post-DA value satisfies q̂aT > 1 only if the 
new tax rate lies in Region A. Hence (6) implies that the solution lies in Region A—where the firm is cash constrained—with 
strictly positive probability.

Can delay occur in the absence of uncertainty? Yes, anticipation of a deterministic tax decrease can induce the firm to 
accumulate both cash and projects. Appendix A.1 provides an example of this sort, with r ≈ ρ ≈ 0, an extremely convex 
cost function g , and an approximately linear profit function π . The motive for delay in this example is simply to wait and 
exploit projects when the tax climate is more favorable. The assumptions on g and π make the profits from an incremental 
stock of projects almost independent of when it is exploited, and the assumptions on r and ρ make waiting almost costless.

6. Stochastic arrival date

The date when a tax change will occur may also be uncertain, and in this section the model above is extended to include 
uncertainty about T . For tractability, the arrival is assumed to be Poisson, with arrival rate θ .

A stochastic arrival date for the tax change does not affect the firm’s post-arrival problem in (1)–(3) or the continuation 
value function v(s; τ̂ ). Before the arrival the firm’s problem, given s0 = (k0,0,0), is to choose {(D, i,n)}∞t=0 to solve

max

∞∫
0

e−(ρ+θ)t {D(t) + θEτ̂

[
v(s(t); τ̂ )

]}
dt, s.t. (3), (7)

where the second term in the objective function is the post-reform continuation value, and the extra exponential term 
represents the probability that the tax change has not yet occurred.

The solution for (7) consists of {[D, i,n,k,a,m] , all t > 0}. This solution converges asymptotically to a steady state. Let 
s∗(θ) denote the steady state value for s = (k,a,m), as a function of θ , given τ and F . Thus, if the state is s∗(θ) and the tax 
change has not yet occurred, the firm does not make any further changes to its stocks of capital, assets, and projects.

Let T̃ denote the random date when the tax change arrives. The initial condition for the post-reform transition depends 
on the realization of T̃ , call it T R . For small T R , the initial condition is close to s0 = (k0,0,0), so the transition is essentially 
as in Proposition 1, with negligible initial stocks of assets and projects. For large T R , the initial condition for the post-arrival 
transition is close to s∗(θ).

The next result has two parts. First, it shows that for θ > 0 sufficiently small, the firm does not accumulate stocks of 
liquid assets or projects, although it may adjust its capital stock slightly. That is, s∗(θ) = [k∗(θ),0,0], where k∗(θ) is close 
to kss(τ ). The second part is an analog of Proposition 4. It shows that unless the distribution F puts unit mass on a single 
point, for all θ sufficiently large, the steady state stocks of liquid assets and projects are positive, a∗(θ) > 0 and m∗(θ) > 0.

Proposition 5. (a) For all θ > 0 sufficiently small, the steady state for (7) has the property that s∗(θ) = [k∗(θ),0,0], where k∗(θ) is 
close to kss(τ ). (b) Unless F puts unit mass at a single point, for all θ sufficiently large, a∗(θ), m∗(θ) > 0.

7. Example

The example uses the revenue and cost functions

π(k) = Akα, g(i) = g1i + 1

2
g2i2,

and the parameter values

A = 1, α = 0.90, g1 = 1.75, g2 = 10,

δ = 0.15, μ = 1, ρ = 0.10, r = 0.09.

The initial tax rate is τ0 = 0.25, and the post-reform rate is

τ̂ =
{

τ L = 0.15, with probability 0.55,

τ H = 0.35, with probability 0.45.

Thus, the tax reform could raise or lower the tax rate by 10 percentage points, with slightly higher probability on a tax cut. 
The reform is anticipated T = 1/2 year in advance. Figs. 3–5 show the transition for a firm with an initial capital stock that 
is three quarters of the steady state level for the initial tax rate, k0 = 0.75 · kss(τ0).



N.L. Stokey / Review of Economic Dynamics 21 (2016) 246–265 255
Fig. 3. Capital stock.

Fig. 3 compares the short-run transition in the option model with those in the benchmark model and in a full infor-
mation setting, where the new tax rate is known at t = 0 (although it takes effect at T ). With full information, the firm 
immediately begins adjusting toward the new steady state, in a way that is almost indistinguishable from the adjustment to 
an immediate tax change. In the benchmark model, the adjustment over [0, T ] is, approximately, a weighted average of the 
two with full information. If the new tax rate is uncertain, the firm adopts a “split-the-difference” investment strategy over 
[0, T ]. At date T the path splits, and thereafter the two parts initially parallel the full information paths. Those adjustments 
are lagged, however, reflecting the fact that early investment was at an intermediate level.

In the option model the period of delay begins immediately: investment ceases over [0, T ], and the capital stock declines 
through depreciation. At T , when the uncertainty is resolved, the capital stock jumps because of the discrete adjustment, 
with the size of the jump depending on the realization of the new tax rate, and thereafter the capital stock adjusts gradually 
to its new steady state level. The path for the capital stock after T in the option model is very close to the one with full 
information, reflecting the fact that the investment intensities for the discrete adjustment are tailored to the new tax rate: 
a higher intensity if the lower tax rate is realized.

Fig. 4 displays additional features of the short-run transition. Panels (a)–(d) show the stocks of capital, projects and liquid 
assets, and investment; panels (e)–(h) show the marginal values of capital, projects and liquid assets, and the dividend.

Over [0, T ], the capital stock declines through depreciation and the stock of projects grows linearly, as shown in pan-
els (a) and (b). Panel (c) shows liquid asset accumulation, which begins after about 1–1/2 months, with the stock of assets 
then growing linearly until T . Panel (d) shows investment, which ceases over [0, T ].

The marginal values for capital and projects, shown in panels (e) and (f), jump up slightly at t = 0, since the probability 
of a tax decrease is slightly higher than the probability of an increase. The marginal value of capital is approximately 
constant over [0, T ], and the marginal value of projects grows at the rate ρ , as it must while the stock is positive.

The marginal value of liquid assets, shown in panel (g), remains constant at unity while dividends are paid, but grows at 
the rate ρ − r > 0 over the period when liquid assets are accumulated. The dividend, in panel (h), jumps up at t = 0, when 
investment ceases, and then jumps down to zero when liquid asset accumulation begins.

At date T the new tax rate is realized, and the discrete adjustment increases the capital stock, as shown in panel (a). If 
the tax rate is the higher one, τ H , the firm chooses a lower intensity for investment, and the entire stock of projects can be 
financed, with some liquid assets left over. Hence the stocks of projects and liquid assets, in panels (b) and (c), both drop 
to zero. The extra cash is paid as a dividend at T . The marginal values of capital, projects, and liquid assets all drop, with 
the last falling to unity, as it must when a dividend is paid.

If τ L is realized, the firm chooses a higher intensity for each project, and it is cash constrained at T . The stock of liquid 
assets is insufficient to finance the entire stock of projects, and, as shown in panel (b), some projects remain after the 
discrete adjustment. As shown in panel (d), these are implemented over a short interval after T , as cash becomes available. 
The marginal values of capital, projects, and liquid assets all increase at T . Until the stock of projects is exhausted, the 
marginal value of liquid assets remains above unity and no dividend is paid.

Fig. 5 displays the longer run transition for the capital stock and investment, as well as the steady state levels (dotted 
lines) for each realization of the new tax rate. The transition for τ̂ = τ L involves accumulating a substantial amount of 
capital, while the transition for τ̂ = τ H involves slowly decumulating capital.

In this example the option to store investment projects allows the firm to capture about 91% of the gains, compared with 
the benchmark model, from having full information. Admittedly, those gains are small in this example, but the substantial 
period of delay is the main point.
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Fig. 4. a: Capital stock, b: projects, c: liquid assets, d: investment, e: marginal value of capital, f: marginal value of projects, g: marginal value of liquid 
assets, h: dividend.
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Fig. 5. a: Capital stock, b: investment.

8. Conclusions

The positive predictions of the model developed here are stark: one-time policy uncertainty leads to sharp swings in 
investment. Although aggregate investment also displays sharp swings, it never goes to zero, so additional features will 
be needed to incorporate this micro-level theory into a quantitative macro model. One possibility is to utilize the fact 
that some types of policy uncertainty affect only certain sectors or certain types of firms. For example, financial market 
regulation affects banks, exchange rate policy affects importers, and so on.

Another possibility is to let stored projects depreciate. Depreciation could be interpreted as market changes that make 
the investment less profitable, or as “poaching” by a rival firm that exploits a similar project. Since projects with high 
depreciation rates are less storable, for a given policy reform, projects with depreciation rates below some threshold might 
be stored, while those above the threshold would be exploited immediately. This logic also suggests where to look for 
delay: since rivals are more important in highly competitive sectors, delay may be more important in sectors with highly 
differentiated products.

The model here is formulated in terms of tax policy and business fixed investment, but the idea could as well be applied 
to business hiring decisions and household decisions about purchases of housing and other durables, and to uncertainty 
about financial regulation, trade policy, energy policy, and other matters that affect the profitability/desirability of various 
types of investment.

Most of the empirical work to date on uncertainty and investment has focused on the effect of changes in the variance 
of a shock, and hence that literature sheds little light on the mechanism proposed here. A notable exception is Julio and 
Yook (2012), who look at cross-country evidence on business investment and election cycles. Consistent with the model 
here, they find that firms reduce investment substantially during election years, relative to non-election years.

Event studies like those used in finance might also be useful for assessing the importance of policy uncertainty. The 
event could be a tax or tariff change, a devaluation, or a currency reform. The key predictions of the model are a period of 
depressed investment before the reform is passed, and a boom after the uncertainty is resolved. And for the reasons noted 
above, the effect may be stronger in sectors with highly differentiated products.

The mechanism studied here may also be important in prolonging and amplifying the consequences of other shocks. If 
a financial crisis produces a severe downturn, the private sector may wait for legislative decisions about whether to turn to 
fiscal stimulus, to see what form it will take and how it will be financed. If the fiscal stimulus is ineffective, investors may 
wait again for decisions about a second round. If central bankers and political leaders stall on decisions about how to deal 
with a currency crisis or a potential default on sovereign debt, investors may choose to delay until the main outlines of a 
policy have been agreed upon.
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The contribution of this paper is to highlight the potential for uncertainty about a single policy decision to affect deci-
sions about the timing of investment. Because policy uncertainty affects all firms, it affects aggregate investment, providing 
a channel through which legislative inaction can lead to a cyclical downturn. Thus, stalling on a major policy issue may 
have substantial hidden costs. The model here suggests several new avenues for empirical work to assess the role of policy 
uncertainty in triggering or exacerbating cyclical downturns.

Appendix A. Proofs of propositions

Let q = (qk,qa,qm) denote the costates for the problem in (1)–(3). The discrete adjustment 
(

D̂, ı̂, n̂
)

satisfies3

1 ≤ qaT , w/ eq. if D̂ > 0,

qkT n̂ ≤ qaT n̂g′(ı̂), w/ eq. if n̂ı̂ > 0,

qkT ι ≤ qaT g(ι) + qmT , all ι, w/ eq. at ı̂ if n̂ > 0, (8)

where qkT (τ̂ ), qaT (τ̂ ), and qmT (τ̂ ) are the costate values at date T , after τ̂ is realized. Thereafter the solution satisfies

1 ≤ qa, w/ eq. if D > 0,

qkn ≤ qang′(i), w/ eq. if ni > 0,

qkι ≤ qa g(ι) + qm, all ι, w/ eq. at i if n > 0, all t, (9)

q̇k = (ρ + δ)qk − qa
(
1 − τ̂

)
π ′(k),

q̇a ≤ (ρ − r)qa, w/ eq. if a > 0,

q̇m ≤ ρqm, w/ eq. if m > 0, all t, (10)

and the transversality conditions limt→∞ e−ρtqx(t)x(t) = 0, x = k, a, m.
For the benchmark model, n = μ, the solution satisfies the first line in (8) and the first and second lines in (2)–(3) and 

(9)–(10), and qm does not appear. Call this the benchmark system.

Proof of Proposition 1. The solution D̂ , {D, i,k,a,qk,qa, t ≥ T } satisfies the benchmark system. Clearly (4) is the steady 
state, where the assumptions on π and g ensure it is unique.

Suppose aT = 0, and conjecture the solution has a(t) ≡ 0. Then D, i satisfy

qk ≤ qa g′(i), w/ eq. if i > 0 (11)

D = (1 − τ̂
)
π(k) − μg(i), all t ≥ T . (12)

Use (11) and (12) to define χ(k) by

μg
[

g′−1(χ(k))
]

≡ (1 − τ̂
)
π(k).

For any k, the intensity i satisfying g′(i) = χ(k) is just sufficient to absorb all of after-tax earnings. The function χ is strictly 
increasing, with χ(0) = g′(0), and the threshold χ(k) divides (k,qk)-space into two regions.

Above the threshold the firm is cash constrained. In this region the dividend is zero and cash is at a premium, D = 0
and qa > 1. The investment intensity, call it i∗(k, qk), is determined by (12), so it is strictly increasing in k and independent 
of qk , and (11) determines qa. .

Below the threshold the firm is not cash constrained, so D > 0 and qa = 1. In this region the investment intensity is 
determined by (11), so it is strictly increasing in qk and independent of k, and the dividend is determined by (12).

Hence the intensity isoquants in (k,qk) space are L-shaped, with kinks on the (k,χ(k)) threshold. If g′(0) > 0, there is a 
second threshold, the horizontal line where qk = g′(0). Below this threshold i∗ = 0, and above it i∗ > 0.

The locus where k̇ = 0 satisfies μi∗(k, qk) = δk, so it is upward sloping, hitting the vertical axis at qk = g′(0). For τ̂ ∈ [0, τ ]
and k0 ∈ (0,k), the k̇ = 0 locus lies in the region where D > 0, below χ(k). The locus where q̇k = 0 satisfies

(ρ + δ) g′ [i∗(k,qk)
]= (1 − τ̂

)
π ′(k),

so it is downward sloping in the region where D, i∗ > 0, and vertical in the regions where D = 0 and i∗ = 0.
The stable manifold, call it SM, slopes downward, and for any kT ∈ (0,k] there is unique value qkT > 0 for which the 

system converges to the steady state. The critical values κ L < kss < κM are defined by the points where SM cuts the χ(k)

3 See Kamien and Schwartz (1991) or Seierstad and Sydsaeter (1977) for a detailed discussion.
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and g′(0) thresholds. Along SM, intensity i∗ increases with k (as qk falls) for k < κ L , it decreases with k for k ∈ (κ L, κM
)
, 

and it is constant at i∗ = 0 for k ≥ κM . The dividend is D = 0 for k ≤ κ L and increases with k for k > κ L .
To verify that the conjecture a(t) ≡ 0 is correct, it suffices to show that q̇a/qa ≤ ρ − r. If D > 0, then qa = 1 and q̇a = 0. 

If D = 0, then k < κ L < kss , so k and i∗ are increasing, and qk is decreasing. Since qa = qk/g′(i∗), it follows that q̇a < 0.
If aT > 0 and kT ≥ κ L , then for D̂ = aT and âT = 0, the rest of the solution is as above.
For aT > 0 and kT < κ L , solutions can be constructed as follows. Choose any point (k,qk) on SM with k < κ L , use (12)

with D = 0 to determine i∗ , and calculate qa = qk/g′(i∗) > 1. Construct trajectories for (k,a,qk,qa) by running the relevant 
ODEs in (3) and (10) backward in time, with q̇a/qa = ρ − r > 0 and g′(i∗) = qk/qa . The restriction qa ≥ 1 limits the length 
of the extension. The terminal pairs (kT ,α(kT )) for the longest extensions define the function α.

Varying the length of the backward extension traces out a one-dimensional family of initial conditions (kT ,aT ), and 
varying the initial point on SM gives a two-dimensional family. Lower initial values for k on SM have higher initial values 
for qa , allowing longer extensions. Hence α is a continuous, decreasing function, with α(k) → 0 as k ↑ κ L .

For 0 < aT ≤ α(kT ), the initial dividend is D̂ = 0, and the transition begins with âT = aT and qaT > 1. The solution 
follows a constructed trajectory until assets are exhausted. This occurs while k < κ L , and thereafter the solution follows SM. 
For aT > α(kT ), the initial dividend is D̂ = aT − α(kT ), and the transition begins with âT = α(kT ) and qaT = 1. �
Proof of Proposition 2. For the first claim it suffices to show that m̂T > 0 implies âT = 0. Fix τ̂ and suppose m̂T > 0.

If n(T + z)i(T + z) = 0 for z ∈ (0,	), then k̇(T + z) < 0, which implies k > kss(τ̂ ). In this region SM lies below χ(·; τ̂ ), so 
qa(T + z) ≡ 1, and consequently a(T + z) ≡ 0. Hence the solution requires âT = 0.

If n(T + z)i(T + z) > 0 for z ∈ (0,	), then the second and third lines in (9) hold with equality over (T , T + 	). Differen-
tiate them to get two equations involving i̇,

q̇k

qk
= q̇a

qa
+ g′′ i̇

g′ ,

q̇m

qm
= q̇a

qa
+ g′′ i̇

g′ − g/i
.

By hypothesis m > 0, so the third line in (10) holds with equality, and if a > 0 the second line also holds with equality, so

(r + δ) g′ − (1 − τ̂
)
π ′ = g′′ i̇,

r
[

g′ − g/i
]= g′′ i̇,

δg′ + rg/i = (1 − τ̂
)
π ′ (13)

and hence(
1 − τ̂

)
π ′ = δg′ + r

g

i
.

Suppose this condition holds at T . It continues to hold on (T , T + 	) if and only if(
1 − τ̂

)
π ′′k̇ =

[
δg′′ + r

i

(
g′ − g

i

)]
i̇. (14)

The term in brackets on the right is positive, and the second line in (13) implies i̇ ≥ 0. Since π ′′ < 0, (14) holds only if 
k̇ ≤ 0, which implies k > kss(τ̂ ). The rest of the argument is as before.

The same argument shows that m(t) > 0 implies a(t) = 0, for any t > T .
Finally, suppose k̂T ≥ κ L , and let S0 denote the solution for âT = 0. For âT > 0, increasing the dividend by 	D̂ = âT and 

using S0 for the rest of the solution satisfies all of the conditions for an optimum. �
Proof of Proposition 3. (a) Suppose âT = m̂T = 0. The solution for the option model coincides with the solution to the 
benchmark model if and only if q̇m/qm ≤ ρ , all t .

In the region where qa > 1, we have ni > 0 and

qm = qk
[
i − g/g′] ,

so

q̇m

qm
= q̇k

qk
+ gg′′

g′
i̇

ig′ − g
.

In this region q̇k < 0 and k̇ > 0. Since the investment intensity i is determined by the cash flow constraint, i̇ > 0, and the 
required condition may fail if the growth in intensity is rapid. Define κ0 as the threshold below which q̇m/qm < ρ on SM.
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In the region where ni > 0 and qa = 1,

qm = ig′(i) − g(i), and g′(i) = qk.

Hence

q̇m = ig′′ i̇ = iq̇k,

so the required condition holds if k < kss . It also holds in some region above kss , but may fail for k sufficiently large. It may 
also fail in the region where ni = 0. Define κM as the threshold above which q̇m/qm > ρ on SM.

(b) Solutions with m̂T > 0 can be constructed as follows. Choose kS > 0, let (k,a,m) = (kS ,0,0), and let (qk,qa,qm) be 
the associated costate values on the SM. Construct the solution for (k,m,qk,qm) by running the ODEs

k̇ = ni − δk,

ṁ = μ − n, (15)

q̇k = qk

[
ρ + δ −

(
1 − τ̂

)
π ′

g′

]
,

q̇m = ρqm, (16)

backward in time, with a(t) = 0, all t .
If kS ≤ kss , then D = 0 and (i,n,qa) satisfy

φ(i) = qm

qk
,

n =
(
1 − τ̂

)
π(k)

g(i)
,

qa = qk

g′(i)
,

where φ(i) ≡ i − g(i)/g′(i) is strictly increasing. To verify that qa ≥ 1 and q̇a/qa ≤ ρ−r, note that with time running forward, 
qm is increasing and qk is decreasing. Hence φ(i) and i are increasing, so qa is falling. Since qa ≥ 1 on the SM, both of the 
required condition holds.

By definition of the thresholds, if k̂T < κ0 or k̂T > κM , the solution for m̂T = 0 has n(T + z) < μ for small z > 0. Hence 
the same is true for m̂T > 0 sufficiently small.

If k̂T ∈ (κ0, κM
)
, the solution for m̂T = 0 has n(t) = μ, all t , and qm = qk

[
i − g/g′], with q̇m/qm ≤ ρ . Suppose m̂T > 0 is 

small. Then the solution requires a lower initial value for qm , a lower intensity, and n(T + z) > μ for small z > 0.
To verify that ṁ = μ − n < 0 along the constructed trajectory, recall that n = μ on the SM. For any fixed k,

μg(iSM(k)) ≤ (1 − τ )π(k) = ng(i),

where iSM(k) denotes the intensity on the SM. Hence it suffices to show that iSM(k) > i. When the stock of projects is ex-
hausted, the constructed trajectory meets the SM, so i = iSM(k). Before then, i is increasing along the constructed trajectory, 
and iSM(k) is decreasing along the SM. Hence the required condition holds for all k.

If kS ∈ [kss, κM), then qa = 1 and ni > 0. While ni > 0, both the second and third lines in (9) with equality. Together they 
determine i, from

ig′(i) − g(i) = qm.

Since qm is increasing over time, so is i. Going backward in time, eventually ni = 0. While ni > 0, the requirement g′(i) = qk
determines n. Specifically, (16) implies

q̇m

qm
= ρ = g′′ i̇

g′ − g/i
,

q̇k

qk
= ρ + δ −

(
1 − τ̂

)
π ′

g′ = g′′ i̇.

Combine these conditions to get(
1 − τ̂

)
π ′(k) = g′ [ρ + δ − ρ

(
g′ − g/i

)]
.

Evidently the term in brackets is positive. Differentiate w.r.t. t to get(
1 − τ̂

)
π ′′k̇ =

{
g′′ [ρ + δ − ρ

(
g′ − g/i

)]− ρg′ (g′′ − g′/i + g/i2
)}

i̇.
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Since k, i, ̇i are known, and k̇ = ni − δk, this equation determines n. The dividend is the residual from the cash constraint,

D = (1 − τ )π(k) − ng(i).

To verify that ṁ = μ − n < 0 along the constructed trajectory, recall that n = μ on the SM. Along the constructed 
trajectory, qm, qk , and i are increasing and k is falling, and the trajectory meets the SM when the stock of projects is 
exhausted.

There are no solutions of this type with kS ≥ κM .
Varying kS and the length of the trajectory traces out a two-dimensional manifold of potential initial conditions for 

k̂T , m̂T .
(c) If âT > 0, then the solution in Proposition 1 is also a solution for the option model if at the date T + 	 when liquid 

assets are exhausted, the capital stock satisfies k(T + 	) ≥ κ0. This happens if k̂T is not too far below κ0. Otherwise, the 
firm is still cash constrained after the initial stock of liquid assets is exhausted, and the solution has a second phase where 
projects are first accumulated and later used, as in part (a) above. �
Proof of Proposition 4. Suppose to the contrary that for any 	 > 0, the optimal policy has n(t)i(t) > 0, all t ∈ [T − 	, T ). 
Consider the following perturbation to the conjectured solution over (T − 	, T + 	), where 	 > 0 is small. Reduce the flow 
of projects by ε > 0 over (T − 	, T ) and accumulate the projects and cash. For ε > 0 sufficiently small, this is feasible. Then 
increase the flow of projects by ε over (T , T + 	), and adjust the intensity on an additional group of projects of size ε. For 
each τ̂ , choose the intensity for this group of 2ε projects as follows. Note that the perturbed path for capital is smooth: 
there is no jump.

Let i(T ) denote the intensity on (T − 	, T ) and let iT (τ̂ ) denote the intensity on (T , T + 	), conditional on τ̂ . Since 
	 is small, these intensities are approximately constant before and after T , although the latter varies with τ̂ . For the 2ε
projects use the intensity

i P (τ̂ ) = 1

2

[
i(T ) + iT (τ̂ )

]
,

so the capital stock at k(T + 	) is unaltered.
The perturbation changes the investment cost by

	C (τ̂ ) = ε	
{

2g
[
i P (τ̂ )

]− g [i(T )] − g
[
iT (τ̂ )

]}
, all τ̂ .

Since g is strictly convex, 	C (τ̂ ) ≤ 0, with equality if and only if iT (τ̂ ) = i(T ). Unless F puts unit mass at a single point, 
this condition must fail on a set of τ̂ ’s with positive probability. Therefore, unless F puts unit mass on a single point,

X ≡ Eτ̂

{
2g
[
i P (τ̂ )

]− g [i(T )] − g
[
iT (τ̂ )

]}
< 0.

Since the perturbation reduces the cost of investment, at least weakly, for every τ̂ , and delays the timing of expenditures, 
it is also feasible in the sense that it can be financed without any additional liquid assets.

The cost of the delay is the foregone revenue. The perturbation changes the capital stock by

	k(T − z) ≈ −ε (	 − z) i(T ), z ∈ (0,	) ,

	k(T + z; τ̂ ) ≈ −ε	i(T ) + εz
[
2i P (τ̂ ) − iT (τ̂ )

]
= −ε (	 − z) i(T ), z ∈ (0,	) ,

where the changes after T are conditional on τ̂ . Hence the change in revenue is

	�(τ̂ ) ≈ − (1 − τ̂
)
π ′
⎡⎣ 	∫

0

	k(T − z)dz +
	∫

0

	k(T + z)dz

⎤⎦
≈ −2ε

(
1 − τ̂

)
π ′i(T )

	∫
0

(	 − z)dz

= −ε	2 (1 − τ̂
)
π ′i(T ).

The reduction in revenue is of order ε	2, while the reduction in investment costs is of order ε	. As noted above, X < 0. 
Hence for 	 > 0 sufficiently small,

Eτ̂

[
	�(τ̂ ) − 	C (τ̂ )

]≈ ε	
[−	π ′i(T ) − X

]
> 0,

and the perturbation raises expected profits. �



262 N.L. Stokey / Review of Economic Dynamics 21 (2016) 246–265
A.1. A deterministic tax cut with delay

To construct an example where a deterministic tax change produces delay, suppose π is approximately linear in the 
relevant region, let ρ > 0 be close to zero, and let r ≈ ρ . Let μ = 1, and suppose the marginal cost of investment is 
piecewise linear, with g′(i) = g1i, for 0 < i ≤ 1 and g′(i) = g2i, for i > 1, with g2 >> g1 = 1.

We will compare the strategy of investing at the intensity i = 1 on [0, ε], for some 0 < ε < T , with the strategy of 
accumulating projects and cash and carrying out the same investment at T . If the firm invests at the rate μi = 1 over [0, ε], 
then the increment to its capital stock over [0, ε] is approximately

	k(t) ≈ μi
(

t − δt2/2
)

≈ t, t ∈ [0, ε] .

Thus, ignoring discounting, the incremental profit over [0, T ] is approximately

	�1 ≈ (1 − τ )π ′
⎡⎣ ε∫

0

	k(t)dt + 	k(ε)

T∫
ε

e−δ(t−ε)dt

⎤⎦
≈ (1 − τ )π ′

[
1

2
ε2 + ε

1 − e−δ(T −ε)

δ

]
≈ (1 − τ )π ′ε 1 − e−δT

δ
.

The increment to the capital stock at date T from this investment is 	k1(T ) ≈ εe−δT .
If the firm waits until date T , it gets no incremental profit flow over [0, T ], but the incremental capital stock at T is 

	k2(T ) = ε. Hence the extra capital if investment is delayed is 	x ≡ 	k2 − 	k1 = ε
(
1 − e−δT

)
. The extra profit flow from 

this increment from T onward is approximately

	�2 ≈ (1 − τ̂
)
π ′

∞∫
T

	xe−δ(t−T )dt

= (1 − τ̂
)
π ′ε

(
1 − e−δT

) 1

δ
.

The firm chooses to delay investment if 	�2 > 	�1, which holds for any tax cut, 1 − τ̂ > 1 − τ .

A.2. Stochastic arrival date

The first order conditions for the problem in (7) are again as in (9), but the laws of motion for the costates now include 
terms that pick up the expected capital gains or losses on the assets when the tax change occurs. Thus, (10) is replaced by

q̇k = (ρ + δ)qk − qa (1 − τ )π ′(k) + θ
{

qk − Eτ̂

[
qkT (s; τ̂ )

]}
,

q̇a ≤ (ρ − r)qa + θ
{

qa − Eτ̂

[
qaT (s; τ̂ )

]}
, w/ eq. if a > 0,

q̇m ≤ ρqm + θ
{

qm − Eτ̂

[
qmT (s; τ̂ )

]}
, w/ eq. if m > 0, (17)

where qxT (s; τ̂ ) denotes the initial value of the costate for the post-reform transition, conditional on the state s and the 
realized tax rate τ̂ , and where we have used the fact that vx(s; τ̂ ) ≡ qxT (s; τ̂ ), x = k, a, m.

From (3), a steady state requires

n∗ = μ, i∗ = δk∗/μ, D∗ = (1 − τ )π(k∗) − μg(i∗) + ra∗, (18)

where the restriction to tax rates τ ∈ [0, τ ) implies k∗ ≤ kss(0), so D∗ > 0. Since D∗, n∗, i∗ > 0, (9) implies

q∗
a = 1, q∗

k = g′(i∗), q∗
m = φ(i∗), (19)

where φ(i) ≡ ig′(i) − g(i), with φ′(i) > 0. These conditions determine i∗, q∗
k , q∗

m as functions of k∗ . Use (18) and (19) to find 
that at a steady state (17) requires

θ
{

Eτ̂ qkT (s∗; τ̂ ) − g′(i∗)
}= (ρ + δ) g′(i∗) − (1 − τ )π ′(k∗),

θ
{

Eτ̂

[
qaT (s∗; τ̂ )

]− 1
}≤ ρ − r, w/ eq. if a∗ > 0,

θ
{

Eτ̂

[
qmT (s∗; τ̂ )

]− φ(i∗)
}≤ ρφ(i∗), w/ eq. if m∗ > 0. (20)

The three conditions in (20) determine (k∗,a∗,m∗). Let s∗(θ) denote the SS as a function of θ .
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Proof of Proposition 5. (a) For θ = 0, the first line in (20) requires k∗ = kss(τ ). Then for a∗ = m∗ = 0, the second and third 
lines hold with strict inequality. Hence s∗(0) = [kss(τ ),0,0].

Consider the term in braces on the left in the first line of (20),

X ≡ Eτ̂

[
qkT (s∗(0); τ̂ )

]− g′(i∗).
If X = 0, then the first line also holds for θ > 0.

Otherwise, since g is strictly convex and π is strictly concave, an increase in k∗ increases the RHS of the first line and 
decreases the LHS. Thus, if X > 0, an increase in k∗ is needed to restore equality for small θ > 0. If X < 0, then by the same 
reasoning, a decrease in k∗ is needed to restore equality. In both cases the second and third lines continue to hold for θ > 0
sufficiently small. Hence, in these cases s∗(θ) = [kss(τ ) + ε(θ),0,0], where ε(θ) has the sign of X .

(b) Choose θ large, and suppose to the contrary that a∗ = 0 or m∗ = 0 or both. Consider the initial condition s0 = s∗(θ), 
and consider the following perturbation to the strategy of choosing s(t) = s∗(θ), all t > 0.

Let i∗ denote the SS intensity, and choose ε, 	 > 0 small. Over (0,	), reduce the flow of projects by ε, keeping the 
intensity unchanged. At t = 	, the capital stock is reduced by ε	i∗ , and the firm has a stock of m = ε	 untapped projects 
and a stock of a = ε	g(i∗) liquid assets. Over 

(
	, T̃

)
reduce the intensity of replacement investment by ε	i∗δ/μ, so the 

capital stock remains constant. Pay the interest on the accumulated liquid assets and the savings in replacement cost as 
dividends. The EDV of the additional dividends is

	D = ε	

[
rg(i∗) + δ

μ
i∗g′(i∗)

] ∞∫
0

e−(ρ+θ)tdt

=
[

rg(i∗) + δ

μ
i∗ g′(i∗)

]
ε	

ρ + θ
. (21)

These terms are positive and have order ε	.
After the tax change arrives, over 

(
T̃ , T̃ + 	

)
increase the scale of investment by ε and alter the intensity for an addi-

tional ε projects as in the proof of Proposition 4, so the capital stock at T̃ + 	 is as it would have been under the original 
plan. Define iT (τ̂ ) and i P (τ̂ ) as in the proof of Proposition 4. Conditional on the new tax rate τ̂ , the perturbation to the 
investment cost is

	C (τ̂ ) = ε	
{

2g
[
i P (τ̂ )

]− g(i∗) − g
[
iT (τ̂ )

]}
, all τ̂ .

As shown in the proof of Proposition 4, 	C (τ̂ ) ≤ 0, with equality if and only if iT (τ̂ ) = i∗ . Therefore, unless F puts unit 
mass on a single point,

X(i∗) ≡ Eτ̂

{
2g
[
i P (τ̂ )

]− g(i∗) − g
[
iT (τ̂ )

]}
< 0.

Hence this contribution of the perturbation to the EDV of profits is

−	C = −ε	X(i∗)
∞∫

0

θe−(ρ+θ)tdt

= −θ X(i∗) ε	

ρ + θ
. (22)

This term is positive and has order ε	.
The perturbation changes the capital stock by

	k(t) =

⎧⎪⎨⎪⎩
−εi∗t, t ∈ (0,	) ,

−εi∗	, t ∈ (	, T̃
)
,

εi∗
[
t − (T̃ + 	

)]
, t ∈ (T̃ , T̃ + 	

)
.

The PDV of the change in revenues over the interval (0,	), evaluated at t = 0, is

	Ra = − (1 − τ )π ′εi∗
	∫

0

te−ρtdt

≈ − (1 − τ )π ′i∗ε	2

2
,

which has order ε	2. The EDV of the change in revenues over 
(
T̃ , T̃ + 	

)
also has order ε	2. Hence both terms can be 

dropped.
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The EDV of the change in revenue over 
(
	, T̃

)
is

	Rb = −ε	i∗ (1 − τ )π ′
∞∫

	

e−(ρ+θ)θdt

≈ − (1 − τ )π ′i∗ ε	

ρ + θ
. (23)

This term is negative and has order ε	.
Summing the components in (21)–(23) and dropping those of order higher than ε	, we find that the perturbation is 

profitable for 	 sufficiently small if and only if

0 < rg(i∗) + δ

μ
i∗g′(i∗) − θ X(i∗) − (1 − τ )π ′i∗.

The first three terms are positive, and the last is negative. But as θ grows without bound, with F fixed, k∗ and i∗ = k∗δ/μ
converge to limiting values. Hence for θ sufficiently large, the third term, which is positive, dominates the last one. �
Appendix B. Computational method

This appendix describes the computational method for the example.
1. Preliminary: Choose the three tax rates, and construct the stable manifolds SM(τ ), for τ = τ0, τ �, τ h , including values 

for the costate qm . Choose an initial capital stock k0 ≤ kss(τ0) and probabilities θ�, θh , for the two post-reform tax rates.
2. Before T , acquiring projects and liquid assets: Choose T not too large, and conjecture that n(t) = 0 on [0, T ). Then

kT = k0e−δT , mT = μT .

Since r < ρ , the firm does not pay a dividend while it holds liquid assets. Thus, for some date S ∈ [0, T ), all earnings are 
paid as dividends before S , and all are retained after S . Given S , the stock of liquid assets and its costate at T are

aT = (1 − τ0)

T∫
S

π
(
k0e−δt) er(T −t)dt > 0,

qaT = e(ρ−r)(T −S) > 1.

Thus, increasing S reduces both aT and qaT . An iterative procedure determines S .
Conjecture that the tax rates τ̂ = τ � and τ̂ = τ h lie in Regions A and B of Fig. 2, respectively. In Region B the firm has 

excess liquid assets, which are paid out as a discrete dividend at T , while in Region A the firm is cash-constrained. Hence if 
the conjecture is correct q̂aT (τ h) = 1 and q̂aT (τ �) > 1.

3. The solution for τ̂ = τ h : In Region B the stock of projects is exhausted by the DA. Let iSM(k; τ h) denote the investment 
intensity on SM(τ h), given the capital stock k. Since the intensity does not jump after the DA, choose the intensity ı̂

satisfying

ı̂ = iSM(kT + mT ı̂;τ h).

Since iSM is decreasing in its first argument, there is a unique solution. The stock of liquid assets at T must finance this 
investment, which requires aT ≥ mT g(ı̂). The remaining liquid assets are paid out as a discrete dividend.

After the DA, the rest of the transition to the new steady state follows the stable manifold SM(τ h).
4. The solution for τ̂ = τ �: Fix a candidate value for aT . In Region A the stock of liquid assets is exhausted by the DA, 

but some projects remain. The solution is constructed by backward shooting. Choose a candidate terminal point 
(
k	,q	

k

)
on 

SM(τ �) and a candidate value 	T > 0 for the length of time needed after the DA to use up the residual stock of projects 
and reach the point 

(
k	,q	

k

)
. The costate for projects at that point, call it q	

m , is known, and no projects are held. Construct 
trajectories for (i,n) and (k,m,qk,qm) by running backward from 

(
k	,0,q	

k ,q	
m

)
, for 	T units of time, the system of ODEs⎛⎜⎜⎝

k̇
ṁ
q̇k/qk
q̇m/qm

⎞⎟⎟⎠= −

⎛⎜⎜⎝
ni − δk
μ − n
ρ + δ − (1 − τ �

)
π ′(k)/g′(i)

ρ

⎞⎟⎟⎠ , (24)

with investment satisfying

i − g(i)g′(i) = qm/qk,

n =
(

1 − τ �
)
π(k)/g(i). (25)
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The endpoint from this exercise is a candidate for the post-DA state 
(

k̂T ,m̂T

)
and also provided the investment intensity ı̂

for the DA. The DA exhausts liquid assets, so n̂ = aT /g(ı̂). Check whether the resulting values are consistent with the pre-DA 
states, whether

k̂T = kT + n̂ı̂, and m̂T = mT − n̂.

Adjust the candidate point 
(
k	,q	

k

)
on SM(τ �) and the time interval 	T until both conditions are satisfied.

To verify that qa satisfies the first line of (9) and the second line of (10), note that with time running forward, qm is 
rising and qk is falling, so i is rising. Hence qa = qk/g′(i) is falling, so q̇a/qa < ρ − r. In addition, since qa ≥ 1 on SM(τ �), it 
follows that qa ≥ 1 on all of (T , T + 	T ).

The rest of the transition to the new steady state follows the stable manifold SM(τ �).
5. Iterating to find S: Under the conjecture that τ � and τ h lie in Regions A and B of Fig. 2, q̂aT (τ �) > 1 and q̂aT (τ h) = 1. 

A larger initial stock of liquid assets aT reduces q̂aT (τ �), so Eτ̂

[
q̂aT
]

is a decreasing function of aT . Hence Eτ̂

[
q̂aT
]

is 
increasing in S , while qaT is decreasing in S , and there is at most one value for which Eτ̂

[
q̂aT
]= qaT . If no solution exists, 

one or more of the conjectures is incorrect, that delay begins immediately, that τ h lies in Region B, etc.
6. The costates before T : The post-DA costates q̂xT (τ̂ ), for x = k, a, m, and τ̂ = τ �, τ h , are known. Use (6) to determine 

the pre-DA costates, and then use the laws of motion in (10), running backward, to construct the solution over [0, T ). Check 
that the last line of (9) holds at t = 0, to ensure that delay begins immediately.
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