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1. Introduction

1.1. Foundations. von Neumann and Morgenstern (1944) and Savage (1954) cre-
ated mathematical foundations that applied economists have used to construct quan-
titative dynamic models for policy making and empirical analyses. The mathemati-
cal foundations give modern dynamic models internal coherence and sharp empirical
predictions. However, those foundations should invite researchers to confront the
unsettling fact that their models are approximations. That would expose logical
problems that until recently have been swept under the rug, but that still call for
repair.
A model is a probability distribution over a sequence. Applied dynamic economists

readily accept that their models are approximations1 because applied models must
be tractable, that is, feasible to solve, estimate, and simulate. With tractability
comes misspeci�cation. Model misspeci�cation is unavoidable in applied economic
research. Admitting model misspeci�cation raises especially interesting problems for
rational expectations models because the rational expectations assumption excludes
model misspeci�cation.
The rational expectations hypothesis imposes a communism of models: the people

being modeled know the model. This makes the economic analyst, the policy maker,
and the agents being modeled all share the same model, i.e., the same probability
distribution over sequences of outcomes. Imposition of a common model removes
economic agents' models as objects that require separate speci�cation. The idea that
models are approximations puts more models in play than the rational expectations
equilibrium concept handles. To say that a model is an approximation is to say
that it approximates another model. Viewing models as approximations requires
reforming the common models requirement imposed by rational expectations.
The consistency of models imposed by rational expectations has profound im-

plications about the design and impact of macroeconomic policy-making, e.g. see
Lucas (1976) and Sargent and Wallace (1975). There is little work studying how
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1Sometimes they express this by saying that their models are abstractions or idealizations.

Other times they convey it by focusing their model only on `stylized facts'.
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those implications would be modi�ed within a setting that explicitly acknowledges
decision makers' fear of model misspeci�cation.
Thus, the idea that models are approximations con
icts both with the von Neumann-

Morgenstern-Savage foundations and the supplementary equilibrium concept of ra-
tional expectations. In view of those foundations, treating models as approximations
raises three questions. What standards should be imposed when testing or evaluat-
ing dynamic models? How should private decision makers be modeled? How should
macroeconomic policy-makers use misspeci�ed models? This essay focuses primarily
on the latter two questions. But in addressing these questions we are compelled to
say something about testing and evaluation.
This essay describes an approach in the same spirit but di�ering in many details

from Epstein and Wang (1994). We follow Epstein and Wang in using the Ellsberg
paradox to motivate a decision theory for dynamic contexts that is based on the
min-max theory with multiple priors of Gilboa and Schmeidler (1989). We di�er
from Epstein and Wang (1994) in drawing our formal models from recent work in
control theory. This choice leads to many interesting technical di�erences in the
particular class of models against which our decision maker prefers robust decisions.
Like Epstein and Wang (1994), we are intrigued by the passage from Keynes (1936)
which they cite:

A conventional valuation which is established as the outcome of the mass
psychology of a large number of ignorant individuals is liable to change
violently as the result of a sudden 
uctuation in opinion due to factors
which do not really make much di�erence to the prospective yield; since
there will be no strong roots of conviction to hold it steady.

Epstein and Wang provide a model of asset price indeterminacy, which might explain
the sudden 
uctuation in opinion that Keynes mentions. Our approach provides no
such analysis of the sudden 
uctuation Keynes wrote about. However, our analysis
of detection error probabilities gives a way to think about the shroud of uncertainty
around the distribution of future yields.

2. Knight, Savage, Ellsberg, Gilboa-Schmeidler, and Friedman

In Risk, Uncertainty and Pro�t, Frank Knight (1921) envisioned entrepreneurs
who confront a form of uncertainty not captured by a probability model as they
search for pro�ts.2 He distinguished between risk and uncertainty, and reserved the
term risk for ventures for which probabilities are known. Knight thought that prob-
abilities of returns are not known for many physical investment decisions. Knight
used the term uncertainty to refer to such unknown outcomes.
After Knight (1921), Savage (1954) devised an axiomatic treatment of decision-

making in which actions could be justi�ed as maximizing expected utility with the

2See Epstein and Wang (1994) for a discussion containing many of the ideas summarized here.
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assignment of subjective probabilities. Savage's work extended the earlier justi�ca-
tion of expected utility by von Neumann and Morgenstern (1944) using prespeci�ed
probabilities. That is, Savage's axioms also justi�ed (subjective) probability assign-
ments. Even when accurate probabilities, such as the �fty-�fty put on the sides of a
fair coin, were not available, decision makers conforming to Savage's axioms behave
as if they formed probabilities subjectively. Savage's axioms seem to undermine
Knight's distinction between risk and uncertainty.

2.1. Savage and model misspeci�cation. Savage's decision theory is both ele-
gant and tractable. Moreover, it provides a direct, but possibly uninteresting, recipe
for confronting misspeci�ed models. For instance, think of a model as being a prob-
ability speci�cation for the state of the world y tomorrow given the current state
x and a decision or collection of decisions d: f(yjx; d). If the conditional density
f is unknown, then we can replace the known density f by a family of densities
g(yjx; d; �) indexed by parameters � giving a family of potential models. By aver-
aging over the array of candidate models using a prior (subjective) distribution, say
�, we can form a `hyper model' taken to be correctly speci�ed. That is we can form:

f(yjx; d) =
Z

g(yjx; d; �)d�(�):
In this way, specifying the family of potential models and assigning a subjective prob-
ability distribution to them removes model misspeci�cation. Early examples of this
so-called Bayesian approach to the analysis of policy-making in models with random
coeÆcients are Friedman (1953) and Brainard (1967). The coeÆcient randomness
can be viewed in terms of a subjective prior distribution. Recent developments in
computational statistics have made this approach viable for a potentially rich class
of candidate models.

2.2. Savage and rational expectations. Rational expectations theory withdrew
some freedom from Savage's decision theory by imposing consistency between agents'
subjective probabilities and the probabilities emerging from the economic model con-
taining those agents. Equating objective and subjective probability distributions re-
moves all parameters that summarize agents' subjective distributions, and by doing
so creates the powerful cross-equation restrictions characteristic of rational expec-
tations empirical work.3 However, by insisting that subjective probabilities agree
with objective ones, rational expectations make it much more diÆcult to dispose of
Knight's distinction between risk and uncertainty by appealing to Savage's Bayesian
interpretation of probabilities. Indeed, by equating objective and subjective proba-
bility distributions, the rational expectations hypothesis precludes a self-contained
analysis of model misspeci�cation. By undermining Savage's personal theory of
probability, it can be argued that rational expectations indirectly increases the ap-
peal of Knight's distinction between risk and uncertainty. Epstein and Wang (1994)

3For example, see Sargent (1981).
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argue that the Ellsberg paradox should make us rethink the foundation of rational
expectations models.

2.3. The Ellsberg paradox. Ellsberg (1961) expressed doubts about the Savage
approach by re�ning an example originally put forward by Knight. Consider two
urns. In Urn A it is known that there are exactly ten red balls and ten black balls.
In Urn B there are twenty balls, some red and some black. A ball from each urn
is to be drawn at random. Free of charge, a person can choose one of the two urns
and then place a bet on the color of the ball that is drawn. According to the Savage
theory of decision-making, Urn B should be chosen even though the fraction of balls
is not known. Probabilities can be formed subjectively, and a bet placed on the
(subjectively) most likely ball color. If subjective probabilities are not �fty-�fty, a
bet on Urn B will be strictly preferred to one on Urn A. If the subjective probabilities
are precisely �fty-�fty then the decision-maker will be indi�erent. Ellsberg (1961)
argued that a strict preference for Urn A is plausible because the probability of
drawing a red or black ball is known in advance. He surveyed the preferences of an
elite group of economists to lend support to this position. This example, called the
Ellsberg paradox, challenges the appropriateness of the full array of Savage axioms.4

2.4. Multiple priors. Motivated in part by the Ellsberg (1961) paradox, Gilboa
and Schmeidler (1989) provided a weaker set of axioms that included a notion of
uncertainty aversion. Uncertainty aversion represents a preference for knowing prob-
abilities over having to form them subjectively based on little information. Consider
two gambles for which you are indi�erent. Imagine forming a new bet that mixes
the two original gambles with known probabilities. In contrast to von Neumann
and Morgenstern (1944) and Savage (1954), Gilboa and Schmeidler (1989) did not
require indi�erence for this mixture. Under aversion to uncertainty, mixing with
known probabilities can only improve the welfare of the decision-maker. Thus Gilboa
and Schmeidler asked that the decision-maker at least weakly prefer the mixture of
gambles to either of the original gambles.
The resulting generalized decision theory is supported by a family of priors and

a decision-maker who uses the worst case among this family to evaluate future
prospects. Assigning a family of beliefs or probabilities instead of a unique prior
belief renders Knight's distinction between risk and uncertainty operational. After a
decision has been made, the family of priors underlying it can typically be reduced to
a unique prior by averaging using subjective probabilities, from Gilboa and Schmei-
dler (1989). However, the prior that would be discovered by that procedure depends

4In contrast to Ellsberg, Knight's second urn contained seventy-�ve red balls and twenty-�ve
black balls (see Knight (1921), page 219). While Knight contrasted bets on the two urns made
by di�erent people, he conceded that if an action was to be taken involving the �rst urn, the
decision-maker would act under `the supposition that the chances are equal.' He did not explore
decisions involving comparisons of urns like that envisioned by Ellsberg.
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Urn A:

10 red balls

10 black balls

Urn B:

unknown fraction of

red and black balls

Ellsberg defended a preference for Urn A

Figure 1. The Ellsberg Urn

on the decision being considered and is designed as part of the decision making pro-
cess to make a conservative assessment. In the case of the Knight-Ellsberg urn
example, a range of priors is assigned to red balls, say .45 to .55, and similarly to
black balls in Urn B. The conservative assignment of .45 to red balls when evalu-
ating a red ball bet and .45 to black balls when making a black ball bet implies a
preference for Urn A. A bet on either ball color from Urn A has a .5 probability of
success.
The outcome of the Gilboa-Schmeidler axioms is a decision theory that can be for-

malized as a two-player game. For every action of one player, a second player selects
associated beliefs. The second player chooses those beliefs in a way that balances
the �rst player's wish to make good forecasts against his doubts about model spec-
i�cation. Just as the Savage axioms do not tell a model-builder how to specify the
subjective beliefs of decision-makers for a given application, the Gilboa-Schmeidler
axioms do not tell a model-builder the family of potential beliefs. The axioms only
clarify the sense in which rational decision-making may require multiple priors along
with a �ctitious second decision-maker who selects beliefs in a pessimistic fashion.
Restrictions on beliefs must come from outside.

2.5. Ellsberg and Friedman. The Knight-Ellsberg Urn example might look far re-
moved from the dynamic models used in macroeconomics. But a fascinating chapter
in the history of macroeconomics centers on Milton Friedman's ambivalence about
expected utility theory. Although Friedman embraced the expected utility theory of
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von Neumann and Morgenstern (1944) in some work (Friedman and Savage (1948)),
he chose not to use it5 when discussing the conduct of monetary policy. Instead,
Friedman (1959) emphasized that model misspeci�cation is a decisive consideration
for monetary and �scal policy. Discussing the relation between money and prices,
Friedman concluded that:

If the link between the stock of money and the price level were direct
and rigid, or if indirect and variable, fully understood, this would be
a distinction without a di�erence; the control of one would imply the
control of the other; ... . But the link is not direct and rigid, nor is it
fully understood. While the stock of money is systematically related to
the price level on the average, there is much variation in the relation over
short periods of time ... . Even the variability in the relation between
money and prices would not be decisive if the link, though variable, were
synchronous so that current changes in the stock of money had their full
e�ect on economic conditions and on the price level instantaneously or
with only a short lag. ... In fact, however, there is much evidence that
monetary changes have their e�ect only after a considerable lag and over
a long period and that lag is rather variable.

Friedman thought that misspeci�cation of the dynamic link between money and
prices should concern proponents of activist policies. Despite Friedman and Savage
(1948), his treatise on monetary policy (Friedman (1959)) did not advocate forming
prior beliefs over alternative speci�cations of the dynamic models in response to this
concern about model misspeci�cation.6 His argument reveals a preference not to use
Savage's decision theory for the practical purpose of designing monetary policy.

3. Formalizing a taste for robustness

The multiple priors formulation provides a way to think about model misspeci-
�cation. Like Epstein and Wang (1994) and Friedman (1959), we are speci�cally
interested in decision-making in dynamic environments. We will draw our analysis
from a line of research in control theory. Robust control theorists challenged mod-
ern control theory because it ignored model-approximation error in designing policy
rules. They feared that their models misspeci�ed the dynamic responses of target
variables to controls. They added an error process to their base models, and sought
decision rules that would work well across a set of such disturbance processes. That
led them to a two-player game and a conservative-case analysis much in the spirit
of Gilboa and Schmeidler (1989). In this section, we describe the modi�cations of
modern control theory made by the robust control theorists.

5Unlike Lucas (1976) and Sargent and Wallace (1975).
6However, Friedman (1953) conducts an explicitly stochastic analysis of macroeconomic policy

and introduces elements of the analysis of Brainard (1967).
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3.1. Control with a correct model. First, we brie
y review standard control
theory, which does not admit misspeci�ed dynamics. For pedagogical simplicity,
consider the following state evolution and target equations for a decision-maker:

xt+1 = Axt +But + Cwt+1(1)

zt = Hxt + Jut(2)

where xt is a state vector, ut is a control vector, and zt is a target vector, all at
date t. In addition, suppose that fwt+1g is a vector of independent and identically
normally distributed shocks with mean zero and covariance matrix given by I. The
target vector is used to de�ne preferences via:

�1

2

1X
t=0

�tEjztj2(3)

where 0 < � < 1 is a discount factor andE is the mathematical expectation operator.
The aim of the decision-maker is to maximize this objective function by choice of
control law ut = �Fxt.
The explicit, stochastic, recursive structure makes it tractable to solve the control

problem via dynamic programming:

Problem 1. (Recursive Control)
Dynamic programming reduces this in�nite-horizon control problem to the follow-

ing �xed-point problem:

�1

2
x0
x� ! = max

u

�
�1

2
z0z � �

2
Ex�

0
x� � �!

�
(4)

subject to

x� = Ax+Bu+ Cw�

where w� has mean zero and covariance matrix I.7 Here � superscripts denote next-
period values. This is a �xed-point problem because the same positive semide�nite
matrix 
 and scalar ! occur on both the right and left sides. The value function for
this decision problem is the solution to the �xed point problem: V (x) = �1

2
x0
ox�!o.

The solution of the ordinary linear quadratic optimization problem has a special
property called certainty equivalence. Certainty equivalence means that the decision
rule F is independent of the `noise statistics'. We state this formally in

Claim 2. (Certainty Equivalence Principle)
For the linear-quadratic control problem, the matrix 
o and the optimal control

law F o do not depend on the noise statistics embedded in C. Thus the optimal control
law does not depend on the matrix C.

7There are considerably more computationally eÆcient solution methods for this problem. See
Anderson, Hansen, McGrattan, and Sargent (1996) for a survey.
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The certainty equivalence principle comes from the quadratic nature of the ob-
jective, the linear form of the transition law, and the speci�cation that the shock
w� is independent of the current state x. Robust control theorists challenge this
solution because of their experience that it is vulnerable to model misspeci�cation.
In seeking to improve controls, they focus on the speci�cation of the shock process.
Can the temporally independent shock process wt+1 represent the kinds of mis-

speci�cation decision makers fear? Control theorists think not, because they fear
misspeci�ed dynamics, i.e., misspeci�cations that a�ect the impulse response func-
tions of target variables to shocks and controls. For this reason, they formulate
misspeci�cation in terms of shock processes that can feed back on the state vari-
ables, something that i.i.d. shocks cannot do. As we shall see, allowing the shock to
feed back on current and past states will modify the certainty equivalence property.

3.2. Model misspeci�cation. To capture misspeci�cation in the dynamic system,
suppose that the i.i.d. shock sequence is replaced by unstructured model speci�ca-
tion errors. We temporarily replace the stochastic shock process fwt+1g with a
deterministic sequence fvtg of model approximation errors of limited magnitude.
As in Gilboa and Schmeidler (1989), a game can be used to represent a preference
for decisions that are robust with respect to v. We have temporarily suppressed
randomness, so now the game is dynamic and deterministic. As we know from the
dynamic programming formulation of the single-agent decision problem, it is easi-
est to think of this problem recursively. A value function conveniently encodes the
impact of current decisions on future outcomes.

Game 3. (Robust Control)
To represent a preference for robustness, we replace the single-agent maximization

problem (4) by the two-agent dynamic game:

�1

2
x0
x = max

u
min
v
�1

2
z0z +

�

2
v0v � �

2
x�0
x�(5)

subject to

x� = Ax +Bu+ Cv

where � > 0 is a parameter measuring the preference for robustness. Again we have
formulated this as a �xed-point problem in the value function: V (x) = �1

2
x0
x� !.

Notice that, as in Gilboa and Schmeidler (1989), a second-agent has entered the
analysis. This agent aims to minimize the objective, but in doing so is penalized by
the term �

2
v0v that is added to the objective function. Thus the theory of dynamic

games can be applied to study robust decision-making, a point emphasized by Basar
and Bernhard (1995).
The �ctitious second agent puts pessimism into the control law. Pessimism is

context-speci�c and endogenous because it depends on the details of the original
decision problem, including the one-period return function and the state evolution
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equation. The magnitude of the pessimistic distortion is restrained by the robustness
parameter �. Large values of � keep the degree of pessimism (the magnitude of
v) small. By making � arbitrarily large, we approximate the certainty-equivalent
solution to the single-agent decision problem.
The solution of this game includes a worst case v, which is a function of the state

x and the control u, as we will see below. Since v is allowed to depend on the current
period state and control, the resulting decision problem allows for misspeci�cation
of the dynamic evolution of x. Moreover, the matrix C is now an impact matrix for
misspeci�cation, and contributes to the robust solution to the control problem. We
summarize the dependence of F on C in the following, which is to be contrasted
with claim 2:

Claim 4. (Breaking Certainty Equivalence)
For � < +1, the robust control u = �Fx that solves game (3) depends on the

noise statistics as intermediated through C.

We shall remark below how the breaking down of certainty equivalence is attrib-
utable to a kind of precautionary motive emanating from fear of model misspeci�-
cation.

3.3. Gilboa and Schmeidler again. To relate formulation (3) to that of Gilboa
and Schmeidler (1989), we look at a hybrid speci�cation in which both the shock w�

and the speci�cation error v are present. The idea is to replace the i.i.d. shock w�

with w�+ v, where v is permitted to be a function of current and past values of the
state vector. Thus, v can be viewed as the mean of the shock v + w� conditioned
on the current state x. Alternative v's index the multiple priors in the date t

evolution equation. Instead of restraining the v's to reside in some prespeci�ed set,
for convenience we penalize their magnitude directly in the objective function.8

This formulation of robustness can capture a variety of model misspeci�cations.
Consider, for instance, misspeci�cation of the matrices A and B. Suppose instead
the evolution is:

x� = A�x +B�u+ Cw�:

Then we can write:

x� = Ax+Bu+ C(v + w�);

provided that we can solve the equation:

Cv = (A� � A)x+ (B� � B)u

for some v. The matrix C limits the form of the misspeci�cation of A and B, for
reasons that we will discuss later.

8As discussed in Hansen, Sargent, and Tallarini (1999) and Hansen and Sargent (2000), we can
think of the robustness parameter � as a Lagrange multiplier on an intertemporal speci�cation-error
constraint.
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More general forms of misspeci�ed dynamics can be entertained when solving
the above game, including nonlinearities, higher-order dynamics and time varia-
tion in the parameters. As a consequence this formulation of robustness is called
unstructured .9 Nevertheless, the constrained (by �) worst-case model has the form
of the original model with an altered A and B. Associated with the solution to
the two-player game is a worst-case choice of v. This worst case corresponds to a
particular (A�; B�) that is a device to acquire a robust rule. If we substitute the
value-function �xed point into the right side of (5) and solve the inner minimization
problem, we obtain the following formula for the worst-case error:

v� =
1

�
(I � �

�
C 0
�C)�1C 0
�(Ax +Bu):(6)

Notice that this v� depends on both the current period control vector u and state
vector x. Thus the misspeci�ed model used to promote robustness has:

A� = A +
1

�
C(I � �

�
C 0
�C)�1C 0
�A

B� = B +
1

�
C(I � �

�
C 0
�C)�1C 0
�B:

Notice that the resulting distorted model is context speci�c and depends on the
matrices A;B;C, the value function 
�, and the robustness parameter �.

4. Calibrating the taste for robustness

Our model of a robust decision-maker is formalized as a two-player game with
a �ctitious new player who aims to deceive. This new player, left unconstrained,
can in
ict serious damage and substantially alter the decision rules. It is easy to
construct examples in which the induced conservative behavior is so cautious that
it makes the robust decision rule look silly. Such examples can promote skepticism
about the use of minimization rather than the averaging advocated in Bayesian
decision theory.
Whether the formulation in terms of the game looks silly or plausible depends

on how the �ctitious new player is disciplined. While an undisciplined malevolent
player can wreak havoc, a tightly constrained one will have less consequence. Thus
the interesting question is whether it is reasonable as either a positive or normative
model of decision-making to make conservative adjustments induced by ambiguity
over model speci�cation, and if so, how big these adjustments should be. There
is some support for making conservative adjustments in experimental evidence (see
Camerer (1995) for a discussion) and in the axiomatic treatment of Gilboa and
Schmeidler (1989). Neither of these sources answer the quantitative question of

9See Stock and Onatski (1999) for an example of robust decision analysis with structured
uncertainty.
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how big the adjustment should be in applied work in economic dynamics. Here the
theory of statistical discrimination can help.
We have parameterized a taste for robustness in terms of a single free parame-

ter, �. The parameter � indexes a family of robust decision problems. We want to
know which members of this family correspond to reasonable preferences for robust-
ness. To think about this issue, we start by recalling that the rational expectations
notion of equilibrium makes the model that economic agents use in their decision-
making match the model that generates the actual time series evolution. A defense
of the rational expectations equilibrium is that discrepancies between models could
have been detected from suÆcient historical data. In this section, we use this same
approach to think about reasonable preferences for robustness. Given historical ob-
servations on the state vector, we use the Bayesian detection theory originally due to
Cherno� (1952). This theory describes how to discriminate between two models as
more data become available. We use statistical detection to limit the preference for
robustness. The decision maker should have noticed easily detected forms of model
misspeci�cation from past time series data. We propose restricting � to admit only
alternative models that are diÆcult to distinguish statistically from the approximat-
ing model. We do this rather than study a considerably more complicated learning
and control problem. We will discuss relationships between robustness and learning
in section 5.

4.1. State evolution. Given a time series of observations of the state vector xt,
suppose that we want to determine the evolution equation for the state vector.
Let u = �F �x denote the solution to the robust control problem. One possible
description of the time series is

xt+1 = (A� BF �)xt + Cwt+1:(7)

In this case, concerns about model misspeci�cation are just in the head of the
decision-maker: the original model is actually correctly speci�ed, so that v� � 0.
Here the approximating model actually generates the data.
An alternative evolution equation is the one associated with the solution to the

two-player game. In this case, write (6) as

v� = �K�x

where

K� =
1

�
(I � �

�
C 0
�C)�1C 0
�(A� BF r):

Then

xt+1 = (A�BF � � CK�)xt + Cwt+1:(8)

This evolution takes the constrained worst case model as the actual law of motion
of the state vector, under the robust decision rule and the worst-case shock process
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that the decision maker plans against.10 Since the choice of v by the new agent is
not meant to be a prediction, only a conservative adjustment, this evolution is not
the decision maker's guess about the most likely model. The decision maker believes
that the evolution is actually some unknown law

xt+1 = (A� BF �)xt + C(vt + wt+1);(9)

where the vt's are of no larger magnitude than the v�t 's in the sense that

E0

1X
t=0

�tv�0t v
�

t � E0

1X
t=0

�tv0tvt;

where E0 is evaluated with respect to the corresponding model. The actual vt's could
be those associated with a much more complicated form of model misspeci�cation
than the solution to the two-player game. Nevertheless, the two evolution equations
(7) and (8) provide a convenient laboratory for gauging plausible preferences for
robustness.

4.2. Classical model detection. The log-likelihood ratio is used for statistical
model selection. For simplicity, consider pairwise comparisons between models. Let
one be the basic approximating model captured by (A;B;C). Suppose another is
indexed by fvtg in (9). When thinking about statistical detection, it is imperative
that we include some actual randomness, in contrast to many formulations of robust
control theory. That randomness masks the model misspeci�cation and allows us
to form likelihood functions as a device for studying how informative data are in
revealing which model generates the data. Thus we include a stochastic shock wt+1

to disguise the model misspeci�cation vt.
11

Imagine that we observe the state vector for a �nite number T of time periods.
Thus we have x1; x2; :::; xT . Form the log likelihood ratio between these two models.
Since the fwt+1g sequence is independent and identically normally distributed, the
date t contribution to log likelihood ratio is

(wt+1 + vt) � v̂t � 1

2
v̂t � v̂t

where v̂t is the modeled version of vt. For instance, we might have that v̂t =
f(xt; xt�1; :::; xt�k). When the approximating model is correct, vt = 0 and the
predictable contribution to the (log) likelihood function is negative: �1

2
v̂t � v̂t. When

the alternative v̂t model is correct, the predictable contribution is 1

2
v̂t � v̂t. Thus the

10It is the decision rule from the Markov perfect equilibrium of the dynamic game.
11Here, for pedagogical convenience we explore only a special stochastic departure from the

approximating model. As emphasized by Anderson, Hansen, and Sargent (1999), statistical detec-
tion theory leads us to consider only model departures that are absolutely continuous with respect
to the benchmark or approximating model. The departures considered here are the discrete-time
counterparts to the departures admitted by absolute continuity when the state vector evolves
according to a possibly nonlinear di�usion model.
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term 1

2
v̂t � v̂t is the average (conditioned on current information) time t contribution

to a log-likelihood ratio. When this term is large, model discrimination is easy, and
it is diÆcult when this term is small. This motivates our use of the quadratic form
1

2
v̂t � v̂t as a statistical measure of model misspeci�cation. Of course, the v̂t's depend

on the state xt, so that to simulate them requires simulating a particular law of
motion (9).
Use of this measure is based implicitly on a classical notion of statistical discrimi-

nation. Classical statistical practice typically holds �xed the type I error of rejecting
a given null model when the null model is true. For instance, the null model might
be the benchmark v̂t model. As we increase the amount of available data, the type
II error of accepting the null model when it is false decays to zero as the sample size
increases, typically at an exponential rate. The likelihood-based measure of model
discrimination gives a lower bound on the rate (per unit observation) at which the
type II error probability decays to zero.

4.3. Bayesian model detection. Cherno� (1952) studied a Bayesian counterpart.
Suppose we average over both the type I and II errors by assigning prior probabili-
ties of say one-half to each model. Now additional information at date t allows one
to improve model discrimination by shrinking both type I and type II errors. This
gives rise to a discrimination rate (the deterioration of log probabilities of making a
classi�cation error per unit time) equal to 1

8
v̂t � v̂t for the normal model. This rate

is known as Cherno� entropy. When the Cherno� entropy is small, models are hard
to tell apart statistically. When Cherno� entropy is large, statistical detection is
easy. The scaling by 1

8
instead of 1

2
re
ects the trade-o� between type I and type II

errors. Type I errors are no longer held constant. Notice that the penalty term that
we added to the control problem to enforce robustness is a scaled version of Cher-
no� entropy, provided that the model misspeci�cation is appropriately disguised by
Gaussian randomness. Thus when thinking about statistical detection, it is impera-
tive that we include some actual randomness, which is absent in many formulations
of robust control theory.
In a model generating data that are independent and identically distributed, we

can integrate Cherno� entropies over the observation indices to form a detection
error probability bound for �nite samples. In dynamic contexts, more is required
than just integration, but it is still true that Cherno� entropy acts as a short-term
discount rate in construction of the probability bound.
We believe that the model detection problem confronted by a decision-maker is

actually more complicated than the pair-wise statistical discrimination problem we
just described. A decision-maker will instead be concerned about a wide array of
more complicated models, many of which may be more diÆcult to formulate and
solve than the ones considered here. Nevertheless, this highly stylized framework
for statistical discrimination gives one way to think about a plausible preference for
robustness. For any given �, we can compute the implied process fv�t g and consider
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only those values of � for which the fv�t g model is hard to distinguish from the
vt = 0 model. From a statistical standpoint, it is more convenient to think about
the magnitude of the v�t 's than of the �'s that underlie them. This suggests solving
robust control problems for an array of �'s and exploring the resulting v�t 's.

4.3.1. Detection probabilities: an example. Here is how we construct detection error
probabilities in practice. Consider two alternative models. Model A is the approxi-
mating model (with vt � 0 in (9)). Let model B be the worst case model associated
with vt = K�(�)xt, for a particular positive �. Consider a �xed sample of T obser-
vations on xt. Let Lij be the likelihood of that sample for model j assuming that
model i generates the data. De�ne the likelihood ratio

ri = log
Lii

Lij

where j 6= i and i = A;B. We can draw a sample value of this log-likelihood ratio
by generating a simulation of length T for xt under model i. The Bayesian detection
error probability averages probabilities of two kinds of mistakes. First, assume that
model A generates the data and calculate

pA = Prob(mistakejA) = freq(rA � 0):

Next, assume that model B generates the data and calculate

pB = Prob(mistakejB) = freq(rB � 0):

Under a prior that equally weights the two models, the probability of a detection
error is

p(�) =
1

2
(pA + pB):

Our idea is to set p(�) at a plausible value, then to invert p(�) to �nd a plausi-
ble value for the preference-for-robustness parameter �. We can approximate the
values of pA; pB composing p(�) by simulating a large number N of realizations of
samples of xt of length T . In the example below, we simulated 20,000 samples. See
Hansen, Sargent, and Wang (2000) for more details about computing detection error
probabilities in various linear models.
We now illustrate the use of detection error probabilities to discipline the choice

of � in the context of the simple dynamic model that Ball (1999) designed to study
alternative rules by which a monetary policy authority might set an interest rate.12

12See Sargent (1999a) for further discussion of Ball's model from the perspective of robust
decision theory. See Hansen and Sargent (2000) for how to treat robustness in `forward looking'
models.
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Ball's is a `backward looking' macro model with the structure

yt = ��rt�1 � Æet�1 + �t(10)

�t = �t�1 + �yt�1 � 
(et�1 � et�2) + �t(11)

et = �rt + �t;(12)

where y is the log of real output, r is the real interest rate, e is the log of the
real exchange rate, � is the in
ation rate, and �, �, � are serially uncorrelated and
mutually orthogonal disturbances. As an objective, Ball assumed that the monetary
authority wants to maximize

C = �E ��2t + y2t
�
:

The government sets the interest rate rt as a function of the current state at t, which
Ball shows can be reduced to yt; et.
Ball motivates (10) as an open-economy IS curve and (11) as an open-economy

Phillips curve; he uses (12) to capture e�ects of the interest rate on the exchange
rate. Ball set the parameters 
; �; �; Æ at the values :2; 2; :6; :2. Following Ball, we
set the innovation shock standard deviations equal to 1; 1;

p
2.

To discipline the choice of the parameter expressing a preference for robustness,
we calculated the detection error probabilities for distinguishing Ball's model from
the worst-case models associated with various values of � � ���1. We calculated
these taking Ball's parameter values as the approximating model and assuming that
T = 142 observations are available, which corresponds to 35.5 years of annual data
for Ball's quarterly model. Figure 2 shows these detection error probabilities p(�)
as a function of �. Notice that the detection error probability is .5 for � = 0, as
it should be, because then the approximating model and the worst case model are
identical. The detection error probability falls to .1 for � � �:085. If we think that
a reasonable preference for robustness is to want rules that work well for alternative
models whose detection error probabilities are .1 or greater, then � = �:085 is a
reasonable choice of this parameter. Later, we'll compute a robust decision rule for
Ball's model with � = �:085 and compare its performance to the � = 0 rule that
expresses no preference for robustness.

4.3.2. Reservations. Our formulation treats misspeci�cation of all of the state-evolution
equations symmetrically. All types of misspeci�cation that can be disguised by the
shock vector wt+1 are admitted. Our hypothetical statistical discrimination problem
assumes historical data sets of a common length on the entire state vector process.
We might instead imagine that there are di�ering amounts of con�dence in state
equations not captured by the perturbation Cvt and quadratic penalty �vt � vt. For
instance, to imitate aspects of Ellsberg's two urns we might imagine that misspeci-

�cation is constrained to be of the form C

�
v1t
0

�
with corresponding penalty �v1t � v1t .

The rationale for the restricted perturbation would be that there is more con�dence
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Figure 2. Detection error probability (coordinate axis) as a function
of � = ���1 for Ball's model.

in some aspects of the model than others. More generally, multiple penalty terms
could be included with di�erent weighting. A cost of this generalization is a greater
burden on the calibrator. More penalty parameters would need to be selected to
model a robust decision-maker.
This use of the theory of statistical discrimination helps to excuse a decision not

to model active learning about model misspeci�cation. Next we explore ways of
incorporating learning.

5. Learning

The robust control theoretic model outlined above sees decisions being made via
a two-stage process:

� 1. There is an initial learning-model-speci�cation period during which data
are studied and an approximating model is speci�ed. This process is taken
for granted and not analyzed. However, afterwards, learning ceases, though
doubts surround the model speci�cation.

� 2. Given the approximating model, a single �xed decision rule is chosen and
used forever. Though the decision rule is designed to guard against model
misspeci�cation, no attempt is made to use the data to narrow the model
ambiguity during the control period.

The defense for this two-stage process is that somehow the �rst stage discovers an
approximating model and a set of surrounding models that are diÆcult to distinguish
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from it with the data that were available in stage 1 and that are likely to be available
until a long time has passed in stage 2.
This section considers approaches to model ambiguity coming from literatures on

adaptation. They do not temporally separate learning from control. Instead, they
assume continuous learning about the model and continuous adjustment of decision
rules.

5.1. Bayesian models. For a low-dimensional speci�cation of model uncertainty,
an explicit Bayesian formulation might be an attractive alternative to our robust
formulation. We could think of A and B as being random and specify a prior
distribution for this randomness. One possibility is that there is only some initial
randomness. In this case observations of the state would convey information about
the realized A and B. Given that the controller does not observe A and B, and must
make inference about these matrices as time evolves, this problem is not easy to
solve. Nevertheless, numerical methods may be employed to approximate solutions.
For example, see Wieland (1996).
Alternatively, we might envision a stochastic process of the (A;B) so that there

is a tracking problem. The decision-maker must learn about a perpetually moving
target. Current and past data must be used to make inferences about the process
for the (A;B) model. Speci�cation of the problem now becomes more demanding,
as the decision-maker is compelled to take a stand on the stochastic evolution of
the matrices (A;B). The solutions are also more diÆcult to compute because the
decision-maker at date t must deduce beliefs about the future trajectory of (A;B)
given current and past information. The greater demands on model speci�cation
may cause decision-makers to second guess the reasonableness of the auxiliary as-
sumptions that render the decision analysis tractable and credible. This leads us to
discuss a non-Bayesian approach to tracking problems in the next section.

5.2. Adaptive Models. Another approach to model uncertainty comes from dis-
tinct literatures on adaptive control and vector autoregressions with random coeÆ-
cients.13 What is sometimes called passive adaptive control is occasionally justi�ed
as providing robustness against parameter drift coming from model misspeci�cation.
Thus, a random coeÆcients model captures doubts about the values of compo-

nents of the matrices A;B by specifying that

xt+1 = Atxt +Btut + Cwt+1

and that the coeÆcients are described by�
col(At+1)
col(Bt+1)

�
=

�
col(At)
col(Bt)

�
+

�
�A;t+1
�B;t+1

�
(13)

13See Kreps (1998) and Sargent (1999b) for related accounts of this approach. See Marcet and
Nicolini (1997) for an empirical application.
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where now

�t+1 �
2
4 wt+1

�A;t+1
�B;t+1

3
5

is a vector of independently and identically distributed shocks with speci�ed covari-
ance matrix Q, and col(A) is the vectorization of A. Assuming that the state xt is
observed at t, a decision maker could use a tracking algorithm�

col(Ât+1)

col(B̂t+1)

�
=

�
col(Ât)

col(B̂t)

�
+ 
th(xt; ut; xt�1; col(Ât); col(B̂t));

where 
t is a `gain sequence' and h(�) is a vector of time-t values of `sample orthogo-
nality conditions'. For example, a least squares algorithm for estimating A;B would
set 
t =

1

t
. This would be a good algorithm if A;B were not time varying. When

they are time-varying (i.e., some of the components of Q corresponding to A;B are
not zero), it is better to set 
t to a constant. This setting in e�ect discounts past
observations.

Problem 5. (Adaptive Control)
To get what control theorists call an adaptive control model, or what Kreps (1998)

calls an anticipated utility model, for each t solve the �xed point problem (4) subject
to

x� = Âtx+ B̂tu+ Cw�:(14)

The solution is a control law ut = �Ftxt that depends on the most recent estimates
of A;B through the solution of the Bellman equation (4).

The adaptive model misuses the Bellman equation (4), which is designed to be
used under that assumption that A;B in the transition law are time-invariant. Our
adaptive controller uses this marred procedure because he wants a workable pro-
cedure for updating his beliefs using past data and also looking into the future
while making decisions today. He is of two minds: when determining the control
ut = �Fxt at t, he pretends that (A;B) = (Ât; B̂t) will remain �xed in the fu-
ture; but each period when new data on the state xt are revealed, he updates his
estimates. This is not the procedure of a Bayesian who believed (13). It is often
excused because it is much simpler than a Bayesian analysis.

5.3. State prediction. Another way to incorporate learning in a tractable manner
is to shift the focus from the transition law to the state. Suppose the decision-maker
is not able to observe the entire state vector and instead must make inferences about
this vector. Since the state vector evolves over time, we have another variant of a
tracking problem.
When a problem can be formulated as learning about an observed piece of the

original state xt, the construction of decision rules with and without concerns about
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robustness becomes tractable.14 Suppose that the (A;B;C) matrices are known a
priori but that some component of the state vector is not observed. Instead, the
decision-maker sees an observation vector y constructed from x

y = Sx:

While some combinations of x can be directly inferred from y, others cannot. Since
the unobserved components of the state vector process x may be serially correlated,
the history of y can help in making inferences about the current state.
Suppose, for instance, that in a consumption-savings problem a consumer faces

a stochastic process for labor income. This process might be directly observable,
but it might have two components that cannot be disentangled: a permanent com-
ponent, and a transitory component. Past labor incomes will convey information
about the magnitude of each of the components. This past information, however,
will typically not reveal perfectly the permanent and transitory pieces. Figure 3
shows impulse response functions for the two components of the endowment process
estimated by Hansen, Sargent, and Tallarini (1999). The �rst two panels display
impulse responses for two orthogonal components of the endowment, one of which,
d1, is estimated to resemble a permanent component, the other of which, d2 is more
transitory. The third panel shows the impulse response for the univariate (Wold)
representation for the total endowment dt = d1t + d2t .
Figure 4 depicts the transitory and permanent components to income implied by

the parameter estimates of Hansen, Sargent, and Tallarini (1999). Their model im-
plies that the separate components dit can be recovered ex post from the detrended
data on consumption and investment that they used to estimate the parameters.
Figure 5 uses Bayesian updating (Kalman �ltering) forms estimators of d1t ; d

2
t as-

suming that the parameters of the two endowment processes are known, but that
only the history of the total endowment dt is observed at t. Note that these �ltered
estimates in �gure 5 are smoother than the actual components.
Alternatively, consider a stochastic growth model of the type advocated by Brock

and Mirman (1972), but with a twist. Brock and Mirman studied the eÆcient evo-
lution of capital in an environment in which there is a stochastic evolution for the
technology shock. Consider a setup in which the technology shock has two compo-
nents. Small shocks hit repeatedly over time and large technological shifts occurr
infrequently. The technology shifts alter the rate of technological progress. Investors
may not be able to disentangle small repeated shifts from large but infrequent shifts
in technological growth.15 For example, investors may not have perfect informa-
tion about the timing of the productivity slowdown that probably occurred in the

14See Jovanovic (1979) Jovanovic and Nyarko (1996) for examples of this idea.
15It is most convenient to model the growth rate shift as a jump process with a small number of

states. See Cagetti, Hansen, Sargent, and Williams (2000) for an illustration. It is most convenient
to formulate this problem in continuous time. The Markov jump component pushes us out of the
realm of the linear models studied here.
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Figure 3. Impulse responses for two components of endowment pro-
cess and their sum in Hansen, Sargent, and Tallarini's model. The
top panel is the impulse response of the transitory component d2 to
an innovation in d2; the middle panel, the impulse response of the
permanent component d1 to its innovation; the bottom panel is the
impulse response of the sum dt = d1t + d2t to its own innovation.
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Figure 4. Actual permanent and transitory components of endow-
ment process from Hansen, Sargent, Tallarini (1999) model.
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Figure 5. Filtered estimates of permanent and transitory compo-
nents of endowment process from Hansen, Sargent, Tallarini (1999)
model.

seventies. Suppose investors look at the current and past levels of productivity to
make inferences about whether technological growth is high or low. Repeated small
shocks disguise the actual growth rate. Figure 6 reports the technology process ex-
tracted from postwar data and also shows the probabilities of being in a low growth
state. Notice that during the so-called productivity slowdown of the seventies, even
Bayesian learners would not be particularly con�dent in this classi�cation for much
of the time period. Learning about technological growth from historical data is
potentially important in this setting.

5.4. The Kalman �lter. Suppose for the moment that we abstract from concerns
about robustness. In models with hidden state variables, there is a direct and
elegant counterpart to the control solutions we described previously. It is called the
Kalman �lter, and recursively forms Bayesian forecasts of the current state vector
given current and past information. Let x̂ denote the predicted state. In a stochastic
counterpart to a steady state, the predicted state evolves according to:

x̂� = Ax̂+Bu+Gxŵ
�(15)

y� = SAx̂+ SBu+Gyŵ
�(16)

where Gy is nonsingular. While the matrices A and B are the same, the shocks
are di�erent, re
ecting the smaller information set available to the decision-maker.
The nonsingularity of Gy guarantees that the new shock ŵ can be recovered from



22 LARS PETER HANSEN AND THOMAS J. SARGENT

1955 1960 1965 1970 1975 1980 1985 1990 1995 2000
−4.2

−4.1

−4

−3.9

−3.8

−3.7
Log Technology Shock Process

1955 1960 1965 1970 1975 1980 1985 1990 1995 2000
0

0.2

0.4

0.6

0.8

1

Estimated Probability in Low State

Figure 6. Top panel: the growth rate of the Solow residual, a mea-
sure of of the rate of technological growth. Bottom panel: the prob-
ability that growth rate of the Solow residual is in the low-growth
state.

next-period's data y� via the formula

ŵ = (Gy)
�1(y� � SAx̂� SBu):(17)

However, the original w� cannot generally be recovered. The Kalman �lter delivers
a new information state that is matched to the information set of a decision-maker.
In particular, it produces the matrices Gx and Gy.

16

In many decision problems confronted by macroeconomists, the target depends
only on the observable component of the state, and thus:17

z = Hx̂+ Ju;(18)

5.5. Ordinary �ltering and control. With no preference for robustness, Bayesian
learning has a modest impact on the decision problem (1).

Problem 6. (Combined Control and Prediction)
The steady-state Kalman �lter produces a new state vector, state evolution equa-

tion (15) and target equation (18). These replace the original state evolution equa-
tion (1) and target equation (2). The Gx matrix replaces the C matrix, but because of

16In fact, the matrices Gx and Gy are not unique but the so-called gain matrix K = Gx(Gy)
�1

is.
17A more general problem in which z depends directly on hidden components of the state vector

can also be handled.
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certainty equivalence this has no impact on the decision rule computation. The opti-
mal control law is the same as in problem 1, but it is evaluated at the new (predicted)
state x̂ generated recursively by the Kalman �lter.

5.6. Robust �ltering and control. To put a preference for robustness into the
decision problem, we again introduce a second agent and formulate a dynamic recur-
sive two-person game. We consider two such games. They di�er in how the second
agent can deceive the �rst agent.
In decision problems with only terminal rewards, it is known that Bayesian-

Kalman �ltering is robust for reasons that are subtle (see Basar and Bernhard (1995)
chapter 7 and Hansen and Sargent (2000) for discussions). Suppose the decision-
maker at date t has no concerns about past rewards. He only cares about rewards in
current and future time periods. This decision-maker will have data available from
the past in making decisions. Bayesian updating using the Kalman �lter remains a
defensible way to use this past information, even if model misspeci�cation is enter-
tained. Control theorist break this result by having the decision-maker continue to
care about initial period targets even as time evolves (e.g. see Basar and Bernhard
(1995) and Zhou, Doyle, and Glover (1996)). In the games posed below, we take
a recursive perspective on preferences by having time t decision-makers only care
about current and future targets. That justi�es our continued use of the Kalman
�lter even when there is model misspeci�cation and delivers separation of predic-
tion and control that is not present in the counterpart control theory literature.
See Hansen and Sargent (2000), Hansen, Sargent, and Wang (2000) and Cagetti,
Hansen, Sargent, and Williams (2000) for an elaboration.

Game 7. (Robust Control and Prediction i)
To compute a robust control law, we solve robustness game 3 but with the infor-

mation or predicted state x̂ replacing the original state x. Since we perturb evolution
equation (15) instead of (1), we substitute the matrix Gx for C when solving the ro-
bust control problem. Since the equilibrium of our earlier robustness game depended
on the matrix C, the matrix Gx produced by the Kalman �lter alters the control law.

Except for replacing C by Gx and the unobserved state x with its predicted state
x̂, the equilibria of game 7 and game 3 coincide.18 The separation of prediction and
control makes it easy to modify our previous analysis to accommodate unobserved
states.
A complaint about game 7 is that the original state evolution was relegated to

the background by forgetting the structure for which the innovations representation
(15), (16) is an outcome. That is, when solving the robust control problem, we
failed to consider direct perturbations in the evolution of the original state vector,
and only explored indirect perturbations from the evolution of the predicted state.

18Although the matrix Gx is not unique, the implied covariance matrix Gx(Gx)
0 is unique. The

robust control depends on Gx only through the covariance matrix Gx(Gx)
0.
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The premise underlying game 3 is that the state x is directly observable. When x

is not observed, an information state x̂ is formed from past history, but x is not
observed. Game 7 fails to take account of this distinction.
To formulate an alternative game that recognizes this distinction, we revert to

the original state evolution equation:

x� = Ax +Bu+ Cw�:

The state x is unknown, but can be predicted by current and past values of y using
the Kalman �lter. Substituting x̂ for x yields:

x� = Ax̂ +Bu+ �G �w�;(19)

where �w� has an identity as its covariance matrix and the (steady-state) forecast-
error covariance matrix for x� given current and past values of y is �G �G0.
To study robustness, we disguise the model misspeci�cation by the shock �w�.

Notice that the dimension of �w� is typically greater than the dimension of ŵ�,
providing more room for deception because we use the actual next-period state x� on
the left-hand side of evolution equation (19) instead of the constructed information
state x̂�. Thus we allow perturbations in the evolution of the unobserved state vector
when entertaining model misspeci�cation.

Game 8. (Robust Control and Prediction, ii)
To compute a robust control law, we solve robustness game 3 but with the matrix

�G used in place of C.

For a given choice of the robustness parameter �, concern about misspeci�cation
will be more potent in game 8 than in the other two robustness games. Mechanically,
this is because

�G( �G)0 � CC 0

�G( �G)0 � Gx(Gx)
0:

The �rst inequality compares the covariance matrix of x� conditioned on current
and past values of y to the covariance matrix of x� conditioned on the current state
x. The second inequality compares the covariance of x� to the covariance of its
predictor x̂�, both conditioned on current and past values of y. These inequalities
show that there is more latitude to hide model misspeci�cation in game 8 than in
the other two robustness games. The enlarged covariance structure makes statistical
detection more challenging. The fact that the state is unobserved gives robustness
more potency in game 8 than in game 3.19 The fact that the decision-makers explore

19Game 3 corresponds to the outcome in risk-sensitive joint �ltering and control. See Whittle
(1980). Thus, when �ltering is part of the problem, the correspondence between risk-sensitive
control and preferences for robustness is modi�ed.
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the evolution of x� instead of the information state x̂� gives robustness more potency
in game 8 than 7.20

In summary, the elegant decision theory for combined control and prediction has
direct extensions to accommodate robustness. Recursivity in decision-making makes
Bayesian updating methods justi�able for making predictions while looking back at
current and past data even when there are concerns about model misspeci�cation.
When making decisions that have future consequences, robust control techniques
alter decision rules in much the same way as when the state vector is fully observed.
These ideas are re
ected in games 7 and 8.

5.7. Adaptation versus robustness. The robustness of Bayesian updating is tied
to the notion of an approximating model (A;B;C) and perturbations around that
model. The adaptive control problem 5 is aimed at eliminating the commitment
to a benchmark model. While a more 
exible view is adopted for prediction, a
commitment to the estimated model is exploited in the design of a control law
for reasons of tractability. Thus robust control and prediction combines Bayesian
learning (about an unknown state vector) with robust control, while adaptive control
combines 
exible learning about parameters with standard control methods.

6. Robustness in action

6.1. Robustness in a simple macroeconomic model. We use Ball's model to
illustrate the robustness attained by alternative settings of the parameter �. For
Ball's model, we present Figure 7 to show that while robust rules do less well when
the approximating model actually generates the data, their performance deteriorates
more slowly with departures of the data generating mechanism from the approxi-
mating model.
Following the risk-sensitive control literature, we transform � into the risk-sensitivity

parameter � � ���1. Figure 7 plots the value C = �E(�2 + y2) attained by three
rules under the alternative data generating model associated with the worst case
model for the value of � on the ordinate axis. The rules are those for the three
values � = 0;�:04;�:085. Recall how the detection error probabilities computed
above associate a value of � = �0:085 with a detection error probability of about .1.
Notice how the robust rules (those computed with preference parameter � = �:04
or �:085) have values that deteriorate at a lower rate with model misspeci�cation
(they are 
atter). Notice that the rule for � = �:085 does worse than the � = 0
or � = �:04 rules when � = 0, but is more robust in deteriorating less when the
model is misspeci�ed. Next, we turn to various ways of characterizing the features
that make the robust rules more robust.

20As emphasized in Hansen, Sargent, and Wang (2000) holding � �xed across games is di�erent
than holding detection errors probabilities �xed.
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Figure 7. Value of C = �E(�2 + y2) for three decision rules when
the data are generated by the worst-case model associated with the
value of � on the horizontal axis: � = 0 rule (solid line), � = �:04
rule (dashed-dotted line), � = �:085 ( dashed) line.

6.2. Responsiveness. A common method for studying implications of dynamic
economic models is to compute the impulse responses of economic variables to
shocks. Formally, these responses are a sequence dynamic multipliers that show
how a shock vector wt alters current and future values of the state vector xt and the
target zt tomorrow. These same impulse response sequences provide insights into
how concerns about robustness alter the decision-making process.

6.2.1. Impulse Responses. Let F be a candidate control law and suppose there is no
model misspeci�cation. Thus the state vector xt evolves according to:

xt+1 = (A�BF )xt + Cwt+1:

and the target is now given by:

zt = (H � JF )xt:

To compute an impulse response sequence, we run the counterfactual experiment of
setting x�1 to zero, w0 to some arbitrary vector of numbers and all future wt's to
zero. It is straightforward to show that the resulting targets are:

zt = (H � JF )(A� BF )tCw0:(20)
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The impulse response sequence is just the sequence of matrices: I(F; 0) = (H �
JF )C, I(F; 1) = (H � JF )(A�BF )C, ... , I(F; t� 1) = (H � JF )(A�BF )t�1C,
... .
Under this counterfactual experiment, the objective (3) is given by:

�1

2
(w0)

0

1X
t=0

�tI(F; t� 1)0I(F; t� 1)w0:(21)

Of course, shocks occur in all periods not just period zero, so the actual object should
take these into account as well. Since the shocks are presumed to be independent
over time, the contributions of shocks at di�erent time periods can e�ectively be
uncoupled (see the discussion of spectral utility in Whiteman (1986)). Absorbing
the discounting into the impulse responses, we see that in the absence of model
misspeci�cation the aim of the decision-maker is to choose F to make the sequence
of matrices I(F; 0);p�I(F; 1); : : : ;p�tI(F; t); : : : small in magnitude. Thus (21)
induces no preferences over speci�c patterns of the impulse response sequence, only
about the overall magnitude of the sequence.
Even though we have only considered a degenerate shock sequence, maximizing

objective (3) by choice of F gives precisely the solution to problem 1. In particular,
the optimal control law does not depend on the choice of w0 for w0 6= 0. We
summarize this in:

Claim 9. (Frequency domain problem) For every x0, the solution of the problem of

choosing a �xed F to maximize (21) is the same F̂ that solves problem (1). This
problem induces no preferences about the shape of the impulse response function,
only about its magnitude.

In the next subsection, we shall see that a preference for robustness induces pref-
erences about the shape of the impulse response function as well as its magnitude.

6.2.2. Model misspeci�cation with �ltering. Consider now potential model misspec-
i�cation. As in game 3, we introduce a second agent. In our counterfactual experi-
ment, suppose this second agent can choose future vt's to damage the performance
of the decision rule F . Thus under our hypothetical experiment, we envision state
and target equations:

xt+1 = Axt +But + Cvt

zt = Hxt + Jvt

with x0 = Cw0. By conditioning on an initial w0, we are free to think of the second
agent as choosing a sequence of the vt's that might depend on initialization. A
given vt will in
uence current and future targets via the impulse response sequence
derived above.
To limit the damage caused by the malevolent agent, the choice of the vt sequence

is penalized using robustness parameter �. Thus the non recursive objective for the
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dynamic game is:

�
1X
t=0

�t
�jztj � �jvtj2

	
:(22)

When the robustness parameter � is large, the implicit constraint on the magnitude
of the sequence of vt's is small and very little model misspeci�cation is tolerated.
Smaller values of � permit sequences vt that are larger in magnitude. Thus we
now have a (non recursive) dynamic game in which a new �ctitious agent chooses
a vt sequence to minimize (22) To construct a robust law, the original decision-
maker then maximizes (22) by choice of F . This non recursive representation of the
game yields to the Fourier transform techniques studied by Whiteman (1986), Kasa
(1999), and Christiano and Fitzgerald (1998). See Hansen and Sargent (2000) for
a formal development. Moreover, this non recursive game has the same solution as
the recursive game 3.
Before describing some details, it is easy to describe how this second agent will

behave. He will �nd seasonal, cyclical or long-run patterns in the implied impulse
response sequences fp�I(F; t)g1t=0, then use his limited resources to concentrate
deception in those frequencies. Thus, the minimizing agent will make the vt's have
cyclical components at those frequencies in the impulse response function at which
the maximizing agent leaves himself most vulnerable. Here the mathematical tool
of Fourier transforms allows us to summarize the impulse response function in the
frequency domain. Imagine using sine/cosine speci�cations of the components of the
sequence vt to investigate the e�ects on the objective function when misspeci�cation
is con�ned to particular frequencies. Searching over frequencies for the most dam-
aging e�ects on the objective allow the minimizing agent to put speci�c temporal
patterns in the vt's. For such cosine wave shocks, there is no simple uncoupling
like that which occurs with random shocks or impulses. It is necessary to view the
composite contribution of entire vt' sequence, including its temporal pattern. The
impulse response sequence summarizes how future targets respond to a current pe-
riod vt; the Fourier transform of the impulse response function quanti�es how future
targets respond to vt sequences that are pure cosine waves. When the minimizing
agent chooses such temporally dependent vt sequences, the maximizing agent should
then care about the temporal pattern of the impulse response sequence, not just its
overall magnitude.21 The minimizing agent in general will �nd that some particular
frequencies (e.g., a cosine wave of given frequency for the vt's) will most eÆciently
expose model misspeci�cation. Therefore, in addition to making the impulse re-
sponse sequence small, now the maximizing agent wants to design a control law F

in part to 
atten the frequency sensitivity of the (appropriately discounted) impulse
response sequence. A trade-o� across frequencies now emerges. The robustness

21Thus, it was the absence of the temporal dependence in the vt's under the approximating
model, that left the maximizing agent indi�erent to the shape of the impulse response function.
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parameter � balances a tension between asking that impulse responses be of small
magnitude and also that they be insensitive to model misspeci�cation.

6.3. Some frequency domain details. To investigate the preceding ideas in more
detail, we use some arithmetic of complex numbers. Recall that

exp(i!t) = cos(!t) + i sin(!t):

We can extract a frequency component from the misspeci�cation sequence fvtg using
a Fourier transform. De�ne:

FT (v)(�) =
1X
t=0

�t=2vt exp(i�t)

We can interpret

FT (v)(!) exp(�i!t)
as the frequency ! component of the misspeci�cation sequence. Our justi�cation
for this claim comes from the integration recovery (inversion) formula:

�t=2vt =
1

2�

Z �

��

FT (v)(!) exp(�i!t)d!:

Thus we have an additive decomposition over the frequency components. By adding
up or integrating over these frequencies, we recover the misspeci�cation sequence in
the time domain. Moreover, the squared magnitude of the misspeci�cation sequence
can be depicted as an integral:

1X
t=0

�tvt � vt = 1

2�

Z �

��

jFT (v)(!)j2d!

Thus Fourier transforms provide us with a convenient toolkit for thinking formally
about misspeci�cation using freqeuncy decompositions.
It may appear troubling that the frequency components are complex. However,

by combining the contribution of frequency ! with frequency �! we obtain sequence
of real vectors. The periodicity of frequency ! and frequency �! are identical, so it
makes sense to treat these two components as a composite contribution. Moreover
jFT (v)(!)j = jFT (v)(�!)j.
We can get a version of this decomposition for the appropriately discounted target

vector sequence.22 This calculation results in the formula:

FT (z)(!) = h(!)[w0 + exp(i!)FT (v)(!)]
22That cosine shocks lead to cosine responses of the same frequency re
ects the linearity of the

model. In nonlinear models, the response to a cosine wave shock is more complicated.
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where, in particular,

h(!) = (H � JF )[I �
p
�(A� BF ) exp(i!)]�1C

=
1X
t=0

�t=2I(F; t) exp(i!t):

The matrix function h is the Fourier transform of the sequence of impulse responses.
This transform depends implicitly on the choice of control law F . This Fourier trans-
form describes how frequency components of the misspeci�cation sequence in
uence
the corresponding frequency components of the target sequence. When the matrix
h(!) is large in magnitude relative to other frequencies, frequency ! is particularly
vulnerable to misspeci�cation.
Objective (22) has a frequency representation given by:

� 1

4�

Z �

��

(jFT (z)(!)j2 � �jFT (v)(!)j2)d!:

The malevolent agent chooses to maximize this objective by choice of FT (v)(!).
The control law F is then chosen to minimize the objective. As established in
Hansen and Sargent (2000), this is equivalent to ranking control laws F using the
frequency-based entropy criterion:

entropy = � 1

2�

Z �

��

log det[�I � h(!)0h(�!)]d!:(23)

See Hansen and Sargent (2000) for an explanation of how this criterion induces the
same preferences over decision rules F as the two-player game 3. Lowering � causes
the decision maker to design F� to make (trace h(!)0h(�!)) 
atter as a function of
frequency, and to lower its larger values at the cost of raising smaller ones. Flattening
(trace h(!)0h(�!)) makes the realized value of the criterion function less sensitive
to departures of the shocks from the benchmark speci�cation of no serial correlation.

6.3.1. A limiting version of robustness. There are limits on the size of the robustness
parameter �. When � is too small, it is known that game su�ers a breakdown. The
�ctitious malevolent player can in
ict suÆcient damage that the objective function
remains at �1 independent of the control law. The critical value of � can be found
by solving:

�� = sup
v

1

2�

Z �

��

jh(!)FT (v)(!)j2d!

subject to

1

2�

Z �

��

jFT (v)(!)j2d! = 1:

The sup is typically not attained, but is approximated by a sequence that isolates
one particular frequency.
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The critical value �� depends on the choice of control law F . One (somewhat
extreme) version of robust control theory called H1 control theory would have a
decision-maker select the control law to make this critical value of � as small as
possible.

6.3.2. A related econometric defense for �ltering. In econometric analyses, it is often
argued that time series data should be �ltered before estimation to avoid contami-
nating parameters. Indeed frequency decompositions are often used to justify such
methods. The method called spectral analysis is about decomposing time series into
frequency components. Consider an econometrician with a formal economic model
to be estimated. He suspsects, however, that the model may not be well suited
to explain all of the component movements in the time series. For instance, many
macroeconomic models are not well suited to explain seasonal frequencies. The same
is sometimes claimed for low frequency movements as well. In this sense the data
may be contaminated vis a vis the underlying economic model.
One solution to this problem would be to put a prior distribution over all pos-

sible forms of contamination and to form a hyper model by integrating over this
contamination. As we have argued above, that removes concerns about model mis-
speci�cation from discussion, but arguably in a contrived way. Also, this approach
will not give rise to the common applied method of �ltering the data to eliminate
particular frequencies.
Alternatively we could formalize the suspicion of data contamination by intro-

ducing a malevolent agent who has the ability to contaminate time series data over
some frequency range, say seasonal frequencies or low frequencies that correspond
to long run movements in the time series. This contamination can undermine pa-
rameter estimation in a way formalized in the frequency domain by Sims (1972) for
least squares reqression models and Sims (1993) and Hansen and Sargent (1993)
for multivariate time series models. Sims (1974) and Wallis (1974) used frequency
domain characterizations to defend �ltering and to provide guidance about the ap-
propriate structure of the �lter. They found that if one suspects that a model is
better speci�ed at some frequencies than others, then it makes sense to diminish
approximation errors by �ltering the data to eliminate frequencies most vulnerable
to misspeci�cation.
Consider a two-player robustness formulation for this defense. If an econometri-

cian suspects that a model is better speci�ed at some frequecies than others, this can
be operationalized by allowing the �ctitious agent to concentrate his mischief-making
only at those frequencies, like the malevolent agent from robust control theory. The
data �lter used by the econometrician can emerge as a solution to an analagous
two-player game. To blunt the role of this mischief-making, the econometrician will
design a �lter to eliminate those frequencies from estimation.
Sims's analysis provides a way to think about both seasonal adjustment and trend

removal. Both can be regarded as procedures that remove high powered frequency
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components with the aim of focusing empirical analysis on frequencies where a model
is better speci�ed. For the case of seasonal adjustment, Sims (1993) and Hansen and
Sargent (1993) in e�ect describe a situation in which, through the cross-equation
restrictions of rational expectations models, b is a function of preference and techno-
logical parameters that the econometrician wants to estimate. Hansen and Sargent
(1993) provide examples of models whose poorer speci�cations at the seasonal com-
ponents can inspire a preference for estimators constructed using seasonally adjusted
data.

6.3.3. Comparisons. It is useful to compare the frequency domain analysis of data
�ltering with the frequency domain analysis of robust decision making. The robust
decision maker achieves a robust rule by damping the in
uence of frequencies most
vulnerable to misspeci�cation. In Sims's analysis of data �ltering, an econometri-
cian who fears misspeci�cation and knows the approximation criterion is advised to
choose a data �ltering scheme that down plays frequencies at which he suspects the
most misspeci�cation. He does `window carpentry' in crafting a �lter to minimize
the impact of speci�cation error on the parameters estimates that he cares about.

6.4. Friedman: long and variable lags. We now return to Friedman's concern
about the use of misspeci�ed models in the design of macroeconomic policies, and in
particular to his view that lags in the e�ects of monetary policy are long and variable.
The game theoretic formulation of robustness gives one possible expression to this
concern about long and variable lags. That the lags are long is determined by the
speci�cation of the approximating model. (We will soon give an example in the
form of the model of Laurence Ball.) That the lags are variable is captured by the
innovation mean distortions vt that are permitted to feed back arbitrarily on the
history of states and controls. By representing misspeci�ed dynamics, the vt's can
capture one sense of variable lags. Indeed, in the game theoretic construction of a
robust rule, the decision maker acts as though how the vt process feeds back on the
state depends on his own choice of decision rule F . This dependence can be expressed
in the frequency domain in the way we have described. The structure of the original
model (A;B;C) and the hypothetical control law F dictate which frequencies are
most vulnerable to model misspeci�cation. They might be low frequencies, as in
Friedman's celebrated permanent income model, or they might be business cycle
or seasonal frequencies. Robust control laws are designed in part to dampen the
impact of frequency responses induced by the vt's. To blunt the role of this second
player, under robustness the original player will aim to diminish the importance of
the impulse response sequence beyond the initial response. The resulting control
laws often lead to impulse responses that are greater at impact and are more muted
in the tails. We give an illustration in the next subsection.

6.4.1. Robustness in Ball's model. We return to Ball's model and use it to illustrate
how preferences for robustness a�ect frequency domain representations of impulse
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Figure 8. Frequency decompositions of [trace h(!)0h(�!)] for ob-
jective function of Ball's model under three decision rules; � = 1 on
left panel, discount factor � = :9 on right panel.

response functions. We discount the return function in Ball's model, altering the
object that the government would like to maximize to be

�E
1X
t=0

�t(�2t + y2t ):

We derive the associated rules for three values of the robustness parameter �. In
the frequency domain, the criterion can be represented as

H2 = �
Z �

��

trace[h(!)0h(�!)]d !:

Here h(!) is the transfer function from the shocks in Ball's model to the targets,
the in
ation rate and output. The transfer function h depends on the government's
choice of a feedback rule F�. Ball computed F1.
Figure 8 displays frequency decompositions of [trace h(!)0h(�!)] for robust

rules with � = 1 and � = :9. Figure 8 shows frequency domain decomposi-
tions of a government's objective function for three alterative policy rules labelled
� = 1; � = 10; � = 5. The parameter � measures a preference for robustness,
with � = +1 corresponding to the no preference for robustness, and lower values
of � representing a concern for misspeci�cation. Of the three rules whose transfer
functions are depicted in �gure Figure 8, Ball's rule (� = 1) is the best under the
approximating model because the area under the curve is smallest.
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Figure 9. Top panel: impulse responses of in
ation to the shock �t
under three values of �: � = +1 (solid line), � = 10 (dashed-dotted
line), and � = 5 (dotted line), with � = 1. Bottom panel: impulse
response of in
ation to shock �t under same three values of �.

The transfer function h gives a frequency domain representation of how targets
respond to serially uncorrelated shocks. The frequency domain decomposition C

depicted by the � = 1 curve in Figure 8 exposes the frequencies that are most
vulnerable to small misspeci�cations of the temporal and feedback properties of the
shocks. Low frequency misspeci�cations are most troublesome under Ball's optimal
feedback rule because for those frequencies, [traceh(�)0h(�)] is highest.
We can obtain more robust rules by optimizing criterion (23). Flattening of the

frequency response traceh(!)0h(�!) is achieved by making the interest rate more
sensitive to both y and e; as we reduce �, both a and b increase in the feedback
rule rt = ayt + b�t.

23 This e�ect of activating a preference for robust rules has the
following interpretation. Ball's model speci�es that the shocks in (10),(11), (12) are
serially uncorrelated. Under the optimal (� = +1) rule, this rule would expose the
policy maker to the biggest costs were the shocks instead to be highly positively
serially correlated. Under a preference for robustness, the policy maker is most
concerned about misreading a `permanent' or `long-lived' shock as a temporary (i.e.,
serially uncorrelated) one. To protect himself, he responds to serially uncorrelated
shocks (under the reference model) as though they were positively serially correlated.
This manifests itself in making the interest rate more responsive to both yt and �t.

23See (Sargent 1999a) for a discussion.
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An interesting aspect of the two panels of Figure 8 is that in terms of trace h(!)0h(�!),
lowering the discount factor � has similar e�ects as lowering � (compare the � = 5
curves in the two panels). Hansen, Sargent, and Tallarini (1999) uncovered a simi-
lar pattern in a permanent income model; they showed that there existed o�setting
changes in � and � that would leave the quantities (but not the prices) of a perma-
nent income model unchanged.
Figure 9 displays impulse response functions of in
ation to �t (the shock in the

Phillips curve and �t (the shock in the IS curve) under the robust rules for � =
+1; 10; 5 when � = 1. The �gues show that activating preferences for robustness
causes the impulse responses to damp out more quickly, which is consistent with the

atter [trace h(!)0h(�!)]'s observed as we accentuate the preference for robustness.
Note also that the impact e�ect of �t on in
ation is increased with an increased
preference for robustness.

6.5. Precaution. A complaint about the linear-quadratic decision problem 1 in the
absence of robustness is that it displays certainty equivalence. The optimal decision
rule does not depend on the matrix C that governs how shocks impinge on the the
state evolution. The decision rule fails to adjust to presence of 
uctuations induced
by shocks (even though the decisions themselves do depend on the shocks). The
rule would be the same even if shocks were set to zero. Thus there is no motive for
precaution.
The celebrated permanent-income model of Friedman (1956) (see (Zeldes 1989)

for an elaboration) has been criticized because it precludes a precautionary motive
for savings. Leland (1968) and Miller (1974) extended Friedman's analysis to ac-
commodate precautionary savings by moving outside the linear-quadratic functional
forms given in problem 1. Notice that in decision problem 1 both the time t con-
tribution to the objective function and the value function are quadratic and hence
have zero third derivatives. For general decision problems under correct model spec-
i�cation, Kimball (1990) constructs a measure of precaution in terms of the third
derivatives of the utility function or value function.
We have seen how a preference for robustness prompts the C matrix to in
u-

ence behavior even within the con�nes of decision problem 1, which because it has
a quadratic value function precludes a precautionary motive under correct model
misspeci�cation. Thus a concern about model misspeci�cation introduces an addi-
tional mechanism for precaution beyond that suggested by Leland (1968) and Miller
(1974). Shock variances play a role in this new mechanism because the model mis-
speci�cation must be disguised to a statistician. Hansen, Sargent, and Tallarini
(1999) are able to reinterpret Friedman's permanent income model of consumption
as one in which the consumer is concerned about model misspeci�cation. Under the
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robust interpretation, consumers discount the future more than under the certainty-
equivalent interpretation. In spite of this discounting, consumers save in part be-
cause of concerns that their model of the stochastic evolution of income might be
incorrect.
This new mechanism for precaution remains when robustness is introduced into

the models studied by Leland (1968), Miller (1974), Kimball (1990), and others. In
contrast to the precautionary behavior under correct model speci�cation, robustness
makes precaution depend on more than just third derivatives of value functions. The
robust counterpart to Kimball (1990)'s measures of precaution depends on the lower
order derivatives as well. This dependence on lower-order derivatives of the value
function makes robust notions of precaution distinct from and potentially more
potent than the earlier notion of precaution.

6.6. Risk aversion. Economists are often perplexed by behavior of market partic-
ipants that seems to indicate extreme risk aversion, for example, the behavior of
asset prices and returns. When economists study risk aversion, they have in mind
confronting decision makers with gambles with known probabilities. From knowl-
edge or guesses about how people would behave when confronted with speci�c and
well de�ned risks, economists infer risk aversion that is reasonable. For instance,
Barsky, Juster, Kimball, and Shapiro (1997) administered survey questions eliciting
from people their willingness to participate in gambles. A distinct source of informa-
tion comes from measurements of risk-return trade-o�s from �nancial market data.
The implied connection between risk aversion as modeled by a preference parame-
ter and risk-return trade-o�s measured by �nancial econometricians was delineated
by Hansen and Jagannathan (1991) and Cochrane and Hansen (1992). Historical
evidence from security market data suggest that risk aversion implied by security
market data is very much larger than that elicited from participants in hypothetical
gambles.
There is a variety of responses to this puzzle. They range from questioning the

empirical measurements of the risk-return trade-o� to challenging the ability to
extrapolate risk aversion from di�erent-sized gambles. Indeed, mean returns on
equity are known to be diÆcult to measure reliably. Also, it has been claimed that
people look more risk averse when facing small gambles than large ones. ((Segal and
Spivak 1990), (Epstein and Melino 1995) and (Rabin 1999)). Our statistical notion
of robustness makes contact with the �rst of these explanations.
A preference for robustness comes into play when agents believe that their prob-

abilistic descriptions of risk might be misspeci�ed. In security markets, precise
quanti�cation of risks is diÆcult. It turns out that there is a formal sense in which a
preference for robustness as modeled above can be reinterpreted in terms of a large
degree of risk aversion, treating the approximating model as known. This formal
equivalence has manifestations in both decision-making and in prices. The obser-
vationally equivalent risk averse or risk sensitive interpretation of robust decision
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making was �rst provided by Jacobson (1973), but outside the recursive frame-
work used here. Hansen and Sargent (1995) build on work of Jacobson (1973) and
Whittle (1980) to establish an equivalence between a preference for robustness and
risk-sensitive preferences for game 3. Anderson, Hansen, and Sargent (1999) extend
this equivalence result to a larger class of recursive robustness games. Thus, the
decision rules that emerge from robustness games are identical with those rules that
come from risk sensitive control problems with correctly speci�ed models.24

Hansen, Sargent, and Tallarini (1999), Tallarini (2000), Cagetti, Hansen, Sargent,
and Williams (2000) show that in a class of stochastic growth models the e�ects of
a preference for robustness or of a risk-sensitive adjustment to preferences are very
diÆcult to detect in the behavior of aggregate data on consumption and investment.
The reason is that in these models altering a preference for robustness has e�ects on
quantities much like those that occur under a change in a discount factor. Alterations
in the parameter measuring preference for robustness can be o�set by a change in the
discount factor and thereby leave consumption and investment allocations virtually
unchanged.
However, that kind of observational equivalence result does not extend to asset

prices. The same adjustments to preferences for robustness and discount factors that
leave consumption and investment allocations unaltered can have marked e�ects
on equilibrium market prices of risk. Hansen, Sargent, and Tallarini (1999) and
Hansen, Sargent, and Wang (2000) have used this observation to study the e�ects
of a preference for robustness on the theoretical value of the equity premium.
A simple and pedagogically convenient model of asset prices is obtained by study-

ing the shadow prices from optimal resource allocation problems. These shadow
prices contain a convenient decomposition of the risk-return trade-o�. Let 
t denote
a vector of factor loadings, so that under an approximating or reference model, the
unpredictable component of the return is 
t �wt+1. Let r

f
t denote the risk free interest

rate. Then the required mean return �t satis�es the factor pricing relation

�t � r
f
t = 
t � qt

where qt is a vector of what are commonly referred to as factor risk prices. Changing
the price vector qt changes the required mean return. Economic models with risk-
averse investors imply a speci�c shadow price formula for qt. This formula depends
explicitly on the risk preferences of the consumer. An implication of many economic

24This observational equivalence applies within an economy for perturbations modeled in the
manner described here. It can be broken by either restricting the class of perturbations, by
introducing di�erential penalty terms, or in some of the game formulations with hidden states.
Also, this equivalence result applies for a given economic environment. The robustness penalty
parameter � should not be thought of as being invariant across environments with di�erent state
equations. Recall that in our discussion of calibration, we used speci�c aspects of the environment
to constrain the magnitude of the penalty parameter.
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Figure 10. Four-Period Market Price of Knightian Uncertainty ver-
sus Detection Error Probability for three models: HST denotes the
model of Hansen, Sargent, and Tallarini (1999); `benchmark' denotes
their model modi�ed along the lines of the �rst robust �ltering game
7; `HSW' denotes their model modi�ed according to the second robust
�ltering game 8.

models is that the magnitude jqtj of the price vector implied by a reasonable amount
of risk aversion is too small to match empirical observations.
Introducing robustness gives us an additive decomposition for qt in corresponding

continuous time models, as demonstrated by Anderson, Hansen, and Sargent (1999)
and Chen and Epstein (1998). One component is an explicit risk component and the
other is a model uncertainty component. The model uncertainty component relates
directly to the detection-error rates that emerge from the statistical discrimination
problem described above. By exploiting this connection, Anderson, Hansen, and
Sargent (1999) argue that it is reasonable to assign about a third of the observed
jqtj to concerns about robustness. This interpretation is premised on the notion
that the market experiment is fundamentally more complicated than the stylized
experiments typically used to calibrate risk aversion. Faced with this complication,
investors use models as approximations and make conservative adjustments. These
adjustments show up prominently in security market prices even when they are
disguised in macroeconomic aggregates.
Figure 10 is from Hansen, Sargent, and Wang (2000), which studied the contri-

bution to the market price of risk from a preference for robustness in three models:
the basic model of Hansen, Sargent, and Tallarini (1999) and two modi�ed versions
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of it in which agents do not observe the state and so must �lter. Those two versions
corresponded to the two robust �ltering games 7 and 8 described above. Figure 10
graphs the contribution to the market price of risk of four-period securities coming
from robustness for each of these models graphed against the detection error proba-
bility. For a given detection error probability, the value of � depends on the model.
(See the discussion above about how the the detection error probability depends on
� and the particular model.) Figure 10 aÆrms the tight link between detection error
probabilities and the contribution of a preference for robustness to the market price
of risk that was asserted by Anderson, Hansen, and Sargent (1999). Notice how the
relationship between detection error probabilities and the contribution of robustness
to the market price of risk does not depend on which model is selected. The �gure
also conveys that a preference for robustness corresponding to a plausible value of
the detection error probability gives a substantial boost to the market price of risk.

7. Concluding remarks

This paper has discussed work designed to account for a preference for decisions
that are robust to model misspeci�cation. We have focused mainly on single-agent
decision problems. The decision maker evaluates decision rules against a set of
models near his approximating model, and uses a two person game in which a
malevolent nature chooses the model as an instrument to achieve robustness across
the set of models.
In the body of the paper, we did not touch issues that arise in contexts where

multiple agents want robustness. Those issues deserve serious attention. One issue
is the appropriate equilibrium concept with multiple agents who fear model misspec-
i�cation. We need an equilibrium concept to replace rational expectations. Hansen,
Sargent, and Tallarini (1999) and Hansen and Sargent (2000) use an equilibrium con-
cept that seems a natural extension of rational expectations where all agents share
the same set of alternative models (i.e., the same � in the notation above). Suitably
viewed, the communism of models seen in rational expectations models extends to
this setting: now agents share an approximating model, a set of surrounding models
against which they value robustness, and also a synthesized worst case model. How-
ever, even in settings in which agents share an approximating model, if their tastes
for robustness di�er { that is, if their sets of surrounding models di�er { then the
equilibrium must be modi�ed. Anderson (1998) studies a pure endowment economy
whose agents have what we would interpret as di�erent preferences for robustness,
and shows how the distribution of wealth over time is a�ected by those preferences.25

Hansen and Sargent (2000) and Kasa (1999) describe multi-agent problems in the
form of Ramsey problems for a government facing a competitive private economy.

25Anderson embraces the risk-sensitivity interpretation of his preference speci�cation, but it is
also susceptible to a robustness interpretation. He studies a Pareto problem of a planner who
shares the approximating model and recognizes the di�ering preferences of the agents.
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Preferences for robustness also bear on the Lucas critique. The Lucas critique
is the assertion that rational expectations models make decision rules functions of
stochastic processes of shocks and other variables exogenous to decision makers. To
each shock process, a rational expectations theory associates a distinct decision rule.
Lucas criticised earlier work for violating this principle. What about robust deci-
sion theory? It partially aÆrms but partially belies the Lucas critique. For a given
preference for robustness (that is, for a given � < +1), a distinct decision rule is
associated with each approximating model, respecting the Lucas critique. However,
for a given preference for robustness and a �xed approximating model, the decision
maker is supposed to use the same decision rule for a set of models surrounding the
approximating model, apparently `violating the Lucas critique'. Presumably, the
decision maker would defend that violation by appealing to detection error proba-
bilities large enough to make members of that set of models diÆcult to distinguish
from the approximating model based on the data available.
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