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Method of Moments

1. Introduction

In many empirical investigations of dynamic economic
systems, statistical analysis of a fully specified stoch-
astic process model of the time series evolution is too
ambitious. Instead it is fruitful to focus on specific
features of the time series without being compelled to
provide a complete description. This leads to the
investigation of partially specified dynamic models.
For instance, the linkages between consumption and
asset returns can be investigated without a full de-

scription of production and capital accumulation. The
behavior of monetary policy can be explored without
a complete specification of the macroeconomic econ-
omy. Models of inventory behavior can be estimated
and tested without requiring a complete characteriz-
ation of input and output prices. All of these economic
models imply moment conditions of the form:

Ef(x,p,) =0 )

where f'is known a priori, x, is an observed time series
vector, and f, is an unknown parameter vector. These
moment relations may fall short of providing a
complete depiction of the dynamic economic system.
Generalized Method of Moments (GM M) estimation,
presented in Hansen (1982), aims to estimate the
unknown parameter vector , and test these moment
relations in a computationally tractable way. This
entry first compares the form of a GM M estimator to
closely related estimators from the statistics literature.
It then reviews applications of these estimators
to partially specified models of economic time
series. Finally, it considers GM M-related moment-
matching problems in fully specified models economic
dynamics.

2. Minimum Chi-square Estimation

To help place GM M estimation in a statistical context,
I explore a closely related minimum chi-square esti-
mation method. Statisticians developed minimum
chi-square estimators to handle restricted models of
multinomial data and a variety of generalizations.
Neyman (1949) and Burankin and Gurland (1951),
among others, aimed to produce statistically efficient
and computationally tractable alternatives to maxi-
mum likelihood estimators. In the restricted multi-
nomial model, estimators are constructed by forming
empirical frequencies and minimizing Pearson’s chi-
square criterion or some modification of it.

The method has direct extensions to any moment-
matching problem. Suppose that {x} is a vector
process, which temporarily is treated as being iid.
Use a function y with n coordinates to define target
moments associated with the vector x,. A model takes
the form:

Ely(x)] = ¢(,)

where f, is an unknown parameter. The moment-
matching problem is to estimate f, by making the
empirical average of {y(x,)} close to its population
counterpart ¢(f,):

Vd

mﬁianZ [wx)=dBI VX lwx)—d(B] ()

t=1

where V' is the distance or weighting matrix. The
distance matrix sometimes depends on the data and/or
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the candidate parameter vector 5. The use of ¥ to
denote a weighting matrix that may actually depend
on parameters or data is an abuse of notation. This
simple notation is used because it is the probability
limit of the weighting matrix evaluated at the par-
ameter estimator that dictates the first-order asymp-
totic properties.

The limiting distribution of the criterion in Eqn. (2)
is chi-square distributed with n degrees of freedom if
the parameter vector f3, is known, and if V'is computed
by forming the inverse of either the population or
sample covariance matrix of y/(x). When fis unknown,
estimates may be extracted by minimizing this chi-
square criterion; hence the name. To preserve the
chi-square property of the minimum (with an appro-
priate reduction in the degrees of freedom), we again
form the inverse sample covariance matrix of y(x), or
form the inverse population covariance matrix for
each value of . The minimized chi-square property of
the criterion may be exploited to build tests of over-
identification and to construct confidence sets for
parameter values. Results like these require extra
regularity conditions, and this rigor is supplied in
some of the cited papers.

While the aim of this research was to form
computationally tractable alternatives to maximum
likelihood estimation, critical to statistical efficiency is
the construction of a function y of the data that
is a sufficient statistic for the parameter vector
(see Burankin and Gurland 1951). Berkson (1944)
and Taylor (1953) generalize the minimum chi-
square approach by taking a smooth one-to-one
function & and building a quadratic form of
ht Y, ¢(x)]—hly(B)]. Many distributions fail to
have a finite number of sufficient statistics; but the
minimum chi-square method continues to produce
consistent, asymptotically normal estimators provided
that identification can be established.

GMM estimators can have a structure very similar
to the minimum chi-square estimators. Notice that the
core ingredient to the moment-matching problem can
be depicted as in Eqn. (1) with a separable function f:

S f) =y (x)—4(B)

used in the chi-square criterion function. Target
moments are one of many ways for economists to
construct inputs into chi-square criteria, and it is
important to relax this separability. Moreover, in
G M M estimation, the emphasis on statistical efficiency
is weakened in order to accommodate partially speci-
fied models. Finally, an explicit time series structure is
added, when appropriate.

3. GMM Estimation

Our treatment of GMM estimation follows Hansen
(1982), but it builds from Sargan’s (1958, 1959)
analyses of linear and nonlinear instrumental variables
(see Instrumental Variables in Statistics and Econ-
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ometrics). See Ogaki (1993) for a valuable discussion
of the practical implementation of GMM estimation
methods. GM M estimators are constructed in terms of
a function f that satisfies Eqn. (1) where f has more
coordinates, say n, than there are components to the
parameter vector f,. Another related estimation
method is M-estimation. M-estimation is a gene-
ralization of maximum likelihood and least squares
estimation. M-estimators are typically designed to be
less sensitive to specific distributional assumptions
(see Robustness in Statistics). These estimators may be
depicted as solving a sample counterpart to Eqn. (1)
with a function f that is nonseparable, but with the
same number of moment conditions as parameter
estimators.

In Sects. 46 we will give examples of the con-
struction of the f function, including ones that are not
separable in x and f and ones for which there have
more coordinates than parameter vectors. A minimum
chi-square type criterion is often employed in GMM
estimation. For instance, it is common to define the
GMM estimator as the solution to:

b, = arg mﬁin Tg, (BY Vg, (p)

where

&gr (ﬁ) = %—,t;f(xt’ ﬂ)

and V is a positive definite weighting matrix. This
quadratic form has the chi-square property provided
that Vis an estimator of the inverse of an appropriately
chosen covariance matrix, one that accounts for
temporal dependence.

The sections that follow survey some applications
of GM M estimators to economic time series. A feature
of many of these examples is that the parameter f by
itself may not admit a full depiction of the stochastic
process that generates data. GMM estimators are
constructed to achieve ‘partial’ identification of the
stochastic evolution and to be robust to the remaining
unmodeled components.

3.1 Time Series Central Limit Theory

Time series estimation problems must make appro-
priate adjustments for the serial correlation for the
stochastic process { f(x,, £,)}. A key input into the large
sample properties of GM M estimators is a central limit
approximation:

1 Z
— , Normal (0, £
7 L/ )= Nommal (0. %,)
for an appropriately chosen covariance matrix X,. An
early example of such a result was supplied by Gordin
(1969) who was used martingale approximations for
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partial sums of stationary, ergodic processes. See Hall
and Heyde (1980) for an extensive discussion of this
and related results. The matrix X, must include
adjustments for temporal dependence:

5= Y EfGo ) f G B

j=—w

which is the long-run notion of a covariance matrix
that emerges from spectral analysis of time series. In
many GM M applications, martingale arguments show
that the formula for X, simplifies to include only a
small number of nonzero terms. It is the adjustment to
the covariance matrix that makes the time series
implementation differ from the iid implementation
(Hansen 1982).

Adapting the minimum chi-square apparatus to this
environment requires that we estimate the covariance
matrix X . Since f'is not typically separable in x and S,
an estimator of X requires an estimator of . This
problem is familiar to statisticians and econo-
metricians through construction of feasible general-
ized least squares estimators. One approach is to form
an initial estimator of §, with an arbitrary nonsingular
weighting matrix J and to use the initial estimator of
f, to construct an estimator of X . Hansen (1982),
Newey and West (1987) and many others provide
consistency results for the estimators of X . Another
approach is to iterate back and forth between par-
ameter estimation and weighting matrix estimation
until a fixed point is reached, if it exists. A third
approach is to construct an estimator of X(f) and to
replace V in the chi-square criterion by an estimator of
2(p)* constructed for each . Given the partial
specification of the model, it is not possible to
construct () without the use of the time series data.
Long run covariance estimates, however, can be
formed for the process {f(x,, )} for each choice of f.
Hansen et al. (1996) refer to this method as GMM
estimation with a continuously updated weighting
matrix. Hansen et al. (1996), Newey and Smith (2000),
and Stock and Wright (2000) describe advantages to
using continuous-updating, and Sargan (1958) shows
that in some special circumstances this method repro-
duces a quasi-maximum likelihood estimator.

3.2 Efficiency

Since the parameter vector f that enters moment
condition (1) may not fully characterize the data
evolution, direct efficiency comparisons of GMM
estimators to parametric maximum likelihood are
either not possible, or not interesting. However,
efficiency statements can be made for narrower classes
of estimators.

For the study of GMM efficiency, instead of
beginning with a distance formulation, index a family

of GM M estimators by the moment conditions used in
estimation. Specifically study

agT(bT) =0

where a is a k by n selection matrix. The selection
matrix isolates which (linear combination of ) moment
conditions will be used in estimation and indexes
alternative GMM estimators. Estimators with the
same selection matrix have the same asymptotic
efficiency. Without further normalizations, multiple
indices imply the same estimator. Premultiplication of
the selection matrix a by a nonsingular matrix e results
in the same system of nonlinear equations. In practice,
the selection matrix can depend on data or even the
parameter estimator provided that the selection matrix
has a probability limit. As with weighting matrices for
minimum chi-square criteria, we suppress the possible
dependence of the selection matrix ¢ on data or
parameters for notational simplicity. The resulting
GMM estimators are asymptotically equivalent (to
possibly infeasible) estimators in which the selection
matrix is replaced by its probability limit. As has been
emphasized by Sargan (1958, 1959) in his studies of
instrumental variables estimators, estimation accuracy
can be studied conveniently as a choice " of an
efficient selection matrix. The link between a weighting
matrix ¥ and selection matrix « is seen in the first-
order conditions:

1 (b
VIR

or their population counterpart:
a="Vd

where

i [ of 5, ) }
op
Other distance measures including analogs to the ones
studied by Berkson (1944) and Taylor (1953) can also
be depicted as a selection matrix applied to the sample
moment conditions g,(f). Moreover, GMM esti-
mators that do not solve a single minimization
problem may still be depicted conveniently in terms of
selection matrices. For example, see Heckman (1976)
and Hansen (1982) for a discussion of recursive
estimation problems, which require solving two mini-
mization problems in sequence.
Among the class of estimators indexed by a, the
ones with the smallest asymptotic covariance matrix
satisfy:

a=ed X!
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where e is any nonsingular matrix, and the best
covariance matrix is d'(Z,) "' d. This may be shown by
imitating the proof of the famed Gauss-Markov
Theorem, which establishes that the ordinary least
squares estimator is the best, linear unbiased esti-
mator.

3.3 Semiparametric Efficiency

Many GMM applications, including ones that we
describe subsequently, imply an extensive (infinite)
collection of moment conditions. To apply the pre-
vious analysis requires an ad hoc choice of focal
relations to use in estimation. Hansen (1985) extends
this indexation approach to time-series problems with
an infinite number of moment conditions. The
efficiency bound for an infinite family of GMM
estimators can be related to the efficiency of other
estimators using a semiparametric notion of efficiency.
A semiparametric notion is appropriate because an
infinite-dimensional nuisance parameter is needed to
specify fully in the underlying model. It has been
employed by Chamberlain (1987) and Hansen (1993)
in their study of GMM estimators constructed from
conditional moment restrictions.

4. Linear Models

Researchers in econometrics and statistics have long
struggled with the idea of how to identify an unknown
coefficient vector f, in a linear model of the form:

B,y =y,

where y, is a k-dimensional vector of variables
observed by an econometrician. Least squares solves
this problem by calling one of the variables, y,,, the
dependent variable and requiring the remaining
variables, y,,, to be orthogonal to the disturbance
term:

Eu,y,) =0

Alternatively, as suggested by Karl Pearson and
others, when there is no natural choice of a left-hand
side variable, we may identify f8, as the first principal
component, the linear combination of y, with maximal
variance subject to the constraint || = 1.

A third identification scheme exploits the time series
structure and has an explicit economic motivation. It
is a time-series analog to the instrumental variables
and two-stage least squares estimators familiar to
economists. Suppose that a linear combination of y,
cannot be predicted given data sufficiently far back
into the past. That is,

EB, v |7 ,) =0 3)

where &, is a conditioning information set that
contains at least current and past values of y,. This
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conditional moment restriction can be used to identify
the parameter vector f,, up to scale. In this setup there
may be no single variable to be designated as en-
dogenous with the remainder being exogenous or even
predetermined. Neither least squares nor principal
components are appropriate for identifying f,.

The model or the precise context of the application
dictates the choice of lag m. For instance, restriction
(3) for a specified value of m follows from martingale
pricing relations for multiperiod securities, from Euler
equations from the investment problems faced by
decision-makers, or from the preference horizons of
policy-makers.

To apply GMM to this problem, use Eqn. (3) to
deduce the matrix equation:

E(Zfr*’"ly;) ﬁo = 0

where z, is an n-dimensional vector of variables in the
conditioning information set %, and n>k—1. By
taking unconditional expectations we see that f, is in
the null space of the n by k matrix E(z,_,»;). The
model is over-identified if n > k. In this case the matrix
E(z,_,,»,) must be of reduced rank and in this sense is
special. This moment condition may be depicted as in
Eqn. (1) with:

f(xt’ ﬂ) = Zt—my;ﬁn

where x, is a vector containing the entries of z,_,, and
»,. The GM M test of over-identification, based on say
a minimum chi-square objective, aims to detect this
reduced rank. The GMM estimator of 5, seeks to
exploit this reduced rank by approximating the di-
rection of the null space.

For the GMM applications in this and Sect. 5,
there is a related but independent statistics literature.
Godambe and Heyde (1987) and others study effi-
ciency criteria of martingale estimation equations for
a fully specified probability model. By contrast, our
models are partially specified and have estimation
equations, e.g. Y./ [z,_,»]p,. that is a martingale
only when m = 1. When the estimation equation is
not a martingale, Hansen (1982) and Hansen (1985)
construct an alternative martingale approximation to
analyze statistical efficiency.

Given that the null space of Ez, ,y, is not de-
generate, it might have more dimensions than one.
While the moment conditions are satisfied (the null
space of E(z, ,y,) is nondegenerate), the parameter
vector itself is under-identified. Recent literature on
weak instruments is aimed at blurring the notion
of being underidentified. See Stock and Wright (2000)
for an analysis of weak instruments in the context of
GMM estimation.

As posed here the vector £, is not identified but is at
best identified up to scale. This problem is analogous
to that of principal component analysis. At best we
might hope to identify a one-dimensional subspace.
Perhaps a sensible estimation method should therefore
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locate a subspace rather than a parameter vector.
Normalization should be inessential to the identifi-
cation beyond mechanically selecting the parameter
vector within this subspace. See Hansen et al. (1996)
for a discussion of normalization invariant GMM
estimators. This argument is harder to defend than it
might seem at first blush. Prior information about the
normalized parameter vector of interest may eliminate
interest in an estimation method that is invariant to
normalization.

There are some immediate extensions of the pre-
vious analysis. The underlying economic model may
impose further, possibly nonlinear, restrictions on the
linear subspace. Alternatively, the economic model
might imply multiple conditional moment relations.
Both situations are straightforward to handle. In the
case of multiple equations, prior restrictions are
needed to distinguish one equation from another, but
this identification problem is well studied in the
econometrics literature.

4.1 Applications

A variety of economic applications produce con-
ditionalmomentrestrictions of the formin Eqn. (3). For
instance, Hansen and Hodrick (1980) studied the
relation between forward exchange rates and future
spot rates where m is the contract horizon. Conditional
moment restrictions also appear extensively in the
study of a linear-quadratic model of production
smoothing and inventories (see West 1995 for a survey
of this empirical literature). The first-order or Euler
conditions for an optimizing firm may be written as
Eqn. (3) with m = 2. Hall (1988) and Hansen and
Singleton (1996) also implement linear conditional-
moment restrictions in the lognormal models of
consumption and asset returns. These moment con-
ditions are again derived from first-order conditions,
but in this case for a utility-maximizing consumer/
investor with access to security markets. Serial
correlation due to time aggregation may cause m to
be two instead of one. Finally, the linear conditional
moment restrictions occur in the literature on mone-
tary policy response functions when the monetary
authority is forward-looking. Clarida et al. (2000)
estimate such models in which m is dictated by
preference horizon of the Federal Reserve Bank in
targeting nominal interest rates.

4.2 Efficiency

The choice of z,_,, in applications is typically ad hoc.
The one-dimensional conditional moment restriction
of Eqn. (3) actually gives rise to an infinite number of
unconditional moment restrictions through the choice
of the vector z,_, in the conditioning information set
Z,_,.- Any notion of efficiency based on a preliminary

choice z,_,, runs the risk of missing some potentially
important information about the unknown parameter
vector f5,. It is arguably more interesting to examine
asymptotic efficiency across an infinite-dimensional
family of GM M estimators indexed by feasible choices
of z,_,. This is the approach adopted by Hansen
(1985), Hansen et al. (1988) and West (2000). The
efficient GMM estimator that emerges from this
analysis is infeasible because it depends on details of
the time series evolution. West and Wilcox (1996)
and Hansen and Singleton (1996) construct feasible
counterpart estimators based on approximating the
time series evolution needed to construct the efficient
z, .- In particular, West and Wilcox (1996) show
important improvements in the efficiency and finite
sample performance of the resulting estimators.
Efficient GMM estimators based on an infinite
number of moment conditions often place an extra
burden on the model-builder by requiring that a full
dynamic model be specified. The cost of mis-
specification, however, is not so severe. While a
mistaken approximation of the dynamics may cause
an efficiency loss, by design it will not undermine the
statistical consistency of the GM M estimator.

5. Models of Financial Markets

Models of well-functioning financial markets often
take the form:

E (dt Z | ft—m) =4dim (4)

where z, is a vector of asset payoffs at date #, ¢,_,, isa
vector of the market prices of those assets at date 7, and
&, is an information set available to economic
investors at date ¢. By assumption, the price vector g,
is included in the information set &,  The random
variable d, is referred to as a ‘stochastic discount
factor’ between dates t—m and date ¢. This discount
factor varies with states of the world that are realized
at date 7 and encodes risk adjustments in the security
market prices. These risk adjustments are present
because some states of the world are discounted more
than others, which is then reflected in the prices. The
existence of such a depiction of asset prices is well
known since the work of Harrison and Kreps (1979),
and its conditional moment form used here and
elsewhere in the empirical asset pricing literature is
justified in Hansen and Richard (1987). In asset pricing
formula (4), m is the length of the financial contract,
the number of time periods between purchase date and
payoff date.

An economic model of financial markets is con-
veniently posed as a specification of the stochastic
discount factor d,. It is frequently modeled para-
metrically:

d,=g,b,) ©)
9747



Method of Moments

where the function g is given a priori but the parameter
f, is unknown, and a target of estimation. Models of
investor preferences may be written in this manner as
can observable factor models in which d, is a function
(often linear) or vector y, of ‘factors’ observed by an
econometrician. See Cochrane (2001) for examples
and a discussion of how this approach is connected to
other empirical methods in financial economics.

To apply GM M estimation, inference, and testing to
this problem we do two things. First we replace Eqn.
(4) by its unconditional counterpart:

E(dtzt - qt—m) =0

which can be justified by applying the Law of Iterated
Expectations. Second we substitute Eqn. (5) into this
unconditional moment implication:

E[g(y,, ﬁo)zz _qtfm] = 0
This may be depicted as (1) by writing:

.f(xt’ ﬁ) = g(yv ﬁ)zt “bim

where x, contains the entries of the factors y,, the asset
payoffs z,, and the corresponding prices ¢, ,. As is
evident from Hansen and Singleton (1982) and
Kocherlakota (1996), GM M-based statistical tests of
this model give rise to one characterization of what is
commonly termed as the ‘equity-premium puzzle.’
This puzzle is a formal statement of how the observed
risk—return trade-off from financial market data is
anomalous when viewed through the guises of many
standard dynamic equilibrium models from the
macroeconomics and finance literatures.

Studying unconditional rather than conditional
moment relations may entail a loss of valuable
information for estimation and testing. As emphasized
by Hansen and Richard (1987), however, information
in the set %, , may be used by an econometrician to
form synthetic payoffs and prices. This information is
available at the initiation date of the financial contract.
While use of conditioning information to construct
synthetic portfolios reduces the distinction between
conditional and unconditional moment restrictions, it
introduces additional challenges for estimation and
inference that are being confronted in ongoing econo-
metric research.

6. From Densities to Diffusions

A century ago Karl Pearson proposed a family of
density functions and a moments-based approach to
estimating a parameterized family of densities. The
densities within this family have logarithmic deriv-
atives that are the ratio of a first to a second-order
polynomial. More recently, Wong (1964) provided
scalar diffusion models with stationary distributions in
the Pearson family. Diffusion models are commonly
used in economic dynamics and finance.
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A scalar diffusion is a solution to a stochastic
differential equation:

dx, = pu(x,) dt+o(x,)dB,

where u is the local mean or drift for the diffusion, o®
is the local variance or diffusion coefficient, and B, is
standard Brownian motion. I now revisit Pearson’s
estimation problem and method, but in the context of
a data generated by a diffusion.

The stationary density ¢ of a diffusion satisfies the
integral equation:

4 o d¢
fr[ﬂ¢+2dx] qdx =0 (6)
for a rich class of ¢’s, referred to as test functions. This
gives an extensive family of moment conditions for
any candidate (u, ). In particular, moment con-
ditions of the form (1) may be built by parameterizing
« and ¢? and by using a vector of test functions ¢.
Pearson’s moment recursions are of this form with test
functions that are low-order polynomials.

Pearson’s method of estimation was criticized by
R. A. Fischer because it failed to be efficient for many
members of the Pearson family of densities. Pearson
and Fischer both presumed that the data generation is
iid. To attain asymptotic efficiency with 7id data, linear
combinations of f(x, f8,) should reproduce the score
vector for an implied likelihood function. Low-order
polynomials fail to accomplish this for many members
of the Pearson family of densities, hence the loss in
statistical efficiency.

When the data are generated by a diffusion, the
analysis of efficiency is altered in a fundamental way.
Parameterize the time series model via (u;, ;). There
is no need restrict u and ¢* to be low-orc{er poly-
nomials. Let @ be a vector of test functions with at
least as many component functions as parameters to
estimate. Associated with each @ is a GM M estimator
by forming:

S ) = ()5 03 () 5 ()

The moment conditions (1) follow from Eqn. (6).

Conley et al. (1997) calculate the efficiency bounds
for this estimation problem using the method de-
scribed in Hansen (1985). They perform this
calculation under the simplifying fiction that a
continuous-data record is available and show that an
efficient choice of @ is:

_ 0 2u,(x)+doj(x)/dx
(Dﬁ(x) = 6/3 G; (.X') (7)

The choice of test function turns out to be the
‘derivative’ of the score vector with respect to the
Markov state x. This efficient choice of @ depends on
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the true parameter vector f§, and hence is infeasible to
implement. Conley et al. (1997) show that the same
efficiency can be attained by a feasible estimator in
which @ is allowed to depend on f as in Eqn. (7). The
score function derivative is easier to compute than
the score function itself because the constant of in-
tegration for implied density does not have to be
evaluated for each . While tractable, this efficient test
function solution to the time series problem will
typically not lead one to use low-order polynomials as
test functions even for Pearson’s parameterizations.

Pearson used moment recursions to construct trac-
table density estimates without numerical integration.
Computational concerns have subsided, and the dif-
fusion model restricts more than just the stationary
density. Transition densities can also be inferred
numerically for a given (u, o*) pair. To motivate fitting
only the stationary density, a model-builder must
suppose potential model misspecification in the tran-
sition dynamics. One example of this form of mis-
specification is a subordinated diffusion model used to
model financial time series in which calendar time and
amore relevant information-based notion of economic
time are distinct.

Integral equation (6) is ‘localized’ by using smooth
test functions that concentrate their mass in the
vicinity of given points in the state space. Banon
(1978) exploited this insight to produce a nonpara-
metric drift estimator using a locally constant
parameterization of u. Conley et al. (1997) justify
a local linear version of the GMM test function
estimator described in the previous subsection.

7. Related Approaches

Since around 1990 statisticians have explored em-
pirical likelihood and other related methods. These
methods are aimed at fitting empirical data distri-
butions subject to a priori restrictions, including
moment restrictions that depend on an unknown
parameter. In particular, Qin and Lawless (1994) have
shown how to use empirical likelihood methods to
estimate parameters from moment restrictions like
those given in (1) for iid data. While Qin and Lawless
(1994) use the statistics literature on estimation
equations for motivation, they were apparently un-
aware of closely-related econometrics literature on
GM M estimation. Baggerly (1998) describes a general-
ization of the method of empirical likelihood based on
the Cressie-Read divergence criterion. Imbens et al.
(1998) and Bonnal and Renault (2001) use this
generalization to unify the results of Qin and Lawless
(1994), Imbens (1997), Kitamura and Stutzer (1997),
and others and GM M estimation with a continuously-
updated weighting matrix. (See Newey and Smith
(2000) for a related discussion.) Within the #id frame-
work, Bonnal and Renault (2001) show that the
continuously updated GMM estimator is a counter-
part to empirical likelihood except that it uses

Pearson’s y* criterion. The relative entropy or
information-based estimation of Imbens (1997) and
Kitamura and Stutzer (1997) is of the same type but
based on an information criterion of fit for the
empirical distribution.

Kitamura and Stutzer (1997) and others use clever
blocking approaches for weakly dependent data to
adapt these methods to time series estimation prob-
lems. Many GMM applications imply ‘conditional’
moment restrictions where the conditioning infor-
mation is lagged m time periods. Extensions of these
empirical distribution methods to accommodate time
series ‘conditional’ moment implications is an im-
portant area of research.

8.  Moment-matching Reconsidered

Statistical methods for partially specified models
allow researchers to focus an empirical investigation
and to understand sources of empirical anomalies.
Nevertheless, the construction of fully specified
models is required to address many questions of
interest to economists such as the effect of hypothetical
interventions or policy changes.

Models of economic dynamical systems remain
highly stylized, however; and they are not rich enough
empirically to confront a full array of empirical inputs.
Producing interesting comparative dynamic results for
even highly stylized dynamic systems is often difficult,
if not impossible, without limiting substantially the
range of parameter values that are considered. Since
analytical solutions are typically not feasible, compu-
tational methods are required. As in other disciplines,
this has led researchers to seek ways to calibrate
models based on at least some empirical inputs. See
Hansen and Heckman (1996) for a discussion of
this literature. The analysis of dynamical economic
systems brings to the forefront both computational
and conceptual problems.

The computational problems are reminiscent to
those confronted by the inventors of minimum chi-
square methods. Two clever and valuable estimation
methods closely related to moment matching have
recently emerged from the econometrics literature.
One method is called ‘indirect inference’ and has been
advanced by Smith (1993) and Gourieroux et al.
(1993). The idea is to fit a conveniently chosen, but
misspecified approximating model that is easy to
estimate. The empirical estimates from the approxi-
mating model are used as targets for the estimation
of the dynamic economic model. These targets are
‘matched’ using a minimum chi-square criteria.

This method is sometimes difficult to implement
because the implied approximating models associated
with the dynamic economic model of interest may be
hard to compute. Gallant and Tauchen (1996) cir-
cumvent this difficulty by using the score function for
the approximating model (evaluated at the empirical
estimates) as targets of estimation. The computational
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burden is reduced to evaluating an empirical score
expectation as a function of the underlying parameter
of interest. This allows researchers to use an expanded
set of approximating statistical models.

In both of these methods there are two models in
play, an approximating statistical model and an
underlying economic model. These methods address
some of the computational hurdles in constructing
parameter estimators through their use of convenient
approximating statistical models. On the other hand,
it is harder to defend their use when underlying
dynamic economic model is itself misspecified. Gallant
and Tauchen (1996), for instance, use statistical
efficiency as their guide in choosing approximating
statistical models. Better approximating models
results in more accurate estimators of the parameters
of interest. This justification, however, neglects the
role of misspecification in the underlying dynamic
economic model. For ‘indirect inference’ it is often not
evident how to construct approximating models that
leave the estimates immune to the stylized nature of
the underlying economic model. Thus it remains an
important challenge for econometricians to devise
methods for infusing empirical credibility into ‘highly
stylized” models of dynamical economic systems.
Dismissing this problem through advocating only the
analysis of more complicated ‘empirically realistic’
models will likely leave econometrics and statistics
on the periphery of important applied research.
Numerical characterizations of highly stylized models
will continue with or without the aid of statistics and
econometrics.
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Methodological Individualism in Sociology

Methodological individualism in sociology refers to
the explanatory and modeling strategies in which
human individuals (with their motivations) and hu-
man actions (with their causes or reasons) are given a
prominent role in explanations and models. Social
phenomena are viewed as the aggregate results of
individual actions. Explanation thus proceeds from
the parts to the whole: individual action has an
explanatory primacy in relation to social facts,
society’s properties, and observed macroregularities.
Among the problems associated with this method-
ology, the following three are of special interest: (a)
how should individual characteristics be selected and
connected? (b) does the relevance of individualism as a
methodology depend on the way models and theories
are used?, and (c¢) how should individualistic social
science take individual cognition into account?

International Encyclopedia of the Social & Behavioral Sciences

1. Individualism and the Form of Explanations

1.1 Giving Primacy to Individuals

While the constitution of sociology as an autonomous
discipline has involved the recognition of a separate
layer of ‘social facts,” methodological individualism,
which presupposes the existence of social facts as an
explanandum for social science, is not alien to the
sociological tradition, as exemplified by the work of
Weber, Pareto, and others. A general feature of indi-
vidualistic explanations is that individual motivations,
preferences, reasons, propensities, or individual char-
acteristics generally speaking figure explicitly in the
proposed models and explanations, together with
the description of relevant technological and natural
circumstances.

Methodological individualism has gained influence
in the twentieth century through the work of such
authors as Mises, Popper, and Hayek, but its emerg-
ence is traceable to the debates in nineteenth century
Germany and Austria about the nature of explanation
in history, the status of economic theory, and the
respective scientific roles of nomological explanation
and particular understanding. It is associated classi-
cally with the requirement of a real understanding of
the motivations of the social actors themselves (as
illustrated by Simmel 1900, Weber 1922).

This methodology can be contrasted with several
types of nonindividualistic methods (Boyer 1992). It is
violated by those theories which rely on the operation
of impersonal forces (such as nature, mind, history,
progress, or destiny), and by ‘holistic’ explanations in
which the properties of collective entities (such as
nations, classes, social groups, or society as a whole)
or unconscious forces are given an independent
explanatory role.

Methodological individualism is compatible with
ontological holism about collective entities, in the
following sense: individualistic social scientists may
recognize the existence of social entities (such as
‘cultures’ or ‘traditions’) which are irreducible to
individual component parts. But they postulate that
only individuals have goals and interests, and that
these have explanatory value with respect to human
conduct. They reject or reinterpret the notion of
collective belief. Finally, they recognize that the social
set-up can be transformed through the action of
individuals. This makes methodological individualism
hardly compatible with the more deterministic
versions of historical materialism, although it is
congenial to some Marxian themes, in particular
Marx’s criticism of the belief in the historical
effectiveness of abstract notions of man, society, and
consciousness.

1.2 Individual Motivation

Some individual characteristics should figure in the
explanans in an explicit manner. But which are the
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