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EXAMINING MACROECONOMIC MODELS WITH
FINANCING CONSTRAINTS THROUGH THE LENS

OF ASSET PRICING
Dynamic stochastic equilibrium models of macro economy are
designed to match transient time series properties including impulse
response functions. Gertler, Kiyotaki and others have extended this
literature by introducing financing constraints that alter investment
opportunities. Since these models aim to be structural, they have
implications for asset pricing. To assess these implications, we
consider asset pricing counterparts to impulse response functions. We
quantify the exposures of alternative macroeconomic cash flows to
shocks over alternative investment horizons and the corresponding
prices or compensations that investors must receive because of their
exposure to such shocks. We build on the continuous-time methods
developed in Hansen and Scheinkman and our earlier work and
construct discrete-time shock elasticities that measure the sensitivity
of cash flows and their prices to economic shocks including economic
shocks featured in the empirical macroeconomics literature. 2 / 24



OUTLINE
I Construct shock price and shock exposure elasticities as inputs

into valuation accounting.
I Go beyond log-linearization methods to accommodate stochastic

volatility and other sources of nonlinearity in the dynamic
evolution.

I Previously - long-run cash flow predictability and time-variation
in expected returns.

I Our aim - dynamic risk or shock exposure elasticities for
cash-flows and dynamic risk or shock price elasticities.

References:
I Pricing Growth Rate Risk, Hansen and Schienkman, Finance and

Stochastics
I Risk Price Dynamics, Borovička, Hansen, Hendricks and

Scheinkman, Journal of Financial Econometrics
I Explore these elasticities in the context of a recent

macroeconomic model with financial frictions. Ongoing work
with Borovička.
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TALK OUTLINE

I Elasticities and valuation accounting
I Log-exponential parameterization
I Recursive utility revisited
I Financial market wedges
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SETUP

Suppose X is first-order Markov, and W is an iid sequence of
multivariate, standard normally distributed random vectors.

I Conditional Gaussian model in logarithms:

Yt =
t−1∑
s=0

[β (Xs) + α (Xs) ·Ws+1] .

I Levels Mt = exp(Yt). Examples of M include a macroeconomic
growth functional G such as consumption or capital and a
stochastic discount factor functional S used to price assets.
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SINGLE-PERIOD ASSET PRICING
Suppose that

log G1 = βg(X0) + αg(X0) ·W1

log S1 = βs(X0) + αs(X0) ·W1

R1 =
G1

E(S1G1|X0)
Logarithm of the expected return is:

log E(G1|X0 = x)− log E(S1G1|X0 = x) =

− βs(x)− αg(x) · αs(x)− |αs(x)|2

2
Then −αs is the risk price vector for exposure to the components of
W1.
Asset pricing puzzle: Modeled versions of |αs| are too small.
Recursive utility gives one way to address using seemingly large
values of γ.
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ALTERNATIVE APPROACH THAT EXTENDS TO
OTHER INVESTMENT HORIZONS

Compute elasticities.

I Consider a parameterized family of payoffs.

H1(r) = rαh(X0) ·W1 −
r2

2
|αh(X0)|2

where

E[|αh(X0)|2] = 1.

Then αh gives an exposure direction and H1(r) has conditional
expectation equal to one.

I Form G1H1(r) where

log G1+log H1(r) = [αg(X0) + rαh(X0)]·W1+βg(X0)−(r)2

2
|αh(X0)|2

Parameterized family of asset payoffs to be priced.
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ELASTICITIES

I Compute expected return:

log E[G1H1(r)|X0 = x]− log E[S1G1H1(r)|X0 = x]

I Differentiate:
d
dr

log E[G1H1(r)|X0 = x]|r=0−
d
dr

log E[S1G1H1(r)|X0 = x]|r=0

I Component elasticities:
1. shock-exposure elasticity:

εg(x) =
d
dr

log E[G1H1(r)|X0 = x]|r=0 = αg(x) · αh(x)

2. shock-value elasticity:

εv(x) =
d
dr

log E[S1G1H1(r)|X0 = x]|r=0 = αs(x)·αh(x)+αg(x)·αh(x)

3. shock-price elasticity:

εp(x) = εg(x)− εv(x) = −αs(x) · αh(x)
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EXTENDING THE INVESTMENT HORIZON

I Construct payoff: GtH1(r).
I Compute price: E [StGtH1(r)|X0 = x]
I Form elasticities:

1. shock-exposure elasticity for horizon t:

εg(x, t − 1) =
d
dr

1
t

log E[GtH1(r)|X0 = x]|r=0

2. shock-value elasticity for horizon t and (and shock date one):

εv(x, t − 1) =
d
dr

1
t

log E[StGtH1(r)|X0 = x]|r=0

3. shock-price elasticity for horizon t:

εp(x, t − 1) = εg(x, t − 1)− εv(x, t − 1).
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REPRESENTATIONS

Let M be a multiplicative functional (either G or SG). Then

εm(x, t) = αh(x) · E (MtW1|X0 = x)
E (Mt|X0 = x)

Observations

I When M is log-linear, essentially recovers the impulse response
function for log M in response to a shock αh ·W1. Shock
exposure elasticities reflect impulse response functions for log G,
shock-price elasticities reflect impulse response functions for
− log S

I With stochastic volatility and other sources of nonlinearity, the
choice of G matters for computing the shock-price elasticities.

I The elasticities are inputs into valuation accounting.
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REPRESENTATION CONTINUED

Recall the change of measure based on the factorization:

Mt = exp(ηt)M̂t
e(X0)
e(Xt)

where M̂ is multiplicative martingale. Then

εm(x, t − 1) = αh(x) · Ê [ê(Xt)W1|X0 = x]
Ê [ê(Xt)|X0 = x]

.

where ê = 1
e .

Observations:

I Under the change of measure, the expectation of W1 is not zero
and determines limiting value: αh(x) · Ê [W1|X0 = x].

I Reflects the state-dependent counterpart to the impulse response
function for ê using Markov diffusions.
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SHIFTING THE SHOCK EXPOSURE DATE
Shock date is at τ and the impact date at t + τ .

The resulting elasticity is:

Ê [ê(Xt+τ )ε(Xτ−1, t)|X0 = x]
Ê [ê(Xt+τ )|X0 = x]

=
Ê [ê(Xt+τ )αh(Xτ−1) ·Wτ |X0 = x]

Ê [ê(Xt+τ )|X0 = x]

The shifted elasticity depends on ê and on the alternative probability
distribution.

Some limits:
I For large t and a fixed τ the limiting elasticity is:

Ê [αh (Xτ−1) ·Wτ |X0 = x] .

I For t = 0 and large τ the limiting elasticity is:

Ê [ê(X0)αh (X0) ·W1]
Ê [ê(X0)]

.
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TALK OUTLINE

I Elasticities and valuation accounting
I Log-exponential parameterization
I Recursive utility revisited
I Financial market wedges
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EXPONENTIAL-QUADRATIC FRAMEWORK

Triangular state vector system:

X1,t+1 = ∆10 + ∆11X1,t + Λ10Wt+1

X2,t+1 = ∆20 + ∆21X1,t + ∆22X2,t + ∆23 (X1,t ⊗ X1,t)
+Λ20Wt+1 + Λ21 (X1,t ⊗Wt+1) + Λ23 (Wt+1 ⊗Wt+1)

I Stable dynamics if ∆11 and ∆22 have stable eigenvalues.
I Structure allows for stochastic volatility through X1,t ⊗Wt+1

Additive functionals

Yt+1 − Yt = Γ0 + Γ1Xt + Γ2 (X1,t ⊗ X1,t)
+Θ0Wt+1 + Θ1 (X1,t ⊗Wt+1) + Θ2 (Wt+1 ⊗Wt+1)

I Use to model stochastic discount factor and growth functionals.
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COMPONENT CALCULATIONS
The framework allows for quasi-analytical formulas for conditional
expectations of multiplicative functionals and for elasticities.

I Start with

log f (x) = φ+ Φx +
1
2

(x1)′Ψ(x1)

I Then

log E
[(

Mt+1

Mt

)
f (Xt+1)|Xt = x

]
= log E [exp (Yt+1 − Yt) f (Xt+1) | Xt = x]

= φ∗ + Φ∗x +
1
2

(x1)′Ψ∗(x1)

= log f ∗(x)

Functional form for positive eigenfunctions and conditional
expectations that accommodates growth and discounting and
stochastic volatility.
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APPROXIMATION

I Much of the existing macroeconomic literature uses
“perturbation” methods.

I log-linearization/ first-order approach
I used to fit responses to macroeconomic quantities to small shocks
I not suitable for stochastic volatility

Our approach

I log approximation of our one-period valuation operators
second-order in x1.

I include both zeroth order and first-order terms in shock exposure
I include zeroth and first-order terms in x2 and zeroth, first and

second-order terms in x1

I impose stochastic stability - follow Schmitt-Grohe and Uribe,
Kim, Kim, Schaumburg and Sims, and Lombardo.

Convenient, but ...
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TALK OUTLINE

I Elasticities and valuation accounting
I Log-exponential parameterization
I Recursive utility revisited
I Financial market wedges
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RECURSIVE UTILITY

I Continuation values

Vt =
[
(ζCt)1−ρ + exp(−δ) [Rt(Vt+1)]1−ρ

] 1
1−ρ

where

Rt (Vt+1) =
(
E
[
(Vt+1)1−γ |Ft

]) 1
1−γ

I Intertemporal marginal rate of substitution

St+1

St
= exp(−δ)

(
Ct+1

Ct

)−ρ [ Vt+1

Rt(Vt+1)

]ρ−γ
.

Depends on continuation values, which gives a channel for
sentiments to matter.

Used to represent asset prices.
18 / 24



A LOGNORMAL EXAMPLE WITH ρ = 1

Use a specification from Hansen-Heaton-Li (JPE).

I State dynamics:

Xt+1 = ∆0 + ∆1Xt + ΛWt+1

I Consumption dynamics:

Yt+1 − Yt = Γ0 + Γ1Xt + ΘWt+1

where log Ct = Yt.
I Impulse response/shock exposure elasticity for shock αh ·W1

and G = C:

εg(0) = Θαh εg(t) =
[
Θ + Γ1

∑t−1
j=0(∆1)jΛ

]
αh

No state dependence.
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RECURSIVE UTILITY EXAMPLE CONTINUED

I Shock-exposure elasticity for shock αh ·W1 and G = C:

εc(0) = Θαh εg(t) =
[
Θ + Γ1

∑t−1
j=0(∆1)jΛ

]
αh

I Shock-price elasticity for shock αh ·W1

εp(j) = εg(j) + (γ − 1)
[
Θ + Γ1 (I − β∆1)−1 Λ

]
αh

When γ is large the price elasticity is dominated by

(γ − 1)
(

Θ + Γ1 [I − exp(−δ)∆1]−1 Λ
)
αh,

which does not depend on the investment horizon. When
exp(−δ) ≈ 1, this term coincides with the limiting consumption
exposure elasticity scaled by γ − 1.

Recursive utility adds a forward-looking component to valuation.
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SHOCK-PRICE TRAJECTORIES FOR POWER AND
RECURSIVE UTILITY
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Student Version of MATLAB

Revisited from lecture one. Stochastic volatility is incorporated.
Volatility state set at its unconditional mean.
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TALK OUTLINE

I Elasticities and valuation accounting
I Log-exponential parameterization
I Recursive utility revisited
I Financial market wedges (more discussion will be added)
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MODEL INGREDIENTS

Gertler-Kiotaki with recursive utility.

I Communication friction - firms that produce output return
proceeds to consumers at random dates in the future.

I Wedge between internal and external financing of new capital -
external financing recognizes that producers could confiscate a
fraction of the capital after respecting commitments to internal
financiers. Represent this wedge with two stochastic discount
factors.

I No financial distortions for the production of new investment
goods.

I Four shocks - neutral technology shock, investment specific
shock, capital quality shock, and a financing constraint shock
that represents the potency of the threat to confiscate.

I Stochastic volatility.
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SHOCK-PRICE ELASTICITIES

Introduction One-period example Elasticities Exp-quad framework Approximations Model Results Appendix

Pricing differences across stochastic discount factors

Shock-price elasticities for S (household) and S1 (bank)

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

maturity (quarters)

neutral technology shock

 

 

0 20 40 60 80 100
−0.05

0

0.05

0.1

0.15

maturity (quarters)

investment specific shock

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

maturity (quarters)

capital quality shock

0 20 40 60 80 100
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

maturity (quarters)

financing constraint shock

household sdf
bank sdf

Borovička, Hansen, University of Chicago Financial constraints 30/46“Banks”are the internal financiers. Shock-price trajectories are
depicted at the median state volatility state and at the upper and lower
quartiles.
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