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Preface

This manuscript started off as the Toulouse Lectures given by Lars Pe-
ter Hansen. Our aim is to explore connections among topics that relate
probability theory to the analysis of dynamic stochastic economic systems.
Martingale methods have been a productive way to identify shocks with
long-term consequences to economic growth and to characterize long-run
dependence among macroeconomic time series. Typically they are applied
by taking logarithms of time series such as output or consumption in order
that growth can be modeled as accumulating linearly over time, albeit in a
stochastic fashion. Martingale methods applied in this context have a long
history in applied probability and applied time series analysis. We review
these methods in the first part of this monograph. In the study of valu-
ation, an alternative martingale approach provides a notion of long-term
approximation. This approach borrows insights from large deviation the-
ory, initiated in part to study the behavior of likelihood ratios of alternative
time series models. We show how such methods provide characterizations
of long-term model components and long-term contributions to valuation.
Large deviation theory and the limiting behavior of likelihood ratios has
also been central to some formulations of robust decision making. We de-
velop this connection and build links to recursive utility theory in which
investors care about the intertemporal composition of risk. Our interest
in “robustness” and likelihood ratios is motivated by our conjecture that
the modeling of the stochastic components to long-term growth is chal-
lenging for both econometricians and the investors inside the models that
econometricians build.

More technical developments of some of these themes are given in Hansen
and Scheinkman (1995), Anderson et al. (2003), Hansen and Scheinkman
(2009) and Hansen (2008).
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Chapter 1

Stochastic Processes

In this chapter, we describe two ways of constructing stochastic processes.
The first is one that is especially convenient for stating and proving limit
theorems. The second is more superficial in the sense that it directly speci-
fies objects that are outcomes in the first construction. However, the second
construction is the one that is most widely used in modeling economic time
series. We shall use these constructions to characterize limiting behav-
ior both for stationary environments and for environments with stochastic
growth.

1.1 Constructing a Stochastic Process: I

We begin with a method of constructing a stochastic process that is con-
venient for characterizing the limit of points of time series averages.1 This
construction works with a deterministic transformation S that maps a state
of the world ω ∈ Ω today into a state of the world S(ω) ∈ Ω tomorrow.
The state of the world itself is not observed. Instead, a vector X(ω) that
contains incomplete information about ω is observed. We assign probabili-
ties over states of the world ω, then use the functions S and X to deduce a
joint probability distribution for a sequence of X’s. In more detail:

• The probability space is a triple (Ω, F, P r), where Ω is a set of sam-
ple points, F is an event collection (sigma algebra), and Pr assigns

1A good reference for the material in this section and the two that follow it is Breiman
(1968).

1
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Figure 1.1: This figure depicts the state evolution as a function of sample
point ω induced by the transformation S. The oval shaped region is the
collection Ω of all sample points.

probabilities to events.

• The (measurable) transformation S : Ω → Ω used to model the evo-
lution over time has the property that for any event Λ ∈ F,

S
−1(Λ) = {ω ∈ Ω : S(ω) ∈ Λ}

is an event. Notice that S
t(ω) is a deterministic sequence of states of

the world in Ω.

• The vector-valued function X : Ω → R
n used to model observations

is Borel measurable. That is for any Borel set b in R
n,

Λ = {ω ∈ Ω : X(ω) ∈ b} ∈ F.

In other words, X is a random vector.
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• The stochastic process {Xt : t = 1, 2, ...} used to model a sequence of
observations is constructed via the formula:

Xt(ω) = X[St(ω)]

or
Xt = X ◦ S

t.

The stochastic process {Xt : t = 1, 2, ...} is a sequence of n-dimensional
random vectors, and the probability measure Pr allows us to make proba-
bilistic statements about the joint distribution of successive components of
this sequence. It will sometimes be convenient to extend this construction
to date zero by letting X0 = X.

While this construction of a stochastic process may at first sight appear
special, it is not, as the following example illustrates.

Example 1.1.1. Let Ω be a collection of infinite sequences of elements of
R

n. Specifically, ω = (r0, r1, ...), S(ω) = (r1, r2, ...) and x(ω) = r0. Then
Xt(ω) = rt.

1.2 Stationary Stochastic Processes

A state of a dynamic system is a complete description of its current position.
The current state summarizes all information that can be gleaned from the
past that is pertinent to forecasting the future. A stationary or steady
state remains invariant as time passes. In a stochastic dynamic system, a
stationary state is a probability distribution. In a stochastic steady state,
for any finite τ the probability distribution of the composite random vector
[Xt+1

′, Xt+2
′, ..., Xt+ℓ

′]
′
does not depend on t.

For a given S, we can restrict the probability measure Pr to induce
stationarity.

Definition 1.2.1. The transformation S is measure-preserving if

Pr(Λ) = Pr{S
−1(Λ)}

for all Λ ∈ F.

Proposition 1.2.2. When S is measure-preserving, the distribution func-
tion for Xt is identical for all t ≥ 0.
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Given X, form a vector

X [ℓ](ω)
.
=







X1(ω)
X2(ω)

...

Xℓ(ω)







,

Apply Proposition to X [ℓ] and conclude that the joint distribution function
for (Xt+1, Xt+2, ..., Xt+ℓ) is independent of t for t = 0, 1, . . .. The fact that
this property holds for any choice of ℓ is equivalent to a statement that the
process {Xt : t = 1, 2, ...} is stationary.2 Thus, the restriction that Pr be
measure-preserving implies that the stochastic process {Xt : t = 1, 2, ...} is
stationary.

Example 1.2.3. Suppose that Ω contains two states, Ω = {ω1, ω2}. Con-
sider a transformation S that maps ω1 into ω2 and ω2 into ω1: S(ω1) = ω2

and S(ω2) = ω1. Since S
−1(ω2) = ω1 and S

−1(ω1) = ω2, for S to be measure
preserving we must have Pr(ω1) = Pr(ω2) = .5.

Example 1.2.4. Suppose that Ω contains two states, Ω = {ω1, ω2}, and
that S(ω1) = {ω1} and S(ω2) = ω2. Since S

−1(ω2) = ω2 and S
−1(ω1) = ω1,

S is measure preserving for Pr(ω1) ≥ 0 and Pr(ω1) + Pr(ω2) = 1.

1.3 Invariant Events and the Law of Large

Numbers

In this subsection, we describe a Law of Large Numbers that tells us that
time series averages converge when S is measure-preserving. We use the
concept of an invariant event to understand possible limit points and how
they are related to a conditional mathematical expectation.

Definition 1.3.1. An event Λ is invariant if Λ = S
−1(Λ).

Notice that if Λ is an invariant event and ω ∈ Λ, then S
t(ω) ∈ Λ for

t = 0, 1, ...,∞.

2Some people call this property ‘strict stationarity’ to differentiate it from notions
that require only that some moments of the joint distribution be independent of time.
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Let I denote the collection of invariant events. Among the invariant
events is the entire space, Ω, and the null set, ∅. Like F, this event collec-
tion is a sigma algebra. We are interested in constructed the conditional
expectation E(X|I) as a random vector. Consider first the case in which
the invariant events are unions of a finite partition Λj (along with the
empty set). A finite partition consists of finite nonempty events Λj such
that Λj ∩ Λk 6= ∅ for j 6= k and the union of all Λj is Ω. We assume that
each member of the partition is itself and invariant event. The expectation
condition on the event Λj is given by:

∫

Λj
XdPr

Pr(Λj)
.

This construction is applicable when ω ∈ Λj. We extend this construction
to the entire partition by

E(X|I)(ω) =

∫

Λj
XdPr

Pr(Λj)
if ω ∈ Λj .

Thus the conditional expectation E(X|I) is constant within a partition
and varies across partitions. This same construction extends directly to
countable partitions.

There is an alternative way to think about a conditional expectation
does not make reference to a partition but instead uses least squares when
X has a finite second moment. Let Z be an n-dimensional measurement
function such that

Zt(ω) = Z[St(ω)]

is time invariant (does not depend on calendar time). In the special case
in which the invariant events are constructed from a finite partition, Z

can vary across partitions but remains constant within a partition.3 Let Z
denote the collection of all such random vectors or measurement functions
and solve the following least squares problem:

min
Z∈Z

E[|X − Z|2]

where we now assume that E|X|2 < ∞. The solution to the least squares
problem is Z̃ = E(X|I). An implication of least squares is that

E
[(

X − Z̃
)

Z ′

]

= 0

3More generally, Z is measurable with respect to I.
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for Z in Z so that the vector X − Z̃ of regression errors must be orthogonal
to any vector Z in Z.

There is a more general measure-theoretic way to construct a conditional
expectation. This construction extends the orthogonality property of least
squares. Provided that E|X| < ∞, E(X|I) is essentially a unique random
variable that for any invariant event Λ satisfies

E ([X − E(X|I)]1Λ) = 0

where 1Λ is the indicator function equal to one on the set Λ and zero
otherwise.

The following states a key Law of Large Numbers.

Theorem 1.3.2. (Birkhoff) Suppose that S is measure preserving.

i) For any X such that E|X| < ∞

1

N

N∑

t=1

Xt → E(X|I)

with probability one;

ii) for any X such that E|X|2 < ∞,

E





∣
∣
∣
∣
∣

1

N

N∑

t=1

Xt − E(X|I)

∣
∣
∣
∣
∣

2


 → 0.

Definition 1.3.3. The transformation S is ergodic if all invariant events
have probability zero or one.

From a probabilistic standpoint, when S is ergodic the invariant events are
equivalent to the entire sample space Ω, which has probability one, or the
empty set ∅, which has probability measure zero. This notion of ergodicity
is a restriction on S and Pr that implies that conditioning on the invariant
events is inconsequential.

Corollary 1.3.4. Suppose that S is ergodic. Then E(X|I) = E(X).
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Under ergodicity, the limit points of time series averages are the corre-
sponding unconditional expectations. More generally, time series averages
can only reveal expectations conditioned on the invariant events.

Consider again Example 1.2.3. Suppose that the measurement vector is

X(ω) =

{
1 ω = ω1

0 ω = ω2.

Then it follows directly from the specification of S that

1

N

N∑

t=1

Xt(ω) → 1

2

for both values of ω. The limit point is the average across states. For
Example 1.2.4, Xt(ω) = X(ω) and hence the sequence is time invariant and
equal to the time series average. The time series average equals the average
across states only when one of the two states is assigned probability measure
one. Theorem 1.3.2 covers the convergence in general and Corollary 1.3.4
covers the case in which the probability assignment is degenerate. These
two examples are included merely for illustration, and we will explore much
richer specifications of stochastic processes.

1.4 Constructing a Stochastic Process: II

Instead of specifying

X [ℓ] .
=







X1

X2

...

Xℓ







as in section 1.1, we could directly specify a collection of joint distributions
P̂ rℓ for ℓ ≥ 1. But we must make sure that P̂ rℓ+1 is consistent with
P̂ rℓ in the sense that both of these joint distributions assign the same
probabilities for the same events, namely, {X∗

ℓ ∈ b} for (Borel) sets b. If this
consistency condition is satisfied, then the famed Kolmogorov Extension
Theorem guarantees that there exists a space (Ω, F, P r) and a stochastic
process {Xt : t = 1, 2, ...} constructed as in section 1.1. Applied model
builders typically use a direct specification approach.
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A Markov process is an important tool for directly constructing a joint
distribution P̂ rℓ, ℓ ≥ 0. Consider a state space E and a transition dis-
tribution T (dx∗|x). The transition distribution T is a conditional prob-
ability measure for each choice Xt = x in the state space, so it satisfies
∫

T (dx∗|x) = 1 for every x in the state space. There is an associated
conditional expectation function. If in addition we specify a marginal Q0

distribution for the initial state x0 over E , then we have completely specified
all joint distributions for the stochastic process.

The notation T (dx∗|x) denotes a conditional probability measure where
the integration is over x∗ and the conditioning is captured by x. Specifically,
x∗ is a possible realization of the next period state and x is a realization
of the current period state. The conditional probability measure T (dx∗|x)
assigns conditional probabilities to the next period state given that the cur-
rent period state is x. Often, but not always, the conditional distributions
have densities against a common distribution λ(dx∗) used to add up or inte-
grate over states. In such cases we can use a transition density to represent
the conditional probability measure. One example is that of first-order vec-
tor autoregression. In this case T (dx∗|x) is a normal distribution with mean
Ax and covariance matrix BB′ for a square matrix A and a matrix B with
full column rank.4 In this we may write

Xt+1 = AXt + BWt+1

where Wt+1 is a multivariate standard normally distributed random vector
that is independent of Xt. Another example is that of a discrete-state
Markov chain in which T (dx∗|x) can be represented as a matrix, one row
for each realized value of the state x. The row entries give the vector of
probabilities conditioned on this realized values. Both of these examples
will be developed in more detail later.

An important object for us is a one-step conditional expectation oper-
ator that we apply to functions of a Markov state. Let f : E → R. For
bounded f , define:

Tf(x) = E [f(Xt+1)|Xt = x] =

∫

f(x∗)T (dx∗|x)

4When BB′ is singular, a density may not exist with respect to Lebesgue measure.
Such singularity occurs when we convert a higher-order vector autoregression into a
first-order process.
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Iterating on T allows us to form expectations over longer time periods:

T
jf(x) = E [f(Xt+j)|Xt = x] .

This is a statement of the Law of Iterated Expectations for our Markov
setting.

Remark 1.4.1. Instead of beginning with a conditional probability distri-
bution, we could start with a conditional expectation operator T mapping a
space of functions into itself. Provided that this operator is a) well defined
on the space of bounded functions, b) preserves the bound, c) maps nonneg-
ative functions into nonnegative functions, and d) maps the unit function
into the unit function; we can construct a conditional probability measure
T (dx∗|x) from the operator T.

1.5 Stationarity reconsidered

We construct Markov processes that are stationary by appropriately choos-
ing distributions of the initial state x0.

Definition 1.5.1. A stationary distribution for a Markov process is a
probability measure Q over the state space E that satisfies

∫

T (dx∗|x)Q(dx) = Q(dx∗).

We will sometimes make reference to a stationary density q. A density
is always relative to a some measure. With this in mind, let λ be a measure
on the state space E used to add up or integrate over alternative Markov
states. Then a density q is a nonnegative (Borel measurable) function of
the state for which

∫
q(x)λ(dx) = 1.

Definition 1.5.2. A stationary density for a Markov process is a prob-
ability density q with respect to a measure λ over the state space E that
satisfies ∫

T (dx∗|x)q(x)λ(dx) = q(x∗)λ(dx∗).

The following example of a reversible Markov process occurs sometimes
in simulations that implement Bayesian estimation.
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Example 1.5.3. Suppose that

T (dx∗|x)q(x)λ(dx) = T (dx|x∗)q(x∗)λ(dx∗).

Because a transition density satisfies
∫

T (dx|x∗) = 1, notice that

∫

T (dx∗|x)q(x)λ(dx) =

∫

T (dx|x∗)q(x∗)λ(dx∗) = q(x∗)dλ(dx∗).

Thus, q is a stationary density.

When the Markov process is initialized according to a stationary dis-
tribution, we can construct the process {Xt : t = 1, 2, ...} with a measure-
preserving transformation S of the type featured in the first method of
constructing a stochastic process that we described in section 1.1.

Given a stationary distribution Q, form the space of functions L2 defined
as

L2 = {f : E → R :

∫

f(x)2Q(dx) < ∞}

It can be shown that T : L2 → L2. On this space there is a well defined
norm give by:

‖f‖ =

[∫

f(x)2Q(dx)

]1/2

1.6 Limiting Behavior

When the Markov process is not periodic, we are interested in situations
when

lim
j→∞

T
jf(x) = r (1.1)

for some r ∈ R where the convergence is either pointwise in x or define
using the L2 norm. This limit restricts the long-term forecasts eventually
not to depend on the current Markov state. (See Meyn and Tweedie (1993)
for a comprehensive treatment of this convergence.) Let Q be a stationary
distribution. Then it is necessarily true that

∫

T
jf(x)Q(dx) =

∫

f(x)Q(dx)
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for all j. Thus

r =

∫

f(x)Q(dx).

Thus the limiting forecast is necessary the expectation under a stationary
distribution. Notice that here we have not assumed that the stationary
density is unique, although we did presume that the limit point is a number
and not a random variable.

One reason we are interested in limit (1.1) is that when a stationary
distribution exists, this limit implies the convergence of:

lim
N→∞

1

N

N∑

j=1

∥
∥
∥
∥
T

jf(x) −
∫

f(x)dQ(x)

∥
∥
∥
∥

= 0.

This suggests that limit point for a time series version of the Law of Large
Numbers is

∫
f(x)dQ(x). Also, if

∫
f(x)Q(dx) = 0 and the convergence is

sufficiently fast, then

lim
N→∞

N∑

j=1

T
jf(x)

is a well-defined function of the Markov state. Under stationarity we can
represent the limit in first case as the

∫
f(x)Q(dx), and a necessary condi-

tion for the second limit is that
∫

f(x)Q(dx) = 0.

Ergodicity

Definition 1.6.1. A function f̃ ∈ L2 that solves the equation Tf = f is
called an eigenfunction associated with a unit eigenvalue.

An eigenfunction of T is a generalization of an eigenvector of a matrix.
Notice that if f̃ is used in calculation (1.1), the f̃ is necessarily constant.

Proposition 1.6.2. Suppose that f̃ is an eigenfunction of T associated with
a unit eigenvalue. Then {f̃(Xt) : t = 1, 2, ...} is constant over time with
probability one.

Proof.

E
[

f̃(Xt+1)f̃(Xt)
]

=

∫

(Tf̃)(x)f̃(x)Q(dx) =

∫

f̃(x)2Q(dx) = E
[

f̃(Xt)
2
]

.
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Then because Q is a stationary distribution,

E
(

[f̃(Xt+1) − f̃(Xt)]
2
)

= E
[

f̃(Xt+1)
2
]

+ E
[

f̃(Xt)
2
]

−2E
[

f̃(Xt+1)f̃(Xt)
]

= 0.

Obviously, time series averages of an such an eigenfunction Tf̃ = f̃ do
not move either, so

1

N

N∑

t=1

f̃(Xt) = f̃(X).

However, the time series average 1
N

∑N
t=1 f̃(Xt) differs from

∫
f̃(x)Q(dx)

when f̃(x) when f̃(x) is not constant across states x that occur with prob-
ability one under Q. This happens when the variation of f̃(Xt) along a
sample path for {Xt} conveys an inaccurate impression of its variation
across the stationary distribution Q(dx). See example 1.7.2 below. This
possibility leads us to use eigenfunctions to state a sufficient condition for
ergodicity.

When f is an indicator function of a Borel set b in E and Tf = f , then

Λ = {ω ∈ Ω : X ∈ b}

is an invariant event in Ω under the corresponding probability measure Pr

and transformation S. For Markov processes, all invariant events can be
represented like this, a result that is not obvious. A reference for it is Doob
(1953), Theorem 1.1, page 460.

Proposition 1.6.3. When the only solution to the eigenvalue equation

Tf = f

is a constant function (with Q measure one), then it is possible to construct
the process {Xt : t = 0, 1, ...} using a transformation S that is measure
preserving and ergodic.

Notice here that ergodicity is a property that obtains only relative to
a stationary distribution for the Markov process. When there are multiple
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stationary distributions, a constant solution to the eigenvalue problem can
be the only one that works for one stationary distribution, but non constant
solutions can exist for other stationary distributions. For instance, consider
example 1.2.4 . Although any assignment of probabilities constitutes a
stationary distribution, we get ergodicity only when we assign probability
one to one of the two states. Also see example 1.7.3.

Sufficient Conditions for Ergodicity

While finding nondegenerate eigenfunctions associated with a unit eigen-
value often gives a way to establish that a process is not ergodic, it can be
difficult to establish ergodicity directly using Proposition 1.6.3. There are
convenient sufficient conditions, including the drift conditions discussed in
Meyn and Tweedie (1993). We explore one set of sufficient conditions in
this subsection.

Let Q be a stationary distribution. Form the resolvent operator:

Rf(x) = (1 − δ)

∞∑

j=1

δj
T

jf

associated with some constant discount factor 0 < δ < 1. To study periodic
components of processes, we introduce sampling at an interval p. If we
sample a periodic process of period p, we want functions of the Markov
state to be invariant, so

T
pf = f

for some function f that is nondegenerate and not constant with probabil-
ity one. This leads us to consider a sampled counterpart of the resolvent
operator R:

Rpf(x) = (1 − δ)
∞∑

j=1

δj
T

pjf.

A set of sufficient conditions for

lim
j→∞

T
jf(x∗) →

∫

f(x)dQ(x) (1.2)

for each x ∈ E and each f ∈ L2 that are bounded is:5

5Restriction 1.2 is stronger than ergodicity. it rules out periodic processes, although
we know that periodic processes can be ergodic.
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Condition 1.6.4. Suppose that the stationary Markov process satisfies:

(i) For any f ≥ 0 such that
∫

f(x)Q(dx) > 0, Rpf(x) > 0 for all x ∈ E
and all p ≥ 0 . (The Markov process is (Q) irreducible and aperiodic.)

(ii) T maps bounded continuous functions into bounded continuous func-
tions. (The Markov process satisfies the Feller property.)

(iii) The support of Q has a nonempty interior in E .

(iv) TV (x) − V (x) ≤ −1 outside a compact subset of E for some nonneg-
ative function V .

Sufficient condition (i) may be hard to check, but it suffices to show that
there exists an m such that for any f ≥ 0 such that

∫
f(x)Q(dx) > 0

T
mf(x) > 0

for all x ∈ E . Given this property holds for T
m it must also hold true

for pm for any p. Condition (iv) is the drift condition for stability. It is
constructive provided that we can establish the inequality for a conveniently
chosen function V . Heuristically, this drift condition says that outside a
compact subset of the state space, the conditional expectation must push
inward. The choice of −1 as a comparison point is made for convenience
since we can always multiply the function V by a number greater than one.
Thus −1 could be replaced by any strictly negative number.

1.7 Finite State Markov Chain

Suppose that E consists of n states. We may label these state in any of a
variety of ways but suppose that state xj is the coordinate vector of all zeros
except in position j where there is a one. Let T be an n by n transition
matrix where entry i, j is the probability of moving from state i to state j

in a single period. Thus the entries of T are all nonnegative and this matrix
must satisfy:

T1n = 1n.

where 1n is an n-dimensional vector of ones. Let f be any n-dimensional
vector.
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Let q be an n-dimensional vector of probabilities. Then stationarity
requires that

q′T = q′

That is, q is a row eigenvector of T associated with a unit eigenvalue.
We use a vector f to represent a function from the state space to the

real line, where each coordinate of f gives the value of the function at
the corresponding coordinate vector. Consider column eigenvectors of T

associated with a unit eigenvalue. Suppose that the only solutions to

Tf = f

are of the form f ∝ 1n. Then we can construct a process that is stationary
and ergodic by initializing the process with density q.

We can weaken this condition to allow nonconstant right eigenvectors. A
weaker condition is that the eigenvector and stationary distribution satisfy

min
r

n∑

i=1

(fi − r)2qi = 0

Notice that we are multiplying by probabilities, so that if qi is zero, the
contribution of fi to the least squares objective can be neglected, which
allows for non-constant f ’s, albeit in a limited way.

Three examples illustrate these concepts.

Example 1.7.1. We now recast Example 1.2.3 as a Markov chain with

transition matrix T =

[
0 1
1 0

]

. This chain has a unique invariant distribu-

tion q =
[
.5 .5

]′
and the invariant functions are

[
α α

]′
for any scalar α.

Therefore, the process initiated from the stationary distribution is ergodic.

Example 1.7.2. Next we recast Example 1.2.4 as a Markov chain with

transition matrix T =

[
1 0
0 1

]

. This chain has a continuum of stationary

distributions π

[
1
0

]

+ (1 − π)

[
0
1

]

for any π ∈ [0, 1] and invariant functions
[
α1

α2

]

and for any scalars α1, α2. Therefore, the process is not ergodic when

π ∈ (0, 1), for note that if α1 6= α2 the resulting invariant function will
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fail to be constant across states receive positive probability according to a
stationary distribution associated with π ∈ (0, 1). When π ∈ (0, 1), nature
chooses state i = 1 or i = 2 with probabilities π, 1 − π, respectively, at
time 0. Thereafter, the chain remains stuck in the realized time 0 state. Its
failure ever to visit the unrealized state prevents the sample average from
converging to the population mean of an arbitrary function ȳ of the state.

Example 1.7.3. A chain with transition matrix T =





.8 .2 0

.1 .9 0
0 0 1



 has a

continuum of stationary distributions π
[

1
3

2
3

0
]′

+ (1 − π)
[
0 0 1

]′
for

π ∈ [0, 1] and invariant functions
[
α1 α1 α2

]′
and for any scalars α1, α2.

With any stationary distribution associated with π ∈ (0, 1), the chain is not
ergodic because some invariant functions are not constant with probability
one under such a stationary distribution. But for stationary distributions
associated with π = 1 or π = 0, the chain is ergodic.

1.8 Vector Autoregression

When the eigenvalues of a square matrix A have absolute values that are
strictly less than one we say that A is stable. For a stable A, suppose that

Xt+1 = AXt + BWt+1

where {Wt+1 : t = 1, 2, ...} is an iid sequence of multivariate normally
distributed random vectors and B has full column rank. Then

Wt+1 = (B′B)−1B′(Xt+1 − AXt),

so we can recover the shock vector Wt+1 from Xt+1 and Xt. To complete
the specification of a Markov process, we specify an initial distribution
X0 ∼ N (µ0, Σ0).

Let µt = EXt. Notice that

µt+1 = Aµt.

The mean µ of a stationary distribution satisfies

µ = Aµ.
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Because we have assumed that A is a stable matrix, the only µ that solves
(A − I)µ = 0 is µ = 0. Thus, the mean of the stationary distribution is
µ = 0.

Let Σt be the covariance matrix for Xt. Then

Σt+1 = AΣtA
′ + BB′.

For Σt = Σ to be invariant over time, it must be true that

Σ = AΣA′ + BB′.

Because A is a stable matrix, this equation has a unique solution for a pos-
itive semidefinite matrix Σ. This is the covariance matrix of the stationary
distribution.

Suppose that Σ0 = 0 (a matrix of zeros). Then

Σt =

t−1∑

j=0

AjBB′(Aj)′.

The limit of this sequence is:

Σ =
∞∑

j=0

AjBB′(Aj)′

which we have seen is the covariance matrix for the stationary distribution.
Similarly,

µt = Atµ0,

converges to zero for all µ0 = EX0. Recall that 0 is also the mean of the
stationary distribution.

The linear structure of the model implies that the stationary distribution
is Gaussian with mean µ and covariance matrix Σ.

To verify ergodicity, suppose that the covariance matrix Σ of the sta-
tionary distribution has full rank. Then restriction (iii) of Condition 1.6.4
is satisfied. Furthermore, Σt has full rank for some t, which guarantees that
the process is irreducible and aperiodic (restriction (i). Let V (x) = |x|2.
Then

TV (x) = x′A′Ax + trace(B′B).

Thus
TV (x) − V (x) = x′(A′A − I)x + trace(B′B).



18 CHAPTER 1. STOCHASTIC PROCESSES

That A is a stable matrix implies that A′A− I is negative definite, so that
drift restriction (iv) of Condition 1.6.4 is satisfied for |x| sufficiently large.6

We now show how to extend this example to obtain a nonzero mean for
the stationary distribution. Partition the Markov state as:

x =

[
x[1]

x[2]

]

where x[2] is scalar. Similarly partition the matrix and the matrices A and
B as:

A =

[
A11 A12

0 1

]

B =

[
B1

0

]

where A11 is a stable matrix. Notice that

X
[2]
t+1 = X

[2]
t = ... = X

[2]
0

and hence is invariant. Let µ[2] denote the mean of X
[2]
t for any t. In a

stationary distribution we require that the mean µ[1] of the first component
of the state vector satisfy:

µ[1] = A11µ
[1] + A12µ

[2].

Hence
µ[1] = (I − A11)

−1
A12µ

[2].

Imitating a previous argument, the covariance matrix, Σ[11] for this compo-
nent satisfies:

Σ[11] =
∞∑

j=0

(A11)
j
BB′ (A11

′)
j
+ (I − A11)

−1
A12Σ

[22]A12
′ (I − A11

′)
−1

where Σ[22] is the variance of X
[2]
t for all t. Stationarity imposes no restric-

tion on the mean µ[2] and the variance Σ[22].
Since {X [2]

t : t = 0, 1, ...} is invariant, the process {Xt : t = 0, 1, ...} is
only ergodic when the variance Σ[22] is zero. Otherwise, the limit points
for the Law of Large Numbers (Theorem 1.3.2) should be computed by

conditioning on X
[2]
0 .

6The Feller property can also be established.



Chapter 2

Additive Functionals

For economic applications, it is too limiting to consider only time series
models that are stationary because we are interested in processes that dis-
play stochastic counterparts to geometric growth or, equivalently, arith-
metic growth in logarithms. We suggest a convenient construction of such
a process and produce a convenient decomposition into a time trend, a
martingale and a stationary component.

2.1 Construction

Let {Xt} be a stationary Markov process. We now build functionals of this
process by accumulating the impact of the Markov process over time.

Definition 2.1.1. A process {Yt : t = 0, 1, ...} is said to be and additive

functional if it can be represented as

Yt+1 − Yt = κ(Xt+1, Xt), (2.1)

or equivalently

Yt =

t∑

j=1

κ(Xj , Xj−1)

where we ininitialize Y0 = 0.

The initialization, Y0 = 0 is imposed for convenience, but it does allow
us to construct Yt as a function of only the underlying Markov process

19
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between date zero and t. Adding a nonzero initial condition will have
obvious consequences for the results in this chapter.

A linear combination of two additive functionals {Y [1]
t } and {Y [2]

t } is an
additive functional. If κ1 is used to construct the first process and κ2 the
second process, then κ = κ1 + κ2 can be used to construct the sum of the
two processes.

Example 2.1.2.

Xt+1 = AXt + BWt+1

where {Wt+1 : t = 1, 2, ...} is an iid sequence of multivariate normally
distributed random vectors and B has full column rank. Premultiply by B′

and obtain:
B′Xt+1 − B′AXt = B′BWt+1.

Then
Wt+1 = (B′B)−1 (B′Xt+1 − B′AXt) .

Form
κ(Xt+1, Xt) = µ(Xt) + σ(Xt)Wt+1.

Then µ(Xt) is the conditional mean of Yt+1 − Yt and |σ(Xt)|2 is the condi-
tional variance. When σ depends on the Markov state, this is referred to as
a stochastic volatility model.

Let Ft be the information set (sigma algebra) generated by X0, X1, ..., Xt.

Definition 2.1.3. A process {Yt : t = 0, 1, ...} is an additive martingale

provided that E [κ(Xt+1, Xt)|Xt] = 0.

Note that E [κ(Xt+1, Xt)|Xt] = 0 implies the usual martingale restriction

E [Yt+1|Ft] = Yt, for t = 0, 1, ....

The process {Yt : t = 0, 1, ...} defined in example (2.1.2) is evidently a
martingale if µ(Xt) = 0.

2.2 Martingale Extraction

Additive processes have additive martingales embedded within them that
capture all long-run variation. In this section, we show how to extract these
martingales and suggest ways they can be used.
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We use the following subspace of L2:

Z =

{

f ∈ L2 :

∫

f(x)Q(dx) = 0

}

.

Thus functions in Z have mean zero under the stationary distribution.

Define the norm ‖f‖ =
[∫

f(x)2Q(dx)
]1/2

on L2 and hence on Z.

Definition 2.2.1. The conditional expectation operator T is a strong con-
traction (on Z) if there exists a 0 < ρ < 1 such that

‖Tf‖ ≤ ρ‖f‖

for all f ∈ Z.1

Example 2.2.2. Consider the Markov chain setting of subsection 1.7. The
conditional expectation can be represented using a transition matrix T. We
have seen that to obtain a stationary density, we should solve

q′T = q′

for a nonnegative vector q such that q·1n = 1. If the only column eigenvector
of T associated with a unit eigenvalue is a constant over states i for which
qi > 0, then the process is ergodic. If in addition, the only eigenvector of T

with unit norm (this includes complex eigenvalues), is constant over states
i for which qi > 0, then T

m will be a strong contraction for some m.2 In
addition to imposing ergodicity, this rules out periodic components that can
be forecast perfectly.

For a Markov process {Xt : t = 0, 1, ...}, consider the following special
algorithm that applies to a special type of an additive process for which
κ(x∗, x) = f(x) with

∫
f(x)Q(dx) = 0.

1When this property is satisfied the underlying process is said to be ρ-mixing.
2This result follows from Gelfand’s Theorem. Let Z be the n− 1 dimensional space

of vectors that are orthogonal to q. Then T maps Z into itself. The spectral radius
of this transformation is the maximum of the absolute values of the eigenvalues of the
induced transformation. Gelfand’s formula shows that the spectral radius governs the
asymptotic decay of the transformation applied m times as m gets large implying the
strong contraction property for any ρ larger than the spectral radius.
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Algorithm 2.2.3. Suppose that f ∈ Z and

Yt+1 − Yt = f(Xt).

Thus κ(x∗, x) = f(x). Solve the equation g(x) = f(x) + Tg(x) for g. The
solution is:

g(x) = (I − T)−1f(x) =

∞∑

j=0

T
jf(x) =

∞∑

j=0

E [f(Xt+j)|Xt = x] , (2.2)

where I is the identity operator, a legitimate calculation provided that the
infinite sum on the right-hand side of (2.2) is finite. The function g gives
the best forecast today of the long-term limit of the additive functional {Yt :
t = 0, 1, ...} with the argument being the current Markov state. A sufficient
condition for the sum on the right-hand side of (2.2) to be finite is that T

m

be a strong contraction for some m. Evidently, (I − T)g(x) = f(x).
Let

κ̌(x∗, x) = g(x∗) − g(x) + f(x)

and note that (I − T)g(x) = f(x) implies that

κ̌(x∗, x) = g(x∗) − Tg(x).

Thus, κ̌(Xt+1, Xt) is the forecast error in forecasting g(Xt+1) given Xt, and
in particular

E [κ̌(Xt+1, Xt)|Xt] = 0.

Therefore,

Yt+1 =

t+1∑

j=1

f(Xj−1)

=

t+1∑

j=1

κ̌(Xj , Xj−1) − g(Xt+1) + g(X0)

is a martingale.

This algorithm is a martingale counterpart to a more general construc-
tion of Gordin (1969) for stationary processes.3 We now use this algorithm
as a component of a more general martingale extraction algorithm.

3See also Hall and Heyde (1980).
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Algorithm 2.2.4. Let {Xt : t = 0, 1, . . .} be a stationary, ergodic Markov
process. Let Yt, t = 0, 1, . . . be an additive process. Perform the following
steps.

(i) Compute the conditional expectation of the growth rate E [κ(Xt+1, Xt)|Xt = x] =
f̄(x) and form the deviation from the conditional mean

κ̃(Xt+1, Xt) = κ(Xt+1, Xt) − f̄(Xt).

Note that E[κ̃(Xt+1, Xt)|Xt = x] = 0.

(ii) Compute the deviation of the conditional mean from the unconditional
mean of the growth rate ν =

∫
f̄(x)q(x)dλ(x), namely, f(x) = f̄(x)−ν

and apply algorithm 2.2.3 to form g and κ̌ in the decomposition f(x) =
κ̌(x∗, x) − g(x∗) − g(x).

(iii) Note that

κ(x∗, x) = κ̃(x∗, x) + f̄(x)
= κ̃(x∗, x) + f(x) + ν

= κ̃(x∗, x) + κ̌(x∗, x) − g(x∗) + g(x) + ν.

(iv) It follows that

Yt = tν +

[
t∑

j=1

κ̂(Xj , Xj−1)

]

− g(Xt) + g(X0)

where κ̂(X∗, X) = κ̌(X∗, X) + κ̃(X∗, X) and E [κ̂(Xj+1, Xj)|Xj] = 0.

Thus, we have established that

Proposition 2.2.5. Suppose that {Yt : t = 0, 1, ...} is an additive func-
tional, T

n is a strong contraction on Z for some n and E[κ(Xt+1, Xt)
2] <

∞. Then

Yt = [tν] +
[
∑t

j=1 κ̂(Xj, Xj−1)
]

+ [−g(Xt) + g(X0)] .

term one term two term three

The three terms in the decomposition are each additive processes initialized
at zero. The first is a linear time trend, the second is an additive martingale,
and the third is a stationary process.

The remainder of this section describes some applications.
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2.3 Cointegration

Linear combinations of two additive processes are additive. Specifically,
form

Yt = r1Y
[1]
t + r2Y

[2]
t

where Y
[1]
t is built with κ1 and Y 2

t is built with κ2. Thus, we can build

Yt = r1Y
[1]
t + r2Y

[2]
t =

t∑

j=1

[r1κ1(Xj, Xj−1) + r2κ2(Xj , Xj−1)]

The martingale of Proposition 2.2.5 for {Yt : t = 0, 1, ...} is the correspond-
ing linear combination of the martingales for the two components.

Engle and Granger (1987) call two processes cointegrated if there exists
a linear combination of these processes that is stationary. This occurs when

r1ν1 + r2ν2 = 0
r1κ̂1 + r2κ̂2 = 0

where the ν’s and κ̂’s correspond to the first two components of the rep-
resentation in Proposition 2.2.5. These two zero restrictions imply that
the time trend and martingale component for the linear combination Yt are
both zero.4 It is of particular interest when r1 = 1 and r2 = −1. In this
case the two componenet additive processes Y

[1]
t and Y

[2]
t share a common

growth component.

2.4 Identifying Shocks with Long-Run

Consequences

Suppose that the Markov state {Xt : t = 0, 1, ...} follows the first-order
VAR

Xt+1 = AXt + BWt+1

where A has stable eigenvalues. Let

Yt+1 − Yt = κ(Xt+1, Xt) = D · Xt + ν + F · Wt+1.

4The vector (r1, r2) is the cointegration vector and is only determined up to scale.
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Additive Macroeconomic Processes
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Figure 2.1: The top panel plots the logarithm of consumption (smooth blue
series) and logarithm of corporate earnings (choppy red series). The bottom
panel plots the difference in the logarithms of consumption and corporate
earnings.
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where H and F are vectors with the same dimensions as Xt and Wt+1,
respectively.

We use this model to illustrate the four-step construction in algorithm
2.2.4.

(i) Form the conditional growth rate

f̄(x) = D · x + ν

and the deviation
κ̃(Xt+1, Xt) = F · Wt+1.

(ii) Remove the unconditional mean:

f(x) = D · Xt + ν − ν = D · Xt.

Here we are using that the unconditional mean of X is 0 because A is
a stable matrix.

(iii) Where g(x) = (I − T)−1f(x) = D′(I − A)−1x, form

κ̌(x∗, x) = f(x) + g(x∗) − g(x)
= D · x + D′(I − A)−1(Ax + Bw∗) − D′(I − A)−1x

= [B′(I − A′)−1D] · w∗.

(iv) It follows that κ̂ = κ̌ + κ̃ is

κ̂(Xt+1, Xt) = [F + B′(I − A′)−1D] · Wt+1. (2.3)

Blanchard and Quah (1989) use formula (2.3) in conjunction with a version
of the decomposition in proposition 2.2.5 to identify a supply shock or a
technology shock. In their application, the growth rate of output is one of the
components of Xt, and it is assumed that only supply shocks or technology
shocks have long-run consequences. Then F + B′(I −A′)−1D identifies the
linear combination of Wt+1 that is the technology shock. This idea has
been extended to include more than one shock with long-run consequences
by Shapiro and Watson (1988) and Fisher (2006).

Similarly, for Beveridge and Nelson (1981), [F +B(I −A′)−1D] ·Wt+1 is
the permanent shock in a permanent-transitory decomposition of a univari-
ate time series model. When {Wt+1 : t = 0, 1, ...} is a univariate process,
permanent and transitory shocks are necessarily (perfectly) correlated, but
in a multivariate setting, transitory shocks can be restricted to be uncorre-
lated with permanent shocks.
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2.5 Central Limit Theory

Consider an additive martingale process {Yt : t = 0, 1, ...} whose increments
Yt+1 − Yt are stationary, ergodic,5 martingale differences:

E [Yt+1 − Yt|Ft] = 0.

Billingsley (1961) shows that this process obeys a central limit theorem:

1√
t
Yt =⇒ N(0, E[(Yt+1 − Yt)

2])

where =⇒ means convergence in distribution. This central limit theorem
looks standard except that the terms in the sum (the increments in the
additive process) are martingale differences rather than iid.

Gordin (1969) extends this result to allow for temporally dependent
increments. We can regard Gordin’s result as an application of Proposition
2.2.5. Under the assumptions of this proposition:

1√
t
Yt =⇒ N(0, σ2)

provided that η = 0. The variance used in the central limit approximation
is

σ2 = lim
t→∞

1

t
variance(Yt) = E

(
[κ̂(Xj, Xj−1)]

2)
.

a long-term concept that takes account of the temporal dependence of the
increments.

Corollary 2.5.1. (Gordin (1969)) Under the assumptions of Proposition
2.2.5,

1√
t
Yt =⇒ N(0, σ2)

where σ2 = E
(
[κ̂(Xj, Xj−1)]

2).6

By way of illustration, we return to the first-order VAR example with
ν = 0:

Xt+1 = AXt + BWt+1

5Ergodicity can be dispensed with if we replace the variance by E[(Y1 − Y0)
2|I].

6Hall and Heyde (1980) show how to extend this approach to functional counterparts
to the Central Limit Theorem.
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Yt+1 − Yt = D · Xt + F · Wt+1

The variance that appears in this Central Limit Theorem is that of the
martingale increment:

σ2 = [F + B′(I − A′)−1D] · [F + B′(I − A′)−1D]′.

This differs from both the conditional variance |F |2 of Yt+1 and the un-
conditional variance, D′ΣD + |F |2, of Yt+1 − Yt where Σ is the covariance
matrix of Xt in the implied stationary distribution

Σ =

∞∑

j=0

(A)jBB′(Aj)′. (2.4)

Since linear combinations of additive functionals are additive, Corollary
2.5.1 has a direct extension for multivariate counterparts to additive pro-
cesses. The corollary can be applied to any linear combination of a vector
of additive processes.

2.6 An Example with Discrete States

Suppose that {Zt} evolves according to an n-state Markov chain with tran-
sition matrix T. In addition suppose that T has only one unit eigenvalue.
The realized values of Zt are the coordinate vectors in R

n. Let q be corre-
sponding row eigenvector:

q′T = q′.

Consider an additive functional satisfying

Yt+1 − Yt = D · Zt + Zt
′FWt+1,

where {Wt} is an iid sequence of multivariate standard normally distributed
random vectors. The date t composite state vector is:

Xt =

[
Zt

Wt

]

.

This is a model with discrete changes in the conditional mean and the
conditional volatility of the process {Yt}.
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First compute

κ̃(Xt+1, Xt) = Zt
′FWt+1,

and

ν = D · q,
Let

f = D − ν1n.

Then

g = (I − T)−1
f

and κ̌(x∗, x) = f · z + g · z∗ − g · z. Then

Yt = tν +

[
t∑

j=1

κ̂(Xj, Xj−1)

]

− g · Zt + g · Z0

where κ̂ = κ̌+ κ̃. Notice that in this example the martingale increment has
a continuous and a discrete component:

κ̂(Xt+1, Xt) = Zt
′FWt+1

︸ ︷︷ ︸
+ g · Zt+1 − g · Zt + f · Zt

︸ ︷︷ ︸
.

continuous discrete

2.7 A Quadratic Model of Growth

Suppose that {Xt} follows the first-order autoregression:

Xt+1 = AXt + BWt+1

where A has stable eigenvalues, B′B is nonsingular and {Wt+1} is a sequence
of independent and identically normally distributed random variables with
mean zero and covariance matrix I. Consider an additive functional {Yt}
given by

Yt+1 − Yt = ǫ + D · Xt +
1

2
Xt

′HXt + F · Wt+1 + Xt
′GWt+1

where H is a symmetric matrix. First compute

κ̃(Xt+1, Xt) = F · Wt+1 + Xt
′GWt+1.



30 CHAPTER 2. ADDITIVE FUNCTIONALS

Next compute

ν = ǫ + E

(
1

2
Xt

′HXt

)

= ǫ +
1

2
trace(HΣ)

where Σ the covariance matrix in a stochastic steady state given by formula
(2.4), and

f(x) = D · x +
1

2
x′Hx − 1

2
trace(HΣ).

Recall that g − Tg = f and guess that

g(x) = D̂ · x +
1

2
x′Ĥx − 1

2
trace

(

ĤΣ
)

.

This gives rise to the following three relations:

D̂ − A′D̂ = D,

Ĥ − A′ĤA = H. (2.5)

It may be verified that

Ĥ =
∞∑

j=0

(
Aj

)′
H

(
Aj

)

D̂ = (I − A′)−1D.

Since Σ = BB′ + AΣA,

trace
(

ĤΣ
)

= trace
(

ĤBB′

)

+ trace
(

ĤAΣA′

)

= trace
(

B′ĤB
)

+ trace
(

A′ĤAΣ
)

= trace
(

B′ĤB
)

+ trace
[(

Ĥ − H
)

Σ
]

.

where the last equality follows from (2.5). Thus

trace
(

B′ĤB
)

= trace (HΣ) . (2.6)
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The increment in the martingale component to the additive functional is

κ̂(Xt+1, Xt) =F · Wt+1 + Xt
′GWt+1 +

(

B′D̂
)

· Wt+1

+
1

2
Xt+1

′ĤXt+1 +
1

2
Xt

′

(

H − Ĥ
)

Xt − ν

=
(

F + B′D̂
)

· Wt+1 + Xt
′

(

G + A′Ĥ
)

Wt+1

+
1

2
Wt+1

′B′ĤBWt+1 −
1

2
trace(HΣ)

=
(

F + B′Ĥ
)
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where the last equality follows from (2.6).
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