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Abstract
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1. Introduction

In single agent problems with incomplete information, optimal decision rules depend
on a decision maker’s posterior distribution over hidden state variables, gallochere,
an object that summarizes the pertinent history of observed signals. The decision maker
expregses faith in his model when he uses Bayes’ rule to deduce the transition law for
q:(2).

But how should a decision maker proceed if he doubts his model and wants a decision
rule that is robust to a set of statistically difficult to detect misspecifications of it? This
paper studies a decision maker who makes his fear of model misspecification concrete by
surrounding his approximating model with the set of all alternative models whose expected
log likelihood ratios (i.e., whoselative entropiekare restricted or penalized. If the relative
entropies are constrained to be small, the decision maker believes that his model is a good
approximation. The decision maker wants robustness against these alternatives because, as
Anderson et al. [1] emphasize, perturbations with small relative entropies are statistically
difficult to distinguish from the approximating model. This paper provides an appropriate
lower-dimensional object to summarize the history of signals when the decision maker wants
adecision rule to perform well for this set of models. We study how the appropriate summary
of the history of signals depends on details of the decision maker’s problem, including
how he discounts future utilities and contributions to entropy, whether hidden states enter
the decision maker’s period utility function, and, together with Hansen and Sargent [17],
whether the decision maker chooses sequentially or once and for all at time 0. We describe
special circumstances under which the appropriate summary of signals continues to be the
decision maker’s posterior under the approximating model, despite the fact that he distrusts
that model.

All formulations of robust decision making in dynamic contexts begin with a zero-sum
game in which a minimizing player chooses a worst-case model from a set surrounding
the approximating model. Alternative formulations employ different timing protocols and
differentways of specifying the set of alternative models. This paper adopts a timing protocol
that prevails throughout much of the literature on robust control. It ascribes commitment
to both players in the zero-sum game. To create a counterpart to the recursive formulation
of a zero-sum two-player game that extends the formulation in Hansen and Sargent [15] to
situations with hidden states, Hansen and Sargent [17] analyze games without commitment.

The remainder of this paper is organized as follows: Section 2 formulates a Markov control
problem in which a decision maker with a trusted model receives signals about hidden state
variables. Subsequent sections view the model of Section 2 as an approximation, use relative
entropy to define a cloud of models that can be difficult to distinguish from it statistically,
and construct a decision rule that can work well for all of those models. Section 3 describes
how to represent distortions of an approximating model in terms of martingales defined
on the same probability space as the approximating model. This section then defines two
operatorsR; andRy, that are indexed by a common penalty paraméter(0, +oc) and
that adjust expectations of continuation values, viewed as random variables measurable

2 For example, see Jovano\it9,20], Jovanovic and Nyark@@1,22] Bergemann and ValimalB], Elliott
et al.[9], and Cogley et al7].
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with respect to histories of states and signals, respectively, for lack of confidence in the
approximating model. We interprétas a penalty on an entropy term that measures the
size of allowable model misspecifications. Subsequent sections use those two operators
to construct decision rules that are robust to departures from the approximating model.
Sectiord expresses arobust control problem in terms of our Section 3 concept of discounted
entropy and formulates a robust control problem under commitment, meaning that the worst-
case model and robust decision rule are both chosen at time 0 and are never reconsidered.
Section 5 briefly discusses the connection of the Section 4 setup to work by Chamberlain
[6] and Knox [24].

To highlight time consistency issues and to set the stage for work in Hansen and Sargent
[17] that defines alternative zero-sum games recursively, the formulation in Section 4 allows
different factorsf for discounting one-period utilities ang for discounting one-period
contributions to entropy. As a prolegomenon to the games without commitment in Hansen
and Sargent [17], Section 6 studies the special case in whiehl. Whenp = 1, we can
implement the solution of the commitment problem recursively through appropriate iterated
applications oR; andR2. We thereby discover an appropriate counterpart to the distribution
over the hidden state variablggz) that occurs in the basic problem in Section 2 without
a concern for robustness.

Section 6 shows that whem = 1, concerns about robustness dissipate, a feature that
we sometimes want to avoid. Hansen and Sargent [17] show how spttin@ sustains
enduring concerns about robustness. But they must confront the impediment that when
p # 1, our Section 4 results giving a recursive representation of a commitment solution
do not apply. To make concerns about robustness endure, Hansen and Sargent [17] have to
accept a form of time-inconsistency in beliefs about hidden states (but not about signals).

Section 7 applies our results to the classic linear-quadratic stochastic robust control
problem. For the cage= 1, we describe how to implement the solution of the commitment
problem recursively, describe an objégtz) that emerges from the application of tRé
operator, and linky, (z) to the distribution over hidden states conditioned on the history
of signals, namelyg, (z), that emerges from applying the ordinary Kalman filter. In an
important special case in which hidden states do not appear in the one-period return function,
4:(2) = q:(2).

Section 8 concludes by mentioning how Hansen and Sargent [17] create a recursive model
of robust decision making by using different penalty paraméteasndd, to define Markov
versions of the two operatoRs- andR?. By using differen®’s, they can focus the decision
maker’s fear of misspecification more either on the distribution of the hidden state vector or
on the transition dynamics themselves. This extension is especially useful in continuous time
formulations. Appendix A confirms assertions of useful properties of martingales. Appendix
B verifies the link between the solution to the linear quadratic commitment problem as we
have posed it and a corresponding solution from the control theory literature.

1.1. Related literature
In a class of dynamic robust parameter estimation problems, Chamberlain [6] and Knox

[24] solve what we interpret as a date zero-commitment game with a time-invariant hidden
state. Because they want to capture the idea that the decision maker cannot commit to a
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robust choice of a prior distribution at date zero, Epstein and Schndi@eadvocate a
timing protocol for a zero-sum game that differs from Chamberlain’s and Knox's: Epstein
and Schneider formulate the estimation problem sequentially.

Epstein and Schneider [10] and Knox [24] mention axioms. We do not start from axioms,
butinstead purposefully design our procedures to make contact with the literatures on robust
control and estimatiord. Thus, we begin by studying a commitment problem that is close
to one in the literature on robust control. We adopt this starting point partly because the
robust control literature contains so many useful conceptual and computational insights. We
use computational tricks from that literature to get a recursive formulation that is computa-
tionally tractable. Like Chamberlain’s and Knox’s, the problem solved in the control theory
literature is a date zero commitment problem. But in an interesting special case, the solution
has a convenient recursive representation that we use to highlight the roles of commitment
and discounting in decision problems with hidden state variables. In Hansen and Sargent
[17], we alter the assumptions about discounting and commitment. Although we believe
that solutions to the commitment problem are interesting, in Hansen and Sargent [17] we
tell why we like the no-commitment assumption and some properties of its consequences.

Much of the literature on robust control poses problems in a nonstochastic context.
(See Petersen et al. [28] for one of the initial stochastic formulations.) Following Hansen
et al. [18], we pose a stochastic version of a robust control problem by using a martingale
formulation to distort the probability distribution associated with an approximating model.

In Hansen and Sargent [17], we discuss how our formulation relates to the ones advocated
by Epstein and Schneider [10].

2. The approximating model

This section formulates the Bellman equation for a standard recursive decision problem.
The presence of hidden state variables impels us to include a law of motion for the distribu-
tion of hidden state variables. An approximating model includes the motion of the posterior
distribution over hidden states. Subsequent sections acknowledge and decompose doubts
about the approximating model.

A state vectol{x; : t >0} is Markov with a time-invariant transition density that can be
influenced by a control procegs, : ¢ > 0}. Partition the state vector as

Yt
X = ,

wherey, is observed and; is not; y; is a state variable that may be influenced by the
vector ofs; of signals that inform the decision maker about the unobserved compapents
Let Z denote a space of admissible unobserved st&tesgorresponding sigma algebra of
subsets, and a measure on the measurable space of hidden gtate%). Let S denote
the space of signals, a corresponding sigma algebra, and measure on the measurable
space(S, S) of signals. Le{S; : r >0} denote a filtration generated by and current and
past signals, and let{X; : t >0} be a larger filtration that includes information generated

3 Maccheroni et al[26] have developed axioms that justify static versions of some of our procedures.
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by the history ofx. The smallest sigma algebra generated by all states including the
future is

Xoo=\/ X,

t>0

and similarly the smallest sigma algebra generated by all signals is

So=\/ S

t>0

Let A denote a feasible set of actions, which we take to be a Borel set of some finite-
dimensional Euclidean space, andgtbe the set oA-valued random vectors that afe
measurable. Letl} be the set oA-valued random vectors that ai¢ measurable.

We assume that the conditional joint probability distribution for states and signals has
the following structure:

e A law of motion for the evolution of the observable states

Vi1 = Ty (Sr41, Yz, Gr).

Whenyy is known, this law allows us to construct an observable state recursively from
signals and actions.
e Two components that determine the evolution of hidden states and signals
(&) Anexogenously specified density*, s*|x;, a;); Tis a density relative to the product
measurel x 5. For notational simplicity, we will assume thais the conditional
density implied by

Sea1 =T (Xg, ap, Wi 1),
Zr41 =Tz (X¢, ar, wry1),

where{w, 1 : t >0} is an i.i.d. sequence of random variables. Via Bayes' rule,
implies the second component, namely,

(b) A densityg, for z; conditioned on informatios; generated by, s1,..., 5;; g; isa
density relative to the measuke

We are interested in the following decision problem under incomplete information about
the state:

Problem 2.1.

T
max E Uy a)|S
ae A 0<t <T [;ﬂ (xr, ar)l o:|

subject to

YVi+1= ny(sl‘-‘rls Yty Cl[),
Zl+l = nZ('xl5 az, wl+l)’
St4+1 = Tg (Xz, Qr, Wi1).
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We can express Problethl in a more convenient way by focusing separately on the
control and estimation aspects of the problem. To prepare the way, wetosmnstruct
two densities for the signal, the first of which is conditioned on a finer information set

K(s™ 1y, 2, ar) = /T(Z*,S*|yt,Zt,at)d)v(Z*),

S5 yr. g ar) = / k(5™ |y, 2, an)q (2) dAC2). )

The decomposition on the right-hand side Dfill play an important role. By Bayes’rule
J 2@, sealye, 2, a) g (2) dA(z)
c(se41lye, s> ar)
= 7g(Se+1, Ye» > ).
In particular applications, the mappimg can be computed by using filtering methods that
specialize Bayes’rule (e.g., the Kalman filter or the Wonham filter).
In defining thestateof a recursive decision problem, the information structure and Bayes’
rule direct us to replace the unobservahlevith its densityg, conditional on current and
past signals. We therefore consider recursive formulations of a control problem with state
(¢, g¢) and transition law

qr+1(z%) =

Vi1 =Ty (St4+1, Yr, ar), 2)
qi+1=Tyq (S141, Ve qr» ar), )
wheres; ;1 has a conditional density(s*|y;, ¢;, a;). Let

= |:7ry ] .
Tg
Now we can rewrite Probler2.1 in the alternative form:

Problem 2.2. Choose a sequence of decision rulesdoas a function of y;, ¢,) for each
t >0 that maximize

T
E [Z BU (xi, a,>|50}

t=0

subject to a given density(z), the conditional density(s;+1|yr, z:, a;), and Eqs (2)—(3).
The Bellman equation for this problem is

W(y,q)
:T&X/ {U(x,a)ﬂf/W*(n(s*,y,q,a))x(s*ly,z, a)dn(s*)}q(z)d/l(z).

In an infinite horizon version of Problem 2.&* = W

Example 2.3. We modify a stochastic growth model due to Brock and Mirnfijnand
Merton [27] by including a hidden growth state. The technology is

Kit1= (SO (K)* — C + (1 — 0K, 4
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whereK; is the datd capital stockC, is datet consumptiony is the rate of depreciation,
anda is a productivity parameter. The labor supply is fixed &pds a labor augmenting
technology process.

We lets, denote the growth rate of the technology shock processjleglog S;—1 and
suppose

1
St+1 = C * 3t + Uu)[_l,_lv

wherew,lJrl is a standard normal random variable independent.dRealizations of; are
noisy indicators of alternative growth rategimes The n-dimensional vectot contains
alternative conditional means for growth rates ans a random vector conformable fo
whose realizations are unit vecters The evolution of the-dimensional unit vectors is

described by a probability matrik; = Prol(z,11 = ej|z; = ¢;).

This model of the technology shock is a special case of the regime shift models of Sclove
[29] and Hamilton [13] and is also a discrete-time counterpart to the nonlinear filtering
model of Wonham [33]. The decision maker obserydsut notz, at datet.

The random growth in technology makes it convenient to scale variables by the level of
the technology. Thus, we rewrite the production function (4) as

kit1 = exp(—si+1) [(kt)a -+ (11— 5)kt] )
Whel’ek; = Kl/Sf andct = CZ/ST-
Preferences are represented by discounting a utility function

()7 exp[(L—y)(og c+s)]

UC) =
©O=15 -

with a discount factop.

To map the planning problem associated with this growth model into our general decision
problem, we takey, = k;, s; to be the signal, and the hidden state to be the growth rate
regime( for the technology shock. The control variableis= c;.

3. Representing distorted distributions

This section describes how to represent distorted probability distributions by expressing
them as perturbations of the decision maker’s approximating model. We construct a discrete-
time version of a martingale representation of distortions that we have used in continuous
time (se€g18]). Then, we present recursive representations of those martingales and alter-
native recursive formulations of discounted entropy. We use these measures of entropy to
induce two distorted expectations operators that are useful for constructing robust decision
rules when some state variables are unobserved.

3.1. Simplified information structure

We will suppose that the decision maker cannot influefceWe allow the decision
maker’s actions to influenc®, though for convenience, we leave this dependence implicit
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in our notation. However, in problems in which the decision maker’s actions do notinfluence
the hidden state, either directly or indirectly, we can specify the filtrati®§n: >0}
exogenously. Examples include problems in which a parameter or hidden state must be
estimated.

3.2. Expectations and martingales

We represent a distorted probability measure that is absolutely continuous with respect to
a baseline probability measure by using a Radon—Nikodym derivative. Consider a distorted
probability measure applied 4, the observable events as of dat€he Radon—Nikodym
theorem implies that this measure can be represented using a nonnégatieasurable
function M;. To make it a probability measure, we impoBd/, = 1. Under the dis-
torted probability distribution, the expectation of a boundiaemeasurable random variable
W, is

EW, = EM,W,.

Recall thatY; ;1 containst;.

Definition 3.1. The family of conditional expectation operators is said tacbesistentf
the restriction off; 11 to boundedX;-measurable random variables coincides w#ittfor
allt>0.

To attain consistency, we must have
EM; 1AW, = EM,;W, (5)
for all boundedW, that areX;-measurable. This is equivalent to requiring that
E (Mi+1|X%) = M;.

We summarize this outcome in a well-known result:

Lemma 3.2. A family of distorted conditional expectation operators@nsistenif and
only if the proces$M; : ¢ >0} is a martingale with unit expectation adapted#g : ¢ >0}.

Remark 3.3. Since the martingaléM, : r >0} is nonnegative and has unit expectation
for all t, Doob’s martingale convergence theorem implies that it converges almost surely.
Another notion of a limit comes from observing that our martingale formulation of the per-
turbed probabilities allows us to apply the Kolmogorov extension theorem to establish the
existence of a probability distribution otiy, that is consistent with the one implied by the
martingale. Under the conditions imposed so far, these two limits need not be compatible.
The probability measure implied by the Kolmogorov extension theorem does not have to
be absolutely continuous with respect to the probability distribution associated with the
approximating model. Furthermore, the limiting random variable implied by the martingale
convergence theorem does not necessarily have a unit expectation and hence is not neces-
sarily a Radon—Nikodym derivative for a probability measure. As we will see in Sezdon
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and Appendixd, these two limiting distributions can be related by using a different form
of martingale convergencé.

3.3. Multiplicative decomposition of martingale

The martingaleM, 1 allows us to represent distortions in nonsequential decision prob-
lems, i.e., problems under commitment. When we want to formulate sequential decision
problems, it is convenient to decompaddg; 1 into components that represent distortions to
conditional probability distributions of date- 1 events conditioned on dat@formation.®
Take a nonnegative martingdl#f; : r >0} and form

Mie1 it pg, > 0
— M, t ) 6
il 1 if M, =0. ©)
ThenM, 1 = m; 1M, and
t
M, = Mo ]_[ m;. (7)
j=1

The random variabl@/g has unconditional expectation equal to unity.

By construction, the random variabte ;1 has datd conditional expectation equal to
unity. For a bounded random variablé , 1 that is X, 1-measurable, the distorted condi-
tional expectation implied by the martingdl®; : ¢ >0} is

EMi11Wis1|X)
E(M;11|47)

E (miaWip1|l X)) =

where the denominator is strictly positive. We usg 1 to model distortions of the condi-
tional probability distribution forX;, 1 given &;.

For eachr >0, construct the spack1,; of all nonnegative; 1-measurable random
variablesn;, 1 for which E (m;;1|X;) = 1. We can use¥) to construct a martingale from
an appropriately restricted procggs, 1 : ¢ >0} and an initial conditionVg.

3.4. Entropy

The entropy of the distortion at time&onditioned on date zero information&is(M; log
M;|Xp). The product decomposition (7) 81, implies a corresponding additive decompo-
sition of entropy

E (M, log M;|Xp) — E (Mo log Mo|Xo)
-1

= Z E (Mt log mj+1|Xo)
j=0

4 Section? contains an example in whidi/; : ¢ >0} has a limit that is the Radon—Nikodym derivative for the
limiting probability measure. As a consequence, a concern about robustness vanishes over time.

5This is like factoring a likelihood function.
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ey

r—

E[E (M1 log mji1]X;)|Xo]

-~ <
I
= o

E[M;E (mj41log mji1]X;) |X)], (8)

~
I
o

where the second equality follows from an application of the law of iterated expectations and
(5), and the third from (6). We séflp = 1, which means that we explore only probability
distortions conditioned oAj.

Becausen log m is convex inm,

E (m;41 log m;11|X;) > E (my41|X) 10g[E (m,411X)] = 0.

Definition 3.4. Consider a random variabie ;1 in M, 1. Itsconditional(on X;) relative
entropyis

et(miy1) = E (my41 109 me11] ) . )

Because all terms o8] are nonnegative, the sequence

-1
> ME (mjs110g mj1] X;)
j=0
is increasing and has a limit that might Beo with positive probability. Using this in8)
shows that

lim E(M; log M,|Xp)
—00

converges. In Appendik, we show that when this limitis finite almost surely, the martingale
sequencéM, : t >0} converges in the sense that

lim E (M, — M| |X0) =0, (10)
—00

where M, is measurable with respect 88,, = \/;2, X;. The limiting random variable
M can be used to construct a probability measurétgnthat is absolutely continuous
with respect to the probability measure associated with the approximating model. Moreover,

M; = E(Moo|Xz)~

For short, we call the probability measure associated with the approximating model the
‘benchmark probability measure.’

Remark 3.5. WhenM, converges to a random variabl€,, as in (L0), the distorted prob-
ability distribution induced by, is absolutely continuous with respect to the benchmark
probability distribution. Therefore, a Law of Large Numbers that obtains under the distorted
model also applies under the benchmark model.
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3.5. Discounted entropy

When0< p<1,Hansen et aJ18] use a continuous time analog@f-p) Y"1, p' E (M,
log M;|Xp) as a discounted measure of entropy for models without hidden states. To pre-
pare recursive representations of some decision problems, it is convenient for us to use an
alternative representation of discounted entropy inspired by the decomposition

0 o0
(1—p) Y _p'E (M, log M,|Xo) = > p"E [M,E (m,11 log m; 41| ;) | Xo]
=1 t=0

o
=" 0 [ Migtomi 0l o] (11)

t=0
where the right-hand side is obtained by applying formu®s (7), and (8) and Abel's
summation formula (‘summation-by-parts’). The left-hand side of (11) represents entropy
in terms of the level distortiona?,, while the first term on the right-hand side represents
entropy in terms of the ratio distortioms,. We can use contributions from both sides to
form entropy penalties for robust control problefhs.

WhenE (M; log M,;|Xp) converges, the limiting version of (11) as— 1 is

E (Mu 10g Moo|Xo) = Y E [M,E (m;41 log m11]1X;) | Xo] . (12)
t=0

whereM, is the limit point of the martingale. With discounting, the right-hand sidd.bj (
can be finite without convergence of the martingale sequence, and therefore without the
common law of large numbers noted in Remark 3.5.

3.6. Representation of induced distributions

To exploit the Markov structure of the recursive decision problems in Section 6 and
Hansen and Sargent [17], it is useful to work with induced distributions of random vectors
and to specify perturbations to those induced distributions directly. In this section, we briefly
indicate how our approach of multiplying random variables by a positive random variable
affects induced distributions. For concreteness, we consider the effect of multiplying by
m;1 before taking expectations over the induced conditional distributios fqr

We can see that the random variahlg 1 can be depicted as

X[(Zf+lv St4+1, Xty oo oy xO)
for some Borel measurable functignand that
/X;(Z, §. X5 .., X0)T(Z, s|x) dA(2) di(s) = 1.

Therefore, associated witty 1 1 is @ multiplicative distortion in the density fof,1, s;+1),
given current information associated with the hidden and observed states. Formally,

6 The distinction between these level and difference measures of entropy will be especially revealing when we
move to continuous time formulations.



L.P. Hansen, T.J. Sargent / Journal of Economic Theory 124 (2005) 258—-301 269

7 Clxe, ..., x0) is a conditional density of a perturbed model with respect to the approx-
imating model. The second of the following two equations expresses conditional relative
entropy in terms of the distorted induced distribution:

eX(miy1) = E (myy1 109 mey 1| X))
= / [lOg 12, 81X, X—1,s -0, xo)]
X (2, 8|0, X115+« ., X0)T(2, S|x;) dA(Z) dn(s).

3.7. Distorting likelihoods with hidden information

Becauseitis adapted £, the random variabl#/, is a likelihood ratio for two probability
distributions overY;. The implied likelihood ratio for the reduced information &eis the
S;-measurable random variable

G, = E (M)

that assigns distorted expectations to random variabl€stivat agree withi/,; {G, : t >0}
is a martingale adapted to the decision maker’s information seqyépce > 0}.

Conditioning on the smaller information sgf; : r >0} leads us to decompog¢; by
first defining

O K i
The random variablé, is X;-measurable. The random varialdle can be decomposed as
M, = h,G, (13)
with a corresponding entropy decomposition

E (M; log M;|So) = E [G;h; (log h; + log G,) |So]
= E (G;h;log h;|So) + E (G, log G;|S0) .

where we have dropped an from the last term becausg(h;|S;) = 1 andG; is S;
measurable. In the decompositidB], M, distorts the probability distribution ot;, &,
distorts the probability oft; conditioned orS;, andG, distorts the probability of;.

Remark 3.6. An entropy measure based on the larger informatiomsetxceeds that of
the smaller information s&;, an inequality that is used in maximum-likelihood estimation
with hidden states and that underlies the EM algorithm.

Consider a distorted expectation operator that solves the follofvpenalized minimum
entropy problem:

7 See Gelman et aJ11], especially pp. 276-283.
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Problem 3.7.

M, >0,EM,=1,

subject to the restriction tha¥, be X; measurable

In a decision problem in which actions depend on conditioning informatia it is
convenient to use decompositidi8) and to solve fok, before solving foiG,. Substituting
(13) into the objective for Problem 3.7 gives

E (G, W;|So) + OE (Gyh, log h,|So) + 0E (G, 10g G,|So) .

As in other decision problems under uncertairity,can be determined by solving the
conditional problem

Problem 3.8.

min E (h;W;|S;) + OE (h; log h|S;) ,

h[EH{
whereH, is the set of all nonnegativ& -measurable random variables for whiéh(#, |S;)
=1.

After solving Problem3.8), we can return to Problem (3.7) and compute the minimizing
choice ofG;. When we want to focus only on actions contingent®rand hence on the
distortionk,, we can skip the step of solving fat;. This motivates our second measure of
conditional relative entropy.

Definition 3.9. Consider a random variable, in #,. Its conditional (on S;) relative
entropyis

e2(h) = E (h; 10g 1,|S;) . (14)

We shall usé:, to represent a distorted expectation operator, conditionetl ewents, of
random variables that afg-measurable. The random variabjecan be used to build a joint
density function foko, z1, . . . , z; conditioned on current and past signals. We can integrate
this joint density to produce a marginal density fgrconditioned on the signal history.
This marginal density is relative to the densjtyz) that we constructed without distorting
the underlying probability distribution. Thuk, implies a multiplicative perturbation of the
hidden state density; (z).

3.7.1. Implications and advantages of the decomposition

By exploiting the decompositioh; = h,G, and focusing directly on the distortidn,
we can substantially streamline the problem of designing a rafusteasurable decision
rule for a,. In particular, we can avoid having to solve a distorted filtering problem for
each choice of\/;, a computationally demanding task that we would have to perform if
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we worked directly withV/;. 8 By applying standard filtering and smoothing procedures to
the approximating model, we can deduce the probability of current and past hidden states
given current signals implied by the benchmark model, then perturb it by multiplying by
h,. Because we do not have to resolve filtering problems for every potential perturbation,
this can afford a considerable computational saving. When we have completed that task,
we can then computé,; and hence,.

Hansen et al. [18] condition on date zero information, which means that the time 0
contribution to entropyMo log Mg, plays no role in their analysis. However, the presence
of hidden state variables will giv&y log Mgy an important role in our analysis. Including
ther = 0 contribution and using the decompositith = #,G, gives

oo
(L=p) ) p'E (M, log M;|So)
t=0

o0
=(1—p)Y_p'E[G/E(h log hi|S;) + G, 109(G,)ISo]
=0

We will be primarily interested in the contribution

Q=) Y ' E[GiE(h log hilS)ISo] = (L= p) Y o' E [ GreP(h)|So) |
=0 1=0

because of our ability to assess proposed current and future actions conditioned on the
current signal history.

3.8. Two operators

We use the representations of entro@ydnd (14) to derive two operators that are useful
for designing robust decision rules. Each of these operators can also be used to express a
risk-sensitive adjustment of an appropriately measurable value function. Each operator also
implies a distorted conditional expectation operator.

3.9. The operatoR}

Problem 3.10.

RF (Wigal0) = min  E (miyaWipal &) + Ol (my10).

my1€Miq1

Claim 3.11. Suppose that

E [exp (— th“)‘ X,] < 00. (15)

8 TheS;-measurable random varialiledistorts the distribution of; . Thatimplies that it distorts the conditional
distributiong; (z) of z;, i.e., the filter, and that it also distorts the distributiong@f. . ., z;_1 conditional onX;,
i.e., the ‘smoothers’.
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The minimizing choice of; 1 in Problem3.10is

1%
mi, ., exp(— ;)H> (16)

and the optimized value of the objective is

R (W,41/0) = —0 log E [exp (— W;)“)‘ Xt} .

Proof. This result and variants of it that follow are standard in the literature on relative
entropy. For example, see Dupuis and H#f O

In the limiting case that sets the entropy penalty parameter oo, R,l(W,Hloo) =
E(W;+1|X;). We can see that this expectation can depend on the hidden state. 0When
0, R,1 adjusts the ordinary continuation vald&g W, 1|X;) by using a worst-case belief
about the probability distribution of; 1 conditioned onY; that is implied by the twisting
factor (16). When the conditional moment restriction (15) is not satisfied, we defite
be —oo on the relevant conditioning events.

3.10. The operatoR?

For anX,-measurable functioi;, the following problem implies an operaiﬁf and an
associated worst-case distortion

Problem 3.12.

RZ (Wi10) = min £ (hW1S,) + 02(h,).

o hieH;

Claim 3.13. Suppose that

E [exp (—‘Z’) S,} < 00.

The minimizing choice df; in Problem3.12is

A~

14
h* o exp _71 :

R2 (Wtw) = —0log E |:exp (—%)

4. Robust evaluations under commitment

5|

This section states a robust decision problem under a timing protocol that requires two
players in a zero-sum game to choose appropriately measurable sequences of controls once
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and for all at time 0. We use outcomes of this timing protocol to motivate an alternative,
sequential timing protocol in Hansen and Sard&i.

We want to study a problem in which a minimizing player has an information advantage
(he conditions time choices onY}) relative to a maximizing player (who conditions tirne
choices or$;). We obtain useful preliminary results by first considering a robust version of a
full information decision problem. We represent a full information problem by temporarily
replacing.A; by an enlarged se#; that consists of alh-valued random vectors that are
X;-measurable.

4.1. Full information

This full information problem is the discrete-time counterpart to a continuous time prob-
lem of Hansen et al. [18]. The following two-player zero-sum game instructs a minimizing
player to choose a martingale to perturb a maximizing player’s probability model

o0
max min E M, [BU(x;, a;) + p'Omyiq log m X 17
{HIEA?(} {mir1e M 11} <§ ! [ﬁ ( ' t) P o g t+l] | 0 ( )

subject to

Vi1 = Ty(St4+1, Vr» ar),
241 = T Xy, ap, Wet1),
St41 = W5 (Xz, Ar, Wrt1),
M1 =m A M;, (18)

whereMp = 1 andxg is a known initial condition. We restrict both the distortian, 1 and
the decisioni, 1 to be X;1-measurable.

The distortion in beliefs contributes a multiplicative martingale preference shiptk
period1 utility and ad-weighted penalty on entropy.The initial conditionMy becomes a
new state variable at time 0. In the full information case, we are free to normidizre one.
A Bellman-Isaacs condition allows us to exchange orders of maximization and minimization
(see [18])10

Remark 4.1. The inner problem in gamd {)—(18) is an ordinary control problem with a
fully observed statéx,, M,) and anX;1-measurable contrat, .1 chosen at date

While Hansen et al. [18] study a continuous time version of the case in yhieh, we
also consider the case in which<0 f < 1 andp = 1. Whenp = 1 and the minimizing
agent chooses first, we can solve the inner part of problem (17) as a static optimization

9 Maccheroni et al[26] developed axiomatic treatments of penalty-based preferences. [B@indeveloped
axiomatic treatments of entropy-based measures.
10The freedom to exchange the order of extremization rationalizes a worst-case model under which the robust
action fora, is optimal (sed4]).
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problem. For a given action proceiss : t >0}, let

8]

Woo = Y Ui, )

t=0
subject to

Vi+1= ny(sl‘-‘rls Yty Cl[),
Zl+l = TCZ('xl5 ag, wl+l)’
St4+1 = Tg(Xz, Ar, Wi1).

The minimizing agent solves:

Problem 4.2.

R (Woo) = min E (Moo Woo | X0) + 0 (Mg, 10g Moo | Xo).
Moo 2OsE(Moo‘XO):1

Claim 4.3. For some action procedg; : t >0}, suppose that
1
E [exp <—§Woo> ‘ Xo} < 0.
*

Then
__ewCdn
* E[exp(—3Woo) | X0]

and the minimized value of the objective is
1 1
R..(Ws) = —0log E [exp <_§W°°)‘ Xo] . (29)

The implied martingale is
M = E (MZ|X)

and M = 1. Control theory interpretsl@) as a risk-sensitive adjustment of the criterion
W (e.9., see [32]). The solution for the distortiofdd;" : + >0} justifies an interpretation
of that risk-sensitivity adjustment as manifesting a concern about robustness. An expression
of the outer problem in (17) is

Xo) .

Settingf < 1 butp = 1 makes the concern about robustness wear off with the passage
of time, in the sense that= = m; ; — 1 ast — +oo. We analyze a linear quadratic

. B 1
example in Sectiof.

1 o0
m —0log E _ - U (xy.
a,eA;?tX >0 9 (exp|: 0 z§=0 U (x; az)i|
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Hansen and Sargefit5], in discrete time, and Hansen et al. [18], in continuous time,
have formulated versions of this full-information problem wheg= . They analyzed a
zero-sum two-player game in which both players choose sequentially. The Markov per-
fect equilibrium of the two-person zero-sum game gives rise to a value function for the
maximizing player that can be stated in terms of a recursive version of an adjustment for
risk-sensitivity. Whermp = f, the associated martingale is most conveniently represented in
terms of continuation values. Whe¢h= p, the martingale typically does not converge to
a finite limiting random variablé/.,, so that concerns about robustness endure. When the
martingale fails to converge, it can still imply a limiting probability distribution o,
but that limiting distribution will typically not be absolutely continuous with respect to the
distribution associated with the approximating model. See Remark 3.3.

4.2. Hidden states

The problem in which the minimizing player has an information advantage entails two
important modifications of the fullinformation problem. First, although 1 remains¥; ;-
measurable, the actian is restricted to beS,-measurable and hence .4} rather than in
the larger sed’. Second Mo now must be aritp-measurable random variable satisfying

E(Mp|Sp) =1

or Go = 1. This convenient normalization implies that we can replace the minimization
over Mg with a minimization over:g. Thus, the minimizing player’s decision problem can
be posed as

o0
min min E (Z M B U (e, zi,ar) + p'Omyq1 log mt+1]’80>

hoeHo mir1€EM;41,6 20 P

+0E (Mg log Mo|So) (20)

subject to 18), a given action process whose tir@mponent, is in A;, My = hg, and
the observable component of the initial stageas an initial condition. It is convenient to
minimize overhg after first solving a preliminary inner probleth

o0
Wo = min E (Z M [B'U (.2, ar) + p'Omyy1 log myqa] IXO) (21)

mip1€M;11,0 20 -0

subject to 18) with hp = 1. Evidently, Wy depends implicitly on the decision process
{a; : t >0} and on conditioning information iftg.

We can see that problem (18)—(21) is identical with the full information problem for
the minimizing agent (17)—(18). This inner problem has a recursive structure. In particular,
the solution to problem (21) can be expressed in terms of successive applications of the
operatorR}. Starting from a terminal valu®&; that is X7-measurable, comput#; for

11n formulating problem21)—(23), we are using the fact that the right-hand side2 s linear inkg.
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t=T-1T-2,...,0 by performing the recursions

t

W, = %U()’t» 2, ar) + PRtl(Wt—t—lw)v (22)

whereW; is X;-measurable. Think of solving these recursiong as +oco. As a by-product
of these recursions, compute the associaied process

4
miq o exp( 0’“), t>0.

The Rt1 operator applied tdV, 1 yields a random variable;  , that distorts a one-step
ahead density fox,;1 conditional onX;. The recursive solution strings together these
conditional distortions to produce a worst-case distortioA’Qfevents conditioned on the

date zero information sékp.

Remark 4.4. Recursion22) mapsk;.1-measurable random variables idtpmeasurable
random variables. Because the spaces of histdfiese so large, these recursions are not
computationally practical unless one can find a way to reduce the dimension of the state
by, for example, deriving a sufficient statistic for histories. Section 6 describes the distorted
distributions that emerge from these operators. In the linear quadratic examples of Section
7, we display how to compute explicit examples of these distributions that are of reduced
dimension. There an objegt(z) emerges that is a normal distribution with distorted mean
and covariance that generalizes the ordinary Kalman filter. In a special case that one-period
utilities do not depend on the hidden stat&z) collapses t@; (z). Therefore, in that special
case, the distributiog; (z) associated with the approximating model can serve as a state
variable even though the minimizing agent distorts this distribution to attain a robust decision
rule. We revisit these issues in the context of linear quadratic problems in Section 7.

For our incomplete information game, after solving the inner problem, we soleeithe
problem

Wo = min E (hoWo + 0ho log ho|So) - (23)

hoeHo

The outer problem is identical with the problem that defines the opdkétakfter having
computedWy, we solve the outer problem by computing

Wo = R3(Wol0).

The associated distortidry can be computed from

* —Wo
1 o exp( —00).
The application of theR% operator toWy completes the minimizing player’s choice by
yielding a random variablgg that distorts the probabilities assigneditg conditioned on

So- Thus, the minimization part of the commitment problet@)(is solved by first applying
theR? operator ‘an infinite number’ of times, then applying ffeoperator once, at time 0.
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4.3. Important special cases

Substantial simplifications occur when we further restrict the problem. Many treatments
of robustness in the control theory literature get 1. From problem4.2), we know that
whenp = 1, there exists a random variallg,, that can be used to distort probabilities at
all calendar dates. Problem (4.2) yields a choicéfgf that is X,.-measurable. To solve
for the worst-case model pertinent when there are hidden state variables, compute

R3[RL (Wao)]

as in problem20), where

o0

Weo =3 U, ap).

t=0
Equivalently, the minimizing agent could solve

Problem 4.5.
Roe(Wo) = min E(HooWao|So) + 0E (Hoo 10g Hoo|So0).
Hoo > 0. E(Hso|So)=1

The solution to this problem is

g e EWeolX0)
X7 E(WelS0) — E(WoclSo)

where M3, = % is the full information solution associated wifkg,. We will

illustrate such a solution in Secti@nby appealing to results from the robust control theory
literature that assume that= 1.
Whenp = 1, we can decompose the random variatflg as

Moo = hooG oo, (24)
where

G = E(Mx|Sx0)
and

Moo i
1 if Goo=0.

The random variablé/, distorts the probability distribution 6f,,, /1 distorts the proba-
bility of X5, conditioned orS,,, andG «, distorts the probability of.,. Use decomposition
(24) to express entropy as

E (Moo 109 Mog|S0) = E [GE (hoo 109 hoo|Soc) 1So] + E [G oo 109 GoolSo] -

We can put decompositio24) to good use in the following special case:
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Example 4.6. Suppose thgt = 1 and thatU does not depend on the hidden state
U(x,a) = 0(y, a).
BecausdV is Soo-measurable, the minimizing solution to Probleftb) setdi, = 1 and

— WOO
T E(WwlSo)'

Goo

Although the minimizing agent has an informational advantage in this example, he does
not use it in the limit (he sets,, = 1). The worst-cas#/,, = G distorts only the signal
distribution and not the distribution of the states conditioned on the entire signal process.
However, it will distort the distribution of; conditioned onS; because, whilé//,, will
be So-measurableM; = E (M| X;) will typically not be S,-measurable. There will be
events inX; with probability assignments conditioned §nthat are distorted. In particular,
the distortion of the conditional expectation of a real-valued, bounded Borel measurable

function¢ of z, givens;, £ f(’ﬁ‘zﬁg,‘)‘s‘ , can be different fronE [¢(z/)|S;] .
Of course, distortions of probabilities over events that are measurable with respect to the
filtration {S; : ¢t >0}, not the implied distortions of the distribution gf conditioned ors;,

are the pertinent ones for choosing the action proggsst > 0}.
4.4. An alternative approach for Example 4.6

Whenp = 1, we can use the following decomposition of the entropy of the distortion
Goo:

o]

E[G l0g GoolSo] = ZE [G/E (gj+1 l0g gj41IS;) 1So] .
=0

whereg ;1 for j >0 is constructed from

Gjt1 ;

St Gy >0
PR B j=0
A { 1 if G, =0

An equivalent statement of the minimizing agent’s problem is

o0
min E (Z G; [ﬁt(j(yp ar) + 0gi41 log gt+1] |SO> (25)
=0

gr+1€G11,1 >0

subject to

Vi1 =Ty (S4+1, Yt ar),

241 =T (X, Ap, Wiy 1),

St+1 = T Xz, ar, Wi41),
Giv1=g+1Gy, (26)

whereGg = 1 andg, 1 consists of the set of all nonnegatie, 1-measurable random
variables with expectation conditioned ¢h equal to unity. This takes the form of an
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ordinary (i.e., nonrobust) control problem. In this formulation, there is no informational
advantage for the minimizing agent and therefore no initial minimization over the initial
conditions for the martingaléG, : ¢t >0} adapted to the smaller filtratiof®, : + >0}. A
counterpart to theEi,1 operator can be constructed by replacitigwith S; andm,1 with
g:+1. The date operator will necessarily uglyf’ as the daté robustness parameter.

The information structure and the constraints in probl2&)-{(26) invite the minimizing
player to solve a filtering problem. Thus, by the same logic that connects Problem 2.1 and
2.2, problem (25)—(26) could be restated as

8r+1€G141,1 20

min E (Z G, [ﬁtl}()’tv a;) + 0gr+1 log gt+l] |80)
t=0

subject to the density(s;+1|y:, ¢, a;) and

Vi1 = Ty (St+1, Vi, A1),
qi+1=Tq (S+1, Ve Gr, ar),
Giy1=g+1G;.

The g,+1 choice will distort the transition probabilities fd; 1 events givenS; infor-
mation. The implied distortions fot;;1 conditioned onX; could be computed from the
formula

E <€‘XP[—ﬁ(—; Z;io ﬁj(}()’tﬂ', at+j)] |Xt+1>
E (exp[—% Z?‘;o ﬁj(j(Yerjv at+j)] |Xr)

but it is not necessary to perform this calculation to determine the maximizing actions.
Notice that wherp = 1, the implicit datet robustness parameter 5. Therefore, when

0 < 8 < 1, the impact of the concern about robustness vanishes with the passage of time,
a feature that was noted, for instance, by Whit8i#].

me+1 =

’

5. Relationship to Chamberlain’s and Knox’s work

Before studying Example 4.6 in the next section, it is useful to digress briefly to consider
how the robust estimation problems studied by Chamberlain [6] and Knox [24] relate to our
framework, especially in terms of the behavior of the martingale distoMgn

Example 5.1. Consider an estimation problem in whigh= zg for all t. The hidden state
does not evolve over time, and as consequence, can be viewed as an unknown parameter to
be estimated. Signals provide information about this parameter.

Suppose that; is generated bg, andzg. Thus,M, depends on the signal history ang
and, similarly;n, 1 depends on the date- 1 signal, the signal history, ang. The random
variablem;, 1 distorts the conditional distribution ef, 1 given current and past signals and
the unknown parameter. The random variablelistorts the posterior distribution of the
parametetg = z, conditioned onS;. While signal distributions can be distorted, absolute
continuity requires the distorted distributionfto be invariant for alk > 0.
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The ability to distort the signal distribution conditioned on the parameter differentiates
this problem from those studied by Chamberlain and Knox. They study a parameter es-
timation problem, impose commitment, and make a robust choicepoiba My, where
E(Mp|So) = 1. In effect, they restrict the martingal#/, : + >0} to be time invariant. The
implied form of theirk, distortion is thus

-~ E (MolS)

hy

rather than our less restrictive specification.

We believe that prior selection problems like Chamber[@jhand Knox [24] are of
considerable interest. But those problems differ substantially from ours because we allow
distortions of the signal distribution, given the parameter, and do not limit the martingale
{M; : t >0} to be time invariant.

6. Recursive formulation of commitment game with undiscounted entropy

Whenp = 1, we can solve the commitment problem by simply finding a worst-tAse
that distorts probabilities assigned to event§ig

_ e[ YA UGS a)]
E (exp[—2 X0 B UG a)] 1S0)

The* variables denote objects evaluated at the commitment solution.

We now describe a recursive formulation of the= 1 commitment problem by char-
acterizing a corresponding ddtereference ranking? The idea will be to find a way to
‘decentralize the decisions of the minimizing agent over time’ by having a sequence of min-
imizing players who take as given the decisions of past minimizing agents and the decision
rules of future minimizing agents. In addition to suggesting simplified computational algo-
rithms, the depiction of a conditional ranking allows us to isolate the distinct roles played
by commitment and discounting. This analysis is a stepping stone to the formulations of
recursive games in Hansen and Sargent [17] that withdraw the ability to commit from the
two players in a zero-sum game designed to produce a robust decision rule.

6.1. Date k probability distortion

As a useful prolegomenon to constructing a dateonditional preference ordering,
we introduce the following decomposition 84, into backward- and forward-looking

12 Although, the mathematical formulation differs in important ways because we use martingales to represent
distorted models, our arguments parallel some of those made in the robust control literature by[8jittrel
Basar and Bernarf?].
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components:

Moo = M} ML,

where
, . ew[-FXig s U]
Mi_, = 1k .. ,
£ (exp[-3 T3 pUGE an) ] 150)
0 E (exp| =3 ¥ pruxr, a) |10
Mfoﬁexp{—}Zﬂ’U(x;ﬂaf)} (ol §2aroe o))
0= E (exp[— 5 3720 B'U (x}', a)] |So)

The termM,ﬁ’_l is backward looking and therefore depends on utility contributions be-
fore datek. Changes in actions from dakeforward will not alter this component. The
corresponding entropy decomposition is

E(Mos l0g Mool So)=E (MLM]_y log M{_y|S0) +E (M&M]_; log MLISo) .
Construct two martingales foe> k

M, = E(Moo| X)) = MV E(ML| X))
and

M/ =E (M({olXt> .
The two martingales share incrementsd#ork

f
m _ Mt+1 _ Mz+1
t+1 M, _Mtf .

6.2. Changing the benchmark probability distribution at date k

We useM,i[l to define a new benchmark model at detehen explore distortions to

that model by choosing a Worst-caM{o. The notationE denotes an expectation com-
puted with a distorted probability measupe constructed by taking{,’:fl to be a Radon—
Nikodym derivative with respect to the probability distribution associated with the original
(time 0) approximating model. Write the date zero objective evaluated at the commitment
solution as

00 k-1
E |:Moo Y UG a;")|Soi| —E [Mgo > UG al*)|80:|

=0 t=0

o0
+E [Mkf Zﬁ’M{‘U(x,*, at*)lso} )

t=k
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We can see that

k—1
0E (MgoM,’;fl log M,’c’fl|80) ——F |:Mkf Y UG a,*)|so}
=0

k-1
+log |:E (exp [—% Y BUGS af }

i)

Thus, including the entropy penalty, the date zero objective can be rewritten as

o0
E [M,{ > B MEU G a;")|$o] +0E [Mg; log MC{O|30]

1=k
50)} : (27)

=
+log [E (exp |:_§ Z BU(x], a;“):|
t=0

We will exploit this representation to implement the commitment problem recursively.
Formally, fixing the distorted expectation operatoat datek, we explore changes in the
control policy and penalized choices of worst-case models relative t& therobability
distribution. This allows us to work with entropy relative to tAe probability distribution
and to let the objective include terms from diferward only. From the solution to Problem
3.8, we know that we can solve a conditional counterpart to this problem in which we
decompose

M} =hlG]
with G/ = E(M/|S;) and

f .
Mt 6l >0,
Gk
1 otherwise

hl =
The conditional problem uses the objective

o
E |:M,{ 3B MEU G, at)|8kj| +OE [h,{ log (h,{)|3k] +E (h,{Mgo log (M§O)|Sk)
t=k

and abstracts from the minimizing choice@;f . The third term in 27) is irrelevant for this
conditional problem. 5

We shall use the notatiof; to denote the analog té&(; constructed using thér
probability measure in place of the original probability measure.

6.3. Reconsidering the date k decision
To induce a recursive algorithm for solving the commitment problem, we decentralize

the maximizing player into a sequence of diatmaximizing players and ask each date
k player to reconsider the dakechoice that our single maximizing player chose under
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commitment, taking as given the contingency rules of the maximizing agents for dates
s # k. If we endow each datemaximizing agent with the same date zero objective that we
used under commitment, the d&tplayer will reaffirm the dat& component chosen under
commitment. However, to get a recursive implementation of the commitment solution, we
want the daté& maximizing decision-maker to use an objective based on one-period utilities
from datek forward, i.e., we want him to consult continuation values. In addition to ignoring
earlier contributions to the objective, we would also ask an associated timm@mizing
agent to choosg;.

In this section, we shall eventually describe the rankings over action processes implied
by minimization in terms of applications of our two operat®sandRy. We construct
datek minimization problems that preserve conditional rankings foriapy) and thereby
motivate dynamic programming formulations. We shall represeas a function of current
and past actions and shocks

X =Y,(ao0, a1, ..., a;-1),

leaving implicit the dependence of the random functigron the underlying shocks and
the initial state.

We now rank contingent decision processes from Bddeward. We denote the infinite
sequence of current and future decisions by

Qk,00 = (ak, Ax41, Ay 2, - . -)

and define

E(ako0) =Yy lag, ay, ..., a5_q. ag, ..., a;—1)
forr > k. Fore>k, let
o0
Eelaroo) = Y BUILE (ar00), a1 (28)
t=¢{

To produce a ranking over action process., solve

min - min [ eMEEk (00 + 01 MY, log MY, + 0hy 1og h S ]
hke'}'vlk myeM,,t>k

where

o0
Mlgo = l_[m,.

t>k

Consider first the inner minimization problem

i) = min_E [M’goak(ak,oo)wk] 4 0E <M§O log M’;Owk) . (29)
myg 10>
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In Sectiond.2 in Eq. (22), we saw that the minimization ovf, can be done recursively
by iterating on

Ef (ak,00) = BU [Er(ar,c0), ae] + RE[E5 1 (ak.00)10] (30)

coming backwards té = k. 5
We can continue to use trﬁe} operator because ther probability measure does not
distort probabilities conditioned aofi;. We use

v 2
Ry [Ef (ax,00)10]

: . v _ i v
to rank alternative action processes, whifeis constructed just aE,f but with the Pr
probability measure in place of the original probability measure.

Claim 6.1. Suppose thafu; : ¢ >0} solves the commitment problem. Then

v2 \2
Re[EE (@5 001012 R[S (ak,00)10] (31)
for any other feasible action procesg ~., WhereZ; (ax,«0) Solves(29).

To represent the solution of the commitment problem recursively, somehow we must
make the timek minimizer behave as the time 0 minimizer does under commitment. We
accomplish this by constructing thér measure. The effects on the tirkeminimizer’s
problem of the terms in the objective preceding dasre confined to thr probability
measure. To make the tinkeagent act like a time 0 agent under commitment, we require
the timek agent to act as if the distorted measiteis his approximating model. Doing
this imposes on the timeminimizing agent a commitment to the distorted meagtir¢hat
imparts a form of consequentialism to the decision problem. However, we will allow the
timek decision maker to contemplate additional probability distortions that are captured by
Mé‘o, hi. We will say more about the distortion embedded in the tkngecision maker’s
‘benchmark model’ and its consequences in later subsections.

6.4. The rear view mirror: Distorted and undistorted filtering

The distortion in the benchmark model requires that we compute conditional expectations
of the form

E [¢(z0)1S]

for Borel measurable functions Equivalently, we require the'r, probability conditional
densitygy of zx (relative to) conditioned orS;. When the utility function does not depend
on the hidden state asin Examplé,M,ill is Sy-measurable and thig probability density
agrees with the conditional distribution under the original probability model.
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But more generally, the density, can be computed recursively by adapting standard
methods that entafbrward induction Begin by forming the multiplicative decomposition

k—1 ~
| J

My = A0
£ (i3 150)
where
1.
I’;’l] = exp[—éﬁ-’U(x}‘, (l}k)i| . (32)

We can see thdﬂ,f_l does not distort probabilities conditioned &j_1. Therefore, given
a densityg;—1 (relative to the measurd of z;_1 conditional onS;_1, we can infel using

v * Lk ~ *
qk = Tq (Sk» Vi—1> 9k—1, Clkfl)-

It remains to computg;_1. This sequence of densitigg; } can be computed recursively
by constructing a sequence of probability models. Form a family of distorted probability
measure¢Pr; : j =0, 1, ..., k— 1} inwhich measur®r; has Radon-Nikodym derivative
A7Ij = M?. We thereby construct these measures soﬁhatl coincides withPr. Let q;
be the density (relative to the measujenduced bylsrj for z;. To produce an updating
equation for the density sequengg : j = 0,1,...,k — 1}, express the dependence of
m ; on the hidden state by

mj=vj(z;)
and note that
vi(2)my (S}‘, yf_l, qj-1, aj_l)(z)
[vi@my, (S}‘, y}‘_l, qj-1, a";_l) (D) dMZ)’
vj(2) [z, 851y g, 2 af_dj-1(2) dAZ)

= = - = = = 33
[ [vi@r(@, sTIYi_g 2. at_1)qj-1(2) dAZ) dA) (33)

forj =1,2,...,k— 1. This operatioupdatesusingn, anddistortsusing the conditional
densityv; scaled appropriately. The recursion is initialized by multiplying the initial density
qo by vo(2), then renormalizing so that the product integrates to one.

gjz)=

6.5. Discounting

It is revealing to adjust for discounting in forming continuation values. We accomplish
this by first multiplying=, defined in 28) for¢ >k by f~* to obtain

Ee(ar,00) = B Ee(ar,00) = ZﬁtU[ferz(ak,oo), arvel.
t=0
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Multiplying both sides of 29) by 8= results in
Ey (@k.00) = B Ef (ar.00)

= min E [Mf,oék(ak,oo)wq] + p*0E (Mﬁo log M§O|X4) )
mieM;, t>k

It follows that we can calculatfé,t recursively by iterating on

E} (ar.00) = UlEp(ar.00), arl + BRYEp, 1(art1.00)187720) (34)

backwards ort to k + 1. Similarly, we use
V2 o~k
RTELIB 01 (35)

to rank the alternative action processes.

Thus, the standard approach of renormalizing the discount factor ak datiee unity
can be accomplished only by introducing time dependence into the robustness parameter.
Scaling0 by p~* increases the robustness penalty geometricallyand causes concern
about robustness to wear off over time whers less than one. This wearing off occurs
because we discount the return function but not the entropy measure.

In Hansen and Sargefit7], we show how to arrest that wearing off by replacjtid 0
with 0 in recursions closely related to (34) and (35).

6.6. Example 4.6 revisited

When the special circumstances of Example 4.6 prevail, a second approach is available
to get a conditional ranking that avoids solving a filtering problem by working directly with
the signal process and using the fagt = 1 for feasible action processes. Thus, assume
that hidden states do not occur as arguments &6 that it can be writtetv (yx, ax) at date
k. Construct

o
G]éoz l—[ 8-

t=k+1

Let the minimizing agent solve

Efo) = min | E[GhSkar0)l ¥ ] +0E (G log GKIS ).

Construct a conditional ranking of action processes by using

BEU (5 ar) + Ef (ax,00)- (36)
Claim 6.2. Suppose thafa," : t >0} solves the commitment problem. Then

BYU (¢, ap) + Ef(af o) = B U OF ar) + Ef (ak,o00)

for any other feasibley ., whereZ; (ax, ) solves(36).
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This approach works with the signal filtration from the outset and does not directly
assign distorted probabilities to hidden states (i.e., it sidesteps filtering problems). After the
problem is solved, we can construdt, = G~ and deduce the implied probabilities for
Xy for any choice ok.

7. A linear quadratic decision problem under commitment

This section studies a decision problem with linear transition laws and a quadratic return
function. Under commitment, Bar and Bernharf2] and Whittle [32] have studied both
undiscounted and discounted versions of this linear-quadratic problem and have displayed
an elegant solution that incorporatesvarst-case certainty equivalence principlehe
certainty equivalence property permits one to solve the problem by combining solutions to
two separate problems, namely, a nonstochastic control problem and an estimation problem.
We display versions of these two subproblems in the following subsections. Then we relate
our martingale representation of perturbations to formulas from the control theory literature.

The linear quadratic structure provides a practical context for us to expand on the fact
that the equilibrium of a two-player zero-sum game under commitment has a recursive
representation and therefore can be computed recursively. In addition, this setting enables
a simple characterization of the probability distributiém that summarizes the history
of signals and that functions as part of the tikn@pproximating model in a recursive
representation of the equilibrium of the zero-sum game under commitment. In particular,
we can summariz€r by a particular Gaussian distributigif(z) with meart and covariance
>«. For the commitment problem, we describe the important special case in gykigh=
q:(z), whereg, (z) is now the distribution associated with the ordinary Kalman filter. In
Hansen and Sargent [17], we take up alternative versions of this linear-quadratic game
without commitment.

7.1. The problem

The limited information problem under commitment is
. . 1 & QO Plla
— max min mn ZEY M (p[a’ x’ !
(areAr) hoeHo (mis1€Mysa) 2 ; ’(ﬁ [ ][P’ R} [Xt]
+ 0m; 41 log mt+1|30> + OE (ho log holSo) (37)

subject to

Xi41=Ax; + Ba; + Cwq1,
st+1=Dx; + Gwy41,
Miy1=my11M;,
Mo = ho, (38)
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wherea;, is restricted to be measurable with respect to the sigma alggbkéle assume
thatGG’ is nonsingular and is independenttfand thatw, ;1 has a multivariate, standard
normal distribution. The decision maker fears that the conditional Gaussian distributions in
(38) are misspecified.

To relate this to our earlier setup, we partitignas

I
x,—|:th|.

In Section2, we specified an evolution equatiag for y;1 and a joint density for the
hidden stater, 1 and the signak;;1 conditioned onx;. The specification for can be
obtained directly from (38) as multivariate normal. Supposehas chosen to satisfy

Vi1 = gsepa + My y, + Hga;.

Substituting from the evolution equation for the signal38), we obtain
Vi1 = Uy Dx; + Ty yr + gar + s Gwy g,

which gives they-rows in systemg8).

7.2. Full information without random shocks

We first solve the following two-player zero-sum game with no uncertainty. The
problem is

masmin — = i <B’ [a x/'] [ Q P] [a’ } + 0|Ut|2> (39)
a) ) 2= P'R || x
subject to
Xi41 = Ax; + Ba; + Cu,. (40)

This deterministic problem follows an important part of the robust control theory literature
in interpreting the ‘shocks); as unknown model misspecifications.

In Section7.3, we shall interpret; as a component of entropy in a random counterpart
to this problem. We can see that we in effectget 1 in (17) and so do not discount the
entropy termu,. An actiona, can be contingent on the state vectar

We are interested in the equilibrium of the zero-sum game (39)—(40) in which both play-
ers choose once and for all at time 0, i.e., a game in which both players commit to sequences
of possibly state-contingent decisions at time 0. In more general settings, timing protocols
affect equilibrium outcomes. However, in this particular zero-sum, full information game,
identical equilibrium outcomes prevail across a set of games with alternative timing proto-
cols: the details of the timing protocols affect neither equilibrium outcomes nor recursive
representations of equilibrium strategi®s Therefore, in the present context, we lose no

13 See Hansen et dlL8] and Hansen and Sargdm6] for statements and proofs of the equivalence of outcomes
and representations for different timing protocols.
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insights by focusing on a Markov perfect equilibrium in which both the maximizing and

the minimizing decision makers choose sequentially.

For sufficiently large values df, the Markov perfect equilibrium gives rise to a date

value function that is quadratic. Inclusive of discountifgywe denote it

t

_%(xt)/gtxt-

For notational convenience, define

- .o o
Qt - [O —/3_’91:|’

. P

?= g

R=R-P Q) P=R-PQP,
B=[BC],
A=A-—BQ)*P=A-BO P

The robust; and the worst-casg are given by

a]_ [Q+BpuuB  pBOYLC BB 1A+ P N
v | BC'Q1B  PC'Q1C — 7101 BC'Qi11A !
~ ~ ~q—1 ~ ~ ~ 1~
=— (B[ 0+ BBQs1B ] BQsad+ (07 xi,
where the matrixX); in the value function satisfies the Riccati equation

~ ~ ~ ~ ~ o~ - ~ a1 ~ ~
Q =R+ pA'Q 1A - BA'Q 1B [ O + ﬁB/Qt+1B] B'Q; 1A,

(Se€[2, p. 272)).

(41)

(42)

Whenf < 1, ast — +o0, the solution forQ, converges to the one that would be
obtained under a no-robustne8s£ co) specificationy, converges to zero, and the limiting
control law converges to that associated with: co. When < o0, the decision maker
is concerned about robustness, but that concern diminishes over time. The dissipation of
concerns about robustness with the passage of time is a direct consequence of the different
discounting of one-period returns (they are discounted) and one-period entropies (they are

not discounted).

14This problem is well posed only for sufficiently large valuegoSee Lemma 3.1 of Basar and Bernhgd
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7.3. Known states with random shocks

When random shocks are included, we are interested in solving the two-player zero-sum

game'®
1 o P
—= ma min X
2{a,eA } Moo>0, E(Mog| Xo)=1 [ OOZ ( [P/ R} [xt D‘ Oi|
+0E (Moo 10g Moo| X0) (43)
subject to
Xt4+1 = A)C[ + Ba[ + th+1. (44)

The datet admissible control se#} consists ofX;-measurable random vectors of the
appropriate dimension. Using the law of iterated expectations and the represeritajion (
for M, that prevails whem = 1, we can represent this game in the alternative form

1 QP
——= max min M,
2 (g e A¥) (mp1eMo11) |:Z ' < ] [ P’ R] |:x’i|

=0
X0:|

Xr41=Ax; + Ba; + Cwyy1,
M 1=maM,.

+ 0m;41 log mz+1>

subject to

We set the initial value o8/ at unity, which eliminates the ter@d My log Mp|Xp. In this
specification{M; : t >0} is a nonnegative martingale adapted 46 : r >0}, andm;, 1 is
related tov, in problem (39)—(40) in a way to be described in Eq. (45).

Problem (43)—(44) simplifies. The quadratic objective makes the worst-case probability
for the shocks become normal. The distortion consists of state-dependent shifts in the mean
vector and covariance matrix ef 1. The value function of the Markov perfect equilibrium
scales linearly in/; and equals

ﬁl‘
_th [(xt)/tht + wt] )

whereQ, satisfies 42). Randomness contributes the constant eym

The distortionm; 1 is a likelihood ratio that changes the distributionwaf,; from a
normal distribution with mean zero and covariance madttix a normal distribution with
a meanw; that is given by the second equation of (41) and a covariance mgtriwhere
Y;t=1-3C'Q 1 CH T The distortionn, 1 equals

Mme41 = eXp[_% (wi+1—v,) (rp)~? (wr1—y) +%wt+l : wr+1—% log deth] .

15 Orders of minimization and maximization can be exchanged and alternative timing protocols support the same
equilibrium outcomes. See Bar, and Bernharf2] and Hansen et dl18] for complete discussions of these issues.
Hansen et al[18] use a continuous-time specification with a Brownian motion information structure.
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A simple calculation shows that
E (my41 109 m; 41| %) = 3 [|Ut|2 + trace(/ — Y; 1) — log dem] : (45)

where the component terrés{sv,|2 andtrace(/ — Y;l) — log detY, are both nonnegative.

A form of certainty equivalence prevails in the sense that the solutions; fey as
functions ofx, equal those given byi(). The left-hand side of (45) converges to zero as
t gets large under the distorted distribution (the pertinent rows of Eq. (41) show,that
converges to zero). Thus, all components of the right-hand side of (45) converge to zero at
rates sufficiently fast to guarantee convergenc#f/pto M,. Therefore, whem = 1, the
disagreement between the approximating and worst-case models vanishes for tail events.

7.4. Hidden states

We complete the solution of problem (37)—(38) by concealing some of the states. The
admissible control setl; now contains random vectors that é;emeasurable. We exploit
the linear-quadratic structure to show that the ‘temporary approximating médelfor
zx from Section 6.4 is a Gaussian distribution with mé&arand conditional covariance
>, and we give recursions for computitig, . In Appendix B we show how to match
our recursions with different ones that®e,and Bernhard [2] derived in a nonstochastic
setting1® The appendix B algorithm allows us to interpggtz) as a distorted Kalman
filter that makes operational the recursive characterization of the commitment solution set
forward in Section 6.4. In our recursive implementation of the commitment solution, the
datek-minimizing player treats these distorted densities as part of théédgiproximating
model.

7.4.1. Ordinary Kalman filter for the hidden state
Our analysis starts with the ordinary Kalman filter that takes the approximating model to
be true. Write the hidden state evolution equation as

241 = A21yr + A22z: + Boa; + Cowp g
and the signal equation as
St+1 = D1yr + D2z + Gwyya.
The ordinary Kalman filter for predicting using the original benchmark model is
Zr+1 = MOz, 21, sy S141),
where
M(y,Z,a,s, A) = Az1y + A2 + Boa + K2(A)(s — D1y — D272) (46)
and

K2(A) = (A2pAD7 + C2G')(D2ADY + GG~

16 Also see Whittlg32].
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The covariance matrix is updated using

Al+l = C(Al)a
where
C(A) = A2AA2) + C2C2' — Ka(A)(A22AD7 + C2G') . (47)

Thus, under the approximating modgl1 ~ N (Z;+1, Ar+1).

7.4.2. Altered distribution
PartitionP andR as

P=[P P]
and
_ [Rll Ri2 |
R21 R22 |
Then write

. 0O ~ P, a

P a
e 1[ 8] [] 1w v e1| 2 i ||
P R12 R2 z

For this objective, the dajengredient corresponding t82) for constructing the sequence
of distorted benchmark models is

j 0O P P aj
iy = exp| ~5 [’ ' ]| P Ru Rz | |y,
Py’ Ri2 Ry | | zj
When hidden states appear in the objective function, the following additional step is required.
Prior to computing the density,, we must compute the density sequeggeecursively.
Recall that each of these densities is associated with a distinct probability distribution. The
updating in Eq. 83) includes a Kalman filter update and a distortion implied®y Since
m j is an exponential of a quadratic functionzgf these distortions are computed using the
normal density and a familiar complete the square argument. The Kalman filter is the one
implied by the benchmark model using the operator @dirC) defined in (46) and (47) to
update the hidden state conditional covariance matrix and hidden state conditional mean.
The probability distortion applies to the output of this filter. Specifically, the degsitg
multivariate normal with mea#; and covariance matrid ;. It reduces the precision (i.e.,
the inverse of the covariance matrix) by

- - -1 J
Apt= [C(A,»_n] - %Rzz- 48)

The meart; from the Kalman filter is distorted by

A -1
gJ
Zj= |:(Aj)_l - %Rzz}
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0 0
=M(yj-1,Zj-1,aj-1,5j, Aj-1)

/g./' N . -
+?Aj [PZ/aj + R12'yj + RoM(yj-1,Zj—1.aj—1, 5], Aj—l)] . (49)

1 1 . ~
X [—Pz’aj + 2Ry + (A)TIMjo1, 21, ajo1, 55, Ajl):|

When hidden states do not enter the objective function,= 0, Ry = 0, and P, = 0,
which according to48) and (49) implies that there is no distortion. Otherwise, there is a
distortion that depends on objective function parameters, controls, and predicted states.

The ‘temporary densityj, that is used as the dakkebenchmark density is also normal.
Its meant; and covariance matri&; are obtained by a one-step application of the Kalman
filter with inputs(Zx_1, Ax—_1), so that

Ay = C(Ar_1),
Zk = M(Yk—1, Zk—1, Gk—1, Sk)- (50)

AppendixB shows how to use (48) and (49) to produce a one-step recursiojﬁkfoik)
that coincides with the one that 8ar,and Bernhard [2] derived in a nonstochastic setting.

7.5. Worst-case certainty equivalence

We can use the solution to the full information model along \Wjtto represent the robust
control law when some states are hidden. Recall the full information value function

1 /
_éﬁkMk [ o) Qe + ] -

We justify our use of this value function by applying a modified version of certainty equiv-
alence. The full information distortiom, 1 in this context pretends that the actigncan
condition on information inY; instead ofS, because of certainty equivalence. This trick
simplifies computation because it does not involve filtering. After this problem has been
solved, the solution of the limited information problem can be obtained by replacing the
known state from the full information decision rule with an estimate of the state adjusted
for robustness.

At datek, factor M; = h; G and solve the conditional problem

min £ (B [0 Qi + o] + O log hiSi ) (51)

hk EHk

Under both the original and th@ probability model, the conditional covariance matrix of
xx conditioned onS;, is singular becauseg, is known at datd; z; is normal with meari;
and covariance matri&;. The minimizer of 1) is

exp[ B (o) Qi

E (exp[—g—;(xk)’Qka] |5k> .

hi =
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It implies thatz; has a distorted distribution with mean

k gk
wmnefar-Eronas]] Salz]

wherezy is constructed from50). The robust control obeys@odified certainty equivalence
principlebecause itis given by the robust control law (41)dgrwhich we computed under
full information, but which is now to be evaluated at the distorted state estipat&eay
decision is

- ~ -1 . - ~
ar =—[10] [ﬁ (Ox+ BB Qi1B) ~ B'Quiad + (Qr)_lP] [i}’j : (52)

As emphasized by WhittlE32], the decision rule (52) has forward looking components
that come from ‘control’ and backward looking components that come from ‘filtering un-
der commitment’. Under commitment, the sufficient statisticzised as a benchmark for
distorting in state estimation is backward looking. When hidden state variables enter the
one-period utility functionz; can deviate from the state estimate obtained by direct ap-
plication of the Kalman filter. The forward-looking component comes from the control
component of the problem through the matri€gs  and<) in (42). Both components are
combined to produce a distorted estimate of the hidden &tard the robust actiod, .

7.6. Examples
The first example is a pure estimation problem.

Example 7.1. Suppose that the state cannot be influenced by the decision-maker and that
the objective is to estimate Px;. Let the control be an estimate efPx,. SetQ = I and

R = P’P. For this problem¢; = 0 becausa = — Px sets the full information objective

to zero. The solution to the estimation problerajis= — Px;.

The second example supposes that the objective does not depend on the hidden state.

Example 7.2. Suppose thaP, = 0, R12 = 0, andRy2 = 0. There is another way to
solve the robust control problem that first solves the filtering problem and then computes an
ordinary robust control for the reduced information configuration by applying the approach
described in Sectiof.6 in conjunction with certainty equivalence.

Write the solution to the filtering problem as

Zi41 = A21yr + A22Z: + Boay + Ko(A) Wiy,
where the innovation

Wrp1 = D2(zr — Z1) + Gwyyg
is normal with mean zero and covariance matrix

DX, D'+ GG’
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conditioned ors;. Instead of distorting the joint distributiciw,+1, x;), we can distort the
distribution ofw, 1 conditioned ors;. This amounts to focusing directly on the martingale
incrementg,; 1. For computational purposes, it suffices to focus on a distoitido the
mean ofw;1 with entropy penalty

00/ (DX, D' + GG 14,

and wherey, is restricted to be a function of the signal history. While the conditional co-
variance is also distorted, certainty equivalence allows us to compute the mean distortion by
solving a deterministic two-player game. As in the robustness problem with full information,
discounting causes concerns about robustness to wear off over time.

8. Concluding remarks

Inspired by the pair30)—(31) that give a recursive representation of the commitment
game in the special case that= 1, Hansen and Sargent [17] define operaforsind T2
that correspond tB,l anthz, respectively, and that apply when the state can be taken to be
(ys, g1)- They analyze a zero-sum game associated with the following recursions:

W(x.q) =THU(x,a) + BW (x*. ¢*)|01] (x. 4. @) (53)

after choosing an optimal action by solving
maxT? {(TH[U . @) + BW O™ g7 101] 102} (. g. @) (54)

for 01 # 02. When01 = 0, = 0, (53)—(54) alters the setup in this paper by withdrawing
commitment from the two players in a zero-sum game, forcing them to choose sequentially,
and replacingg—, in (30)—(31) withd, thereby discounting increments to entropy at the rate

f. By doing this, the formulation in Hansen and Sargent [17] arrests the decay of concerns
about robustness that leads to the time varying decision rules that emerge in the commitment
setup of this paper wheh < 1.

For a finite 01, the operatofT* captures the decision maker’s fear that the state and
signal dynamics conditioned on all components of the state, both hidden and observed, are
misspecified, and for a finité, the operatofl? captures the decision maker's fear that the
distribution of the hidden state conditioned on the history of signals is misspecified. Setting
01 = 02 focuses the decision maker’s attention equally on misspecifications of the state
and signal dynamics conditioned on all components of the state, on the one hand, and the
distribution of the hidden state conditioned on the history of signals, on the other.

Hansen and Sargent [17] advocate separating the valgsaoflds in the operatorg ™
and T2 because that allows the decision maker to focus different amounts of distrust on
different aspects of his specification. This flexibility will be especially useful in continuous
time estimation and decision problems.
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Appendix A. Martingale convergence
We begin with some useful inequalities.

Lemma A.1. The function
¢(x) =xlogx —x +1— (x1/2 — l)2

is nonnegative om >0, where we definé(0) as the continuous extension

Proof. Note that
¢ (x)=logx +x 2 -1,
" (x) — 1 %x73/2

The functiong is zero atc = 1 andx = 0. The second derivative has single zero“at 711.
The second derivative is positive to the right and negative to the left of this point. $hus,
is convex on the interval > x* and concave on the intervéd, x*). The first derivative

¢’ is zero atr = 1, which is necessarily a global minimum over the regioh, +00).
The function¢ is concave ove(0, x*) and must be positive becaugéx™) > 0 and¢(0)
=0. O

We use this inequality to relate entropy to Ahapproximation.

Lemma A.2. Consider a nonnegative random variable M with unit expectation. Then

EM log M >E[(MY? - )4 > L (E|M — 1))°.

Proof. First, note that

0<E¢(M)=EM log M — E[(MY? — 1),
which proves the first inequality. Second, note that the Cauchy—Schwarz and Triangle In-
equalities imply that

EQM — 1)) = E [|(MY2 = 12 + 1) ]

< [E(Ml/z . 1)2]1/2 [E(Ml/Z + 1)2]1/2
< [E(Ml/2 - 1)2]1/2 [(EM)l/Z T 1]
—2E [(Ml/2 - 1)2]1/2,

which proves the second inequality]
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Remark A.3. The distance

- - 1/2
H(M, M) = [%E|M1/2 _ Ml/zlz]

is referred to as the Hellinger distance between the “derivativeahd M. It is less than
or equal to unity, sinc&M = EM = 1. The second inequality of Lemm#a2 is implied
by the well-known link between the Hellinger distance andithenorm?®’

H(M, M)*<3E|\M — M|<H(M, M)\/2— HX(M, M).

Replacing the square root term by its upper bowf®l gives the second inequality with
M =1.

Let Xpo = \/, X;.

Proposition A.4. Consider a nonnegative martinga{é/, : + >0} with unit expectation
conditioned ontp and adapted t@; : ¢ >0}. Suppose that

o
Z E [MtE (my41 109 my41]&7) |XO] < 00
=0
Then there exists aft,,-measurable nonnegative random variatMg,, such that

lim E (|M, — Mso| |Xp) = O.
11—

Proof. Construct

M, = l_[ Mitk

and write

IMiyj — M| = MM, ; —1].

t+j

Givene > 0 choose™ such that

2

’

-bll—\

o0
Z [ M+ 11 E (mpeyi 10g mps 41| Xpe) | Xo] <
=1

and letr >1*. Construct a distorted probability with expectation operatarsing thex;-
measurable random variallg . Note that the implied probability conditioned éi is not
distorted and that

E( 1+ log H_JlXO) 2 t+] Z log m; 1| Xo
k=1

17 see LeCam and Yar{g5, p. 25] for more about these inequalities.
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E (Mtt+k log m,+k|Xo)

Il
M\.

~
1
N

Il
M\.

E[M],, 1E (miyi 109 mi x| Xiqx-1) | X0]

~
1
N

|
M\.

E [M;11—1E (miyx 109 my 1] X 5-1) |Xo]

~
1

1

82

N
N

for all j > 1. Moreover,
E (M = Ml 1X0) = E (1M}, =1 1Xp).
From LemmaA.2,

. . 12
E( Ml — 1 |Xo> < Z[E (M;+j log M,’+j|/'\,’o)]
<e.

Thus,
E( [M;+; — M| I/Yo) <e

forall j>1.

Sincee¢ was chosen arbitrarily, the martingale sequepi® : >0} is conditionally
Cauchy in the conditional (0Ay) L' space constructed using the underlying probability
measure. This space is conditionally complete and hence this sequence has a limit point
M that isXs-measurablé® O

Corollary A.5. Under the assumptions of Propositiér,
M, = E(Mx|X}) -

This follows because for any bounded random varidlehat isX;-measurable,
E(MqoW;|Xp) = jimw E(M;4;W;|Xo)

j—00

=E(M1Wt|XO)~

Corollary A.6. In the statement and conclusion of Theor&m, the sigma algebratp
can be replaced by a smaller sigma algelsia

18 See Hansen and Richath] for a development of conditional notions of convergence and completeness.
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Remark A.7. Important components of this analysis are anticipated in Kabanov et al.
[23]. For instance, the criterion of Proposition A.4 implies the sufficient condition for abso-
lute continuity of the distorted probability measure with respect to the original probability
measure onY,, given in Corollary 3 of Kabanov et al. [23]. Instead of conditiomal
convergence, Kabanov et al. [23] establish almost sure convergence of the martingale under
the distorted probability distribution as a necessary and sufficient condition for absolute
continuity.

Appendix B. Robust control recursions

In this appendix, we show the connection between the recursive formulas under commit-
ment reported in Section 7 and related formulas of Basar and Bernhard [2]. We accomplish
this by deriving a different representation of the Kalman filtering updating equation that is
appropriate when the conditional covariance mafixs nonsingular.

First, transform the date+ 1 state to remove correlation with the signal conditioned
onx;:

xi41 — CG'(GG) Lsi41=[A — CG' (GG ID)x; + Ba,
+(C — CG (GG 1G)w41.
In particular, the equation for the second partition is
241 — C2G' (GG 41 = Aays + Aoz — C2G'(GG') H(Duy, + D2zy)
+Boa; + [C2 — C2G' (GG 1Glw 1.
Thus,
E(z141Si41) = C2G'(GG') ™ [s141 — D1yr — D2E (2/|Si41)]
+A21yr + A22E(2|S1+1) + Boay.

Next update the conditional precision matrix frgivenS; 11
(M)t + D2 (GG)™'Dy.

Recall that(A,) 1 is the precision matrix conditioned &h. Incorporating the information
in the signak, .1 increases the precision i’ (GG’)~1D,. The corresponding prediction
formulais

-1
E (ilSi0) = & | (A4 D2/(GG) D2 |  DH(GG) i1~ Duyi—DaZ),
wherez; = E(z/|Sy).
Let

= Az~ C2G'(GG') Dy,
= (2Ch — C2G'(GGH L6y .

Combining the previous calculations, we obtain the covariance recursion

2< D¢

Av1=ALA) L4 D (GG Dy YA + N (55)
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and the mean recursion
Zy1= A1y + AZ; + Boa )
+A [(A,)*l + Dz/(GG/)*lpz] DY(GG) X(sp41 — D1y — DoZ;). (56)
Updating Egs.%5) and (56) give representations of the Kalman filtering equations that are

valid when the covariance matriy, is nonsingular.
It follows from the covariance updating Eq. (55) that

Ay1=AlA) 1+ DY (GG *DaJA + N
f
=A |:(Az)_l — %Rzz + Dz'(GG/)_lDz] A"+ N, (57)

where we have used the relation
!

A)t=@A)t - %Rzz-

Similarly, it follows from the updating Eq56) for the mean that
L1 =A21y + AZI + Boa,
o~ -1
+A[@)7 4+ DG D2|  DHGEC) Msria — Duyi = Do),

Since
~ _ ¥ :Bt A / / M
=2+ gAt (P2 ar+ Ri2'yr + R22Zt) ,
Et—&-l = A21yr + AVEI + Boa;

[ —1
+A [(Af)—l—%Rsz/(GG/)—lDz} DY(GG") X(si41—D1yi—Da%r)
Bl 1 B -
+5A [(Af)l—ngDz’(GG’)lDz} (Poa;+R12'yi+R22%) . (58)

Updating Egs. §7) and (58) provide the formulas for producing the reference density
sequencdq; : t >0} recursively. These equations agree with Egs. (6.61) and (6.62) in
Basar and Bernhard [2] derived for deterministic robust control problems. As expected,
whenP; = 0, R12 = 0 andR22 = 0 these recursions agree with the updating equations for
the original Egs. (55) and (56) for the Kalman filter.
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