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Abstract

We characterize the compensation demanded by investors in equilibrium for in-

cremental exposure to growth-rate risk. Given an underlying Markov diffusion that

governs the state variables in the economy, the economic model implies a stochas-

tic discount factor process S and a reference stochastic growth process G for the

macroeconomy. Both are modeled conveniently as multiplicative functionals of a multi-

dimensional Brownian motion. To study pricing we consider the pricing implications

of parameterized family of growth processes Gε, with G0 = G, as ε is made small. This

parameterization defines a direction of growth-rate risk exposure that is priced using

the stochastic discount factor S. By changing the investment horizon we trace a term

structure of risk prices that shows how the valuation of risky cash flows depends on the

investment horizon. Using methods of Hansen and Scheinkman (2009), we characterize

the limiting behavior of the risk prices as the investment horizon is made arbitrarily

long.

Keywords Markov process growth-rate risk pricing dynamics elasticities
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1 Introduction

A standard result from asset pricing theories is the characterization of the local risk-return

tradeoff. This tradeoff is particularly simple in the case of Brownian information structures.

In mathematical finance the risk prices are embedded in the transformation to a risk-neutral
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measure. Applying Girsanov’s Theorem, this change of measure adds a drift vector to the

multivariate standard Brownian motion. The vector of local risk prices is the negative of the

drift vector used in constructing the risk neutral transformation. This price vector reflects

the local compensation in terms of the drift for exposure to alternative components of the

Brownian motion. With these local prices, we price exposure to linear combinations of the

Brownian risks by forming the corresponding linear combination of prices.

While derivative claims are often priced using the risk neutral measure, structural models

of asset prices interpret these prices in terms of the fundamentals of the underlying economy.

In this paper, as in Hansen and Scheinkman (2009) and Hansen (2008), we characterize the

compensation demanded by investors for added risk at different time horizons, that is a

term-structure of risk prices. This compensation will typically depend on how investors

discount risky payoffs and the risk they already face. Our approach is as follows. There

is an underlying Markov diffusion X that governs the state variables in the economy. The

economic model implies a stochastic discount factor process S and a reference stochastic

growth process G for the macroeconomy. Both are modeled conveniently as multiplicative

functionals of a multi-dimensional Brownian motion. To feature the role of price dynamics,

we normalize the reference growth functional to a be a martingale. More generaly this

martingale can be the martingale component in a factorization of the growth functional (as

in Hansen and Scheinkman (2009)). To study pricing we consider a parameterized family of

growth processes Gε, with G0 = G and study its pricing implications for payoffs at different

horizons. We define the price of growth-rate risk as:

ρt = − d

dε

1

t
logE [Gε

tSt|X0 = x] |ε=0.

It is the elasticity of the expected rate of return (per unit of time) with respect to the exposure

to growth-rate risk. The expected return implicit in this calculation is the reciprocal of the

price E [Gε
tSt|X0 = x] since Gε

t has expectation one by construction.

The resulting prices of growth-rate risk extend the local prices to arbitrary investment

horizons. While we focus on scalar parameterizations, we can interpret our calculations as

producing prices for an arbitrary linear combination of exposure to the Brownian motion

risks. By changing the exposure weights, we feature alternative components of the Brownian

increments and thus construct the counterpart to the local risk-price vector.

For a given investment horizon, we characterize our risk prices by applying tools that are

used to compute sensitivities of option prices (the “Greeks”). The prices we compute reveal
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the local risk prices as the horizon t shrinks to zero:

lim
t↓0

ρt = ρ0

We add to this a characterization of the limit prices as the investment horizon tends to ∞:

lim
t↑∞

ρt = ρ∞,

along with formulas for the intermediate investment horizons.

2 Mathematical setup

The underlying state vector process X is n-dimensional and satisfies,

dXt = β(Xt)dt+ α(Xt)dWt, (1)

where W is an n-dimensional Brownian motion in a probability space {Ω,F ,Pr} and α(·)
is non-singular. We write {Ft : t ≥ 0} for the (completed) Brownian filtration. Assuming

that β and α are locally Lipschitz there exists a unique Xu that solves equation (1) when

X0 = x. In this section we think of X0 = x as fixed or known but construct assumptions and

results that apply to all initializations. In section 6 we will introduce explicit randomness

in X0 and augment the filtration {Ft : t ≥ 0}. The “unconditional” expectations of this

section will become expectations conditioned on X0 = x in section 5. Moreover, the resulting

dependence on x will be of central interest in applications. We use multiplicative functionals

M of the form

Mt = exp

[∫ t

0

δ(Xu)du+

∫ t

0

γ(Xu)dWu

]
(2)

where ∫ t

0

|δ(Xu)|du <∞∫ t

0

|γ(Xu)|2du <∞

for all t with probability one.1 The multiplicative functional M given by equation (2) is ref-

ered to as parameterized by (δ, γ). Consider two multiplicative functionals: G parameterized

by (δg, γg) and S parameterized by (δs, γs). The process G captures stochastic growth and the

1As in e.g. Ito and Watanabe (1965), we allow for multiplicative functionals that do not have bounded
variation.
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process S stochastic discounting. G and S depend on x, but since we only consider a fixed

initial condition x, unless there is ambiguity, we will omit in the notation the dependence

on x.

Asset valuation over a horizon t is represented as:

E (StGt)

where Gt is the asset payoff that is priced. There are two channels that dictate the term

structure of risk premia and the associated prices: stochastic discounting and stochastic

growth. Our aim is to focus on the latter channel.

Hansen and Scheinkman (2009) (Corollary 6.1) establishes a multiplicative factorization

of G:

Gt = exp(ηt)Go
t

[
f(X0)

f(Xt)

]
where Go

t is a multiplicative martingale.2 The exponential growth term exp(ηt) is of no

consequence for risk prices and can be omitted. Since predictability in S and G alter the

term structure of risk premia, one possibility is to feature the role of pricing dynamics by

focusing exclusively on the martingale component Go and constructing perturbations that

preserve the martingale property. In what follows we will adopt this perspective where

G = Go and hence is restricted to be a martingale. In this case

− logE (StGt)

is the logarithm of the expected return associated the martingale payoff Gt.

To construct risk prices for any given payoff horizon, we parameterize a family of growth

functionals as Gε with G = G0 where Gε is a martingale for each ε. The parameterized

martingale is constructed to feature exposures to specific combination of shocks. By alter-

ing the parameterization, we explore sensitivity to alternative shocks thereby constructing

counterparts to local risk prices.

As an alternative, we could work with a macro growth functional G that is not necessarily

a martingale, but we explore parameterized perturbations that are martingales. Then the

logarithm of the expected return associated with Gt is:

logE (Gt)− logE (StGt) .

For this formulation our baseline martingale G0 is identically one and the counterpart to

2Strictly speaking, this corollary produces a local martingale rather than a martingale.
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S for our analysis is either SG or G. With these changes, our forthcoming analysis will

continue to be applicable.

Recall that the stochastic exponential of a semi-martingale N is a semi-martingale E(N)

that solves E(N)t = 1 +
∫ t

0
E(N)s−dNs. Since, in our case, sample paths are continuous,

E(N) = exp

(
N − 1

2
[N,N ]

)
. (3)

We assume that the positive martingale G is the stochastic exponential E(Zo) of a martingale

Zo
t =

∫ t
0
γg(Xu)dWu. Consider a family of perturbabtions Gε of the form:

Gε = E(Zo + εZ), (4)

ε ∈ (−1, 1) where Zt =
∫ t

0
γd(Xu)dWu. For the stochastic integrals to be well behaved,∫ t

0
|γg(Xu)|2du <∞ and

∫ t
0
|γd(Xu)|2du <∞ with probability one.

The process Z used to construct the perturbation can feature any of the individual com-

ponents of the underlying Brownian motion. The resulting parameterized family expressed

in logarithms is:

logGε
t =

∫ t

0

γg(Xu)dWu + ε

∫ t

0

γd(Xu)dWu −
1

2

∫ t

0

|γg(Xu) + εγd(Xu)|2du

In this specification ε
∫ t

0
γd(Xu)dWu captures the (growth rate) risk exposure. By changing

γd we alter which Brownian increments are featured in the pricing.

3 Finite-Horizon Prices

In this section we apply an approach developed by Fournié et al. (1999, 2001) to show that

ρt = −
E
[
StGt

(∫ t
0
γd(Xu)dWu −

∫ t
0
γd(Xu) · γg(Xu)du

)]
tE (StGt)

. (5)

We start by using the multiplicative martingale G to change measure. Then Girsanov’s

Theorem guarantees that Gε

G
= E [εZ̃], and Z̃t =

∫ t
0
γd(Xu)dW̃u, where W̃u = −

∫ u
0
γg(Xv)dv+

Wu, and W̃ is a Brownian motion in [0, t] under the changed measure P̃r. Notice that the

functional form of G guarantees that Xt remains Markov under P̃r. We write Ẽ for the
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associated expectations operator. Hence,

Gεt
Gt
− 1

ε
=

∫ t

0

Gε
u

Gu

dZ̃u, or

=

∫ t

0

(
Gε
u

Gu

)
γd(Xu)dW̃u (6)

If the right-hand side has a well-defined limit as ε→ 0, then necessarily this limit is:

Gεt
Gt
− 1

ε
→
∫ t

0

γd(Xu)dW̃u

For each initial value x of X, we may write the price of an asset as a function of the

perturbation on the growth factor as:

U(ε) = E (Gε
tSt)

= Ẽ

(
Gε
t

Gt

St

)
.

Hence,

U ′(0) = lim
ε→0

Ẽ
[
(
Gεt
Gt
− 1)St

]
ε

= lim
ε→0

Ẽ

[
St

∫ t

0

(
Gε
u

Gu

)
γd(Xu)dW̃u

]
Next we impose two assumptions that are sufficient for the main result in this section.

After establishing this result, we provide sufficient conditions for the second of these assump-

tions.

Assumption 3.1. For each x, E [(St)
2Gt] <∞.

Imposing this restriction is equivalent to assuming that St has a finite conditional second

moment (in the P̃r measure).

Assumption 3.2. For each x,

lim
ε→0

Gεt
Gt
− 1

ε
→
∫ t

0

γd(Xu)dW̃u.

in L2(P̃r).
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Proposition 3.3. Suppose that Assumptions 3.1 and 3.2 are satisfied. Then for each x,

U ′(0) = Ẽ

[
St

∫ t

0

γd(Xu)dW̃u

]
= E

(
StGt

[∫ t

0

γd(Xu)dWu −
∫ t

0

γd(Xu) · γg(Xu)du

])
Proof. This follows directly from Holder’s Inequality.

The elasticity of interest is the ratio −U ′(0)
tU(0)

and is given by (5).

We now provide sufficient conditions for Assumption 3.2. To insure that Gε

G
= E(εZ̃) is

a martingale we assume Novikov’s condition:

Assumption 3.4. For each x

Ẽ

[
exp

(
1

2

∫ t

0

|γd(Xu)|2du
)]

<∞.

For fixed 1 ≤ m < ∞ and t > 0, consider the space Lm of adapted stochastic processes

Y = {Yu}0≤u≤t, with norm ||Y || =
(
Ẽ
[∫ t

0
|Yu(ω)|mdu

])1/m

. Notice that Gε

G
converges to 1

almost surely as ε→ 0. Another form of convergence is established in the following lemma.

Lemma 3.5. Suppose Assumption 3.4 is satisfied. Then for each x, limε→0
Gε

G
= 1 in Lm

for any m ≥ 1.

Proof. : Since Gε

G
→ 1 a.s. and convergence a.s. plus convergence in norm implies the

convergence in Lm, it suffices to show that for ε small, Gε

G
∈ Lm and ||Gε

G
|| → 1. Given

m > 1, let cm = m
2

(
√
m+

√
m− 1)2 . If ε2 < 1

2cm
then for each 0 < u ≤ t,

Ẽ

[
exp

(
cm

∫ u

0

|εγd(Xτ )|2dτ
)]

< Ẽ

[
exp

(
1

2

∫ t

0

|γd(Xτ )|2dτ
)]

<∞. (7)

Jensen’s inequality and Theorem 1 of Grigelionis and Mackevicius (2003) guarantee that for

0 ≤ u ≤ t,

1 ≤ Ẽ

[(
Gε
u

Gu

)m]
< Ẽ

[
exp

(
cm

∫ t

0

|εγd(Xτ )|2dτ
)]

<∞.

Monotone convergence assures that

lim
ε↓0

Ẽ

[
exp

(
cm

∫ t

0

|εγd(Xτ )|2dτ
)]

= 1,
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and thus Ẽ
[(

Gεu
Gu

)m]
→ 1, uniformly in u ≤ t. Hence ||Gε

G
|| =

(
Ẽ
[∫ t

0

(
Gεu
Gu

)m
dv
])1/m

→
1.

To control the term in γd(Xt) we need to assume:

Assumption 3.6. For each x, there exists a constant Γ (which may depend on x) such that

Ẽ
[
|γd(Xu)|4

]
≤ Γ

for 0 < u ≤ t.

Lemma 3.7. Suppose Assumptions 3.4 and 3.6 are satisfied. Then Assumption 3.2 holds.

Proof. Use (6) to represent

Gεt
Gt
− 1

ε
=

∫ t

0

(
Gε
u

Gu

)
γd(Xu)dW̃u.

Thus we must show that
∫ t

0

(
Gεu
Gu
− 1
)
γd(Xu)dW̃u converges in mean-square to zero. Notice

that the stochastic integral
∫ t

0

(
Gεu
Gu
− 1
)
γd(Xu)dW̃u has second moment

Ẽ

[∫ t

0

(
Gε
u

Gu

− 1

)2

|γd(Xu)|2du

]
. (8)

As ε→ 0, expression (8) converges to zero from the assumptions, Lemma 3.5 for m = 4 and

Holder’s inequality.

There are many alternative more primitive assumptions that are sufficient for Assumption

3.6. Here we present two conditions that together imply Assumption 3.6. The first is a slight

strengthening of Novikov’s condition for G.

Assumption 3.8. For each x, there exists a c > 1
2

such that

E

[
exp

(
c

∫ t

0

|γg(Xu)|2du
)]

<∞.

It is a consequence of Assumption 3.8 that there exists a p > 1 such that for u ≤ t,3

E [(Gu)
p|X0 = x] ≤ E

[
exp

(
c

∫ t

0

|γg(Xu)|2du
)]

.

3See Theorem 1 in Grigelionis and Mackevicius (2003)
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The next assumption guarantees that for each initial value x there exists a Γ′(x) such

that for q satisfying 1
q

+ 1
p

= 1, u ≤ t,

E [|γd(Xu)|q] ≤ Γ′(x).

Holder’s inequality then assures that Assumption 3.6 obtains.

Assumption 3.9. (a) The functions |γd(x)| are bounded by a polynomial in |x| and

(b) the coefficients β and α of equation (1) that defines the evolution of X satisfy a

sublinear growth condition,

|β(x)|2 + |α(x)|2 ≤ K(1 + |x|2),

for some constant K.

When Assumption 3.9 (b) holds, for each for each m ≥ 1 there exists a C = C(d,K, T,m)

such that E[maxu≤t |Xt|2m|X0 = x] ≤ C(1 + |x|2m)eCt, if t ≤ T. (A more general result than

this is problem 3.15 in Karatzas and Shreve (1991) page 306). Part (a) of Assumption 3.9

then implies that for each x, there exists a Γ′(x) such that for 0 ≤ u ≤ t, E|γd(Xu)|q ≤ Γ′(x).

4 Short-term limits

We now use the formula:

ρt =
E
[
StGt

(∫ t
0
γd(Xu) · γg(Xu)du−

∫ t
0
γd(Xu)dWu

)]
tE (StGt)

to study valuation over short time intervals. Formally we calculate short-horizon limits by

computing the drift of an Ito process .

Recall that the SG has continuous sample paths that converge to one as t declines to

zero. We add to this the assumption

Assumption 4.1. For every x, limt↓0E (StGt) = 1.

This assumption follows from the Dominated Convergence Theorem provided that we can

dominate SG uniformly for small t.

With this restriction, we are lead to compute

ρ(x) = lim
t↓0

1

t
E

[
StGt

(∫ t

0

γd(Xu) · γg(Xu)du−
∫ t

0

γd(Xu)dWu

)
|X0 = x

]
.
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We calculate this limit as the drift of the Ito process

StGt

(∫ t

0

γd(Xu) · γg(Xu)du−
∫ t

0

γd(Xu)dWu

)
at t = 0. Since

ρ0 = γd(x) · γg(x)− γd(x) · [γg(x) + γs(x)],

the following proposition holds.

Proposition 4.2. Suppose Assumption 4.1 is satisfied. Then

ρ0 = −γs(x) · γd(x). (9)

As we vary the risk exposure vector γd, we trace out the local risk prices. This results in

the interpretation of −γs a vector of local risk prices.4 As is well known, the local risk price

vector is the risk exposure of the stochastic discount factor S. The risk exposure of the

stochastic growth process plays no role in this calculation.

5 An integral representation

In this section justify the integral representation:

ρt = −
Ê
[
ê(Xt)

∫ t
0
γd(Xu) · [κ(Xu) + φ(Xu, t− u)]du

]
tÊ [ê(Xt)]

(10)

under a particular change of measure. We will describe formally the construction of the

distorted probability distribution and the the functions κ and φ.

Following Hansen and Scheinkman (2009), use the factorization:

StGt = exp(δt)M̂t
e(x)

e(Xt)

where M̂ is a multiplicative martingale and (δ, e), solve a principal eingenvalue problem:

find e >> 0 such that

E [StGte(Xt)] = exp(δt)e(x). (11)

Since e solves a principal eigenvalue problem, it is smooth and Ito’s Lemma can be used

to show that M̂ is a multiplicative process of the form defined in equation (2) above. Write

4In general this limit is computed as in Ito’s Lemma by using stopping times. When the associated local
martingale is in fact a square integrable martingale, stopping times can be dispensed with.
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the volatility exposure (the coefficient on dWt) of log(M̂) as κ + γg. Change measure using

the martingale M̂ and express the finite t derivative of interest as:

ρt =
E
[
StGt

(∫ t
0
γd(Xu) · γg(Xu)du−

∫ t
0
γd(Xu)dWu

)]
tE (StGt)

= −
Ê
[

1
e(Xt)

(∫ t
0
γd(Xu) · κ(Xu)du+

∫ t
0
γd(Xu)dŴu

)]
tÊ
(

1
e(Xt)

) .

Under the ·̂ change of measure,

dWu = [κ(Xu) + γg(Xu)]du+ dŴu,

where Ŵ is a n dimensional Brownian motion (with respect to the filtration generated by

the past values of W ) , and Xu solves

dXu = β̂(Xu)du+ α(Xu)dŴu,

with X0 = x, and

β̂ = β + α(κ+ γg).

Write ê = 1
e
. Let F̂u, u ≥ 0 denote the (completed) Brownian filtration associated with

Ŵ and note that e(Xt) is measurable with respect to F̂t. For each t, u ≤ t, let Duê(Xt)

denote the Malliavin derivative of the random variable ê(Xt). Sufficient conditions for the

existence of the Malliavin derivatives of ê(Xt) are as follows. If the functions β̂ and α are

smooth and with bounded derivatives then the random variable Xt is in the domain of the

Malliavin derivative. In fact let Y be the first variation process associated to X, that is

Y0 = In and

dYu = ∂β̂(Xu)Yudu+
∑
i

∂αi(Xu)YudŴ
i
u. (12)

Here, ∂F denotes the Jacobian matrix of an Rn valued function F and αi is the i-th column

of the matrix α. Then, for u ≤ t, the n× n matrix

DuXt = YtY
−1
u α(Xu). (13)

In addition, if ê has bounded first derivatives, then

Duê(Xt) = ∇ê(Xt) ·DuXt. (14)
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Then the Haussmann-Clark-Ocone formula guarantees5 that:

ê(Xt) =

∫ t

0

Ê
[
Duê(Xt)|F̂u

]
· dŴu + Ê [ê(Xt)] .

Furthermore, it follows directly from equations (12) - (14) that Ê[Duê(Xt)|F̂u] = Ê[Duê(Xt)|Xu].

Define

φ(y, t− u) =
Ê [Duê(Xt)|Xu = y]

Ê [ê(Xt)|Xu = y]
(15)

Then, if we assume the necessary integrability conditions to apply Fubini’s,

Ê

[
ê(Xt)

∫ t

0

γd(Xu)dŴu

]
=Ê

(∫ t

0

Ê [ê(Xt)|Xu]φ(Xu, t− u) · γd(Xu)du

]
=Ê

(∫ t

0

Ê [ê(Xt)φ(Xu, t− u) · γd(Xu)|Xu] du

]
=

∫ t

0

Ê [ê(Xt)φ(Xu, t− u) · γd(Xu)] du

=Ê

[
ê(Xt)

∫ t

0

φ(Xu, t− u) · γd(Xu)du

]
.

Therefore, formula (10) is justified.

Notice that we have an integral decomposition of ρt with key ingredient:

−[κ(Xu) + φ(Xu, t− u)].

Now hold fixed u = 0 and depict as a function of t:

−κ(x) + φ(x, t).

At t = 0 you obtain the local risk price. More generally you trace out the impact of the

price elasticity of the shock exposure in the next instant to values over an interval of time t.

6 Long-term limits

In this section we establish the following limiting behavior:

lim
t→∞

ρt(x)→ −
∫
γd · κdQ̂

5For a statement of results concerning the Malliavin derivative of functions of a Markov diffusion and the
Hausmann-Clark-Occone formula see, for instance, Fournié et al. (1999), pages 395 and 396.
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for some probability measure Q̂. In what follows we show how to construct this measure

and justify the limiting behavior.

As a precursor to studying the long horizon behavior of ρt it is convenient to alter the

specification of the Markov process by choosing a probability distribution for the initial state

X0 other than the degenerate construction X0 = x. Since our previous analysis applies for

each x we have some flexibility as to how we do this.

For simplicity, we choose Ω = Rn×C0([0,∞),Rn) with the first coordinate corresponding

to the initial condition X0 and the second coordinate to a realization of the Brownian motion.

The random vector X0 is independent of the Brownian motion. Let F∗t be the augmented

filtration generated by X0 and W . Since α is non-singular, this coincides with the augmented

filtration generated by X.

We will again use the decomposition of Hansen and Scheinkman (2009),

StGt = exp(δt)M̂t
e(X0)

e(Xt)
(16)

where M̂ is a multiplicative martingale and (δ, e), solve a principal eingenvalue problem:

find e >> 0 such that

E [StGte(Xt)|X0 = x] = exp(δt)e(x). (17)

which is the same as (11) except that we noted explicitly the conditioning. Given a decom-

position in this form we use M̂ to change the transition probabilities from date zero to all

other dates. Since M̂ is a multiplicative martingale with unitary expectation (conditioned

on X0), this change of measure preserves the Markov structure and it depends on X0 = x.

We still have freedom to assign an initial probability to X0, and we will do so in a convenient

manner so as to make the process X stationary under the change of measure.

Associated with the multiplicative functional is a generator Â that is an extension of the

second-order differential operator:

β̂(x) · ∂f(x)

∂x
+

1

2
trace

[
α(x)α(x)′

∂2f(x)

∂x∂x′

]
(18)

for functions f that are twice continuously differentiable and have compact support on the

interior of the state space. As remarked in the previous section, our use of β̂ instead of β

reflects the addition of a drift term in our representation of W under the change of measure

associated with M̂ .
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Assumption 6.1. There exists a probability measure Q̂ on Rn such that∫
Âf(x)dQ̂(x) = 0

for all f that are twice continuously differentiable and have compact support.

By using Q̂ to initialize the state, the process X is stationary under this change of

measure. There are many well known results for the existence of stationary distributions.

See for example Meyn and Tweedie (1993). While there may be multiple solutions to the

principal eigenvalue problem, Hansen and Scheinkman (2009) show that there is at most

one solution for which the resulting probability measure makes X stationary and Harris

recurrent.

Associated with the Markov process X there is a semigroup of conditional expectation

operators, which may be extended to the space L̂p of Borel measurable functions f : Rn → R
with

∫
|f(x)|pdQ̂(x) <∞.6 Let Z =

{
f ∈ L̂2 :

∫
f(x)dQ̂(x) = 0

}
.

Assumption 6.2. The semigroup of conditional expectation operators associated with X

under the change of measure implied by M̂ and Q̂ is a strong contraction semigroup on Z.

As discussed by Rosenblatt (1971) and Hansen and Scheinkman (1995), Assumption 6.2 is

ρ-mixing with mixing coefficients that necessarily decay exponentially to zero.

Proposition 6.3. Suppose that γd · κ, γd and 1
e

are in L̂2. Then

lim
t→∞

ρt(x)→ −
∫
γd · κdQ̂

in probability under the Q̂ measure.

Thus long-term risk prices are obtained by changing the state-dependent risk exposure γd

in the representation given by Proposition 6.3. As in local counterpart given in Proposition

4.2, we think of γd as parameterizing the exposure to (growth-rate) risk, which we allow to

be state dependent. The vector (κ+ γg) is the risk exposure of the martingale component of

SG and γg is the risk exposure of the multiplicative martingale growth functional. In effect,

the state dependent vector κ in conjunction with the probability distribution Q̂ determine

the long-term counterpart to the local risk price vector −γs given in Proposition 4.2.

6See for example Hansen and Scheinkman (1995) for a discussion of the construction of the semigroup of
conditional expectation operators in L̂2 and the construction of its associated generator.

14



Proof. Recall that if ê = 1
e

then,

ρt(x) =

1
t
Ê
(
ê(Xt)

[∫ t
0
γd(Xu) · κ(Xu)du+

∫ t
0
γd(Xu)dŴu

]
|X0 = x

)
Ê (ê(Xt)|X0 = x)

.

First notice that

1

t
Ê

([∫ t

0

γd(Xu) · κ(Xu)du+

∫ t

0

γd(Xu)dŴu

]
|X0 = x

)
=

1

t
Ê

(∫ t

0

γd(Xu) · κ(Xu)du|X0 = x

)
→
∫
γd · κdQ̂

(19)

in L̂2 under Assumption 6.2. L̂2 convergence implies convergence in Q̂ probability.

Next we show that

1

t
Ê

[(
ê(Xt)− Ê [ê(Xt)|X0 = x]

)[∫ t

0

γd(Xu) · κ(Xu)du+

∫ t

0

γd(Xu)dŴu

]
|X0 = x

]
→ 0.

(20)

in L̂1.

We consider this in two parts.

i)

Ê

([
ê(Xt)− Ê (ê(Xt)|X0 = x)

] [∫ t

0

γd(Xu) · κ(Xu)du

]
|X0 = x

)
= Ê

([
ê(Xt)− Ê (ê(Xt)|X0 = x)

] ∫ t

0

[
γd(Xu) · κ(Xu)− Ê (γd(Xu) · κ(Xu))

]
du|X0 = x

)
Notice that

Ê

([
ê(Xt)− Ê (ê(Xt)|X0 = x)

]2
|X0 = x

)
≤ Ê

([
ê(Xt)− Ê (ê(Xt))

]2
|X0 = x

)
,

and

Ê

[
Ê

([
ê(Xt)− Ê (ê(Xt))

]2
|X0 = x

)]
≤ Ê

([
ê(Xt)− Ê (ê(Xt))

]2)
<∞

since ê(Xt) has finite second moment under the Q̂ stationary distribution. The bound

15



can be chosen to be independent of t. Moreover,

Ê

(∫ t

0

[
γd(Xu) · κ(Xu)− Êγd(Xu) · κ(Xu)

]
|X0 = x

]
converges in L̂2 to a function of x with a finite (Q̂) second moment under Assumption

6.2. It follows from the Cauchy-Schwarz Inequality that

1

t
Ê

([
ê(Xt)− Ê (ê(Xt)|X0 = x)

] [∫ t

0

γd(Xu) · κ(Xu)du

]
|X0 = x

)
→ 0

in L̂1.

ii) Consider next

1

t
Ê

([
ê(Xt)− Ê (ê(Xt)|X0 = x)

] [∫ t

0

γd(Xu)dŴu

]
|X0 = x

)
≤ 1√

t

√
Ê

([
ê(Xt)− Êê(Xt)

]2
|X0 = x

)

×

√(
Ê

[
1

t

∫ t

0

|γd(Xu)|2du|X0 = x

])
where the inequality is application of the conditional Cauchy-Schwarz Inequality. Pro-

vided that γd(Xu) has a finite second moment under the ·̂ distribution, the right-hand

side converges to zero in L̂1 since the unconditional second moments of√
Ê

([
ê(Xt)− Êê(Xt)

]2
|X0 = x

)
and √(

Ê

[
1

t

∫ t

0

|γd(Xu)|2du|X0 = x

])
are finite and independent of t.

Given these two intermediate results, (20) follows. Finally,

Ê [ê(Xt)|X0 = x]→
∫
êdQ̂ > 0.

16



in L̂2. Thus

1

t

Ê
[(
ê(Xt)− Ê [ê(Xt)|X0 = x]

) [∫ t
0
γd(Xu) · κ(Xu)du+

∫ t
0
γd(Xu)dŴu

]
|X0 = x

]
Ê [ê(Xt)|X0 = x]

→ 0

in Q̂ probability. The conclusion follows from this result combined with (19).
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