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1 Introduction

Estimating functions provide a general framework for finding estimators and studying their
properties in many different kinds of statistical models, including stochastic process models.
An estimating function is a function of the data as well as of the parameter to be estimated.
An estimator is obtained by equating the estimating function to zero and solving the resulting
estimating equation with respect to the parameter. The idea of using estimating equations is
an old one and goes back at least to Karl Pearson’s introduction of the method of moments.
The term estimating function may have been coined by Kimball (1946).

The estimating function approach has turned out to be very useful in obtaining, improving
and studying estimators for discretely sampled parametric diffusion-type models, where the
likelihood function is usually not explicitly known. Estimating functions are often constructed
by combining relationships (dependent on the unknown parameter) between an observation
and one or more of the previous observations that are informative about the parameters. The
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approach is thus closely related to the generalized method of moments (GMM) of Hansen
(1982). By differentiation of the GMM criterion an estimating function is obtained for which
the GMM estimator is a zero point. Thus GMM estimators are covered by the theory in this
chapter provided the GMM criterion is differentiable. More generally, estimators obtained by
maximization or minimization of a differentiable objective function are zero points for the esti-
mating function obtained by differentiating the objective function. In particular, the estimating
function corresponding to the likelihood function is the score function (the derivative of the
log-likelihood function).

There are a number approaches that render likelihood inference and Bayesian inference
feasible for ordinary diffusion models; for likelihood inference, see Pedersen (1995), Poulsen
(1999), Äıt-Sahalia (2002), Durham & Gallant (2002), and Äıt-Sahalia, Hansen & Scheinkman
(2003), and for Markov chain Monte Carlo methods, see Elerian, Chib & Shephard (2001),
Eraker (2001), Roberts & Stramer (2001), and Johannes & Polson (2003). Markov chain
Monte Carlo methods can also be used for more general diffusion-type models such as stochastic
volatility models, while it is not clear that the approaches to likelihood inference mentioned
here can be generalized to such more general models. Moreover, the usual asymptotic results for
the maximum likelihood estimator (and Bayesian estimators) have not yet been established for
stochastic volatility models. An approximate likelihood function for stochastic volatility models
with tractable asymptotics was proposed by H. Sørensen (2003). Another useful approach to
inference for general diffusion-type models is indirect inference, see Gallant & Tauchen (1996)
and Gallant & Tauchen (2003).

In this chapter we shall only to a very limited degree be concerned with estimators obtained
by maximizing or minimizing objective functions. The focus of the chapter is on estimat-
ing functions constructed directly by combining functions of observations at one or more time
points. We shall demonstrate that such estimating functions can be found not only for ordinary
diffusions, but also for stochastic volatility models and diffusions with jumps. For stochastic
volatility models the estimating functions will be constructed in such a way that asymptotic
properties of the estimator can easily be established. The main advantage of the estimating
functions discussed in this chapter is that they usually require less computation than the al-
ternative methods listed above and in several cases actually provide explicit estimators. It
is therefore a particularly useful approach when quick estimators are needed. These simple
estimators have a rather high efficiency when the estimating function is well-chosen. This is
explained by the general theory presented in this chapter. The hall-mark of the estimating
functions approach is the use of a given collection of relations between observations at differ-
ent time points to construct the most efficient estimator possible on the basis of these, i.e. to
combine the relations in the way that extracts as much information from the data as possible
(with the given relations).

Let us give a few examples of estimating functions for a diffusion model given by the
stochastic differential equation

dXt = b(Xt; θ)dt+ σ(Xt; θ)dWt,

where W is a Wiener process, and where θ is a parameter to be estimated. To simplify the
exposition, let us assume here that X and θ are one-dimensional and that the data are observa-
tions of X at the time points 1, 2, . . . , n. Hansen & Scheinkman (1995) proposed the following
simple and broadly applicable estimating function. For any twice continuously differentiable
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function h an estimating function can be defined by

Gn(θ) =
n∑

i=1

(
b(Xi; θ)h

′(Xi) + 1
2σ

2(Xi; θ)h
′′(Xi)

)
.

One advantage of this estimating function is that it is an explicit function of θ. The estimator
obtained by solving the estimating equation Gn(θ) = 0 is consistent under weak conditions.
Hansen & Scheinkman (1995) also introduced an easily implementable estimating function
where each term depends on a pair of consecutive observations that will be presented in Sub-
section 3.3. Another type of estimating function introduced by Bibby & Sørensen (1995) is

Gn(θ) =
n∑

i=1

∂θb(Xi−1; θ)

σ2(Xi−1; θ)
[Xi − Eθ(Xi |Xi−1)] ,

which is an approximation to the optimal estimating function based on the relationship given by
the function h(x, y; θ) = y−F (x; θ) with F (x; θ) = Eθ(X2 |X1 = x). It can also be obtained by
compensating a discretization of the continuous-time score function. This estimating function
is a martingale, which simplifies the asymptotic theory. A disadvantage is that for most models
there is not an explicit expression for the conditional expectation F (x; θ), which must in such
cases be determined numerically. For models with mean reversion there is an explicit expression
for F (x; θ). Let us finish this list of examples with an explicit martingale estimating function.
For the diffusion on the interval (−π/2, π/2) with b(x; θ) = −θ tan(x) and σ(x; θ) = 1

Gn(θ) =
n∑

i=1

sin(Xi−1)[sin(Xi) − e−(θ+ 1
2
) sin(Xi−1)],

(Kessler & Sørensen (1999)) is an approximation to the optimal estimating function based

on the relationship given by the function h(x, y; θ) = sin(y) − e−(θ+ 1
2
) sin(x). The estimating

equation Gn(θ) = 0 has an explicit solution. The three examples given here will be treated
more fully later in this chapter.

The asymptotic theory for estimating functions and the estimators obtained from them is
presented in Section 2. Particular emphasis is given to martingale estimating functions for
which the limit theory is relatively simple. A collection of useful asymptotic results for ergodic
diffusion processes is the contents of Subsection 2.3. Various types of estimating functions
for diffusion models are presented in Section 3. The maximum likelihood estimator is briefly
considered. Then several types of martingale estimating functions are presented. A thorough
discussion is given of how to construct explicit estimating functions, whether martingales or
not. Computational aspects in cases where the estimating function is not explicit are briefly
discussed. Finally, estimating functions that can be used for non-Markovian diffusion-type
models are treated. Stochastic volatility models are discussed in particular. The general theory
of optimal estimating functions is presented in Section 4. Again emphasis is given to the
important case of martingale estimating functions. It is explained how to find the optimal linear
combination of a given collection of relations between the observations, i.e. the combination
that yields the estimator with the smallest asymptotic variance. In Section 5 the general
theory is applied to the estimating functions introduced in Section 3. In practice, considerable
computational simplifications can often be obtained by using a suitable approximation to the
optimal estimating function. This aspect is discussed in Subsection 5.2. A new global optimality
criterion for estimating functions for diffusion models is the subject of Section 5.3. This criterion
is particularly suitable at high sampling frequencies.
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2 Asymptotic Theory for Estimating Functions

Suppose as a model for the data X1, X2, . . . , Xn that they are observations from a stochastic
process model indexed by a p-dimensional parameter θ ∈ Θ. The model could be a continuous
time model observed at discrete time points that need not be equidistant. An estimating
function is a p-dimensional function of the parameter θ and the data:

Gn(θ;X1, X2, . . . , Xn).

Usually we suppress the dependence on the observations in the notation and write Gn(θ). We
get an estimator by solving the equation

Gn(θ) = 0.

It is possible that there are more than one solution or no solution at all. An estimating function
is called unbiased if Eθ(Gn(θ)) = 0. This natural requirement is also called Fisher consistency.
It ensures consistency of the estimator as n → ∞ under weak regularity conditions like those
imposed below.

2.1 Asymptotic Properties of Estimators

We first present a general result concerning asymptotic properties of estimators obtained from
estimating functions. To simplify matters, we will only consider unbiased estimating functions
of the form

Gn(θ) =
n∑

i=r

g(Xi−r+1, . . . , Xi; θ), (2.1)

where the function g is p-dimensional, and where r is a fixed integer smaller than n. This form
is sufficiently general to cover all examples considered in this chapter. We will suppose that for
all values of θ the process {Xi} is stationary and that

Qθ(g(θ)) = 0 and Qθ(g(θ)
2) <∞ (2.2)

for all θ ∈ Θ. Here Qθ denotes the joint distribution of (X1, . . . , Xr), and Qθ(f) is the ex-
pectation of f(X1, . . . , Xr) for a function f : IRr 7→ IR. We will further assume that {Xi} is
sufficiently mixing that as n→ ∞

1

n

n∑

i=r

f(Xi−r+1, . . . , Xi)
Pθ−→ Qθ(f) (2.3)

for any function f : IRr 7→ IR such that Qθ(|f |) <∞, and that

1√
n

n∑

i=r

g(Xi−r+1, . . . , Xi; θ)
D−→ N(0, V (θ)) (2.4)

for some p× p-matrix V (θ). Note that (2.2) and (2.3) implies that

n−1Gn(θ)
Pθ−→ 0, (2.5)
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which is necessary for the consistency of the estimator obtained by solving Gn(θ) = 0. Condi-
tions ensuring that (2.3) and (2.4) hold for a diffusion model will be given in Subsection 2.3.
For martingale estimating functions the situation is particularly simple and will be discussed
in Subsection 2.2.

The conditions imposed on the process {Xi} and the following condition on the function
g(x1, . . . , xr; θ) are sufficient to ensure the existence of a consistent and asymptotically normal
estimator. From now on θ0 will denote the true value of θ.

Condition 2.1

(1) The function g is twice continuously differentiable with respect to θ for all x1, . . . , xr.

(2) The functions (x1, . . . , xr) 7→ gi(x1, . . . , xr; θ), (x1, . . . , xr) 7→ ∂θj
gi(x1, . . . , xr; θ), and

(x1, . . . , xr) 7→ ∂θi
∂θj
gk(x1, . . . , xr; θ), i, j, k = 1, . . . , p, are all locally dominated integrable

w.r.t. Qθ0 .

(3) The p× p matrix

S(θ0) =
{
Q∆

θ0

(
∂θj
gi(θ0)

)}
(2.6)

is invertible.

A function f(x1, . . . , xr; θ) is called locally dominated integrable w.r.t. the measure Q on
IRr if for each θ∗ ∈ Θ there exists a neighbourhood Uθ∗ of θ∗ and a non-negative Q-integrable
function hθ∗ such that | f(x1, . . . , xr; θ) | ≤ hθ∗(x1, . . . , xr) for all x1, . . . , xr in the support of Q
and for all θ ∈ Uθ∗.

Theorem 2.2 Suppose (2.2), (2.3), (2.4), and Condition 2.1 are satisfied. Then for every n
an estimator θ̂n exists that solves the estimating equation Gn(θ̂n) = 0 with a probability tending
to one as n→ ∞. Moreover,

θ̂n

Pθ0−→ θ0

as n→ ∞, and √
n(θ̂n − θ0)

D−→ N
(
0, S(θ0)

−1V (θ0)(S(θ0)
−1)T

)
.

Theorem 2.2 can be proved in complete analogy with the proof for the case r = 2 given in
Sørensen (1999). Similar results can be found in Hansen (1982).

The asymptotic covariance matrix is the inverse of S(θ0)V (θ0)
−1(S(θ0)

T , which is an asymp-
totic version of the Godambe information that will be discussed further in Section 4.

2.2 Martingale Estimating Functions

Estimating functions that are martingales have particularly nice properties and a relatively
simple asymptotic theory based on the well-developed martingale limit theory. In this sub-
section we shall give an asymptotic result for martingale estimating functions, i.e. estimating
functions Gn satisfying that

Eθ(Gn(θ)|Fn−1) = Gn−1(θ), n = 1, 2, . . . ,
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where Fn−1 is the σ-field generated by the observations X1, . . . , Xn−1 (G0 = 0 and F0 is the
trivial σ-field). In other words, the stochastic process {Gn(θ) : n = 1, 2, . . .} is a martingale
under the model given by the parameter value θ. As will be discussed in Subsection 3.1, the
score function is usually a martingale estimating function (for more details see e.g. Barndorff-
Nielsen & Sørensen (1994)). When a more easily calculated alternative is needed, it is natural
to approximate the score function by a simpler martingale estimating function. A simple typical
example of a martingale estimating function is

Gn(θ) =
n∑

i=1

a(Xi−1; θ) [f(Xi) − Eθ(f(Xi) | Fi−1)] ,

where f is some suitable (possibly multivariate) function of the data, while the function a
(typically a matrix) can be chosen to ensure that the dimension of Gn(θ) equals the dimension
of the parameter and to improve the estimator. We shall discuss how best to choose a in
Section 4. The function a is usually called an instrument in the econometric literature. In the
following, a version of the central limit theorem for martingales is given.

We write the martingaleGn(θ) in the formGn(θ) =
∑n

i=1Hi(θ) withHi(θ) = Gi(θ)−Gi−1(θ).
From now on we assume, as we did in Subsection 2.1, that Gn(θ) has variance, and define the
quadratic characteristic of Gn(θ) as the random positive semi-definite p× p-matrix

〈G(θ)〉n =
n∑

i=1

Eθ

(
Hi(θ)Hi(θ)

T |Fi−1

)
. (2.7)

Theorem 2.3 Suppose that as n→ ∞

1

n

n∑

i=1

Eθ

(
Hi(θ)Hi(θ)

T
)
→ Σθ, (2.8)

〈G(θ)〉n/n Pθ−→ Σθ, (2.9)

and
1√
n

sup
i≤n

|Hi(θ)| Pθ−→ 0, (2.10)

where Σθ is a positive definite p× p-matrix. Then

〈G(θ)〉−
1
2

n Gn(θ)
D−→ N(0, Ip). (2.11)

Here Ip is the p× p identity matrix, and N(0, Ip) denotes the standard normal distribution in
IRp. A proof of a one-dimensional version of the theorem (and other more general versions of the
central limit theorem for martingales) can be found in Hall & Heyde (1980). The multivariate
version follows by the Cramér-Wold device. More general versions of the multivariate central
limit theorem for martingales can be found in Heyde (1997) and Küchler & Sørensen (1999).
It is not difficult to see that under the conditions of Theorem 2.3 we have a weak law of large
numbers:

n−1Gn(θ)
Pθ−→ 0, (2.12)

which is a necessary condition for consistency, cf. (2.5).
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2.3 Limit Results for Diffusion Processes

In this subsection we review asymptotic results for ergodic diffusion processes. We shall mainly
consider one-dimensional diffusion models, i.e. solutions to stochastic differential equations of
the form

dXt = b(Xt; θ)dt+ σ(Xt; θ)dWt, (2.13)

where W is a standard Wiener process. We assume that the drift b and the diffusion coefficient
σ depend on a parameter θ which varies in a subset Θ of IRp. Estimation of θ will not be
discussed in this section, but the parameter is included for consistency with the rest of the
section. The coefficients b and σ are assumed to be smooth enough functions of the state to
ensure the existence of a unique weak solution for all θ in Θ. The state space of X, i.e. the set
of possible values of the process, is an interval from ` to r, where ` could possibly be −∞ and
r might be ∞. The state space is assumed not to depend on θ.

First we give a condition ensuring that the solution X of (2.13) is ergodic. The scale measure
of X is a measure on the state space of X with the density

s(x; θ) = exp

(
−2

∫ x

x#

b(y; θ)

v(y; θ)
dy

)
(2.14)

with respect to the Lebesgue measure. Here x# is an arbitrary point in (`, r). Since we shall
often need the squared diffusion coefficient, we define

v(x; θ) = σ2(x; θ). (2.15)

Condition 2.4 The following holds for all θ ∈ Θ:

∫ r

x#
s(x; θ)dx =

∫ x#

`
s(x; θ)dx = ∞

and ∫ r

`
[s(x; θ)v(x; θ)]−1dx = A(θ) <∞.

Under Condition 2.4 the process X is ergodic with an invariant probability measure that has
density

µθ(x) = [A(θ)s(x; θ)v(x; θ)]−1, x ∈ (`, r), (2.16)

with respect to the Lebesgue measure on (`, r). We will assume that X0 ∼ µθ, so that X is a
stationary process with Xt ∼ µθ for all t ≥ 0. The distribution of (Xt, Xt+s) t > 0, s > 0 has
density

Qs
θ(x, y) = µθ(x)p(s, x, y; θ), (2.17)

where y 7→ p(s, x, y; θ) is the transition density, i.e. the conditional density of Xt+s given that
Xt = x. For a function f : (`, r)2 7→ IR, we use the notation

Qs
θ(f) =

∫

(`,r)2
f(x, y)p(s, x, y; θ)µθ(x)dydx

(provided, of course, that the integral exists). Similarly we define

µθ(f) =
∫ r

`
f(x)µθ(x)dx
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for a function f : (`, r) 7→ IR.

Suppose Condition 2.4 holds, that f : (`, r) 7→ IR satisfies µθ(|f |) < ∞, and that g :
(`, r)2 7→ IR satisfies Q∆

θ (|g|) <∞ for a ∆ > 0. Then

1

n

n∑

i=1

f(Xi∆)
a.s.−→ µθ(f) (2.18)

and
1

n

n∑

i=1

g(X(i−1)∆, Xi∆)
a.s.−→ Q∆

θ (g) (2.19)

as n → ∞, see Billingsley (1961b). The result (2.18) is obviously a particular case of (2.19).
Note that these results require equidistant observations, i.e. ti = ∆i to ensure that the sequences
f(Xi∆) and g(X(i−1)∆, Xi∆) are stationary.

If we assume that the sum
∑n

i=1 g(X(i−1)∆, Xi∆) is a martingale with finite variance, i.e. that

∫ r

`
g(x, y)p(∆, x, y; θ)dy = 0 for all x ∈ (`, r)

and that Q∆
θ (g2) <∞, then under Condition 2.4

1√
n

n∑

i=1

g(X(i−1)∆, Xi∆)
D−→ N

(
0, Q∆

θ (g2)
)

(2.20)

as n→ ∞, see Billingsley (1961a).

In cases where
∑n

i=1 g(X(i−1)∆, Xi∆) is not a martingale, stronger conditions on the diffusion
are needed to ensure a central limit result like (2.20). The following sufficient condition was
given by Genon-Catalot, Jeantheau & Larédo (2000).

Condition 2.5

(i) The function b is continuously differentiable with respect to x and σ is twice continuously
differentiable respect to x, σ(x; θ) > 0 for all x ∈ (`, r), and there exists a constant Kθ > 0 such
that |b(x; θ)| ≤ Kθ(1 + |x|) and σ2(x; θ) ≤ Kθ(1 + x2) for all x ∈ (`, r).

(ii) σ(x; θ)µθ(x) → 0 as x ↓ ` and x ↑ r.

(iii) 1/γ(x; θ) has a finite limit as x ↓ ` and x ↑ r, where γ(x; θ) = ∂xσ(x; θ)− 2b(x; θ)/σ(x; θ).

This condition implies that the process X is geometrically α-mixing, i.e. α-mixing with mixing
coefficients that tend to zero geometrically fast. Other conditions for geometrical α-mixing were
given by Veretennikov (1987), Doukhan (1994), Hansen & Scheinkman (1995), and Kusuoka &
Yoshida (2000), see also Äıt-Sahalia, Hansen & Scheinkman (2003).

In order to discuss the non-martingale case, we need the transition operator πθ
s that maps

a function f satisfying µθ(|f |) <∞ into the function πθ
s(f) given by

πθ
s(f)(x) =

∫ r

`
f(y)p(s, x, y; θ)dy = Eθ(f(Xs) |X0 = x). (2.21)
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Under Condition 2.5 the operator I − πθ
s has a bounded inverse U θ

s on the set of functions f
satisfying that µθ(f

2) < ∞ and µθ(f) = 0. Here I denotes the identity operator defined by
I(f) = f . The operator U θ

s is called the potential of X and can be represented as

U θ
s (f)(x) =

∞∑

k=0

πθ
ks(f)(x) =

∞∑

k=0

(
πθ

s

)k
(f)(x) (2.22)

where the convergence of the sum is in the L2(µθ)-sense, i.e. with respect to the norm ‖f‖ =

µθ(f
2)

1
2 . The potential operator can also be applied to a function of two variables g(x, y),

provided that Q∆
θ (g2) < ∞ and Q∆

θ (g) = 0. For such a function, U θ
s (g) = U θ

s (πθ
s(g)), where

πθ
s(g)(x) = Eθ(g(x,Xs) |X0 = x).

Suppose Conditions 2.4 and 2.5 hold, and that the function g : (`, r)2 7→ IR satisfies
Q∆

θ (g2) <∞ and Q∆
θ (g) = 0 for a ∆ > 0. Then as n→ ∞

1√
n

n∑

i=1

g(X(i−1)∆, Xi∆)
D−→ N(0, V (θ)) (2.23)

where
V (θ) = Q∆

θ (g̃2
θ), (2.24)

with
g̃θ(x, y) = g(x, y) + U θ

∆(g)(y)− U θ
∆(g)(x). (2.25)

It is not difficult to see that
n∑

i=1

g̃θ(X(i−1)∆, Xi∆) (2.26)

is a martingale. This fact can be utilized to prove (2.23) via the central limit theorem for a
martingale sum (2.20). For a detailed proof, see Florens-Zmirou (1984) and Florens-Zmirou
(1989). See also the discussion in Hansen & Scheinkman (1995) and in Jacobsen (2001a).

Finally, we consider briefly the case where X is a multivariate diffusion, i.e. when X is
the d-dimensional process that solves (2.13) with b now a d-dimensional vector, σ a d × d-
matrix and W a d-dimensional standard Wiener process. We assume that X moves freely on
an open, connected set D ⊆ IRd (that does not depend on θ), that C (x; θ) = σ (x; θ) σ (x; θ)T

is strictly positive definite for all x ∈ D, θ ∈ Θ, and that X is ergodic for all θ with an
invariant density µθ(x). Under these assumptions the above results (2.18), (2.19) and (2.20)
hold in the multivariate case too. The problem is, that there are no simple conditions ensuring
ergodicity similar to those given for the one-dimensional case. Also (2.23) holds provided X is
geometrically α-mixing.

3 Estimating Functions for Diffusion-Type Processes

Suppose a d-dimensional continuous time process X has been observed at discrete time points:
Xt0 , Xt1 , · · · , Xtn , t0 = 0 < t1 < · · · < tn. As a model for these data, we assume that X is a
d-dimensional diffusion, i.e. that X solves the stochastic differential equation (2.13) with b a
d-dimensional vector, σ a d × d-matrix and W a d-dimensional standard Wiener process. We
assume that the drift b and the diffusion coefficient σ are known apart from the parameter θ
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which varies in a subset Θ of IRp. These functions are assumed to be smooth enough to ensure
the existence of a unique weak solution for all θ in Θ. The statistical problem considered here
is to draw inference about the parameter θ based on the observations. We consider only the
case where the sampling-times are not random. The effect of random sampling-times can be
considerable, see Äıt-Sahalia & Mykland (2003).

3.1 Maximum Likelihood Estimation

The diffusion process X is a Markov process, so the likelihood function (conditional on X0) is

Ln(θ) =
n∏

i=1

p(ti − ti−1, Xti−1
, Xti; θ), (3.1)

where y 7→ p(s, x, y; θ) is the transition density, i.e. the conditional density of Xt+s given that
Xt = x (s > 0). Under weak regularity conditions the maximum likelihood estimator is efficient,
i.e. it has the smallest asymptotic variance among all estimators. The transition density is only
rarely explicitly known, but there are a number of numerical approaches that render likelihood
inference feasible for diffusion models. Pedersen (1995) proposed a method for obtaining an ap-
proximation to the likelihood function by rather extensive simulation, Poulsen (1999) obtained
an approximation to the transition density by numerically solving a partial differential equation,
while Äıt-Sahalia (2002) and Äıt-Sahalia (2003) proposed to approximate the transition density
by means of a Hermite expansion, see also Äıt-Sahalia, Hansen & Scheinkman (2003). Bayesian
estimators with the same asymptotic properties as the maximum likelihood estimator can be
obtained by Markov chain Monte Carlo methods, see Elerian, Chib & Shephard (2001), Eraker
(2001), Roberts & Stramer (2001), and Johannes & Polson (2003). These various approaches
to maximum likelihood estimation will not be considered further in this chapter.

The vector Un(θ) of partial derivatives of the log-likelihood function logLn(θ) with respect
to the coordinates of θ is called the score function (or score vector). The maximum likeli-
hood estimator solves the estimating equation Un(θ) = 0. The score function based on the
observations Xt0 , Xt1 , · · · , Xtn is

Un(θ) =
n∑

i=1

∂θ log p(∆i, Xti−1
, Xti; θ), (3.2)

where ∆i = ti − ti−1. The score function is a martingale estimating function, which is easily
seen provided that the following interchange of differentiation and integration is allowed:

Eθ

(
∂θ log p(∆i, Xti−1

, Xti; θ)
∣∣∣Xt1 , . . . , Xti−1

)
= Eθ

(
∂θp(∆i, Xti−1

, Xti; θ)

p(∆i, Xti−1
, Xti ; θ)

∣∣∣∣∣Xti−1

)

=
∫ r

`

∂θp(∆i, Xti−1
, y; θ)

p(∆i, Xti−1
, y; θ)

p(∆i, Xti−1
, y, θ)dy = ∂θ

∫ r

`
p(∆i, Xti−1

, y; θ)dy
︸ ︷︷ ︸

=1

= 0.

A wide spectre of estimators based on estimating functions other than the score function
have been proposed and are useful alternatives to the maximum likelihood estimator in situation
where simpler estimators that require less computation are needed. Some of these alternatives
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are not much less efficient than the maximum likelihood estimator, and in some cases they are
even fully efficient. Another advantage of these alternative approaches is that the estimators are
often more robust to model misspecification than the maximum likelihood estimator, because
typically the estimating functions do not involve the full model specification. For instance the
martingale estimating functions considered below depends only on the conditional moments of
certain functions of the observations. In the following subsections some of these alternative
estimating functions will be reviewed and discussed.

Estimators obtained by maximizing or minimizing other objective functions than the like-
lihood function can also be thought of as solutions to the estimating equation obtained by
differentiating the objective function, provided of course that it is differentiable. An important
example is the generalized method of moments of Hansen (1982). We will not explicitly treat
such estimators in this chapter, rather we consider estimating functions that are obtained from
suitable functions of the data or relationships between the observations at different time points.

3.2 Martingale Estimating Functions for Diffusion models

The score function is a martingale estimating function of the form

Gn(θ) =
n∑

i=1

g(∆i, Xti−1
, Xti ; θ). (3.3)

It is therefore natural to approximate the score function by martingale estimating functions of
the general form (3.3) with

g(∆, x, y; θ) =
N∑

j=1

aj(∆, x; θ)hj(∆, x, y; θ), (3.4)

where hj(∆, x, y, ; θ), j = 1, . . . , N are given real valued functions satisfying that
∫ r

`
hj(∆, x, y; θ)p(∆, x, y; θ)dy = 0

for all ∆ > 0, x ∈ (`, r), and θ ∈ Θ. Each of the functions hj could separately be used
to define an estimating function of the form (3.3), but more efficient estimators are obtained
by combining them in an optimal way. The p-dimensional functions aj in (3.4) determine how
much weight is given in the estimation procedure to each of the relationships defined by the hjs.
These functions, which we will refer to as the weights, can be chosen in an optimal way using
the theory of optimal estimating functions. This is quite straightforward and is the subject of
Section 4. The choice of the functions hj, on the other hand, is an art rather than a science.
The ability to tailor these functions to a given model or to particular parameters of interest
is a considerable strength of the estimating functions methodology. It is, on the other hand,
also a source of weakness, since it is not always clear how best to choose the hjs. However,
for diffusion models the global small ∆-optimality criterion presented in Section 5.3 gives some
guidance to the choice of the functions hj. In what follows and in Subsection 3.3, we shall
present some standard ways of choosing these functions that usually work in practice. Note
that the weights aj are usually called instruments in the econometric literature.

Martingale estimating functions have turned out to be very useful in obtaining estimators
for discretely sampled diffusion-type models; see for instance Bibby & Sørensen (1995), Bibby &
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Sørensen (1996), Sørensen (1997), Kessler & Sørensen (1999), Kessler (2000), Bibby & Sørensen
(2001), and Jacobsen (2001a). An application to financial data can be found in Bibby &
Sørensen (1997), while Pedersen (2000) used the method to estimate the nitrous oxide emission
rate from a soil surface. In Christensen, Poulsen & Sørensen (2001) the martingale estimating
functions approach is compared to other methods commonly used in financial econometrics.

A simple type of estimating function is the linear estimating function obtained for N = 1
and

h1(∆, x, y; θ) = y − F (∆, x; θ),

where
F (∆, x; θ) = Eθ(X∆|X0 = x) =

∫ r

`
yp(∆, x, y; θ)dy. (3.5)

In some models the conditional expectation F (∆, x; θ) and the conditional variance φ(∆, x; θ)
are known, but in most cases they are not and must be determined by simulations which can
usually be done easily. The simplest way is straightforward. Fix θ and simulate numerically
M independent trajectories {X (j)

δi , i = 1, . . . , N} with X0 = x (j = 1, . . . ,M), where δ = ∆/N

for N sufficiently large. If M is sufficiently large, the approximation F (∆, x; θ)
.
= 1

M

∑M
j=1X

(j)
∆

can be applied. Methods for simulating a diffusion process can be found in Kloeden & Platen
(1999).

Linear martingale estimating functions for diffusion models were studied by Bibby & Sørensen
(1995), where they were derived as an approximation to the continuous time likelihood func-
tion. An advantage of this type of estimating functions is that the estimators are very robust
to model misspecification. If only the first moment F of the transition distribution is correctly
specified, the estimator is consistent.

When the diffusion coefficient (the volatility) σ depends on a parameter, the linear esti-
mating function are too simple to be useful, whereas the quadratic estimating functions are
a natural, generally applicable choice. They are given by N = 2 and, when the diffusion is
one-dimensional, by

h1(∆, x, y; θ) = y − F (∆, x; θ)

h2(∆, x, y; θ) = (y − F (∆, x; θ))2 − φ(∆, x, θ),

where
φ(∆, x; θ) = Varθ(X∆|X0 = x) =

∫ r

`
[y − F (∆, x; θ)]2p(∆, x, y; θ)dy. (3.6)

The version for multivariate diffusions is defined in an analogous way. An argument for us-
ing this type of estimating function goes as follows. When ∆ is small, the transition density
p(∆, x, y; θ) is well approximated by a Gaussian density function with expectation F (∆, x; θ)
and variance φ(∆, x; θ). By inserting this Gaussian density in the expression for the likeli-
hood function (3.1), an approximate likelihood function is obtained, and the corresponding
approximate score function is

n∑

i=1

{
∂θF (∆i, Xti−1

; θ)

φ(∆i, Xti−1
; θ)

[Xti − F (∆i, Xti−1
; θ)] (3.7)

+
∂θφ(∆i, Xti−1

; θ)

2φ2(∆i, Xti−1
; θ)∆i

[(Xti − F (∆i, Xti−1
; θ))2 − φ(∆i, Xti−1

; θ)]

}
.
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Quadratic martingale estimating functions for diffusion models were considered in Bibby &
Sørensen (1996). Estimators obtained from this type of estimating functions are also rather
robust to model misspecification. If the first and the second moments, F and φ, of the transition
distribution are correctly specified, the estimator is consistent.

Example 3.1 For a mean-reverting diffusion model given by

dXt = −β(Xt − α)dt+ σ(Xt)dWt, (3.8)

where β > 0,
F (t, x;α, β) = xe−βt + α(1 − e−βt) (3.9)

under weak conditions on σ. This can be seen by noting that for fixed x, α and β the function
f(t) = F (t, x;α, β) solves the ordinary differential equation f ′ = −β(f − α). Thus linear
estimating functions can be easily calculated.

If we make the further assumption that σ(x) = τ
√
x (τ > 0), we obtain the model proposed

by Cox, Ingersoll, Jr. & Ross (1985) for interest rates (the spot rate). In the rest of the chapter
we will refer to this model as the CIR model or the CIR process. For the CIR model the
function φ and hence quadratic estimating functions can be found explicitly:

φ(x;α, β, τ) =
τ 2

β

(
(1

2α− x)e−2β − (α− x)e−β + 1
2α
)
.

Another model, where φ can be found explicitly is the mean-reverting model with σ =
√
β + x2.

For this model

φ(x; β) = x2e−2β(e− 1) +
β

2β − 1

(
1 − e1−2β

)

when α = 0. 2

A natural generalization of the quadratic martingale estimating functions is obtained by
choosing hjs of the form

hj(∆, x, y; θ) = fj(y; θ) − πθ
∆(fj(θ))(x) (3.10)

for suitably chosen functions fj and with the transition operator πθ
∆ defined by (2.21). We

will refer to the functions fj, j = 1, . . . , N as the base of the estimating function. Almost
all martingale estimating functions proposed in the literature are of this form. An example is
the higher order polynomial martingale estimating functions considered by Pedersen (1994a)
and Kessler (1996). These are obtained by choosing the base as fj(y) = yj, j = 1, . . . , N .
However, there is no reason to believe that polynomial estimating functions are in general the
best possible way to approximate the true score function when the transition distribution is far
from Gaussian, and it may be useful to choose a base that is tailored to a particular diffusion
model. An example are the estimating functions based on eigenfunctions of the generator of
the diffusion that were proposed by Kessler & Sørensen (1999). These estimating functions and
other examples will be discussed in the next subsection.

In many cases the conditional expectations needed in a martingale estimating function are
not explicitly available and must be calculated numerically, for instance by means of simulations.
Let us briefly consider the effect on the variance of the estimator caused by simulation. Suppose
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that we need the conditional expectation of f(Xt+∆) given that Xt = x for a particular value
θ of the parameter. Then we can use one of the approximation schemes in Kloeden & Platen
(1999) with a step size δ much smaller than ∆ to generate an approximation Y (δ, θ, x) to X
starting at x. A simple example is the Euler scheme

Yiδ = Y(i−1)δ + b(Y(i−1)δ ; θ)δ + σ(Y(i−1)δ ; θ)Zi, Y0 = x,

where the Zis are independent and Zi ∼ N(0, δ). As usual it is assumed that X solves (2.13).
By generating N independent simulations Y (j)(δ, θ, x), j = 1, . . . , N , we can approximate the
conditional expectation of f(Xt+∆) given that Xt = x by

1

N

N∑

j=1

f(Y
(j)
∆ (δ, θ, x)).

This procedure is closely related to the simulated method of moments, see Duffie & Singleton
(1993) and Clement (1997). The asymptotic properties of the estimators obtained when the
conditional moments are approximated by simulation were investigated by Kessler & Paredes
(2002), who considered approximations to martingale estimating functions of the form

Gn(θ) =
n∑

i=1

[
f(Xi∆, X(i−1)∆; θ) − F (X(i−1)∆; θ)

]
, (3.11)

where F (x; θ) is the conditional expectation of f(X∆, x; θ) given X0 = x when the parameter
value is θ. Let θ̂N,δ

n denote the estimator obtained from the approximate martingale estimating
function

GN,δ
n (θ) =

n∑

i=1


f(Xi∆, X(i−1)∆; θ) − 1

N

N∑

j=1

f(Y
(j)
∆ (δ, θ,X(i−1)∆), X(i−1)∆; θ)


 , (3.12)

and suppose that Y (δ, θ, x) satisfies that there exists a δ > 0 such that

|Eθ(g(X∆(x), x; θ)) − E(g(Y∆(δ, θ, x), x; θ))| ≤ R(x; θ)δβ (3.13)

for all x ∈ IR and θ ∈ Θ and for δ sufficiently small. Here g(y, x; θ) = f(y, x; θ)−F (x; θ), Xt(x)
is a solution of (2.13) with X0(x) = x, and R(x; θ) is of polynomial growth in x uniformly for
θ in compact sets. Under this and a number of further regularity conditions Kessler & Paredes
(2002) showed that if δ goes to zero sufficiently fast that

√
nδβ → 0 as n→ ∞, then

√
n
(
θ̂N,δ

n − θ0
)

D−→ N (0, (1 + 1/N)Σ) ,

where θ0 is the true parameter value, and where Σ denotes the asymptotic covariance matrix
for the estimator obtained from the estimating function (3.11). Thus for δ sufficiently small
and N sufficiently large, it does not matter much that the conditional moment F (x; θ) has been
determined by simulation in (3.12). However, when 0 < limn→∞

√
nδβ <∞,

√
n
(
θ̂N,δ

n − θ0
)

D−→ N (m(θ0), (1 + 1/N)Σ) ,

and when
√
nδβ → ∞, √

n
(
θ̂N,δ

n − θ0
)
→ m(θ0)

in probability. Here the p-dimensional vector m(θ0) depends on f and is generally different
from zero. According to Kessler & Paredes (2002) condition (3.13) is satisfied by the order β
weak schemes based on Ito-Taylor expansions given in Chapter 14 of Kloeden & Platen (1999).
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3.3 Explicit Estimating Functions

In this subsection we shall focus on estimating functions for which explicit analytic expressions
are available. These are particularly useful, because the problem of finding the resulting estima-
tors then amounts to solving p explicitly given equations, and although typically the solution
must be obtained numerically, that will not create practical problems if the dimension of the
parameter is not too large – in particular no simulations are required for the calculations.

We start the discussion of explicit estimating functions by considering first martingale esti-
mating functions of the form (3.3), (3.4) and (3.10), i.e.

Gn (θ) =
n∑

i=1

a(∆i, Xti−1
, θ)

(
f (Xti ; θ) − πθ

∆ (f (θ)) (Xti−1
)
)

(3.14)

with f = (fj)1≤j≤N
a (column) vector of given functions, the base, and a = (akj)1≤k≤p,1≤j≤N

a p × N -matrix of given functions, the weights. The transition operator πθ
∆ is defined by

(2.21). We shall call Gn (θ) explicit if all the fj and akj are given in explicit form and the
conditional expectations πθ

∆ (f (θ)) (x) can be determined explicitly. In this section the weight
matrix a can be chosen in any way we please, so we shall not be concerned with the explicit
determination of a. In the next section we shall discuss how to determine a in an optimal or
approximately optimal way. Then we shall also discuss when an explicit expression for the
optimal a is available.

By far the simplest case in which πθ
∆ (f (θ)) (x) can be found explicitly, is when the base

consists of eigenfunctions for the generator of the diffusion as proposed by Kessler & Sørensen
(1999) for one-dimensional diffusions. The differential operator

Lθ = b(x; θ)
d

dx
+ 1

2σ
2(x; θ)

d2

dx2
(3.15)

is called the generator of the diffusion process given by (2.13). Generators of Markov processes
are treated more fully in Äıt-Sahalia, Hansen & Scheinkman (2003). A twice differentiable
function φ(x; θ) is called an eigenfunction for the generator Lθ if

Lθφ(x; θ) = −λ(θ)φ(x; θ), (3.16)

where the real number λ(θ) ≥ 0 is called the eigenvalue corresponding to φ(x; θ). Under weak
regularity conditions, see e.g. Kessler & Sørensen (1999),

πθ
∆(φ(θ))(x) = Eθ(φ(X∆; θ)|X0 = x) = e−λ(θ)∆φ(x; θ). (3.17)

We can therefore define a martingale estimating function by (3.3) and (3.4) with

hj(∆, x, y; θ) = φj(y; θ) − e−λj(θ)∆φj(x; θ), (3.18)

where φ1(·; θ), · · · , φN(·; θ) are eigenfunctions for Lθ with eigenvalues λ1(θ), · · · , λN(θ).

Example 3.2 For the Cox-Ingersoll-Ross model the eigenfunctions are the Laguerre polynomi-
als, and we obtain polynomial estimating functions, some of which were discussed in Example
3.1.

2
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Example 3.3 The class of diffusions which solve the equation

dXt = −θ tan(Xt)dt+ dWt, X0 = x0

is more interesting, because here the eigenfunctions are not polynomials, and we get estimating
functions that we have not seen before. For θ ≥ 1

2
the process X is an ergodic diffusion

on the interval (−π/2, π/2), which can be thought of as an Ornstein-Uhlenbeck process on a
finite interval. The eigenfunctions are φi(x; θ) = Cθ

i (sin(x)), i = 0, 1, · · · , with eigenvalues
i(θ + i/2), i = 0, 1, · · ·, where Cθ

i is the Gegenbauer polynomial of order i. This model was
studied in more detail in Kessler & Sørensen (1999). An asymmetric version was introduced in
Larsen & Sørensen (2003).

2

Example 3.4 In Larsen & Sørensen (2003) the following model is proposed for the random
variation of an exchange rate in a target zone between realignments. LetX denote the logarithm
of the exchange rate. Then

dXt = −β[Xt − (m + γZ)]dt+ σ
√
Z2 − (Xt −m)2dWt, (3.19)

where β > 0 and γ ∈ (−1, 1). This is a diffusion on the interval (m − Z,m + Z) with mean
reversion around m + γZ. Here m denotes the central parity and Z = log(1 + z) with z
denoting the largest deviation from m that is allowed. The quantities m and z are known fixed
quantities. When β(1 − γ) ≥ σ2 and β(1 + γ) ≥ σ2, X an ergodic diffusion, for which the
stationary distribution is the Beta-distribution on (m−Z,m+Z) with parameters β(1−γ)σ−2

and β(1+γ)σ−2. For γ = 0 the target zone model proposed by De Jong, Drost & Werker (2001)
is obtained. The purpose of introducing the parameter γ is to allow an asymmetric stationary
distribution, which is usually needed to fit observations of exchange rates in a target zone, see
Larsen & Sørensen (2003). The eigenfunctions for the generator of the diffusion (3.19) are the
Jacobi polynomials

φi(x; β, γ, σ) =
i∑

j=1

2−j

(
β(1 − γ)σ−2 + i− 1

i− j

)(
2βσ−2 − 2 + i + j

j

)
[(x−m)/Z − 1]j

with eigenvalues λi = i[β + 1
2
σ2(i− 1)], i = 1, 2, . . ..

2

While it is quite natural to search for eigenfunctions for the generator of a one-dimensional
diffusion, it is less natural in higher dimensions (e.g. the eigenvalues need no longer be real).
Instead one may use invariant subspaces and do the following. Let X be a general d-dimensional
diffusion satisfying (2.13) with b a d-dimensional vector and σ a d × d-matrix. For a d-
dimensional diffusion, the generator is defined by

Lθf(x) =
d∑

k=1

bk(x; θ)∂xk
f(x) + 1

2

d∑

k,`=1

Ck`(x; θ)∂
2
xkx`

f(x),

where f is a real twice differentiable function defined on the d-dimensional state space of X
and C = σσT with σT denoting the transpose of σ. Suppose that for every θ, Lθ is a finite-
dimensional vector space of twice differentiable real-valued functions f ∗ such that Lθf

∗ ∈ Lθ
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for all f ∗ ∈ Lθ (the simplest case is of course when Lθ is a one-dimensional eigen-space). If
(fj)1≤j≤N

is a basis for Lθ, we may write

Lθf = Ψθf, (3.20)

where Ψθ is an N ×N -matrix of constants, and f is the column vector (fj)1≤j≤N
. The basis f

will typically depend on θ, but that dependence is suppressed in the notation. By Lθf we mean
that Lθ is applied to each coordinate of f , i.e. Lθf is the column vector (Lθfj)1≤j≤N . Then by
Itô’s formula

πθ
t f(x) = f(x) +

∫ t

0
Ψθ

(
πθ

sf
)

(x) ds (x ∈ D) (3.21)

provided all fj(Xs) are integrable, Eθ (|fj (Xs)| |X0 = x) < ∞, for all x, and provided each of
the local martingales

M
fj

t =
d∑

k=1

∫ t

0
∂xk

fj(Xs)
d∑

`=1

σk`(Xs) dW`,s

is a true martingale conditionally on X0 = x. In that case, (3.21) gives ∂tπ
θ
t f = Ψθπ

θ
t f with

the boundary condition πθ
0f = f so that

πθ
t f(x) = etΨθf(x) (x ∈ D) (3.22)

with the exponential matrix defined through its series expansion,

etΨθ =
∞∑

m=0

tm

m!
Ψm

θ .

It is perhaps debatable whether (3.22) is an explicit expression, but at least, if N is not too
large, a more compact expression may be found.

Note that (3.9) in Example 3.1 (where the diffusion is one-dimensional) may be deduced
as a special case of (3.22) with Lθ = L equal to the space of polynomials of degree less than
or equal to one. We have N = 2 and can use f1(x) = 1 and f2(x) = x as basis for L. Then
Lθf1 = 0, Lθf2 = αβf1 − βf2 so that

Ψθ =

(
0 0
αβ −β

)
.

A straightforward calculation gives

etΨθ =

(
1 0

α
(
1 − e−tβ

)
e−tβ

)
,

and by multiplying from the right with the vector (1, x)T , formula (3.9) is recovered.

The integrability conditions from above may be verified as follows. If X has an invariant
density µθ, and all fj are µθ-integrable, then since

∫

D
µθ (dx) Eθ (|fj (Xs)| |X0 = x) = µθ (|fj|) <∞

it follows (at least for µθ-almost all x) that fj(Xs) is integrable. Similarly, if all functions

η`(x) =

(
∑

k

∂xk
fj(x)σk`(x)

)2

(1 ≤ ` ≤ d)
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are µθ-integrable, it can be verified that for µθ-almost all x, M fj is a true martingale when
conditioning on X0 = x.

A particularly nice case of the setup above arises when Lθ = L is the space of polynomials
of degree less than or equal to r for some r ∈ IN. Then the invariance, LθL ⊆ L, holds for
all r provided each bk(x; θ) is a polynomial in x of degree less than or equal to one and each
Ck`(x; θ) is a polynomial in x of degree less than or equal to two. These conditions are for
instance satisfied by the affine term structure models, see Duffie & Kan (1996), where the Ck`

are of degree ≤ 1. Thus, with these conditions on b and C satisfied, the conditional moments

πt

(
d∏

k=1

xpk

k

)
= E

(
d∏

k=1

Xpk
t

∣∣∣∣∣X0 = x

)

with all pk ∈ IN0 may be found from (3.22) provided they exist and the relevant local martingales
are true martingales.

Note that since Lθ1 = 0, where 1 = (1, . . . , 1)T the constant functions may always be
included in L, and it is not really required that the basis f satisfy the linear relationship (3.20)
– it is sufficient that there is a vector c of constant functions such that Lθf = c + Ψθf.

We now turn to some estimating functions of the form (3.3) that are not martingale esti-
mating functions, but can be found in explicit form. Consider first simple estimating functions,
where the function g appearing in (3.3) is of the form

g(∆, x, y; θ) = h(x; θ)

(or = h(y; θ)). We assume in the following that the diffusion X is ergodic with invariant density
µθ. The unbiasedness property, Eθ(Gn(θ)) = 0, is satisfied if µθ(h(θ)) = 0. Note that here it
holds only when X0 has distribution µθ, in contrast to (3.14) where it holds regardless of the
distribution of X0.

A simple example is
h(x; θ) = ∂θ log µθ(x),

which was proposed by Kessler (2000). This estimating function corresponds to assuming that
all observations are independent with density µθ. The unbiasedness condition is satisfied under
usual conditions allowing the interchange of differentiation and integration. An somewhat com-
plex modification of this simple estimating function was shown by Kessler, Schick & Wefelmeyer
(2001) to be efficient in the sense of semiparametric models. The semiparametric model for
X considered in that paper was that the process is Markovian with only the invariant mea-
sures {µθ| θ ∈ Θ} specified parametrically. The modified version of the estimating function was
derived by Kessler & Sørensen (2002) in a completely different way.

The unbiasedness property holds for all h of the form

h(x; θ) = Lθf(x) (3.23)

provided each coordinate fj and Lθfj belong to L2 (µθ) . This is the basic property of the
invariant measure expressed in terms of the generator, a fact noted and used to construct
estimating functions by Hansen & Scheinkman (1995), see also Kessler (2000), Baddeley (2000),
and Äıt-Sahalia, Hansen & Scheinkman (2003).
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One might consider it a major weakness that (3.23) depends on the argument x only. In
fact, Hansen & Scheinkman (1995) proved that only parameters on which the invariant density
µθ depends can be estimated by (3.23). Hence the importance of the class of explicit, transition
dependent estimating functions introduced and studied thoroughly by Hansen & Scheinkman
(1995), viz. each coordinate gj is of the form

gj,∆(x, y; θ) = hj(y)Lθfj(x) − fj(x)L̂θhj(y). (3.24)

Both here and in (3.23) the functions f and h are allowed to depend on θ and ∆ – mostly however
we think of cases where they do not. The general form of (3.24) requires an explanation: When
X0 has distribution µθ, the process X is stationary (for that value of θ), and for any finite
T > 0, the fragment (XT−t)0≤t≤T , has the same distribution as (X̂t)0≤t≤T where X̂ is another

diffusion, stationary with X̂0 having distribution µθ. This new diffusion, the time reversal of
X, has generator

L̂θf(x) =
d∑

k=1

b̂k(x; θ)∂xk
f(x) + 1

2

d∑

k,`=1

Ck`(x; θ)∂
2
xkx`

f(x),

where

b̂k(x; θ) = −bk(x; θ) +
1

µθ(x)

d∑

`=1

∂x`
(µθCkl) (x; θ),

see e.g. Hansen & Scheinkman (1995). It is the dual generator L̂θ that appears in (3.24).

We call X reversible if X̂ and X are the same diffusion, i.e. X is reversible if and only if
b̂ (x; θ) = b(x; θ) for all x. For d = 1, X is always reversible – the equation b̂ ≡ b when solved for
µθ immediately gives the expression (2.16). For d ≥ 2 it is the exception rather than the rule
that X be reversible, and that makes (3.24) an explicit estimating function only if µθ is known
explicitly which, again in contrast to the one-dimensional case, hardly ever happens. Thus in
practice, the class (3.24) of estimating functions will be relevant mostly for reversible diffusion
models, in particular always when d = 1. For reversible models it seems natural to enlarge the
class (3.24) by considering g of the form

gi,∆ (x, y; θ) =
r∑

q=1

[hiq(y)Lθfiq(x) − fiq(x)Lθhiq(y)] . (3.25)

Example 3.5 One of the best examples known of the successful use of a simple estimating
function is Kessler’s estimator of the drift parameter in the one-dimensional Ornstein-Uhlenbeck
model

dXt = −θXt dt+ dWt

where θ > 0 in order to make X ergodic (Kessler (2000)). Kessler uses (3.23) with f(x) = x2,
so that h (x; θ) = −2θx2 + 1 resulting in the estimator

θ̂ =
n

2
∑n

i=1X
2
(i−1)∆

,

which he shows is the most efficient of all estimators that can be obtained using estimating
functions of the form (3.23), and which performs remarkably well with an asymptotic efficiency
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relative to the (complicated) maximum-likelihood estimator that is always greater than or equal
to 95.6%, no matter what ∆ is.

That simple estimating functions can also be very bad, is illustrated by Kessler (2000) using
the example

dXt = −θXt dt+
√
θ +X2

t dWt

where the estimator based on (3.23) with f(x) = x2 behaves terribly for all values of ∆.

2

While (3.23) has often been used with f a polynomial, and thus with the choice of f not
related to the model at hand in any particular way, H. Sørensen (2001), using approximations
to the score function for continuous time observation of the diffusion X, argued that one should
use the model based choice f = ∂θ log µθ. The resulting estimator is small ∆-optimal, a concept
that is the subject of the Subsection 5.3.

3.4 Non-Markovian Models

An important type of a non-Markovian model that is widely used in finance is the stochastic
volatility model

dYt =
√
vtdWt (3.26)

dvt = b(vt; θ)dt+ c(vt; θ)dBt,

where W and B are independent standard Wiener processes. We assume that v is an ergodic,
positive diffusion with invariant probability measure µθ, and that v0 ∼ µθ and is independent
of B and W . The process Y is for instance used as a model for the logarithm of the price of
a stock. The returns Xi = Y∆i − Y∆(i−1) are observations from a stationary non-Markovian
process. There are more complex stochastic volatility models, but for simplicity we will here
only consider the most basic type.

A number of approaches are available for inference about the parameters in stochastic volatil-
ity models considered below. One is indirect inference or the efficient method of moments, see
Gourieroux, Monfort & Renault (1993), Gallant & Tauchen (1996), and Gallant & Tauchen
(2003). Likelihood based methods for stochastic volatility models have been proposed by Kim,
Shephard & Chib (1998) and H. Sørensen (2003), and simulation based Bayesian methods using
Markov chain Monte Carlo have been developed by Elerian, Chib & Shephard (2001) and Eraker
(2001), see also Johannes & Polson (2003). Estimating functions for stochastic volatility models
were proposed by Genon-Catalot, Jeantheau & Larédo (1999) and Genon-Catalot, Jeantheau
& Larédo (2000). Here we will concentrate on the prediction-based estimating functions in-
troduced by Sørensen (2000) that are widely applicable to non-Markovian diffusion models.
An example is the application to observations of integrals of diffusions in disjoint intervals in
Ditlevsen & Sørensen (2002).

We will consider the general situation when the model for the dataX1, . . . , Xn is a stationary
non-Markovian process. Here it is in many cases not possible to find a martingale estimating
function that can be easily calculated. Obviously,

n∑

i=1

a(X1, . . . , Xi−1; θ) [f(Xi) − Eθ (f(Xi)|X1, . . . , Xi−1)] (3.27)
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is a martingale estimating function, but it can usually not be used in practice because of the
problems involved in calculating the conditional expectation, analytically as well as numerically.
Also for non-Markovian models the score function is usually a martingale, so it must be ex-
pected that it is best approximated by a martingale estimating function. When the conditional
expectations appearing in the martingales are too complicated for practical use, it therefore
seems desirable to approximate them as well as possible by other predictors. This is the idea
behind the prediction-based estimating functions.

Assume that fj, j = 1, . . . , N , are one-dimensional functions, defined on the state space of
X, such that Eθ(fj(X1)

2) < ∞ for all θ ∈ Θ. We shall now introduce an estimating function
with a structure similar to (3.27) where the intractable conditional expectation is replaced by a
simpler expression that can be interpreted as an approximation to the conditional expectation.
For each j we will predict fj(Xi) by predictors of the form

π
(i−1)
j = αj0 + αj1hj1(Xi−1, . . . , Xi−s) + · · ·+ αjqhjq(Xi−1, . . . , Xi−s), (3.28)

where hjk, k = 1, . . . q are given functions from IRs into IR satisfying that Eθ(hjk(X1, . . . , Xs)
2) <

∞. Note that the predictor depends only on observations s time steps back in time. This is
essential and simplifies the asymptotic theory for the estimators enormously. The minimum
mean square error unbiased predictor of fj(Xi) of the form (3.28) is given by

π̆
(i−1)
j (θ) = ᾰj0(θ) + ᾰj(θ)

TZ
(i−1)
j , (3.29)

where Z
(i−1)
j = (Z

(i−1)
j1 , . . . , Z

(i−1)
jq )T with Z

(i−1)
jk = hjk(Xi−1, . . . , Xi−s), k = 1, . . . q, where

ᾰj(θ) = (ᾰj1(θ), . . . , ᾰjq(θ))
T equals

ᾰj(θ) = Cj(θ)
−1bj(θ), (3.30)

and where
ᾰj0(θ) = Eθ (fj(X1)) − ᾰj(θ)

TEθ

(
Z

(s)
j

)
. (3.31)

As earlier, T denotes transposition of vectors and matrices. In formula (3.30), Cj(θ) denotes

the covariance matrix of Z
(s)
j , while

bj(θ) =
(
Covθ

(
Z

(s)
j1 , fj(Xs+1)

)
, . . . ,Covθ

(
Z

(s)
jq , fj(Xs+1)

))T
. (3.32)

Thus a prediction-based estimating function can be calculated provided only that we can find
the covariances in Cj(θ) and bj(θ). When these moments cannot be determined explicitly,

they are usually easy to obtain numerically. A simple and natural choice of Z
(i−1)
j is Z

(i−1)
j =

(fj(Xi−1), . . . , fj(Xi−q))
T . In this case, the coefficients ᾰj0, . . . , ᾰjq can easily be found by means

of the Durbin-Levinson algorithm, see Brockwell & Davis (1991).

The minimum mean square error unbiased predictor of fj(Xi) is the projection in the L2-
space of functions of Xi, Xi−1, . . . , Xi−s with finite variance onto the linear subspace of functions

on the form (3.28). Therefore π̆
(i−1)
j (θ) satisfies the normal equation

Eθ

(
π

(i−1)
j

{
fj(Xi) − π̆

(i−1)
j (θ)

})
= 0 (3.33)

for all π
(i−1)
j of the form (3.28). This implies (3.30). The fact that π̆

(i−1)
j (θ) is a projection also

shows that it can be interpreted as an approximation to the conditional expectation of fj(Xi)
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given X1, . . . , Xi−1, because this conditional expectation is the projection of fj(Xi) onto the
linear space of all functions of X1, . . . , Xi−1 with finite variance.

It follows from (3.31) that the estimating function

n∑

i=s+1

N∑

j=1

{
fj(Xi) − π̆

(i−1)
j (θ)

}

is unbiased, so that we can expect it to produce consistent estimators, cf. Theorem 2.2. The
normal equations (3.33) indicate, how we can choose weights that can improve the efficiency of
the estimators. In fact,

Gn(θ) =
n∑

i=s+1

N∑

j=1

Π
(i−1)
j (θ)

{
fj(Xi) − π̆

(i−1)
j (θ)

}
, (3.34)

where Π
(i−1)
j (θ) is a p-dimensional vector, is an unbiased estimating function whenever Π

(i−1)
j (θ) =

(π
(i−1)
1,j (θ), . . . , π

(i−1)
p,j (θ))T , where the coordinates are of the form (3.28). We shall find the op-

timal choice for Π
(i−1)
j (θ) in Subsection 5.4. An estimating function of the type (3.34) is called

a prediction-based estimating function.

Note the computational advantage of prediction-based estimating functions in comparison
to martingale estimating functions when these are not explicit. Here we need only uncon-
ditional moments that are relatively easy to compute by simulation, whereas for martingale
estimating functions moments conditional on all data points are needed which involve much
more computation. The conventional wisdom is that estimators based on conditional moments
are more efficient than estimators based on unconditional moments. The argument is that
with conditional moments one can construct a martingale estimating function that is a close
approximation to the score function, which as we saw in Subsection 3.1 is itself a martingale,
and thus obtain a highly efficient estimator. However, by choosing the functions hjk suitably,
a good approximation can be obtained to the conditional expectation, so there is reason to
believe that the estimators presented in this section can have a high efficiency too.

Note also that since π̆
(i−1)
j (θ) depends exclusively on the first and second order moments of

the random vector
(
fj(Xi), Z

(i−1)
j1 , . . . , Z

(i−1)
jq

)
, only parameters appearing in these moments for

at least one j can be estimated using (3.34). This is intuitively obvious and indeed follows from
Condition 3.7 given later in this section. Of course, one would usually choose the functions fj

and hjk in such a way that it is possible to estimate all parameters of interest.

A non-optimal prediction-based estimating function is obtained by differentiating the log-
arithm of the pseudo-likelihood function obtained by pretending that the process {f(Xi)} is
Gaussian with the correct first and second order moments and multiplying the Gaussian con-
ditional densities of f(Xi) given (f(Xi−1), . . . , f(Xi−q)) for i = q + 1, . . . , n. In this particular
case, N = 1, q = s, and hk(xq, . . . , x1) = f(xq+1−k), k = 1, . . . , q.

Example 3.6 For the stochastic volatility model (3.26), the returns Xi = Y∆i −Y∆(i−1) satisfy
that

Xi =
∫ i∆

(i−1)∆

√
vtdWt, (3.35)

so that
Xi =

√
SiZi, (3.36)
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where

Si =
∫ i∆

(i−1)∆
vtdt (3.37)

and where the Zis are independent, identically standard normal distributed random variables,
that are independent of {Si}. It is easy to see from (3.36) that the returns are uncorrelated in
accordance with empirical findings. Therefore the function f(x) = x cannot be used to define
a prediction based estimating function. A simple alternative is to base the estimating function
on the squared returns X2

i . This can be done by using the estimating function with N = 1,
f(x) = x2, and hk(xq, . . . , x1) = x2

q−k+1, k = 1, . . . , q. Here s = q. In this way we obtain an
estimating function of the form

Gn(θ) =
n∑

i=q+1

Π(i−1)(θ)
{
X2

i − ᾰ0(θ) − ᾰ1(θ)X
2
i−1 − · · · − ᾰq(θ)X

2
i−q

}
, (3.38)

where the quantities ᾰk(θ), k = 0, . . . , q, are given by

ᾰ0(θ) = Eθ

(
X2

1

)
{1 − (ᾰ1(θ) + · · ·+ ᾰq(θ))}

and (3.30) with C(θ) equal to the covariance matrix of the stochastic vector
(
X2

q , . . . , X
2
1

)
, and

with b(θ) =
(
Covθ

(
X2

q+1, X
2
q

)
, . . . ,Covθ

(
X2

q+1, X
2
1

))T
.

In order to ensure that the quantities C(θ) and b(θ) are well-defined, we must assume that
Eθ(X

4
1 ) < ∞. This is the case provided that the second moment of the volatility process v

exists. Let us briefly discuss how to calculate the covariances. It follows from (3.36) that

Eθ(X
2
i ) = Eθ(S1)

Varθ (X2
i ) = 3Varθ (S1) + 2Eθ(S1)

2

Covθ (X2
i , X

2
i+j) = Covθ (S1, S1+j).

Define

ξ(θ) = Eθ(vt)

ω(θ) = Varθ(vt)

r(u; θ) = Covθ(vt, vt+u)/ω(θ).

Using (3.37), it is not difficult to see that

Eθ

(
X2

n

)
= ∆ξ(θ) (3.39)

Varθ

(
X2

n

)
= 6ω(θ)R∗(∆; θ) + 2∆2ξ(θ)2 (3.40)

Covθ

(
X2

n, X
2
n+i

)
= ω(θ) [R∗(∆(i + 1); θ) (3.41)

− 2R∗(∆i; θ) +R∗(∆(i− 1); θ)] ,

where

R∗(t; θ) =
∫ t

0

∫ s

0
r(u; θ)duds;

see Barndorff-Nielsen & Shephard (2001). For numerical calculations it is perhaps more useful
that

Covθ

(
X2

n, X
2
n+i

)
= ω(θ)

∫ i∆

(i−1)∆

∫ s+∆

s
r(u; θ)duds, (3.42)
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which follows by easy calculations. Thus all that is needed to compute the minimal mean
squared error predictor in (3.38) are the first and second order moments of the volatility process.
Examples of models where these moments can be found explicitly are given in Example 5.11.

2

We finish by discussing the asymptotic properties of an estimator obtained from an esti-
mating function of the general type (3.34), which we will first give a more compact form. Write

the `th coordinate of the vector Π
(i−1)
j (θ) as

π
(i−1)
`,j (θ) =

q∑

k=0

α`jk(θ)Z
(i−1)
jk ,

with Z
(i−1)
j0 = 1. Then (3.34) can be written in the form

Gn(θ) = A(θ)
n∑

i=s+1

Z(i−1)
(
F (Xi) − π̆(i−1)(θ)

)
, (3.43)

where

A(θ) =




α110(θ) · · · α11q(θ) · · · · · · α1N0(θ) · · · α1Nq(θ)
...

...
...

...
αp10(θ) · · · αp1q(θ) · · · · · · αpN0(θ) · · · αpNq(θ)


 , (3.44)

where F (x) = (f1(x), . . . , fN(x))T , π̆(i−1)(θ) = (π̆
(i−1)
1 (θ), . . . , π̆

(i−1)
N (θ))T , and where Z(i−1) is

the N(q + 1) ×N -matrix given by

Z(i−1) =




Z
(i−1)
10 0 · · · 0
...

...
...

Z
(i−1)
1q 0 · · · 0

0 Z
(i−1)
20 · · · 0

...
...

...

0 Z
(i−1)
2q · · · 0

...
...

...

0 0 · · · Z
(i−1)
N0

...
...

...

0 0 · · · Z
(i−1)
Nq




. (3.45)

The following condition will imply that the conditions of Theorem 2.2 are satisfied and will thus
ensure the existence of a

√
n-consistent and asymptotically normal estimator. In this condition

we need two further definitions:

ᾰ(θ) = (ᾰ10(θ), ᾰ11(θ), . . . , ᾰ1q(θ), . . . , ᾰN0(θ), . . . ᾰNq(θ))
T , (3.46)

where the ᾰjks define the minimum mean square error predictor (i.e. π̆(i−1)(θ) = (Z(i−1))T ᾰ(θ))
and

D(θ) = Eθ

(
Z(i−1)(Z(i−1))T

)
. (3.47)

Finally let θ0 denote the true parameter value.
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Condition 3.7

(1) The process X is stationary and geometrically α-mixing.

(2) Eθ0

(∣∣∣Z(s)
jk fj(Xs+1)

∣∣∣
2+δ
)
<∞ and Eθ0

(∣∣∣Z(s)
jk Z

(s)
j`

∣∣∣
2+δ
)
<∞, j = 1, . . . , N, k, ` = 0, . . . q.

(3) The vector ă(θ) given by (3.30), (3.31) and (3.46) and the matrix A(θ) are twice continu-
ously differentiable with respect to θ.

(4) The matrix A(θ0)D(θ0)∂θT ă(θ0) has rank p. The matrix D(θ0) is given by (3.47).

Under Condition 3.7 (1)–(2) the process Z (i−1)
(
F (Xi) − π̆(i−1)(θ)

)
, i = s + 1, s + 2, . . . is

geometrically α-mixing, and satisfies the moment condition of the central limit theorem for
such sequences, see e.g. Doukhan (1994), Theorem 1 in his Section 1.5. Therefore, the law of
large numbers (2.3) and the following hold. The matrix

M̄n(θ) = Eθ

(
H(s+1)(θ)H (s+1)(θ)T

)
+ (3.48)

n−s−1∑

k=1

(n− s− k)

(n− s)

{
Eθ

(
H(s+1)(θ)H (s+1+k)(θ)T

)
+ Eθ

(
H(s+1+k)(θ)H (s+1)(θ)T

)}

with
H(i)(θ) = Z(i−1)

(
F (Xi) − π̆(i−1)(θ)

)
.

satisfies that
M̄n(θ0) →M(θ0),

and the central limit theorem

1√
n
Gn(θ0)

D−→ N
(
0, A(θ0)M(θ0)A(θ0)

T
)

holds as n → ∞, provided that M(θ0) is strictly positive definite. The matrix M̄n(θ) is the
covariance matrix of

∑n
i=s+1H

(i)(θ)/
√
n− s. The rest of Condition 3.7 implies Condition 2.1.

Note in particular, that

S(θ0) = −Eθ0(A(θ0)Z
(i−1)(Z(i−1))T∂θT ᾰ(θ0)) = −A(θ0)D(θ0)∂θT ᾰ(θ0).

Under Condition 3.7 and the condition on M(θ0) we therefore have the conclusions of
Theorem 2.2, i.e. with a probability tending to one as n→ ∞ the estimating equation Gn(θ) = 0
defines a

√
n-consistent estimator θ̂n satisfying that

√
n(θ̂n − θ0)

D−→ N
(
0, S(θ0)

−1A(θ0)M(θ0)A(θ0)
T (S(θ0)

−1)T
)
. (3.49)

Example 3.6 (continued). For the stochastic volatility model (3.26), to ensure (1) in Condi-
tion 3.7 it is enough that the volatility process v is geometrically α-mixing, see Lemma 6.3 in
Sørensen (2000) or Genon-Catalot, Jeantheau & Larédo (2000). Condition 2.5 together with
the condition for ergodicity discussed in Section 2.3 are sufficient to ensure that a diffusion
process like the volatility process is geometrically α-mixing.

2
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4 The General Theory of Optimal Estimating Functions

The modern theory of optimal estimating functions dates back to the papers by Godambe
(1960) and Durbin (1960), however the basic idea was in a sense already used in Fisher (1935).
The theory was extended to stochastic processes by Godambe (1985), Godambe & Heyde
(1987), Heyde (1988), and several others; see the references in Heyde (1997). Important par-
ticular instances are likelihood inference, the quasi-likelihood of Wedderburn (1974) and the
closely related generalized estimating equations developed by Liang & Zeger (1986) to deal with
problems of longitudinal data analysis, see also Prentice (1988) and Li (1997).

It is interesting that a related parallel development in the theory of the generalized method
of moments has taken place independently in the econometric literature, see e.g. Hansen (1982)
and Hansen (1985). There the emphasis has been on bounds on the asymptotic covariance
matrix of estimators, rather than on criteria for optimality of estimating functions and methods
to construct optimal estimating functions.

4.1 General Estimating Functions

In this subsection we first review the general theory of estimating functions for stochastic
process models. A modern review of the theory is given in Heyde (1997).

Here we consider again a general model. The data X1, X2, . . . , Xn are assumed to be obser-
vations from a stochastic process model indexed by a p-dimensional parameter θ ∈ Θ. Suppose
we have a class Gn of unbiased estimating functions. How do we choose the best member in
Gn? And in what sense are some estimating functions better than others? These are the main
problems in the theory of estimating functions.

To simplify the discussion, let us first assume that p = 1. The quantity

SGn
(θ) = Eθ(∂θGn(θ)) (4.1)

is called the sensitivity function for Gn. Here ∂θ denotes the partial derivative with respect to
θ. It is assumed that Gn(θ) is differentiable with respect to θ. A large absolute value of the
sensitivity implies that the equation Gn(θ) = 0 tends to have a solution near the true parameter
value, where Eθ(Gn(θ)) is equal to zero. Thus a good estimating function is one with a large
absolute value of the sensitivity.

Ideally, we would base the statistical inference on the likelihood function Ln(θ), and hence
use as our estimating function the score function Un(θ) = ∂θ logLn(θ). However, when Ln(θ)
is not available or is difficult to calculate, we might prefer to use an estimating function that
is easier to obtain and is in some sense close to the score function. Suppose that both Un(θ)
and Gn(θ) have variance. Then it can be proven under usual regularity conditions allowing the
interchange of integration and differentiation that

SGn
(θ) = −Covθ(Gn(θ), Un(θ)).

Thus we can find an estimating function Gn(θ) that maximizes the absolute value of the
correlation between Gn(θ) and Un(θ) by finding one that maximizes the quantity

KGn
(θ) = SGn

(θ)2/Varθ(Gn(θ)) = SGn
(θ)2/Eθ(Gn(θ)2), (4.2)
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which is known as the Godambe information. This makes intuitive sense: KGn
(θ) is large when

the sensitivity is large and when the variance of Gn(θ) is small. The Godambe information is
a natural generalization of the Fisher information. Indeed, KUn

(θ) is the Fisher information.
For a discussion of information quantities in a stochastic process setting, see Barndorff-Nielsen
& Sørensen (1994). In a short while, we shall see that the Godambe information has a large
sample interpretation too.

An estimating function G∗
n ∈ Gn is called F-optimal or Godambe-optimal in Gn if

KG∗

n
(θ) ≥ KGn

(θ) (4.3)

for all θ ∈ Θ and for all Gn ∈ Gn. The optimal estimating function G∗
n is sometimes called a

quasi score function, while an estimator θ∗n obtained by solving the equation G∗
n(θ) = 0 is called

a quasi likelihood estimator.

When the parameter θ is multivariate (p > 1), the sensitivity function is the p× p-matrix

SGn
(θ) = Eθ(∂θTGn(θ)) =




∂θ1Gn(θ)1 · · · ∂θp
Gn(θ)1

...
...

∂θ1Gn(θ)p · · · ∂θp
Gn(θ)p


 . (4.4)

We denote the transpose of a vector or a matrix a by aT . Vectors are column vectors. For a
multivariate parameter, the Godambe information is the p× p-matrix

KGn
(θ) = SGn

(θ)T Eθ

(
Gn(θ)Gn(θ)T

)−1
SGn

(θ), (4.5)

and an optimal estimating function (or a quasi score function) G∗
n can be defined by (4.3) with

the inequality referring to the partial ordering of the set of positive semi-definite p×p-matrices.
Whether an F-optimal estimating function exists and whether it is unique depends on the class
Gn. In any case, it is only unique up to multiplication by a regular matrix that might depend
on θ. Specifically, if G∗

n(θ) satisfies (4.3), then so does MθG
∗
n(θ) where Mθ is an invertible

deterministic p × p-matrix. Fortunately, the two estimating functions give rise to the same
estimator(s). For theoretical purposes a standardized version of the estimating functions is
useful. The standardized version of Gn(θ) is given by

G(s)
n (θ) = −SGn

(θ)T Eθ

(
Gn(θ)Gn(θ)T

)−1
Gn(θ).

The rationale behind this standardization is that G(s)
n (θ) satisfies the second Bartlett-identity

Eθ

(
G(s)

n (θ)G(s)
n (θ)T

)
= −Eθ(∂θTG(s)

n (θ)), (4.6)

an identity usually satisfied by the score function. The standardized estimating function G(s)
n (θ)

is therefore more directly comparable to the score function. Note that when the second Bartlett
identity is satisfied, the Godambe information equals minus the sensitivity matrix (4.4).

An F-optimal estimating function is close to the score function Un in an L2-sense. Suppose
G∗

n is F-optimal in Gn. Then the standardized version G∗(s)
n (θ) satisfies the inequality

Eθ

(
(G(s)

n (θ) − Un(θ))T (G(s)
n (θ) − Un(θ))

)
≥ Eθ

(
(G∗(s)

n (θ) − Un(θ))T (G∗(s)
n (θ) − Un(θ))

)
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for all θ ∈ Θ and for all Gn ∈ Gn, see Heyde (1997). In fact, if Gn is a closed subspace of the
L2-space of all square integrable random vectors, then the quasi-score function is the orthogonal
projection of the score function onto Gn. For further discussion of this Hilbert space approach to
estimating functions, see McLeish & Small (1988). The interpretation of an optimal estimating
function as an approximation to the score function is important. By choosing a sequence of
classes Gn that, as n→ ∞, converges to a subspace containing the score function Un, a sequence
of estimators that is asymptotically fully efficient can be constructed.

The following result can often be used to find the optimal estimating function.

Theorem 4.1 (Heyde (1988)) If G∗
n ∈ Gn satisfies

SGn
(θ)−1Eθ

(
Gn(θ)G∗

n(θ)T
)

= SG∗

n
(θ)−1Eθ

(
G∗

n(θ)G
∗
n(θ)T

)
(4.7)

for all θ ∈ Θ and for all Gn ∈ Gn, then it is F-optimal in Gn. When Gn is closed under addition,
any F-optimal estimating function G∗

n satisfies (4.7).

In many situations the condition (4.7) can be verified by showing that Eθ(Gn(θ)G
∗
n(θ)T ) =

−Eθ(∂θTGn(θ)) for all θ ∈ Θ and for all Gn ∈ Gn. In such situations, G∗
n satisfies the second

Bartlett-identity, (4.6), so that

KG∗

n
(θ) = Eθ

(
G∗

n(θ)G∗
n(θ)T

)
.

Example 4.2 Almost all estimating functions considered in this chapter have the following
form. Suppose that one has a number of functions hij(x1, . . . , xi; θ), j = 1, . . . , N , i = 1, . . . n
satisfying that

Eθ(hij(X1, . . . , Xi; θ)) = 0.

Such functions define relationships (dependent on θ) between an observation Xi and the previ-
ous observations X1, . . . , Xi−1 (or some of them) that are on average equal to zero. It is natural
to use such relationships to estimate θ by solving the equations

∑n
i=1 hij(X1, . . . , Xi; θ) = 0. In

order to estimate θ it is necessary that N ≥ p, but if N > p we have too many equations. The
theory of optimal estimating functions tells us how to combine the N relations in an optimal
way.

Let hi denote the N -dimensional vector (hi1, . . . , hiN)T , and define an N -dimensional esti-
mating function by Hn(θ) =

∑n
i=1 hi(X1, . . . , Xi; θ). First we consider the class of p-dimensional

estimating functions of the form

Gn(θ) = An(θ)Hn(θ),

where An(θ) is a non-random p × N -matrix that is differentiable with respect to θ. By A∗
n(θ)

we denote the optimal choice of An(θ). It is not difficult to see that

SGn
(θ) = An(θ)SHn

(θ)

and
Eθ

(
Gn(θ)G∗

n(θ)T
)

= An(θ)Eθ

(
Hn(θ)Hn(θ)T

)
A∗

n(θ)T ,

where SHn
(θ) = Eθ(∂θTHn(θ)). If we choose

A∗
n(θ) = −SHn

(θ)T Eθ

(
Hn(θ)Hn(θ)T

)−1
,
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then (4.7) is satisfied for all Gn ∈ Gn, so that G∗
n(θ) = A∗

n(θ)Hn(θ) is F-optimal.

Sometimes there are good reasons to use functions hij satisfying that

Eθ(hij(X1, . . . , Xi; θ)hi′j′(X1, . . . , Xi′; θ)) = 0 (4.8)

for all j, j ′ = 1, . . . , N when i 6= i′. For such functions the random variables hij(X1, . . . , Xi; θ),
i = 1, 2, . . . are uncorrelated, and in this sense the “new” random variation of hij(X1, . . . , Xi; θ)
depends only on the innovation in the ith observation. This is for instance the case for martin-
gale estimating functions, see (4.14). In this situation it is natural to consider the larger class
of estimating functions given by

Gn(θ) =
n∑

i=1

ai(θ)hi(X1, . . . , Xi; θ),

where ai(θ), i = 1, . . . n, are p×N matrices that do not depend on the data and are differentiable
with respect to θ. Here

SGn
(θ) =

n∑

i=1

ai(θ)Eθ(∂θT hi(X1, . . . , Xi; θ))

Eθ

(
Gn(θ)G∗

n(θ)T
)

=
n∑

i=1

ai(θ)Eθ

(
hi(X1, . . . , Xi; θ)hi(X1, . . . , Xi; θ)

T
)
a∗i (θ)

T ,

where a∗i (θ) denotes the optimal choice of ai(θ). We see that with

a∗i (θ) = −Eθ(∂θT hi(X1, . . . , Xi; θ))
T
(
Eθ

(
hi(X1, . . . , Xi; θ)hi(X1, . . . , Xi; θ)

T
))−1

the condition (4.7) is satisfied. 2

4.2 Martingale Estimating Functions

In Subsections 2.2 and 2.3 we saw that martingale estimating functions have a particularly
simple asymptotic theory. The martingale limit theory also allows a lucid theory asymptotic
optimality. The optimality criterion discussed in the following is particular to martingale
estimating functions.

Suppose the estimating function Gn(θ) satisfies the conditions of the central limit theorem
for martingales (Theorem 2.3), and let θ̂n be a solution of the equation Gn(θ) = 0. Under usual
regularity conditions and using standard manipulations (including a Taylor expansion around
the true parameter value θ0), it can be proved that

〈G(θ)〉−
1
2

n Ḡn(θ)(θ̂n − θ0)
D−→ N(0, Ip). (4.9)

Here ∂θGn(θ) has been replaced by a so-called predictable version (called its compensator)

Ḡn(θ) =
n∑

i=1

Eθ (∂θHi(θ)|Fi−1) .

For details see Heyde (1997). We see that the inverse of the random matrix

IGn
(θ) = Ḡn(θ)T 〈G(θ)〉−1

n Ḡn(θ) (4.10)
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estimates the co-variance matrix of the asymptotic distribution of the estimator θ̂n. There-
fore IGn

(θ) can be interpreted as an information matrix, the Heyde-information. It is also
called the martingale information, and it generalizes the incremental expected information of
the likelihood theory for stochastic processes, see Barndorff-Nielsen & Sørensen (1994). Since
Ḡn(θ) estimates the sensitivity function, and 〈G(θ)〉n estimates the variance of the asymptotic
distribution of Gn(θ), the Heyde-information has a heuristic interpretation similar to that of
the Godambe-information. In fact,

Eθ

(
Ḡn(θ)

)
= SGn

(θ) and Eθ (〈G(θ)〉n) = Eθ

(
Gn(θ)Gn(θ)

T
)
.

We can thus think of the Heyde-information as a stochastic or estimated version of the Godambe
information.

Let Gn be a class of martingale estimating functions with variance. We say that a martingale
estimating function G∗

n is A-optimal or Heyde-optimal in Gn if

IG∗

n
(θ) ≥ IGn

(θ) (4.11)

Pθ-almost surely for all θ ∈ Θ, for all Gn ∈ Gn, and for all n ∈ IN. As was the case for
F-optimality, an A-optimal estimating function G∗

n is sometimes called a quasi score function,
while an estimator θ∗n obtained by solving the equation G∗

n(θ) = 0 is called a quasi likelihood
estimator.

The following useful result is similar to Theorem 4.1. In order to formulate it, we need
the concept of the quadratic co-characteristic of two martingales, G and G̃, both of which are
assumed to have finite variance:

〈G, G̃〉n =
n∑

i=1

E
(
HiH̃

T
i |Fi−1

)
, (4.12)

where Hi = Gi −Gi−1 and H̃i = G̃i − G̃i−1.

Theorem 4.3 (Heyde (1988)). If G∗
n ∈ Gn satisfies

Ḡn(θ)−1〈G(θ), G∗(θ)〉n = Ḡ∗
n(θ)−1〈G∗(θ)〉n (4.13)

for all θ ∈ Θ, Gn ∈ Gn, and n ∈ IN, then it is is A-optimal in Gn. When Gn is closed under
addition, any A-optimal estimating function G∗

n satisfies (4.13). Moreover, if Ḡ∗
n(θ)−1〈G∗(θ)〉n

is non-random, then G∗
n is also F-optimal in Gn.

Since in many situations condition (4.13) can be verified by showing that 〈G(θ), G∗(θ)〉n =
−Ḡn(θ) for all Gn ∈ Gn, it is in practice often the case that A-optimality implies F-optimality.

Example 4.4 Let us again consider the situation in Example 4.2, where a number of functions
hij(x1, . . . , xi; θ), j = 1, . . . , N , i = 1, . . . n define relationships (dependent on θ) between an
observation Xi and the previous observations X1, . . . , Xi−1 (or a subset of them) that can be
used to estimate θ. If the functions hij satisfy that

Eθ(hij(X1, . . . , Xi; θ)|Fi−1) = 0
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for j = 1, . . . , N , i = 1, . . . n, then

Gn(θ) =
n∑

i=1

ai(X1, . . . , Xi−1; θ)hi(X1, . . . , Xi; θ), (4.14)

is a p-dimensional unbiased martingale estimating function. Here hi denotes the N -dimensional
vector (hi1, . . . , hiN)T , and ai(x1, . . . , xi−1; θ) is a function from IRi−1 ×Θ into the set of p×N -
matrices that is differentiable with respect to θ. We will now find the matrices ai that combine
the N relations in an optimal way. Let Gn be the class of martingale estimating functions of
the form (4.14) that have finite variance. Note that the functions hij satisfy condition (4.8)
in Example 4.2. However, here we consider more general weights ai that can depend on past
observations, and thus we obtain a much larger class of estimating functions than the one
considered in Example 4.2.

Since

Ḡn(θ) =
n∑

i=1

ai(X1, . . . , Xi−1; θ)Eθ(∂θT hi(X1, . . . , Xi; θ)|Fi−1)

and

〈G(θ), G∗(θ)〉n =
n∑

i=1

ai(X1, . . . , Xi−1; θ)Vhi
(X1, . . . , Xi−1; θ)a

∗
i (X1, . . . , Xi−1; θ)

T ,

where

G∗
n(θ) =

n∑

i=1

a∗i (X1, . . . , Xi−1; θ)hi(X1, . . . , Xi; θ), (4.15)

and where

Vhi
(X1, . . . , Xi−1; θ) = Eθ

(
hi(X1, . . . , Xi; θ)hi(X1, . . . , Xi; θ)

T |Fi−1

)

is the conditional covariance matrix of the random vector hi(X1, . . . , Xi; θ) given (X1, . . . , Xi−1),
we see that with

a∗i (X1, . . . , Xi−1; θ) = −Eθ(∂θT hi(X1, . . . , Xi; θ)|Fi−1)
TVhi

(X1, . . . , Xi−1; θ)
−1, (4.16)

the condition (4.13) is satisfied. Hence by Theorem 4.3 the estimating function G∗
n(θ) is

Heyde-optimal. Since Ḡ∗
n(θ)−1〈G∗(θ)〉n = −Ip, the estimating function G∗

n(θ) is also Godambe-
optimal.

Let pi(x; θ|x1, . . . , xi−1) denote the conditional density of Xi given that (X1, . . . , Xi−1) =
(x1, . . . , xi−1). Then the likelihood function for θ based on the data (X1, . . . , Xn) is

Ln(θ) =
n∏

i=1

pi(Xi; θ|X1, . . . , Xi−1)

(with p1 denoting the unconditional density of X1). If we assume that all pis are differentiable
with respect to θ, the score function is

Un(θ) =
n∑

i=1

∂θ log pi(Xi; θ|X1, . . . , Xi−1). (4.17)
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We shall now see, in exactly what sense the optimal estimating function (4.15) approximates
the score function. Let us fix i, x1, . . . , xi−1 and θ. We let xi−1 denote the vector (x1, . . . , xi−1)
and consider the L2-space Ki(xi−1, θ) of functions f : IR 7→ IR for which

∫
f(x)2pi(x; θ|xi−1)dx <∞.

We equip Ki(xi−1, θ) with the usual inner product

〈f, g〉 =
∫
f(x)g(x)pi(x; θ|xi−1)dx,

and let Hi(xi−1, θ) denote the N -dimensional subspace of Ki(xi−1, θ) spanned by the functions
x 7→ hij(xi−1, x; θ), j = 1, . . . , N . That the functions are linearly independent in Ki(xi−1, θ)
follows from the earlier assumption that the covariance matrix Vhi

(xi−1; θ) is regular.

Now, assume that ∂θj
log pi(x|xi−1; θ) ∈ Ki(xi−1, θ) for j = 1, . . . , p, let g∗ij denote the ortho-

gonal projection with respect to 〈·, ·〉 of ∂θj
log pi onto Hi(xi−1, θ), and define a p-dimensional

function by g∗i = (gi1, . . . , gip)
T . Then

g∗i (xi−1, x; θ) = a∗i (xi−1; θ)hi(xi−1, x; θ), (4.18)

where a∗i is the matrix defined by (4.16). To see this, note that g∗ must have the form (4.18)
with a∗i satisfying the normal equations

〈∂θj
log pi − g∗j , hik〉 = 0,

j = 1, . . . , p and k = 1, . . . , N . These equations can also be expressed in the form

Bi = a∗iVhi
,

where Bi is the p × p-matrix whose (j, k)th element is 〈∂θj
log pi, hik〉. If we can interchange

differentiation and integration so that

∫
∂θj

[hik(xi−1, x; θ)p(xi−1, x; θ)] dx = ∂θj

∫
hik(xi−1, x; θ)p(xi−1, x; θ)dx = 0,

it follows that
Bi = −

∫
∂θT hi(xi−1, x; θ)p(xi−1, x; θ)dx,

which proves (4.18).

The result (4.18) was first shown by Kessler (1996) in the case of a Markov process. The
proof in the general case is essentially the same as that for a Markov process. It is important to
note that if for all i the functions hij are chosen such that as N → ∞ the subspace Hi(xi−1, θ)
converges to a subspace of Ki(xi−1, θ) containing the functions ∂θj

log pi, j = 1, . . . , p, then
the optimal estimating function will approach the score function, and it is possible to obtain a
sequence of quasi-likelihood estimators that is asymptotically fully efficient.

2

Example 4.5 We now consider a simple example where the stochastic process {Xt} is a
Markov process, but not a standard diffusion process. The process is, in fact, a diffusion
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with jumps. It is well known that if the price, Pt, of a stock is described by the Black-Scholes
model (geometric Brownian motion), that is,

dPt = α�Ptdt + σPtdWt,

then the logarithm of the price is a Brownian motion with drift, more precisely Xt = logPt

solves the stochastic differential equation

dXt = αdt+ σdWt, (4.19)

where α = α� + 1
2σ

2. This follows from Itô’s formula.

Suppose now that we want to allow jumps in the price process (and therefore also in the
log-price process X). One of the simplest ways to achieve this is by adding a compound Poisson
process term to the log-price process, that is to modify (4.19) in the following way,

dXt = αdt+ σdWt + dZt, (4.20)

where

Zt =
Nt∑

j=0

Yj,

and {Nt} is a Poisson process with intensity λ. The stochastic process {Nt} is thus a counting
process with independent increments and Nt, the number of jumps in the time interval [0, t],
is Poisson distributed with parameter λt. The jump sizes Yj, j = 1, 2, . . ., are assumed to be
i.i.d. normal with mean µ and variance τ 2. Furthermore, we assume that {Wt}, {Nt} and {Yj}
are independent and that N0 = Y0 = 0 so that Z0 = 0. This is a simplified version of the kind
of jump-diffusion models studied in Andersen, Benzoni & Lund (2002). The solution to (4.20)
is given by

Xt = αt+ σWt + Zt, t ≥ 0.

In figure 4.1 a simulated trajectory corresponding to the model in (4.20) is shown for the
parameter values α = 0.0001, σ = 0.1, λ = 0.01, µ = 1, and τ = 0.1.

For simplicity we consider observations X1, X2, . . . , Xn. The parameter vector is in this case
5-dimensional, θ = (α, σ2, λ, µ, τ 2)T . We will derive an optimal martingale estimating function
based on the functions

h(x, y; θ) =




y − F (x; θ)

(y − F (x; θ))2 − φ(x; θ)

ey − κ(x; θ)



,

where

F (x; θ) = Eθ(Xi|Xi−1 = x) = x+ α + λµ,

φ(x; θ) = Varθ(Xi|Xi−1 = x) = σ2 + λ(µ2 + τ 2),

κ(x; θ) = Eθ(e
Xi |Xi−1 = x) = exp

(
x + α + 1

2σ
2 + λ(eµ+

1
2 τ2 − 1)

)
.
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Figure 4.1: A simulated trajectory for the model given by (4.20) with parameter values α =
0.0001, σ = 0.1, λ = 0.01, µ = 1, and τ = 0.1.

In order to find an expression for the optimal martingale estimating function based on h, we
need the following quantities, see (4.16) and (4.15). The conditional covariance matrix for h is
given by

Vh(x; θ) = Eθ

(
h(Xi−1, Xi; θ)h(Xi−1, Xi; θ)

T
∣∣∣Xi−1 = x

)

=




φ(x; θ) η(x; θ) ν(x; θ)

η(x; θ) ψ(x; θ) ρ(x; θ)

ν(x; θ) ρ(x; θ) ζ(x; θ)



,

where

η(x; θ) = Eθ((Xi − F (Xi−1; θ))
3|Xi−1 = x) = λµ(µ2 + 3τ 2),

ψ(x; θ) = Eθ((Xi − F (Xi−1; θ))
4|Xi−1 = x) − φ(x; θ)2

= 2σ4 + λ[4σ2(µ2 + τ 2) + (2λ+ 1)µ4 + (2λ+ 3)τ 2(τ 2 + 2µ2)],

ν(x; θ) = Eθ((Xi − F (Xi−1; θ))(e
Xi − κ(Xi−1; θ))|Xi−1 = x)

= (σ2 − λµ+ λ(µ+ τ 2)eµ+
1
2 τ2

)κ(x; θ),

ρ(x; θ) = Eθ((Xi − F (Xi−1; θ))
2 − φ(Xi−1; θ))(e

Xi − κ(Xi−1; θ))|Xi−1 = x)

= (σ2 + λ(τ 2 + (µ+ τ 2)2)eµ+
1
2 τ2

)κ(x; θ) +
(ν(x; θ) + F (x; θ)κ(x; θ))2

κ(x; θ)
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−2F (x; θ)v(x; θ) − F (x; θ)2κ(x; θ) − φ(x; θ)κ(x; θ),

ζ(x; θ) = Varθ(e
Xi |Xi−1 = x)

= e2x+2α+σ2−λ

(
exp

(
σ2 + λe2µ+2τ2

)
− exp

(
2λeµ+

1
2 τ2 − λ

))
.

Furthermore we have that

−Eθ(∂θh(Xi−1, Xi; θ)|Xi−1 = x) =




1 0 κ(x; θ)

0 1 1
2κ(x; θ)

µ µ2 + τ 2 (eµ+
1
2 τ2 − 1)κ(x; θ)

λ 2λµ λeµ+
1
2 τ2

κ(x; θ)

0 λ 1
2λe

µ+
1
2 τ2

κ(x; θ)




.

Hence an explicit expression for the optimal martingale estimating function is obtained,
though the corresponding estimating equations have to be solved numerically. It should be
noted that all subsets of the three functions defining h result in fewer than the required five
estimating equations.

In Table 4.1 the empirical mean and standard error of 500 independent estimates of the
five parameters are given. Each estimate is obtained from 500 simulated observations (n = 500
with X0 = 0). The true parameter values are α = 0.0001, σ = 0.1, λ = 0.01, µ = 1, and τ = 0.1
as in Figure 4.1.

Parameter Mean Standard error

α -0.0009 0.0070

σ 0.0945 0.0180

λ 0.0155 0.0209

µ 0.9604 0.5126

τ 0.2217 0.3156

Table 4.1: Empirical mean and standard error of 500 estimates of the parameters in (4.20).
The true parameter values are α = 0.0001, σ = 0.1, λ = 0.01, µ = 1, and τ = 0.1.

From Table 4.1 we see that the mean of the parameter estimates in all cases are quite close
to the true values. It is also clear, however, that for this particular choice of parameter values
the estimates associated with the jumps of the process (µ and τ) are harder to estimate than
the remaining parameters. This is not surprising as there are rather few jumps.

2
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5 Optimal Estimating Functions for Diffusion Models

5.1 Optimal Linear Combinations of Relationships between Consec-

utive Observations

We will now again focus on diffusion models where X is supposed to be the solution to a
stochastic differential equation (2.13). To simplify matters we will assume that X is one-
dimensional.

Consider a class of estimating functions of the form (3.3) and (3.4), i.e.

Gn (θ) =
n∑

i=1

a(∆i, Xti−1
, θ)h(∆, Xti−1

, Xti; θ), (5.1)

where h = (h1, . . . , hN)T is a column vector of N given functions satisfying that
∫ r

`
hj(∆, x, y; θ)p(∆, x, y; θ)dy = 0

for all ∆ > 0, x ∈ (`, r), and θ ∈ Θ, while the weight matrix a, a p×N -matrix, can vary freely.
The functions hj define relationships (dependent on θ) between an observation Xi and the
previous observation Xi−1 that can be used to estimate θ. We shall now find the weight matrix
a∗ for which we obtain the Godambe and Heyde optimal combination of these relationships.

The class of estimating functions considered here is a particular case of the general type
studied in Example 4.4, so by (4.16) the optimal estimating function is

G∗
n(θ) =

n∑

i=1

a∗(∆i, Xti−1
; θ)h(∆i, Xti−1

, Xti ; θ), (5.2)

where
a∗(∆, x; θ) = −

∫ r

`
∂θh(∆, x, y; θ)

Tp(∆, x, y; θ)dyVh(∆, x; θ)
−1, (5.3)

with
Vh(∆, x; θ) =

∫ r

`
h(∆, x, y; θ)h(∆, x, y; θ)Tp(∆, x, y; θ)dy. (5.4)

Here it is assumed that Vh(∆, x; θ) is invertible, or equivalently that the functions hj, j =
1, . . .N are linearly independent.

When the functions h are of the form (3.10) with πθ
∆ defined by (2.21), the optimal estimating

function is given by (5.2) with

a∗(∆, x; θ) = B(∆, x; θ)V (∆, x; θ)−1, (5.5)

where
B(∆, x; θ)ij = −

∫ r

`
∂θi
fj(y; θ)p(∆, x, y; θ)dy + ∂θi

πθ
∆(fj(θ))(x), (5.6)

i = 1, . . . p, j = 1, . . . , N , and

V (∆, x; θ)ij =
∫ r

`
fi(y; θ)fj(y; θ)p(∆, x, y; θ)dy− πθ

∆(fi(θ))(x)π
θ
∆(fj(θ))(x), (5.7)

i, j = 1, . . . , N .
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Particularly important examples are the linear and quadratic estimating functions. The
optimal linear estimating function is

n∑

i=1

∂θF (∆i, Xti−1
; θ)

φ(∆i, Xti−1
; θ)

[Xti − F (∆i, Xti−1
; θ)], (5.8)

where F and φ are given by (3.5) and (3.6). In the expression for the optimal linear estimating
function the derivative of F appears. If F is determined by simulation, it is necessary to
be careful to ensure that the derivative is correctly calculated. Pedersen (1994a) proposed
a procedure for determining ∂θF (∆, x; θ) by simulation based on results in Friedman (1975).
However, it is often easier to use an approximation to the optimal estimating function, see the
following subsection.

If the first and second moment of the transition distribution are both correctly specified,
the estimator obtained from (5.8) is efficient in the non-parametric model that assumes X
is a Markov process, but specifies only the first two moments, see Wefelmeyer (1996) and
Wefelmeyer (1997).

The optimal quadratic estimating function depends on the third and fourth moments of the
transition distribution. It is given by

n∑

i=1

{
α∗(∆i, Xti−1

; θ)[Xti − F (∆i, Xti−1
; θ)] (5.9)

+ β∗(∆i, Xti−1
; θ)[(Xti − F (∆i, Xti−1

; θ))2 − φ(∆i, Xti−1
; θ)]

}
.

with

α∗(x; θ) =
∂θφ(x; θ)η(x; θ) − ∂θF (x; θ)ψ(x; θ)

φ(x; θ)ψ(x; θ) − η(x; θ)2

and

β∗(x; θ) =
∂θF (x; θ)η(x; θ) − ∂θφ(x; θ)φ(x; θ)

φ(x; θ)ψ(x; θ) − η(x; θ)2
,

where the ∆’s have been omitted,

η(x; θ) = Eθ([X∆ − F (x; θ)]3|X0 = x)

and
ψ(x; θ) = Eθ([X∆ − F (x; θ)]4|X0 = x) − φ(x; θ)2.

If the first four moments of the transition distribution are correctly specified, the estimator is
efficient in the non-parametric model that assumes a Markov process, but specifies only the
first four moments, see Wefelmeyer (1996) and Wefelmeyer (1997).

Example 5.1 For a mean-reverting diffusion model given by (3.8) with β > 0, the first condi-
tional moment F is given by (3.9). Hence the optimal linear estimating function

G∗
n(α, β) =




n∑

i=1

1 − e−β

φ(Xi−1;α, β)

[
Xi −Xi−1e

−β − α(1 − e−β)
]

n∑

i=1

e−β(α−Xi−1)

φ(Xi−1;α, β)

[
Xi −Xi−1e

−β − α(1 − e−β)
]



,
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where for simplicity of exposition we have taken the observation times ti = i. Here there is
in general no explicit expression for the function φ that must be found by simulation or be
approximated, see Subsection 5.2. The following simpler estimating function gives us exactly
the same estimators:

G̃∗
n(α, β) =




n∑

i=1

1

φ(Xi−1;α, β)

[
Xi −Xi−1e

−β − α(1 − e−β)
]

n∑

i=1

Xi−1

φ(Xi−1;α, β)

[
Xi −Xi−1e

−β − α(1 − e−β)
]



.

This is because G̃∗
n(α, β) = M(α, β)G∗

n(α, β), where the matrix

M(α, β) =




1
1−e−β 0

α
1−e−β −e−β




is invertible. Quite generally, if G(θ) is an estimating function and if M(θ) is a deterministic
invertible matrix, then the estimating function M(θ)G(θ) defines the same estimators as G(θ).
Moreover, if G(θ) is optimal, then so is M(θ)G(θ). We say that the two estimating functions
are equivalent. Usually we will use the simplest possible version of the estimating function. See
also the discussion of this problem after formula (4.5).

For the CIR model where σ(x) = τ
√
x the functions φ, η and ψ and hence the optimal

quadratic estimating function can be found explicitly:

φ(x;α, β, τ) =
τ 2

β

(
(1

2α− x)e−2β − (α− x)e−β + 1
2α
)

η(x;α, β, τ) =
τ 4

2β2

(
α− 3(α− x)e−β + 3(α− 2x)e−2β − (α− 3x)e−3β

)

ψ(x;α, β, τ) =
3τ 6

4β3

(
(α− 4x)e−4β − 4(α− 3x)e−3β + 6(α− 2x)e−2β − 4(α− x)e−β + α

)

+2φ(x;α, β, τ)2.

In view of Example 3.2 and results given in the following, it is not surprising that the conditional
moments can be found explicitly for the CIR model. 2

The optimal estimating function takes a particularly simple form in the case where the base
f1, . . . , fN of the class of estimating functions consists of eigenfunctions of the generator, see
(3.15) and the discussion below that formula. For such a base, the optimal estimating function
is given by (5.5) with

B(∆, x; θ)ij = −
∫
∂θi
ϕj(y; θ)p(∆, x, y; θ)dy + ∂θi

[e−λj(θ)∆ϕj(x; θ)],

i = 1, . . . , p, j = 1, . . . , N and

C(∆, x; θ)ij =
∫
ϕi(y; θ)ϕj(y; θ)p(∆, x, y; θ)dy− e−[λi(θ)+λj(θ)]∆ϕi(x; θ)ϕj(x; θ),
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i, j = 1, . . . , N . These expressions are relatively easy to determine by simulation because the
differentiation is inside the integral. As mentioned earlier, numerical determination of quantities
like ∂θF in (5.8) requires some care, but this problem disappears in the case of an eigenfunction
base.

For many models where eigenfunctions can be found, they are of the form

ϕi(y; θ) =
i∑

j=0

ai,j(θ) κ(y)
j (5.10)

where κ is a real function defined on the state space and independent of θ. In this situation
the optimal estimating function is explicit. To see this, note that

Ci,j(x, θ) =
i∑

r=0

j∑

s=0

ai,r(θ)aj,s(θ)
∫
κ(y)r+sp(∆, x, y; θ)dy − e−[λi(θ)+λj (θ)]∆ ϕi(x; θ)ϕj(x; θ)

and

Bi(x, θ) = −
i∑

j=0

∂θai,j(θ)
∫
κ(y)ip(∆, x, y; θ)dy + ∂θ(e

−λj(θ)∆ϕi)(x; θ).

Hence if we can find the moments
∫
κ(y)ip(∆, x, y; θ)dy for 1 ≤ i ≤ 2N , we have found the

optimal estimating function based on the first N eigenfunctions. But this is easy since by
integrating both sides of (5.10) with respect to p(∆, x, y; θ) for i = 1, . . . , 2N , we obtain the
following system of linear equations

e−λi(θ)ϕi(x; θ) =
i∑

j=0

ai,j(θ)
∫
κ(y)jp(∆, x, y; θ)dy (5.11)

for i = 1, . . . , 2N .

Example 5.2 For the model considered in Example 3.3 the eigenfunctions are φi(x; θ) =
Cθ

i (sin(x)), i = 0, 1, · · · , with eigenvalues i(θ + i/2), i = 0, 1, · · ·, where Cθ
i is the Gegenbauer

polynomial of order i. The optimal estimating function based on any set of eigenfunctions
can thus be found explicitly using (5.11). The optimal estimating function based on the first
non-trivial eigenfunction, sin(x), is

G∗
n(θ) =

n∑

i=1

sin(Xti−1
)[sin(Xti) − e−(θ+ 1

2
)∆ sin(Xti−1

)]
1
2
(e2(θ+1)∆ − 1)/(θ + 1) − (e∆ − 1) sin2(Xti−1

)
.

When ∆ is small the optimal estimating function can be approximated by

G̃n(θ) =
n∑

i=1

sin(Xti−1
)[sin(Xti) − e−(θ+ 1

2
)∆ sin(Xti−1

)],

which yields the explicit estimator

θ̃n = −∆−1 log

(∑n
i=1 sin(Xti−1

) sin(Xti)∑n
i=1 sin2(Xti−1

)

)
− 1/2,

provided the numerator is positive. In a simulation study with ∆ ≤ 0.5 this estimator was
almost as efficient as the optimal estimator based on G∗, see Kessler & Sørensen (1999).

2
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Statistical inference based on an optimal estimating function with an eigenfunction base
is invariant under twice continuously differentiable transformations of data, see Kessler &
Sørensen (1999). After such a transformation the data are, by Itô’s formula, still observa-
tions from a certain diffusion process, and the eigenfunctions transform in exactly the way
needed to keep the optimal estimating function invariant. Inference based on polynomial es-
timating functions is not invariant under transformations of the data. As mentioned above,
the optimal estimating functions with eigenfunction base have clear numerical advantages over
other estimating functions. The disadvantage of these estimating functions, on the other hand,
is that it is not always possible to find eigenfunction for the generator of a given diffusion
model. If eigenfunctions cannot be found, the polynomial estimating functions, in particular
the quadratic, provide a very useful alternative.

A further justification for estimating functions based on eigenfunctions is that the eigenvalue
problem (3.16) is a Sturm-Liouville problem. By a classical result of this theory, we have, for an
ergodic diffusion with invariant probability µθ, a series expansion in terms of the eigenfunctions
(φi)i≥0 of any function f satisfying that µθ(f

2) <∞ (see Coddington & Levinson (1955)), i.e.

f(y) =
∞∑

i=0

ciφi(y), (5.12)

where (ci) is a sequence of real numbers, and where the series converges with respect to the

norm given by ‖f‖θ = µθ(f
2)

1
2 . Thus for a fixed x,

∑k
j=0 αj(x; θ)φj(y; θ) can be seen as

a truncated series of the form (5.12). The estimating function given by (3.18) is obtained
when one compensates the sum to obtain a martingale. The transition density can usually be
expanded in the form (5.12), which mainly depends on the eigenfunctions with the smallest
eigenvalues. In fact, the weights ci decrease exponentially with the eigenvalues. If the score
function can be expanded similarly, there is reason to expect rather efficient estimators. Suppose
that the union ∪∞

k=1Vk, where Vk is the space spanned by {φ1(· ; θ), · · · , φk(· ; θ)}, is dense
in the space L2(p(∆, x, y; θ)dy) for every x. Then there exists a sequence Nn such that the
estimator θ̂n,Nn

is efficient. Here θ̂n,N is the optimal estimator based on N eigenfunctions and
n observations. For details, see Kessler (1996). In particular in the case of a bounded state
interval, where it is well known that the sequence φ1(· ; θ), φ2(· ; θ), · · · is complete in L2(µθ), the
union ∪∞

k=1Vk is dense in L2(p(∆, x, y; θ)dy), so in this case there generally exists a sequence Nn

such that the estimator θ̂n,Nn
is efficient. In the case of an unbounded state interval, the sequence

φ1(.; θ), φ2(.; θ), · · · is also complete in L2(µθ) when the set of eigenfunctions is discrete, but in
order to deduce denseness of ∪∞

k=1Vk in L2(p(∆, x, y; θ)dy), additional conditions are needed.
The efficiency of θ̂n,N obviously increases with increasing N , but so does the computational
complexity. It is conjectured that for many models ∪∞

k=1Vk is dense in L2(p(∆, x, y; θ)dy) so
that the efficiency is high, provided that N is sufficiently large, and a compromise between
efficiency and computational feasibility must be found.

Example 5.3 For the target zone model in Example 3.4, the eigenfunctions are the Jacobi
polynomials with eigenvalues λi = i[β + 1

2
σ2(i − 1)], i = 1, 2, . . .. Therefore it is easy to

apply (5.11) to obtain explicit expressions for the optimal estimating function based on any
fixed number of eigenfunctions. In Larsen & Sørensen (2003) the asymptotic variances of the
estimators obtained from several combinations of eigenfunctions were calculated for certain
parameter values. It turned out that in no case was the efficiency much above that obtained
when using the optimal estimating function based on the first two eigenfunctions φ1 and φ2.
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In view of the result on efficiency for diffusions with a bounded state space mentioned above,
it is reasonable to assume that for the parameter values considered this estimating function is
close to fully efficient.

2

5.2 Approximately Optimal Estimating Functions

For models where the optimal weight matrix a∗(∆, x; θ) is not explicit and must be calculated
by means of simulations, it is often preferable to use a good approximation to a∗(∆, x; θ)
instead. This will usually save a lot of computer time and make the estimation procedure more
numerically robust. To make such an approximation, the following result is useful. As in the
previous subsection we focus here on one-dimensional diffusions.

Suppose f is a 2(k+ 1) times continuously differentiable function. Then under weak condi-
tions on f and the diffusion model

Eθ(f(Xt+s) |Xt) =
k∑

i=0

si

i!
Li

θf(Xt) +O(sk+1), (5.13)

where Lθ denotes the generator (3.15), see e.g. Kessler (1997). A sufficient conditions on f is
that it is of polynomial growth. By applying this formula to f(x) = x and f(x) = x2 it follows
that

Eθ(X∆|X0 = x) = x + ∆b(x; θ) + 1
2∆

2{b(x; θ)∂xb(x; θ) (5.14)

+ 1
2v(x; θ)∂

2
xb(x; θ)} +O(∆3)

and

Varθ(X∆|X0 = x) = ∆v(x; θ) + ∆2[12b(x; θ)∂xv(x; θ) (5.15)

+ v(x; θ){∂xb(x; θ) + 1
4∂

2
xv(x; θ)}] +O(∆3),

where v(x; θ) = σ2(x; θ).

If we insert the approximations

∂θF (t, x; θ)
.
= t∂θb(x; θ) and φ(t, x; θ)

.
= tv(x; θ) (5.16)

in the expression for the optimal linear estimating function (5.8) we obtain the approximately
optimal estimating function

n∑

i=1

∂θb(Xti−1
; θ)

v(Xti−1
; θ)

[Xti − F (∆i, Xti−1
; θ)], (5.17)

which is usually considerably easier to calculate than (5.8). When t is small, the approximation
(5.16) is good, but the approximately optimal estimating function (5.17) works surprisingly
well for large values of ∆i too. By means of the formulae (5.14) and (5.15) Bibby & Sørensen
(1995) showed that in the case of equidistant sampling times (i.e. for ∆i = ∆) the asymptotic
variance of the estimators based on the optimal estimating function (5.8) and the approximation
(5.17) coincide up to and including terms of order O(∆2). The term of order O(∆) is equal to
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the similar term for the maximum likelihood estimator found by Dacunha-Castelle & Florens-
Zmirou (1986). Numerical calculations in Bibby & Sørensen (1995) indicate that for the CIR
model the efficiencies of the two estimators are similar even for large values of ∆.

To simplify the optimal quadratic estimating function, we supplement (5.16) by the Gaussian
approximations

η(t, x; θ)
.
= 0 and ψ(t, x; θ)

.
= 2φ(t, x; θ)2 (5.18)

that are also good for small ∆-values. By inserting these approximations into (5.9) we obtain
the approximately optimal quadratic estimating function

n∑

i=1

{
∂θb(Xti−1

; θ)

v(Xti−1
; θ)

[Xti − F (∆i, Xti−1
; θ)] (5.19)

+
∂θv(Xti−1

; θ)

2v2(Xti−1
; θ)∆i

[
(Xti − F (∆i, Xti−1

; θ))2 − φ(∆i, Xti−1
; θ)
]}
,

which is a very considerable computational improvement over (5.9). This is not least because
in (5.19) there are only derivatives of known functions, while (5.9) contains derivatives of
functions that must often be determined by simulation. The approximately optimal quadratic
estimating function (5.19) should be compared to the score corresponding to the Gaussian
pseudo-likelihood (3.7).

Example 5.4 For the CIR model given by (3.8) with σ(x) = τ
√
x we obtain the approximately

optimal quadratic estimating function



n∑

i=1

1

Xi−1

[
Xi −Xi−1e

−β − α(1 − e−β)
]

n∑

i=1

[
Xi −Xi−1e

−β − α(1 − e−β)
]

n∑

i=1

1

Xi−1

[(
Xi −Xi−1e

−β − α(1 − e−β)
)2 − τ 2

β

((
α

2
−Xi−1

)
e−2β − (α−Xi−1)e

−β +
α

2

)]




.

As earlier we have assumed that ti = i and given the simplest possible version of the estimating
function, which is obtained by multiplying the estimating function obtained from (5.19) by the
matrix 




τ 2/β 0 0
ατ 2/β −τ 2 0

0 0 τ 3




.

We find the following explicit estimators of the parameters

α̃n =
1

n

n∑

i=1

Xi +
e−β̃n

n
(
1 − e−β̃n

)(Xn −X0)

e−β̃n =
n
∑n

i=1Xi/Xi−1 − (
∑n

i=1Xi)(
∑n

i=1X
−1
i−1)

n2 − (
∑n

i=1Xi−1)(
∑n

i=1X
−1
i−1)

τ̃ 2
n =

∑n
i=1X

−1
i−1

(
Xi −Xi−1e

−β̃n − α̃n(1 − e−β̃n)
)2

∑n
i=1X

−1
i−1

(
(1

2 α̃n −Xi−1)e−2β̃n − (α̃n −Xi−1)e−β̃n + 1
2 α̃n

)
/β̃n

,
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which exist provided that the expression for e−β̃n is strictly positive, an event that happens
with a probability tending to one as n → ∞. A simulation study and an investigation of the
asymptotic variance of the estimators α̃n and β̃n in Bibby & Sørensen (1995) indicate that
these estimators are quite efficient; see also the simulation study in Overbeck & Rydén (1997).
Note that the level α is essentially estimated by the average of the observations. In practice
it is recommended to simply use the average as this is easier and causes no lost of asymptotic
efficiency.

2

The expansion (5.13) can be used to simplify the expressions for the optimal weights in
many other estimating functions. This will save computer time and improve the numerical
performance of the estimation procedure. The approximation will not affect the consistency of
the estimators, and if ∆i is not too large, it will just lead to a minor loss of efficiency. The
magnitude of this loss of efficiency can be calculated by means of (5.13), or in the case of the
quadratic estimating function by means of (5.14) and (5.15).

Example 5.5 In this example we consider monthly observations of US one-month treasury
bill yields from June 1964 to December 1989. These data were also analysed by Chan et al.
(1992). The rates have been annualized and converted into continuously compounded yields.
In Figure 5.1 the yields are plotted against time.

Time

O
ne

 m
on

th
 U

S
 T

-b
ill

 y
ie

ld
s 

(%
)

1965 1970 1975 1980 1985 1990

4

6

8

10

12

14

16

Figure 5.1: The one-month treasury bill yields plotted against time.

We use two different diffusion process models to describe the data, namely the model in-
troduced in Chan et al. (1992), which we will refer to as the CKLS-model, and the generalized
CIR-model (GCIR-model) introduced in Jacobsen (2002) and considered more closely in Exam-
ple 5.9 below. If Xt denotes the yield at time t then the CKLS-model is given by the stochastic
differential equation,

dXt = κ(θ −Xt)dt+ σXγ
t dWt.

The stochastic differential equation defining the GCIR-model is given in (5.36).
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The observations are denoted X∆, X2∆, . . . , Xn∆ where n is 307 and ∆ = 1/12. For both
models the parameters are estimated using the approximation to the optimal quadratic mar-
tingale estimating function given by (5.19). For the CKLS-model the conditional expectation
can be found explicitly, while the conditional variance is found using simulations. In case of
the GCIR-model both the conditional mean and the conditional variance are determined by
simulations. In Table 5.1 and Table 5.2 the estimates for the parameter in the two models are
given based on both the whole time-series and for the period June 1964 to September 1979
(n = 184). The reason for considering the latter period separately is that between October
1979 and October 1982 the U.S. Federal Bank employed a monetary rather than an interest
rate targeting policy resulting in a quite different stochastic regime.

1964–1989 1964–1979

θ 0.0735 0.0676

κ 0.3309 0.3376

σ 1.0119 0.6311

γ 1.3833 1.2755

Table 5.1: Estimates for the parameters in
the CKLS-model based on two periods.

1964–1989 1964–1979

α 1.4093 0.7571

β -1.2110 -0.5491

σ 0.3905 0.2987

γ 0.9997 0.9997

Table 5.2: Estimates for the parameters in
the GCIR-model based on two periods.

For a more detailed analysis of these data based on the CKLS-model, see Christensen,
Poulsen & Sørensen (2001). Note from table 5.2 that the estimate of the parameter γ in the
GCIR-model is quite close to 1.

In Figure 5.2 uniform residuals corresponding to both models and both time periods are
given. We see that the two models give almost equally good descriptions of the data. We may
also note that the models clearly fit the data from June 1964 to September 1979 better than
the whole data set. Model diagnostics based on uniform residuals was introduced and discussed
by Pedersen (1994b).

2

It is tempting to go on and approximate the functions F and φ still appearing in (5.17)
and (5.19) by F (t, x; θ)

.
= x + tb(x; θ) and φ(t, x; θ)

.
= tv(x; θ). This certainly leads to a very

simple estimation procedure that has often been applied, but it is important to note that there
is a dangerous pitfall here. First, if F and φ are replaced by approximations, the martingale
property is destroyed, so that stronger conditions on the process are needed to ensure asymptotic
normality, see the discussion in Subsection 2.3. This is usually a minor problem. What is much
worse is that the estimating function becomes biased, which implies that the estimator becomes
inconsistent, at least under the kind of asymptotics considered so far. For the consistency result
in Theorem 2.2 to hold for an estimating function of the form (3.3) it is important that the
estimating function is unbiased, i.e. that Q∆

θ (g(∆, θ)) = 0, so that as n→ ∞

1

n

n∑

i=1

g(∆, X∆(i−1), X∆i; θ) → 0.

There is a version of Theorem 2.2 for biased estimating functions. Suppose for the true param-
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Figure 5.2: Uniform residuals corresponding to the CKLS-model and the GCIR-model based
on observations in two periods.

eter value θ0 the equation
Q∆

θ0
(g(∆, θ̄)) = 0 (5.20)

has a unique solution θ̄. Then according to the more general version of Theorem 2.2

θ̂n

Pθ0−→ θ̄

as n→ ∞.

Example 5.6 For a general mean-reverting process (3.8) the approximate linear estimating
function where the conditional expectation is replaced by the first order expansion is (for
equidistant observation, ti = ∆i)




∑n
i=1

1
v(X∆(i−1))

[
X∆i −X∆(i−1) + ∆β(X∆(i−1) − α)

]

∑n
i=1

X∆(i−1)

v(X∆(i−1))

[
X∆i −X∆(i−1) + ∆β(X∆(i−1) − α)

]


 . (5.21)

For the CIR process the weights are X−1
∆(i−1) and 1, and it is not difficult to find the explicit

estimators obtained from (5.21) for this model:

α̂n =
1

n

n∑

i=1

X∆(i−1) +
1

β̂n∆n
(X∆n −X0)

45



β̂n =
1
n
(X∆n −X0)

∑n
i=1X

−1
∆(i−1) −

∑n
i=1X

−1
∆(i−1)(X∆i −X∆(i−1))

∆[n− (
∑n

i=1X∆(i−1))(
∑n

i=1X
−1
∆(i−1))/n]

.

The asymptotic bias of these estimators as n → ∞ can easily be found using the ergodic
theorem and the fact that the invariant probability measure for the CIR model is a gamma
distribution. However, a result for general mean-reverting processes can be obtained by solving
the equation (5.20) for the estimating function (5.21). The solutions are

ᾱ = α0 and β̄∆ = 1 − e−β0∆ ≤ 1.

Thus the estimator of α is in fact consistent. Contrary to this, the estimator of the reversion
parameter β is reasonable only when β0∆ is considerably smaller than one. Note that β̄ ≤ ∆−1,
so the estimator will always converge to a limit smaller than the sampling frequency. When
β0∆ is large, the behaviour of the estimator is bizarre. Without prior knowledge of the value
of β0 it is thus a very dangerous estimator, which has unfortunately frequently been applied in
the econometric literature, for instance in Chan et al. (1992).

2

Using (5.14) it is easy to see that in general the bias of

n∑

i=1

∂θb(X∆(i−1); θ)

v(X∆(i−1); θ)

[
X∆i −X∆(i−1) − ∆b(X∆(i−1); θ)

]

is of order ∆2 when the observation time points are equidistant. One would therefore expect
that in an asymptotic scenario, where ∆ goes to zero as n → ∞ the estimator is consistent.
This is in fact true. Dorogovcev (1976), Prakasa Rao (1983), Prakasa Rao (1988), and Florens-
Zmirou (1989) proved that the estimator is consistent provided that ∆ → 0 and n∆ → ∞
as n → ∞. Moreover, the estimator is asymptotically normal if it is further assumed that
n∆2 → 0. Prakasa Rao (1988) called this a rapidly increasing experimental design. A general
result comprising also more accurate approximations of F and φ based on (5.13) was given by
Kessler (1997). By choosing the approximations in a suitable way, Kessler obtained estimators
that are asymptotically normal provided just that n∆k → 0 for a k ∈ IN that depends on the
order of the approximation.

5.3 Small ∆-optimality

We shall here discuss a new optimality criterion for unbiased estimating functions that was
introduced by Jacobsen (2001a) and explored further in the case of martingale estimating func-
tions of the form (3.14) in Jacobsen (2001b) and Jacobsen (2002). Throughout this subsection,
we shall assume that the observation times are equidistant, i.e. ti = i∆, 0 ≤ i ≤ n, where ∆
is fixed. That an estimating function is small ∆-optimal implies that for ∆ > 0 small, the
resulting estimator is nearly efficient. Furthermore, as will be demonstrated, it is easy to find
explicitly given estimating functions that are small ∆-optimal.

To illustrate the main idea, consider a martingale estimating function as in (3.3). The
covariance matrix of the asymptotic distribution of θ̂n is (with θ denoting the true parameter
value)

Var∆,θ

(
g, θ̂

)
= S (θ)−1 V (θ)

(
S−1 (θ)

)T
, (5.22)
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where the matrices S (θ) = (Sij (θ))
i≤i,j≤p

and V (θ) = (Vij (θ))
i≤i,j≤p

are given by

Sij (θ) = Eθ

(
∂θj
gi(∆, X0, X∆; θ)

)
, Vij (θ) = Eθ (gi(∆, X0, X∆; θ)gj(∆, X0, X∆; θ)) ; (5.23)

see Theorem 2.2. Now allow ∆ > 0 to vary freely and consider the covariance matrix Var∆,θ

(
g, θ̂

)

as a function of ∆. The optimal martingale estimating function with base f (cf. (3.14)) comes

about by minimizing Var∆,θ

(
g, θ̂

)
for a given ∆ > 0 when the weights vary (minimizing in

the partial order on the space of covariance matrices). Different choices of f lead to different
optimal martingale estimating functions of different quality. Each of them is locally optimal in
the sense that the resulting estimator is the best within the subclass of estimators given by the
chosen base f , but estimators from subclasses given by other choices of f may do better.

By contrast, for the discussion of small ∆-optimality, we consider Var∆,θ

(
g, θ̂

)
given by

(5.22) for ∆ → 0 and show that in the limit a universal lower bound for the asymptotic
covariance can be obtained. This implies that for small values of ∆ (high frequency data), the
estimator obtained from a small ∆-optimal estimating function is in practice (almost) as good
as the maximum-likelihood estimator. Thus small ∆-optimality is a global optimality criterion.
Although small ∆-optimality refers explicitly to the limit ∆ → 0, for any given fixed ∆ > 0 the
estimator obtained is still

√
n-consistent and asymptotically Gaussian as the sample size goes

to infinity. There is no guarantee that it is Godambe or Heyde optimal (relative to the base
f), but for ∆ not too large, it should still behave well, as has been verified in several examples.

The martingale estimating functions we shall use for the discussion here are of the form
(3.3) with the ith coordinate of g given by

gi (∆, x, y; θ) =
N∑

j=1

aij (x; θ)
(
fj (y) − πθ

∆(fj) (x)
)

(1 ≤ i ≤ p) . (5.24)

It is assumed that neither the base functions fj nor the weights aij depend on ∆ (cf. (3.14)).
The fj may depend on θ, but for the time we ignore such a dependence. We also make the
following vital assumption.

Condition 5.7 The functions fj(x) are supposed to be twice differentiable in x. Also, the base
f is supposed to have full affine rank N on the domain D, i.e. the identity

N∑

j=1

cjfj(x) + γ = 0 (x ∈ D)

for some constants cj, γ implies that c1 = · · · = cN = γ = 0.

The functions aij(x; θ) are supposed to satisfy that for any θ, the p N-dimensional functions
x→ (ai1(x; θ), . . . , aiN(x; θ)) forming the rows of a(x; θ) are linearly independent on D.

As ∆ → 0, neighbouring observations
(
X(i−1)∆, Xi∆

)
will, since X is continuous, get very

close together. It is therefore not surprising that it is the limit

gi,0(x, y; θ) = lim
∆→0

gi(∆, x, y; θ) (5.25)

=
N∑

j=1

aij (x, θ) (fj (y) − fj (x))
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and its behaviour close to the diagonal y = x that determines the structure of Var∆,θ

(
g, θ̂

)
as

∆ → 0. More specifically, using Itô-Taylor expansions of the random variables that determine
the matrices V (θ) and S(θ) in the expression for Var∆,θ

(
g, θ̂

)
, see (5.22) and (5.23), subject

to integrability conditions, we obtain an expansion of the form

Var∆,θ

(
g, θ̂

)
=

1

∆
v−1,θ

(
g, θ̂

)
+ v0,θ

(
g, θ̂

)
+ o(1) (5.26)

as ∆ → 0 (Jacobsen (2001a), Section 6). The expressions for the coefficient matrices v−1,θ and
v0,θ depend in an essential way on the structure of the model, and we shall distinguish between
three cases (i), (ii) and (iii) (where to achieve the structure in (iii), it may be necessary first to
reparametrize the model). For each case we list conditions under which the relevant coefficients
are minimized, i.e. conditions under which small ∆-optimality is achieved. For the cases (i)
and (ii) we also give the universal lower bounds on v−1,θ (case (i)) and v0,θ (case(ii)).

(i) C(x; θ) = C(x) does not depend on θ. In this case the main term in (5.26) is always
present and small ∆-optimality is achieved by minimizing globally (over all g) the quantity

v−1,θ

(
g, θ̂

)
. A sufficient condition for a given g to be small ∆−optimal is that

∂yg0(x, x; θ) = ḃT (x; θ)C−1(x). (5.27)

Here ∂yg0(x, x; θ) evaluates ∂yg0(x, y; θ) = (∂yk
gi,0(x, y; θ)) ∈ IRp×d along the diagonal

y = x, and ḃ(x; θ) ∈ IRd×p with
(
ḃ(x; θ)

)
ki

= ∂θi
bk(x; θ). If (5.27) holds, v−1,θ

(
g, θ̂

)

attains its lower bound
[
Eθ

(
ḃTθ (X0)C

−1 (X0) ḃθ (X0)
)]−1

.

(ii) C(x; θ) depends on all parameters θ1, . . . , θp. Then the main term in (5.26) vanishes pro-

vided ∂yg0 (x, x; θ) ≡ 0, and small ∆-optimality is achieved by minimizing v0,θ

(
g, θ̂

)
. A

sufficient condition for g to be small ∆-optimal is that

∂yg0(x, x; θ) = 0, ∂2
yyg0(x, x; θ) = ĊT (x; θ)

(
C⊗2(x; θ)

)−1
, (5.28)

where ∂2
yyg0 (x, x; θ) ∈ IRp×d2

evaluates the second derivatives ∂2
yky`

gi,0 (x, y; θ) along the

diagonal y = x, Ċ(x; θ) ∈ IRd2×p with
(
Ċ(x; θ)

)
k`,i

= ∂θi
Ck`(x; θ), and C⊗2 ∈ IRd2×d2

is

given by (C⊗2)k`,k′`′ = Ckk′C``′. If (5.28) holds, v0,θ

(
g, θ̂

)
attains its lower bound

2
[
Eθ

(
ĊT

θ (X0)
(
C⊗2 (X0)

)−1
Ċθ (X0)

)]−1

.

(iii) Cθ depends on the parameters θ1, . . . , θp′, but not on θp′+1, . . . , θp for some p′ with 1 ≤
p′ < p. Here parts of the main term in (5.26) can be made to disappear so that

v−1,θ

(
g, θ̂

)
=

(
0p′×p′ 0p′×(p−p′)

0(p−p′)×p′ v22,−1,θ

(
g, θ̂

)
)
.

Here 0r×s denotes the r×s-matrix with all entries equal to zero. Furthermore, the matrix

v22,−1,θ

(
g, θ̂

)
∈ IR(p−p′)×(p−p′) can be minimized, and small ∆-optimality is achieved by
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in addition minimizing the upper left p′ × p′-block v11,0,θ

(
g, θ̂

)
of v0,θ

(
g, θ̂

)
. A sufficient

condition for small ∆-optimality is that

∂yg0(x, x; θ) =

(
0p′×d

ḃT2 (x; θ)C−1(x; θ)

)
, (5.29)

∂2
yyg1,0(x, x; θ) = ĊT

1 (x; θ)
(
C⊗2(x; θ)

)−1
, (5.30)

where ḃ2 ∈ IRd×(p−p′) comprises the last p− p′ columns of ḃ, g1,0 the first p′ coordinates of

g0, and Ċ1 ∈ IRd2×p′ the first p′ columns of Ċ.

The complicated case (iii) may best be understood as follows: For θ1, . . . , θp′ fixed, (5.29)
requires in particular that the last p − p′ coordinates of g be small ∆-optimal for estimating
θp′+1, . . . , θp, see case (i). And for θp′+1, . . . , θp fixed, (5.29) and (5.30) require that the first p′

coordinates of g be small ∆-optimal for estimating θ1, . . . , θp′ , see case (ii).

As mentioned above, to check for small ∆-optimality more is required than just checking
(5.27), (5.28) or (5.29), (5.30), viz. it must be verified that various matrices involving expecta-
tions of quantities related to ḃ, Ċ, ∂yg0 and ∂2

yyg0 are non-singular, see Theorem 2 in Jacobsen
(2001a).

We used the special structure (5.24) above to get directly an expression for the limit
gi,0(x, y; θ) in (5.25). For a general martingale estimating function, the existence of a non-trivial
(in particular non-zero) limit must be assumed, and to find it in concrete cases, it may be nec-
essary to renormalize g, i.e. replace g(∆, x, y; θ) by K∆(θ)g(∆, x, y; θ) for some non-singular
p× p-matrix K∆(θ) not depending on x or y. As discussed earlier, such a renormalization does
not affect the solutions to the estimating equations. Small ∆-optimality can be discussed also
for any family of unbiased estimating functions defined by a class of functions (g∆)∆>0. Essen-
tially, each g∆ must then be replaced by the g̃∆ defined by (2.25), which yields the martingale
estimating function (2.26). For details, see Jacobsen (2001a), Section 6.

It is important to comment further on the qualitatively different forms that the expansion
(5.26) takes under small ∆-optimality in the three cases (i), (ii) and (iii). Obviously, a major
gain in estimation accuracy is obtained for ∆ small, if the leading term v−1 can be dispensed
with, and the reason why this is possible in case (ii), partly in case (iii) and never in case (i) is
best understood by considering complete observation of X in continuous time on a finite time
interval – as ∆ → 0 we are getting close to continuous time observation. So let T > 0 be fixed
and denote by Pθ,T the distribution of (Xt)0≤t≤T when X is stationary and the true parameter
value is θ. In case (i), when θ varies, only the drift b(x; θ) changes and for θ 6= θ′ the measures
Pθ,T and Pθ′,T will typically be equivalent with a Radon-Nikodym derivative given by Girsanov’s
theorem. By contrast, in case (ii) where also C (x; θ) changes with θ, it may well happen that
Pθ,T and Pθ′,T are singular for θ 6= θ′, i.e. it is (in principle) possible to read off the exact value of
θ from the observed sample path of X. Of course, for the discrete time observations (Xi∆)0≤i≤n

perfect information about θ is not available, but through small ∆-optimality it is possible to
increase the information about θ per observation Xi∆ from O(∆) in case (i) to O(1) in case
(ii). Note that for the general martingale estimating functions, even in case (ii) the leading
term v−1 will be present unless one is careful, and the result will then be an estimator that as
∆ → 0 is infinitely worse than a small ∆-optimal estimator.

We shall now again return to the specific martingale estimating functions emanating from
(5.24) and discuss when and how, for a given base f = (fj)1≤j≤N

satisfying Condition 5.7, the
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weights a may be chosen so as to achieve small ∆-optimality. In particular this will reveal a
critical value

dim(d) := d+

(
d+

(
d

2

))
= d(d+ 3)/2

for the dimension N of the base. The value dim(d) comes about naturally by fixing a base f
of dimension d and then supplementing this with the functions fjfj′ for 1 ≤ j ≤ j ′ ≤ d. The
discussion splits into the same three cases as before, but for illustration we just consider case
(i). From (5.25),

∂yg0 (x, x; θ) = a (x; θ) ∂xf(x)

which is required to equal ḃT (x; θ)C−1(x), see (5.27). Solving for a(x; θ) is clearly possible
if N = d provided the d × d-matrix ∂xf(x) with jk’th element ∂xk

fj(x) is non-singular, and
possible also if N > d provided ∂xf(x) has full rank d. In cases (ii) and (iii) similar linear
equation systems are obtained (but now involving d first derivatives of g0 and all the different
second derivatives, i.e. dim(d) derivatives in all), resulting in the following shortened version

of Theorem 2 of Jacobsen (2002). In the theorem we use the following notation: If M ∈ IRr×d2

is a matrix with entries Mq,k` for 1 ≤ q ≤ r and 1 ≤ k, ` ≤ d that are symmetric in k and `,
we write MR ∈ IRr×ρ(d) for the matrix with entries Mq,k` for 1 ≤ q ≤ r and 1 ≤ k ≤ ` ≤ d

obtained by multiplying M by the reduction matrix R ∈ IRd2×ρ(d) with entries Rk′`′,k` = 1 if
k′ = k and `′ = ` and Rk′`′,k` = 0 otherwise (1 ≤ k′, `′ ≤ d and 1 ≤ k ≤ ` ≤ d). Here ρ(d) is

the number of choices for (k, `) such that 1 ≤ k ≤ ` ≤ d, i.e. ρ(d) = d+
(

d

2

)
= dim(d) − d.

Theorem 5.8 Consider martingale estimating functions of the form

Gn (θ) =
n∑

i=1

a∗(X(i−1)∆, θ)
(
f(Xi∆; θ) − πθ

∆ (f (θ)) (X(i−1)∆)
)
, (5.31)

where the base f = (fj)1≤j≤N
is of full affine rank N , and where the matrix-valued function

a∗(x, θ) is chosen differently in the following three cases.

(i) Suppose that N = d, that for µθ-a.a. x the matrix ∂xf(x) ∈ IRd×d is non-singular, and
that the p d-variate functions of x forming the columns of ḃ (x; θ) are linearly independent.
Then the rows of

a∗ (x; θ) = ḃT (x; θ)C−1(x) (∂xf(x))−1 , (5.32)

are linearly independent as required by Condition 5.7, and the estimating function (5.31)
satisfies the small ∆-optimality condition (5.27).

(ii) Suppose that N = dim(d), that for µθ-a.a. x, the matrix

Q(x) =
(
∂xf(x) ∂2

xxf(x)R
)
∈ IRdim(d)×dim(d) (5.33)

is non-singular and that the p d2-variate functions of x forming the columns of Ċ(x; θ)
are linearly independent. Then the rows of

a∗(x; θ) =
(

0p×d ĊT (x; θ) (C⊗2(x; θ))
−1
R
)

(Q(x))−1 , (5.34)

are linearly independent, and the estimating function (5.31) satisfies the small ∆-optimality
condition (5.28).
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(iii) Suppose that N = dim(d), that for µθ-a.a. x the matrix Q(x) given by (5.33) is non-
singular, that the p − p′ d-variate functions forming the columns of ḃ2,θ are linearly in-
dependent, and that the p′ d2-variate functions forming the columns of Ċ1,θ are linearly
independent. Then the rows of

a∗(x; θ) =

(
0p′×d ĊT

1 (x; θ) (C⊗2(x; θ))
−1
R

ḃT2 (x; θ)C−1(x; θ) 0(p−p′)×ρ(d)

)
(Q(x))−1 , (5.35)

are linearly independent, and the estimating function (5.31) satisfies the small ∆-optimality
conditions (5.29), (5.30).

For models with a special structure, the critical value dim(d) for the dimension of the base
f may be lowered. This is, for instance, the case when X = (X1, . . . , Xc) with X1, . . . , Xc

independent diffusions of dimensions d1, . . . , dc where
∑c

m=1 dm = d. In this situation small
∆-optimality can be achieved using a base of dimension

∑c
m=1 dim (dm). In general however,

dim(d) is the critical dimension, even for the optimal martingale estimating function determined
by a given base for any given ∆ > 0 to be small ∆-optimal (Jacobsen (2002), Theorem 2.3).
Thus it may well happen if d = 1 for a model belonging to case (ii), that the optimal martingale
estimating function determined by a base of dimension 1, will result in an estimator that behaves
disastrously for high frequency data.

In case (iii) of Theorem 5.8 one may find a host of small ∆-optimal martingale estimating
functions other than that specified by (5.35), in fact the entry 0(p−p′)×ρ(d) may be replaced
by an arbitrary matrix depending on x and θ (subject to Condition 5.7 and smoothness and
integrability requirements). Another useful recipe (adopted in Example 5.9 below) for finding
small ∆-optimal estimating functions in case (iii), is to fix a base f ◦ of dimension d, augment
it to a base f of dimension dim(d) by adding the products f ◦

j f
◦
j′ for 1 ≤ j ≤ j ′ ≤ d, and then

defining the first p′ rows of a∗(x; θ) by
(

0p′×d ĊT
1 (x; θ) (C⊗2(x; θ))

−1
R
)

(Q(x))−1

and the last p− p′ rows by
ḃT2 (x; θ)C−1 (x; θ) (∂xf(x))−1 .

While it is easy to obtain small ∆-optimality for martingale estimating functions, it is not
known what happens in general with the classes of simple and explicit, transition dependent
estimating functions also discussed above, see (3.23) and (3.25). It is known (Jacobsen (2001a))
that for d = 1 and if C = σ2 does not depend on θ, then the simple estimating function with
h given by (3.23) is small ∆-optimal provided that f satisfies that ∂xf(x) = Kθḃ

T
θ (x)/σ2(x)

for some non-singular matrix Kθ not depending on x This is the case for Kessler’s estimating
function in the Ornstein-Uhlenbeck model, see Example 3.5, and, as follows easily using (2.16),
also for H. Sørensen’s estimating function mentioned at the end of Subsection 3.3 and obtained
for f = ∂θ logµθ. However, if either d ≥ 2 or the model is of type (ii) or (iii), it seems virtually
impossible to achieve small ∆-optimality. For the much wider class (3.25) nothing much is
known, but it does appear difficult to obtain small ∆-optimality for models belonging to case
(ii).

We shall conclude this section by showing how small ∆-optimality works for a one-dimensional
diffusion model with four parameters. The model was introduced by Jacobsen (2002) and the
simulation study below is from Jacobsen (2001b).
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Example 5.9 Consider the one-dimensional (d = 1) stochastic differential equation

dXt =
(
aX2γ−1

t + bXt

)
dt+ σXγ

t dWt (5.36)

where a, b ∈ IR, γ 6= 1 and σ > 0 and where, as usual, W denotes a standard Wiener process.
For γ = 1

2
this is the stochastic differential equation for the CIR-process, see Example 3.1. The

generalization (5.36) is arrived at by considering all powers X̃ρ of a CIR-process with ρ 6= 0.
More precisely if X solves (5.36), then the associated CIR–process is X̃ = X2−2γ solving

dX̃t =
(
ã+ b̃X̃t

)
dt+ σ̃

√
X̃t dWt (5.37)

where
b̃ = (2 − 2γ) b, σ̃2 = (2 − 2γ)2 σ2, ã− 1

2 σ̃
2 = (2 − 2γ)

(
a− 1

2σ
2
)
. (5.38)

This also explains why γ = 1 is not allowed in (5.36).

Because of the connection to the CIR–process, the generalized Cox-Ingersoll-Ross model (or
generalized CIR-process) described by (5.36) is much simpler to handle mathematically than
the more standard CKLS–model (5.5) introduced in Chan et al. (1992) as a model for the spot
rate. In particular, for (5.36) it is easy to find martingale estimating functions of the form
(5.24) (although the base will now depend on the parameter γ).

In (5.36) the parameter space has dimension p = 4. We shall want X to be strictly positive
and ergodic, which happens if and only if the associated CIR-process X̃ is strictly positive and
ergodic, i.e. when b̃ < 0 and 2ã ≥ σ̃2, or equivalently, when either γ < 1, b < 0, 2a ≥ σ2 or
γ > 1, b > 0, 2a ≤ σ2. Since the invariant distribution for X̃ is a Γ−distribution, the invariant
distribution for X is that of a Γ−distributed random variable raised to the power (2 − 2γ)−1 .

Because a Γ−distribution has finite moments of all orders m ∈ IN, we have Eθ(X
(2γ−2)m
0 ) <

∞ for all m ∈ IN when X0 ∼ µθ, and πθ
∆x

(2γ−2)m < ∞ for all ∆ > 0, m ∈ IN, and all x > 0.
Furthermore, since the conditional moments for a CIR-process are known, for the generalized
CIR-process all πθ

∆x
(2γ−2)m are known explicitly.

Turning now to the problem of estimating θ from discrete observations of X, it is clear
that the model (5.36) belongs to case (iii) with p = 4, p′ = 2. We need a base of dimension
dim(1) = 2 and shall simply use f = (fj)1≤j≤2 given by

f1(x) = x2−2γ and f2(x) = x4−4γ , (5.39)

which trivially satisfies Condition 5.7. This corresponds to choosing f ◦(x) = x2−2γ (see page
51 for the general use of f ◦). By the methods described above one may then show that the
martingale estimating function given by

g (∆, x, y; θ) =




−2 log x x2γ−2 log x
−2 x2γ−2

x2γ−2 0
1 0




(
y2−2γ − πθ

∆x
2−2γ

y4−4γ − πθ
∆x

4−4γ

)
(5.40)

is small ∆-optimal. Here the conditional expectations are given by the expressions

πθ
∆x

2−2γ = eb̃∆
(
x2−2γ − ξ̃1

)
+ ξ̃1,

πθ
∆x

4−4γ = e2b̃∆
(
x4−4γ − ξ̃2 − 2(ξ̃2/ξ̃1)

(
x2−2γ − ξ̃1

))
+ 2(ξ̃2/ξ̃1)e

b̃∆
(
x2−2γ − ξ̃1

)
+ ξ̃2
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where ξ̃1 = Eθ

(
X2−2γ

0

)
= −ã/b̃ and ξ̃2 = Eθ

(
X4−4γ

0

)
= ã/(2b̃2) (2ã+ σ̃2) with ã, b̃, σ̃2 as in

(5.38).

The results of a simulation study using this small ∆-optimal estimating function are given
in Table 5.3. Note that in agreement with the theory, the estimators of a and b deteriorate for
∆ small, while the estimators of γ and σ2 perform well throughout.

∆ success mean std. dev. smallest largest

0.01 50/50 a 1.77 0.864 0.737 4.51

b -1.88 0.872 -4.84 -0.612

γ 0.493 0.054 0.396 0.641

σ2 1.00 0.073 0.806 1.17

0.1 50/50 a 1.04 0.207 0.685 1.62

b -1.08 0.262 -2.01 -0.662

γ 0.494 0.050 0.393 0.571

σ2 1.00 0.086 0.786 1.18

0.5 45/50 a 1.22 0.335 0.597 1.92

b -1.22 0.308 -1.93 -0.674

γ 0.545 0.081 0.361 0.680

σ2 0.995 0.087 0.730 1.24

Table 5.3: The result of a simulation study using the estimating function given by (5.40) with
the parameter values a = 1, b = −1, γ = 1

2 , and σ2 = 1. Simulations were done for the
indicated values of ∆ based on n + 1 = 501 observations. For each value of ∆, 50 data sets
were simulated. The column labeled “success” indicates the proportion of data sets for which
estimates for all four parameters were obtained. The mean value and the standard deviation of
these estimates are given in the table. The columns labeled “smallest” and “largest” indicate
the range of the estimates obtained.

2

5.4 Optimal Prediction Based Estimating Functions

We shall now return to the prediction-based estimating functions that were introduced for
inference about non-Markovian models. We shall find the Godambe optimal choice of the
weights Π

(i−1)
j (θ), j = 1, . . . , N for a class of prediction-based estimating functions of the

general type (3.34). Since these estimating functions are not martingales, Heyde optimality
does not apply.

Again the compact representation

Gn(θ) = A(θ)
n∑

i=s+1

Z(i−1)
(
F (Xi) − π̆(i−1)(θ)

)
(5.41)

= A(θ)
n∑

i=s+1

Z(i−1)
(
F (Xi) − (Z(i−1))T ᾰ(θ)

)
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is convenient. Here F (x) = (f1(x), . . . , fN(x))T , π̆(i−1)(θ) = (π̆
(i−1)
1 (θ), . . . , π̆

(i−1)
N (θ))T , while

the p×N(q + 1)-matrix A(θ), the N(q + 1) ×N -matrix Z (i−1), and the N(q + 1)-dimensional
vector ᾰ(θ) are given by (3.44), (3.45), and (3.46), respectively.

We are free to choose the matrix A(θ) in an optimal way, whereas the N(q+1)-dimensional
vectors Z(i−1)(F (Xi)− π̆(i−1)(θ)) are fixed by our earlier choice of the functions fj and hjk. The
matrix A(θ) must have rank p in order that we can estimate all p parameters.

To find the optimal prediction-based estimating function, we impose the following condition.

Condition 5.10

(1) The quantities Cj(θ) and bj(θ), j = 1, . . . , N are differentiable functions of θ. Here Cj(θ)

denotes the covariance matrix of Z
(s)
j , while bj(θ) is given by (3.32).

(2) p ≤ N(q + 1).

(3) The N(q + 1) × p-matrix ∂θT ᾰ(θ) has rank p.

(4) The functions 1, f1, . . . , fN are linearly independent on the support of the conditional dis-
tribution of Xn given (X1, . . . , Xn−1).

The sensitivity function is given by

SGn
(θ) = −(n− q)A(θ)D(θ)∂θT ᾰ(θ)

where the N(q + 1) ×N(q + 1)-matrix D(θ) is given by

D(θ) = Eθ

(
Z(i−1)(Z(i−1))T

)

If we denote the optimal choice of the matrix A(θ) by A∗
n(θ), then

Eθ

(
Gn(θ)G∗

n(θ)T
)

= (n− q)A(θ)M̄n(θ)A∗
n(θ)T ,

where M̄n(θ) is given by (3.48). It is the covariance matrix of
∑n

i=s+1H
(i)(θ)/

√
n− s with

H(i)(θ) = Z(i−1)
(
F (Xi) − π̆(i−1)(θ)

)
.

Under Condition 5.10 the matrix M̄n(θ) is invertible, see Sørensen (2000), so it follows from
Theorem 4.1 that for

A∗
n(θ) = ∂θᾰ(θ)TD(θ)M̄n(θ)−1, (5.42)

the estimating function

G∗
n(θ) = A∗

n(θ)
n∑

i=s+1

Z(i−1)
(
F (Xi) − π̆(i−1)(θ)

)
, (5.43)

is Godambe optimal and satisfies the second Bartlett identity. For the optimal estimat-
ing function, the covariance matrix of the asymptotic distribution is the inverse of S(θ0) =
∂θᾰ(θ0)

TD(θ0)M(θ0)
−1D(θ0)∂θT ᾰ(θ0).

An estimator with the same asymptotic variance as the estimator obtained from (5.43) is
obtained if A∗

n(θ) is replaced by A∗
n(θ̃n), where θ̃n is some consistent preliminary estimator.
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This modification of (5.43) is highly recommended, because the calculation of A∗
n(θ) usually

requires very considerable simulation, so that a dramatic reduction of computing time can be
achieved by calculating it at only one parameter value. The estimator θ̃n can, for instance, be
obtained from (5.41) with A(θ) equal to some simple matrix that does not depend on θ.

Note that when p = N(q + 1) the matrix A∗
n(θ) is invertible. Thus it does not influence the

estimator and can be omitted. If we know Cj(θ), bj(θ), Eθ(Z
(q)
j ), Eθ(fj(X1)), j = 1, . . . , N , their

derivatives with respect to θ, and the moments appearing in (3.48), we can calculate the optimal
prediction-based estimating function. Note that only moments and derivatives of moments are
needed. Note also that Cj(θ), bj(θ), Eθ(Z

(q)
j ), and Eθ(fj(X1)) were needed earlier to find the

predictor π̆
(i−1)
j (θ), so the only new requirements to compute the optimal estimating function

are the derivatives and the moments in (3.48). Many models are sufficiently mixing that there
exist K > 0 and λ > 0 such that the absolute values of all entries in the expectation matrices in
the kth term in the sum in (3.48) are dominated by Ke−λ(k−q) when k > q. Therefore, the sum
in (3.48) can in practice often be truncated so that only a few moments need to be calculated.

When A(θ0) = ∂θᾰ(θ0)
TD(θ0)M(θ0)

−1 (the optimal choice), the covariance matrix of the
asymptotic distribution is the inverse of S(θ0) = ∂θᾰ(θ0)

TD(θ0)M(θ0)
−1D(θ0)∂θT ᾰ(θ0), see

(3.49).

Example 5.11 If we want to find the optimal estimating function of the form (3.38) for the
stochastic volatility model (3.26), we must assume that Eθ(X

8
i ) < ∞, and apart from the

quantities mentioned above, we need to find Eθ

(
X2

i X
2
jX

2
1

)
and Eθ

(
X2

i X
2
jX

2
kX

2
1

)
for i ≥ j ≥ k.

We can essentially find these moments by integrating the moments Eθ (vsvtvu) and Eθ (vsvtvuvz)
of the volatility process as functions of s, t, u, and z over suitable sets. For details see Sørensen
(2000).

The moments of the volatility process must in general be found by simulation, but can in
some cases be found explicitly. This is for instance the case when the volatility process is the
CIR-process

dvt = −θ(vt − α)dt+ σ
√
vtdBt, (5.44)

because for the CIR-process there are explicit expressions for all conditional moments, see e.g.
Sørensen (2000). This stochastic volatility model was proposed by Hull & White (1988) and
Heston (1993).

Another example of a stochastic volatility model, for which the necessary moments can be
found explicitly, is when vt = exp(Ut), where U is a stationary Gaussian Ornstein-Uhlenbeck
process,

dUt = −θ(Ut − α)dt+ σdBt

with θ > 0 (Wiggins (1987); Chesney & Scott (1989); Melino & Turnbull (1990)). This model
can be obtained as a limit of the EGARCH(1,1) model, see Nelson (1990). Here we have for
instance that

Eθ (vsvtvuvz) = Eθ,α,σ {exp (Us + Ut + Uu + Uz)} ,
which is the Laplace transform of a known Gaussian distribution, and hence is explicitly known.

If one is not prepared to assume that Eθ(X
8
i ) <∞, a possible alternative to the estimating
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function (3.38) is

Gn(θ) =
n∑

i=q+1

Π(i−1)(θ) {|Xi|γ − ă0(θ) − ă1(θ)|Xi−1|γ − · · · − ăq(θ)|Xi−q|γ}

with Π(i−1)(θ) = A(θ)Z̃(i−1) and Z̃(i−1) = (1, |Xi−1|γ, . . . , |Xi−q|γ)T . Here A(θ) is a p× (q + 1)-
matrix to be chosen in an optimal way, while γ is some suitably chosen positive real number.
If, for instance, γ = 1

2
, we need to assume only that Eθ(X

2
i ) <∞ for the optimal A(θ) to exist.

The price is that it is not as easy to calculate the moments needed as for (3.38).

2

Acknowledgements

The research of Martin Jacobsen and Michael Sørensen was supported by MaPhySto – a Net-
work in Mathematical Physics and Stochastics funded by The Danish National Research Foun-
dation, and by the European Commission through the Research Training Network DYNSTOCH
under the Human Potential Programme. Michael Sørensen was moreover supported by the Cen-
tre for Analytical Finance and the Danish Mathematical Finance Network, both financed by
the Danish Social Science Research Council. The data were put at our disposal by the Centre
for Analytical Finance.

References
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