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1 Introduction

Our chapter surveys a set of mathematical and statistical tools that are valuable in understanding and charac-
terizing nonlinear Markov processes. Such processes are used extensively as building blocks in economics and
finance. In these literatures, typically the local evolution or short-run transition is specified. We concentrate
on the continuous limit in which case it is the instantaneous transition that is specified. In understanding
the implications of such a modelling approach we show how to infer the intermediate and long-run properties
from the short-run dynamics. To accomplish this we describe operator methods and their use in conjunction
with continuous-time stochastic process models.

Operator methods begin with a local characterization of the Markov process dynamics. This local specifi-
cation takes the form of an infinitesimal generator. The infinitesimal generator is itself an operator mapping
test functions into other functions. From the infinitesimal generator, we construct a family (semigroup) of
conditional expectation operators. The operators exploit the time-invariant Markov structure. Each operator
in this family is indexed by the forecast horizon, the interval of time between the information set used for
prediction and the object that is being predicted. Operator methods allow us to ascertain global, and in par-
ticular, long-run implications from the local or infinitesimal evolution. These global implications are reflected
in a) the implied stationary distribution b) the analysis of the eigenfunctions of the generator that dominate
in the long run, c) the construction of likelihood expansions and other estimating equations.

The methods we describe in this chapter are designed to show how global and long-run implications follow
from local characterizations of the time series evolution. This connection between local and global properties
is particularly challenging for nonlinear time series models. In spite of this complexity, the Markov structure
makes characterizations of the dynamic evolution tractable. In addition to facilitating the study of a given
Markov process, operator methods provide characterizations of the observable implications of potentially rich
families of such processes. These methods can be incorporated into statistical estimation and testing. While
many Markov processes used in practice are formally misspecificied, operator methods are useful in exploring
the specific nature and consequences of this misspecification.
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Section 2 describes the underlying mathematical methods and notation. Section 3 studies Markov models
through their implied stationary distributions. Section 4 develops some operator methods used to characterize
transition dynamics including long-run behavior of Markov process. Section 5 provides approximations to
transition densities that are designed to support econometric estimation. Section 7 describes the properties
of some parameter estimators. Finally, section 6 investigates alternative ways to characterize the observable
implications of various Markov models, and to test those implications.

2 Alternative Ways to Model a Continuous-Time Markov Process

There are several different but essentially equivalent ways to parameterize continuous time Markov processes,
each leading naturally to a distinct estimation strategy. In this section we briefly describe five possible
parametrizations.

2.1 Transition Functions

In what follows, (Ω,F , P r) will denote a probability space, S a locally compact metric space with a countable
basis, S a σ-field of Borelians in S, I an interval of the real line, and for each t ∈ I, Xt : (Ω,F , P r)→ (S,S)
a measurable function. We will refer to (S,S) as the state space and to X as a stochastic process.

Definition 1. P : (S×S)→ [0, 1) is a transition probability if, for each x ∈ S, P (x, ·) is a probability measure
in S, and for each B ∈ S, P (·, B) is measurable.

Definition 2. A transition function is a family Ps,t, (s, t) ∈ I2, s < t that satisfies for each s < t < u the
Chapman-Kolmogorov equation:

Ps,u(x,B) =
∫
Pt,u(y,B)Ps,t(x, dy).

A transition function is time homogeneous if Ps,t = Ps′,t′ whenever t− s = t′ − s′. In this case we write Pt−s
instead of Ps,t.

Definition 3. Let Ft ⊂ F be an increasing family of σ−algebras, and X a stochastic process that is adapted
to Ft. X is Markov with transition function Ps,t if for each non-negative Borel measurable φ : S → R and
each (s, t) ∈ I2, s < t,

E[φ(Xt)|Fs] =
∫
φ(y)Ps,t(Xs, dy).

The following standard result (for example, Revuz and Yor (1991), Chapter 3, Theorem 1.5) allows one to
parameterize Markov processes using transition functions.

Theorem 1. Given a transition function Ps,t on (S,S) and a probability measure Q0 on (S,S), there exists a
unique probability measure Pr on (S[0,∞),S [0,∞)), such that the coordinate process X is Markov with respect
to σ(Xu, u ≤ t), with transition function Ps,t and the distribution of X0 given by Q0.

We will interchangeably call transition function the measure Ps,t or its conditional density p (subject to
regularity conditions which guarantee its existence):

Ps,t(x, dy) = p(y, t|x, s)dy.
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In the time homogenous case, we write ∆ = t−s and p(y|x,∆). In the remainder of this paper, unless explicitly
stated, we will treat only the case of time homogeneity.

2.2 Semigroup of conditional expectations

Let Pt be a homogeneous transition function and L be a vector space of real valued functions such that for
each φ ∈ L,

∫
φ(y)Pt(x, dy) ∈ L. For each t define the conditional expectation operator

Ttφ(x) =
∫
φ(y)Pt(x, dy). (2.1)

The Chapman-Kolmogorov equation guarantees that the linear operators Tt satisfy:

Tt+s = TtTs. (2.2)

This suggests another parameterization for Markov processes. Let (L, ‖ · ‖) be a Banach space.

Definition 4. A one-parameter family of linear operators in L, {Tt : t ≥ 0} is called a semigroup if (a) T0 = I

and (b) Tt+s = TtTs for all s, t ≥ 0. {Tt : t ≥ 0} is a strongly continuous contraction semigroup if, in addition,
(c) limt↓0Ttφ = φ, and (d) ||Tt|| ≤ 1

If a semigroup represents conditional expectations, then it must be positive, that is, if φ ≥ 0 then Ttφ ≥ 0.

Two useful examples of Banach spaces L to use in this context are:

Example 1. Let S be a locally compact and separable state space. Let L = C0 be the space of continuous
functions φ : S → R, that vanish at infinity. For φ ∈ C0 define:

‖φ‖∞ = sup
x∈S
|φ(x)|.

A strongly continuous contraction positive semigroup on C0 is called a Feller semigroup.

Example 2. Let Q be a measure on a locally compact subset S of Rm. Let L2(Q) be the space of all Borel
measurable functions φ : S → R that are square integrable with respect to the measure Q endowed with the
norm:

‖φ‖2 =
(∫

φ2dQ

) 1
2

.

In general the semigroup of conditional expectations determine the finite-dimensional distributions of the
Markov process (see e.g. Ethier and Kurtz (1986) Proposition 1.6 of chapter 4.) There are also many results
(e.g. Revuz and Yor (1991) Proposition 2.2 of Chapter 3) concerning whether given a contraction semigroup
one can construct a homogeneous transition function such that equation (2.1) is satisfied.

2.3 Infinitesimal generators

Definition 5. The infinitesimal generator of a semigroup Tt on a Banach space L is the (possibly unbounded)
linear operator A defined by:

Aφ = lim
t↓0
Ttφ− φ

t
.

The domain D(A) is the subspace of L for which this limit exists.
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If Tt is a strongly continuous contraction semigroup then D(A) is dense. In addition A is closed, that is if
φn ∈ D(A) converges to φ and Aφn converges to ψ then φ ∈ D(A) and Aφ = ψ. If Tt is a strongly continuous
contraction semigroup we can reconstruct Tt using its infinitesimal generator A (e.g. Ethier and Kurtz (1986)
Proposition 2.7 of Chapter 2). This suggests using A to parameterize the Markov process. The Hille-Yosida
theorem (e.g. Ethier and Kurtz (1986) Theorem 2.6 of chapter 1) gives necessary and sufficient conditions for
a linear operator to be the generator of a strongly continuous, positive contraction semigroup. Necessary and
sufficient conditions to insure that the semigroup can be interpreted as a semigroup of conditional expectations
are also known (e.g. Ethier and Kurtz (1986) Theorem 2.2 of chapter 4).

As described in Example 1, a possible domain for a semigroup is the space C0 of continuous functions
vanishing at infinity on a locally compact state space endowed with the sup-norm. A process is called a
multivariate diffusion if its generator Ad is an extension of the second-order differential operator:

µ · ∂φ
∂x

+
1
2

trace
(
ν
∂2φ

∂x∂x′

)
(2.3)

where the domain of this second order differential operator is restricted to the space of twice continuously
differentiable functions with a compact support. The Rm-valued function µ is called the drift of the process
and the positive semidefinite matrix-valued function ν is the diffusion matrix. The generator for a Markov
jump process is:

Apφ = λ (J φ− φ)

on the entire space C0, where λ is a nonnegative function of the Markov state used to model the jump intensity
and J is the expectation operator for a conditional distribution that assigns probability zero to staying put.

Markov processes may have more complex generators. Revuz and Yor (1991) show that for a certain class
of Markov Processes the generator can be depicted in the following manner.1 Consider a positive conditional
Radon measure R(dy|x) on the product space X excluding the point {x}2∫

X−{x}

|x− y|2
1 + |x− y|2R(dy|x) <∞.

The generator is then an extension of the following operator defined for twice differentiable functions with
compact support:

Aφ(x) = µ(x) · ∂φ(x)
∂x

+
∫ [

φ(y)− φ(x)− y − x
1 + |y − x|2 ·

∂φ(x)
∂x

]
R(dy|x) +

1
2

trace
(
ν(x)

∂2φ

∂x∂x′

)
. (2.4)

The measure R(dy|x) may be infinite to allow for an infinite number of arbitrarily small jumps in an interval
near the current state x. With this representation, A is the generator of a pure jump process when R(dy|x)
is finite for all x,

µ(x) · ∂φ(x)
∂x

=
y − x

1 + |y − x|2 ·
∂φ(x)
∂x

R(dy|x),

and ν = 0.

When the measure R(dy|x) is finite for all x, the Poisson intensity parameter is:

λ(x) =
∫
R(dy|x),

1See Theorem 1.13 of Chapter 7.
2A Radon measure is a Borel measure that assigns finite measure to every compact subset of the state space and strictly

positive measure to nonempty open sets.
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which governs the frequency of the jumps. The probability distribution conditioned on the state x and a
jump occurring is: R(dy|x)/

∫
R(dy|x). This conditional distribution can be used to construct the conditional

expectation operator J via:

J φ =
∫
φ(y)R(dy|x)∫
R(dy|x)

.

The generator may also include a level term −ι(x)φ(x). This level term is added to allow for the so-called
killing probabilities, the probability that the Markov process is terminated at some future date. The term ι is
nonnegative and gives the probabilistic instantaneous termination rate.

It is typically difficult to completely characterize D(A) and instead one parameterizes the generator on
a subset of its domain that is ‘big enough.’ Since the generator is not necessarily continuous, one cannot
simply parameterize the generator in a dense subset of its domain. Instead one uses a core, that is a subspace
N ⊂ D(A) such that (N,AN) is dense in the graph of A.

2.4 Quadratic forms

Suppose L = L2(Q) where we have the natural inner product

< φ,ψ >=
∫
φ(x)ψ(x)dQ.

If φ ∈ D(A) and ψ ∈ L2(Q) then we may define the (quadratic) form

f2(φ, ψ) = − < Aφ, ψ > .

This leads to another way of parameterizing Markov processes. Instead of writing down a generator one starts
with a quadratic form. As in the case of a generator it is typically not easy to fully characterize the domain
of the form. For this reason one starts by defining a form on a smaller space and showing that it can be
extended to a closed form in a subset of L2(Q). When the Markov process can be initialized to be stationary,
the measure Q is typically this stationary distribution. More generally, Q does not have to be a finite measure.

This approach to Markov processes was pioneered by Beurling and Deny (1958) and Fukushima (1971) for
symmetric Markov processes. In this case both the operator A and the form f are symmetric. A stationary,
symmetric Markov process is time-reversible. If time were reversed, the transition operators would remain the
same. On the other hand, multivariate standard Brownian motion is a symmetric (nonstationary) Markov
process that is not time reversible. The literature on modelling Markov processes with forms has been extended
to the non-symmetric case by Ma and Rockner (1991). In the case of a symmetric diffusion, the form is given
by:

f2(φ, ψ) =
1
2

∫
(∇φ)∗ν(∇ψ)dQ,

where ∗ is used to denote transposition, ∇ is used to denote the (weak) gradient3, and the measure Q is
assumed to be absolutely continuous with respect to the Lebesgue measure. The matrix ν can be interpreted
as the diffusion coefficient. When Q is a probability measure, it is a stationary distribution. For standard
Brownian motion, Q is the Lebesgue measure and ν is the identity matrix.

3That is,
∫
∇φψ =

∫
φψ′ for every ψ continuously differentiable and with a compact support.
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2.5 Stochastic differential equations

Another way to generate (homogeneous) Markov processes is to consider solutions to time autonomous stochas-
tic differential equations. Here we start with an n-dimensional Brownian motion on a probability space
(Ω,F , P r), and consider {Ft : t ≥ 0}, the (augmented) filtration generated by the Brownian motion. The
process Xt is assumed to satisfy the stochastic differential equation

dXt = µ(Xt)dt+ σ(Xt)dWt, (2.5)

X0 given.

Several theorems exist that guarantee that the solution to equation (2.5) exists, is unique and is a Markov
diffusion. In this case the coefficients of (2.5) are related to those of the second-order differential operator
(2.3) via the formula ν = σσ′.

2.6 Extensions

We consider two extensions or adaptations of Markov process models, each with an explicit motivation from
finance.

2.6.1 Time Deformation

Models with random time changes are common in finance. There are at least two ways to motivate such
models. One formulation due to Bochner (1960) and Clark (1973) posits a distinction between calendar time
and economic time. The random time changes are used to alter the flow of information in a random way.
Alternatively an econometrician might confront a data set with random sample times. Operator methods give
a tractable way of modelling randomness of these types.

A model of random time changes requires that we specify two objects. An underlying Markov process
{Xt : t ≥ 0} that is not subject to distortions in the time scale. For our purposes, this process is modelled
using a generator A. In addition we introduce a process {τt} for the time scale. This process is increasing and
can be specified in continuous time as {τt : t ≥ 0}. The process of interest is:

Zt = Xτt . (2.6)

Clark (1973) refers to {τt} as the directing process and the process {Xt} is subordinated to the directing
process in the construction of {Zt}. For applications with random sampling, we we let {τj : j = 1, 2, ...} to
be a sequence of sampling dates with observations {Zj : j = 1, 2, ...}. In what follows we consider two related
constructions of the constructed process {Zt : t ≥ 0}.

Our first example is in which the time distortion is smooth, with τt expressible as a simple integral over
time.

Example 3. Following Ethier and Kurtz (1986), consider a process specified recursively in terms of two
objects: a generator A of a Markov process {Xt} and a nonnegative continuous function ζ used to distort
calendar time. The process that interests us satisfies the equation:

Zt = X∫ t
0 ζ(Zs)ds

.
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In this construction, we think of

τt =
∫ t

0

ζ (Zs) ds

as the random distortion in the time of the process we observe. Using the time distortion we may write:

Zt = Xτt ,

as in (2.6).

This construction allows for dependence between the directing process and the underlying process {Xt}.
By construction the directing process has increments that depend on Zt. Ethier and Kurtz (1986) show
that under some additional regularity conditions, the continuous-time process {Zt} is itself Markovian with
generator ζA (see Theorem 1.4 on page 309). Since the time derivative of τt is ζ(Zt), this scaling of the
generator is to be expected. In the case of a Markov diffusion process, the drift µ and the diffusion matrix
ν are both scaled by the function ζ of the Markov state. In the case of a Markov jump process, ζ alters the
jump frequency by scaling the intensity parameter.

Our next example results in a discrete-time process.

Example 4. Consider next a specification suggested by Duffie and Glynn (2004). Following Clark (1973),
they use a Poisson specification of the directing process. In contrast to Clark (1973), suppose the Poisson
intensity parameter is state dependent. Thus consider an underlying continuous time process {(Xt, Yt)} where
Yt is a process that jumps by one unit where the jump times are dictated by an intensity function λ(Xt). Let

τj = inf{t : Yt ≥ j},

and construct the observed process as:
Zt = Xτj .

There is an alternative construction of this process that leads naturally to the computation of the one period
conditional expectation operator. First, construct a continuous time process as in Example 3 by setting ζ = 1

λ .

We then know that the resulting process {Žt} has generator Ǎ .= ζA = 1
λA. In addition to this smooth time

distortion, suppose we sample the process using a Poisson scheme with a unit intensity. Notice that:

E

[∫ ∞
0

exp(−t)ψ(Žt)dt|Ž0 = z

]
=
(∫ ∞

0

exp
[(
Ǎ − I

)
t
]
dt

)
ψ(z) = (I − Ǎ)−1ψ(z)

where I is the identity operator. Thus (I − Ǎ)−1 is a conditional expectation operator that we may use to
represent the discrete time process of Duffie and Glynn.

2.6.2 Semigroup Pricing

Rogers (1997), Lewis (1998), Darolles and Laurent (2000), Linetsky (2004), Boyarchenko and Levendorskii
(2007) and Hansen and Scheinkman (2008) develop semigroup theory for Markov pricing. In their framework,
a semigroup is a family of operators that assigns prices today to payoffs that are functions of the Markov state
in the future. Like semigroups for Markov processes, the Markov pricing semigroup has a generator.

Darolles and Laurent (2000) apply semigroup theory and associated eigenfunction expansions to approx-
imate asset payoffs and prices under the familiar risk neutral probability distribution. While risk neutral
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probabilities give a convenient way to link pricing operators to conditional expectation operators, this device
abstracts from the role of interest rate variations as a source of price fluctuations. Including a state-dependent
instantaneous risk-free rate alters pricing in the medium and long term in a nontrivial way. The inclusion of
a interest rate adds a level term to the generator. That is, the generator B for a pricing semigroup can be
depicted as:

Bφ = A− ιφ.
where A has the form given in representation (2.4) and ι is the instantaneous risk-free rate.

As we mentioned above, a level term is present in the generator depiction given in Revuz and Yor (1991)
(Theorem 1.13 of Chapter 7). For pricing problems, since ι is an interest rate it can sometimes be negative.
Rogers (1997) suggests convenient parameterizations of pricing semigroups for interest rate and exchange rate
models. Linetsky (2004) and Boyarchenko and Levendorskii (2007) characterize the spectral or eigenfunction
structure for some specific models, and use these methods to approximate prices of various fixed income
securities and derivative claims on these securities.

3 Parametrizations of the Stationary Distribution: Calibrating the

Long Run

Over a century ago Karl Pearson (1894) sought to fit flexible models of densities using tractable estimation
methods. This led to a method-of-moments approach, an approach that was subsequently criticized by Fisher
(1921) on the grounds of statistical efficiency. Fisher (1921) showed that Pearson’s estimation method was
inefficient relative to maximum likelihood estimation. Nevertheless there has remained a considerable interest
in Pearson’s family of densities. Wong (1964) provided a diffusion interpretation for members of the Pearson
family by producing low-order polynomial models of the drift and diffusion coefficient with stationary densities
in the Pearson family. He used operator methods to produce expansions of the transition densities for the
processes and hence to characterize the implied dynamics. Wong (1964) is an important precursor to the work
that we describe in this and subsequent sections. We begin by generalizing his use of stationary densities to
motivate continuous-time models, and we revisit the Fisher (1921) criticism of method-of-moments estimation.

We investigate this approach because modelling in economics and finance often begins with an idea of
a target density obtained from empirical observations. Examples are the literature on city sizes, income
distribution and the behavior of exchange rates in the presence of bands. In much of this literature, one
guesses transition dynamics that might work and then checks this guess. Mathematically speaking this is
an inverse problem and is often amenable to formal analysis. As we will see, the inverse mapping from
stationary densities to the implied transitions or local dynamics can be solved after we specify certain features
of the infinitesimal evolution. Wong (1964)’s analysis is a good illustration in which this inverse mapping is
transparent. We describe extensions of Wong’s approach that exploit the mapping between the infinitesimal
coefficients (µ, σ2) and the stationary distributions for diffusions.

3.1 Wong’s Polynomial Models

To match the Pearson family of densities, Wong (1964) studied the solutions to the stochastic differential
equation:

dXt = %1(Xt)dt+ %2(Xt)
1
2 dWt
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where {Xt} is a scalar diffusion process and {Wt} is a scalar Brownian motion. The polynomial %1 used to
model the drift coefficient is first-order and the polynomial %2 used to model the diffusion coefficient is no
more than second-order. Using arguments we sketch below, the stationary density q for this process satisfies
the differential equation:

(ln q)′ =
2%1 − %2

′

%2
(3.1)

where ′ denotes differentiation with respect to the state. The logarithmic derivative of the density is the ratio
of a first-order to a second-order polynomial as required by Pearson (1894). When the density is restricted to
the nonnegative real numbers, we may add a boundary condition that requires the process to reflect at zero.

Wong (1964) identified the diffusion coefficient %2 up to scale as the denominator of (ln q)′ expressed as the
ratio of polynomials in reduced form. Given %2 the polynomial %1 can be constructed from the pair ((ln q)′, %2)
using formula (3.1). In subsection 3.2 we will discuss generalizations of this identification scheme.

Wong (1964) went on to characterize and interpret the stochastic processes whose densities reside in the
Pearson class. Many of the resulting processes have been used in economics and finance.

Example 5. When %1 has a negative slope and %2 is a positive constant, the implied density is normal and
the resulting process is the familiar Ornstein-Uhlenbeck process. This process has been used to model interest
rates and volatility. Vasicek (1977) features this process in his construction of an equilibrium model of the real
term structure of interest rates.

Example 6. When %1 has a negative slope and %2 is linear with a positive slope, the implied density is gamma
and the resulting process is the Feller square-root process. Sometimes zero is an attracting barrier, and to
obtain the gamma distribution requires the process to reflect at zero. Cox, Ingersoll, and Ross (1985) feature
the Feller square root process in their model of the term structure of interest rates.

Example 7. When %1 has a negative slope and %2 is proportional to x2, the stationary density has algebraic
tails. This specification is used as a model of volatility and as a model of size distribution. In particular,
Nelson (1990) derives this model as the continuous-time limit of the volatility evolution for a GARCH(1,1)
model. Nelson (1990) uses the fat (algebraic) tail of the stationary distribution to capture volatility clustering
over time.

Example 8. A limiting case of this example also gives a version of Zipf ’s Law. (See Rapoport (1978) for a
nice historical discussion.) Consider a density of the form: q ∝ x−2 defined on (y,∞) for y > 0. Notice that
the probability of being greater than some value x is proportional to x−1. This density satisfies the differential
equation:

d ln q(x)
dx

= − 2
x
.

Zipf’s law fits remarkably well the distribution of city sizes. For example, see Auerbach (1913) and Eaton and
Eckstein (1997).

Restrict %2(x) ∝ x2. In the context of cities this means that the variance of growth rates is independent
of city sizes, which is a reasonable approximation for the data in Japan 1965-1985 and France 1911-1990
discussed in Eaton and Eckstein (1997). (See also Gabaix (1999).) Formula (3.1) implies that

(ln q)′ + (ln %2)′ =
2%1

%2
= 0.

Thus the drift is zero and the process is a stationary local martingale. The boundary y is an attracting barrier
which we assume to be reflexive. We will have more to say about this process after we develop spectral tools
used in a more refined study of the dynamics.
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The density q ∝ x−2 has a mode at the left boundary y. For the corresponding diffusion model, y is a
reflecting barrier. Zipf ’s Law is typically a statement about the density for large x, however. Thus we could
let the left boundary be at zero (instead of y > 0) and set %1 to a positive constant. The implied density
behaves like a constant multiple of x−2 in the right tail, but the zero boundary will not be attainable. The
resulting density has an interior mode at one-half times the constant value of %1. This density remains within
the Pearson family.

Example 9. When %1 is a negative constant and %2 is a positive constant, the stationary density is exponential
and the process is a Brownian motion with a negative drift and a reflecting barrier at zero. This process is
related to the one used to produce Zipf ’s law. Consider the density of the logarithm of x. The Zipf’s Law implied
stationary distribution of lnx is exponential translated by ln y. When the diffusion coefficient is constant, say
α2, the drift of lnx is −α2

2 .

The Wong (1964) analysis is very nice because it provides a rather complete characterization of the tran-
sition dynamics of the alternative processes investigated. Subsequently, we will describe some of the spectral
or eigenfunction characterizations of dynamic evolution used by Wong (1964) and others. It is the ability
to characterize the transition dynamics fully that has made the processes studied by Wong (1964) valuable
building blocks for models in economics and finance. Nevertheless, it is often convenient to move outside this
family of models.

Within the Pearson class, (ln q)′ can only have one interior zero. Thus stationary densities must have at
most one interior mode. To build diffusion processes with multi-modal densities, Cobb, Koppstein, and Chan
(1983) consider models in which %1 or %2 can be higher-order polynomials. Since Zipf’s Law is arguably about
tail properties of a density, nonlinear drift specifications (specifications of %1) are compatible with this law.
Chan, Karolyi, Longstaff, and Sanders (1992) consider models of short-term interest rates in which the drift
remains linear, but the diffusion coefficient is some power of x other than linear or quadratic. They treat the
volatility elasticity as a free parameter to be estimated and a focal point of their investigation. Aı̈t-Sahalia
(1996b) compares the constant volatility elasticity model to other volatility specifications, also allowing for
a nonlinear drift. Conley, Hansen, Luttmer, and Scheinkman (1997) study the constant volatility elasticity
model but allowing for drift nonlinearity. Jones (2003) uses constant volatility elasticity models to extend
Nelson (1990)’s model of the dynamic evolution of volatility.

3.2 Stationary Distributions

To generalize the approach of Wong (1964), we study how to go from the infinitesimal generator to the
stationary distribution. Given a generator A of a Feller process, we can deduce an integral equation for the
stationary distribution. This formula is given by:

lim
τ↓0

∫ Tτφ− φ
τ

dQ =
∫
AφdQ = 0 (3.2)

for test functions φ in the domain of the generator. (In fact the collection of functions used to check this
condition can be reduced to a smaller collection of functions called the core of the generator. See Ethier and
Kurtz (1986) for a discussion.)

Integral equation (3.2) gives rise to the differential equation used by Wong (1964) [see (3.1)] and others.
Consider test functions φ that are twice continuously differentiable and have zero derivatives at the boundaries
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of the scalar state space. Write the integral equation∫
(µφ′ +

1
2
σ2φ′′)q = 0.

Using integration by parts once, we see that∫ [
µq − 1

2
(σ2q)′

]
φ′ = 0.

Given the flexibility of our choice of φ′, it follows that

µq − 1
2

(σ2q)′ = 0. (3.3)

From this equation, we may solve for µ as a function of (q, σ2) or for q′/q as a function of (µ, σ2). Alternatively,
integrating as in Aı̈t-Sahalia (1996a), we may solve for σ2 as a function of (µ, q).

Equation (3.3) has a multivariate counterpart used in our treatment of Markov diffusion processes using
quadratic forms. Suppose that there is an m-dimensional Markov state. An m-dimensional drift vector µ that
is consistent with a given smooth stationary density q and a diffusion matrix ν = [νij ] has component j given
by:

µjq =
1
2

m∑
i=1

∂(νijq)
∂yi

.

This choice of µ is not unique, however. As discussed in Chen, Hansen, and Scheinkman (2008), it is the
unique symmetric solution where symmetry is defined in terms of quadratic forms. We will have more to say
about this parameterization subsequently.

3.3 Fitting the Stationary Distribution

In applied research in macroeconomics and international economics, motivation for parameter choice and model
selection is sometimes based on whether they produce reasonable steady-state implications. An analysis like
that envisioned by Wong (1964) is germane to this estimation problem. A Wong (1964)-type approach goes
beyond the fascination of macroeconomists with deterministic steady states and considers the entire steady
state distribution under uncertainty. Whereas Wong (1964) produced diffusion models that imply prespecified
densities, it is also straightforward to infer or estimate densities from parameterized diffusion models.

We now consider the problem of fitting an identified model of a generator to the stationary distribution.
By calibrating to the implied stationary density and ignoring information about transitions, we may gain
some robustness to model misspecification. Of course, we will also loose statistical efficiency and may also fail
to identify features of the dynamic evolution. From a statistical standpoint, the entire joint distribution of
the data should be informative for making inferences about parameters. A misspecified model may, however,
continue to imply correct marginal distributions. Knowledge of this implication is valuable information to a
model-builder even if the joint distributions are misspecified.

Initially we allow jump processes, diffusion processes and mixtures, although we will subsequently specialize
our discussion to diffusion models. Hansen and Scheinkman (1995) use equation (3.2) to produce estimating
equations. Their idea is to parameterize the generator and use the empirical distribution of the data to
estimate unknown parameters. That is, consider a family of generators Ab parameterized by b. Given time
series data {xt} and a family of test functions,

E [Aβφ(xt)] = 0 (3.4)
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for a finite set of test functions where β is the parameter vector for the Markov model used to generate the
data. This can be posed as a generalized-method-of-moments (GMM) estimation problem of the form studied
by Hansen (1982).

Two questions arise in applying this approach. Can the parameter β in fact be identified? Can such
an estimator be efficient? To answer the first question in the affirmative often requires that we limit the
parameterization. We may address Fisher (1921)’s concerns about statistical efficiency by looking over a rich
(infinite-dimensional) family of test functions using characterizations provided in Hansen (1985). Even if we
assume a finite dimensional parametrization, statistical efficiency is still not attained because this method
ignores information on transition densities. Nevertheless, we may consider a more limited notion of efficiency
because our aim is to fit only the stationary distribution.

In some analyses of Markov process models of stationary densities it is sometimes natural to think of the
data as being draws from independent stochastic processes with the same stationary density. This is the case
for many applications of Zipf’s law. This view is also taken by Cobb, Koppstein, and Chan (1983). We now
consider the case in which data are obtained from a single stochastic process. The analysis is greatly simplified
by assuming a continuous-time record of the Markov process between date zero and T . We use a central limit
approximation as the horizon T becomes large. From Bhattacharya (1982) or Hansen and Scheinkman (1995)
we know that

1√
T

∫ T

0

Aβφ⇒ Normal(0,−2 < Aβφ|φ >) (3.5)

where ⇒ denotes convergence in distribution, and

< Aβφ|φ > .=
∫
φ (Aβφ) dQ,

for φ in the L2(Q) domain of Aβ . This central limit approximation is a refinement of (3.4) and uses an explicit
martingale approximation. It avoids having to first demonstrate mixing properties.

Using this continuous-time martingale approximation, we may revisit Fisher (1921)’s critique of Pearson
(1894). Consider the special case of a scalar stationary diffusion. Fisher (1921) noted that Pearson (1894)’s
estimation method was inefficient, because his moment conditions differed from those implicit in maximum
likelihood estimation. Pearson (1894) shunned such methods because they were harder to implement in
practice. Of course computational costs have been dramatically reduced since the time of this discussion.
What is interesting is that when the data come from (a finite interval of) a single realization of a scalar
diffusion, then the analysis of efficiency is altered. As shown by Conley, Hansen, Luttmer, and Scheinkman
(1997), instead of using the score vector for building moment conditions the score vector could be used as test
functions in relation (3.4).

To use this approach in practice, we need a simple way to compute the requisite derivatives. The score
vector for a scalar parameterization is:

φ =
d ln qb
db

(β).

Recall that what enters the moment conditions are test function first and second derivatives (with respect to
the state). That is, we must know φ′ and φ′′, but not φ. Thus we need not ever compute ln q as a function of
b. Instead we may use the formula:

ln qb′ =
2µb
σ2
b

− lnσ2
b
′

to compute derivatives with respect to the unknown parameters. Even though the score depends on the true
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parameter it suffices to use test functions that are depicted in terms of b instead of β. Asymptotic efficiency
will be preserved.

While formally the efficient test function construction used an assumption of a continuous-time record, the
resulting estimator will remain “approximately” efficient when discrete-time samples are used to approximate
the estimation equations. For a formal characterization of statistical efficiency of estimators constructed using
only information about the stationary distribution for a discrete-time Markov process see Kessler, Schick,
and Wefelmeyer (2001); but in this case the implementation is typically more complicated.4 Finally, Aı̈t-
Sahalia and Mykland (2008) compare estimators of the type proposed in Hansen and Scheinkman (1995) and
Conley, Hansen, Luttmer, and Scheinkman (1997) to maximum likelihood counterparts. They find that such
an approach can produce credible estimators of the drift coefficient for a given diffusion coefficient.

While formally the efficient test function construction used an assumption of a continuous-time record, they
resulting estimator will remain “approximately” efficient when discrete-time samples are used to approximate
the estimation equations. For a formal characterization of statistical efficiency of estimators constructed from
information about the only stationary distribution for a discrete-time Markov process see Kessler, Schick, and
Wefelmeyer (2001); but the implementation is typically more complicated.5 Finally, Aı̈t-Sahalia and Mykland
(2008) compare estimators of the type proposed in Hansen and Scheinkman (1995) and Conley, Hansen,
Luttmer, and Scheinkman (1997) to maximum likelihood counterparts. They find that such an approach can
produce credible estimators of the drift coefficient for a given diffusion coefficient.

While statistical efficiency presumes a correct specification, any misspecification that leaves intact the
parameterized model of the stationary density will remain consistent under ergodicity and some mild regularity
assumptions. Checking whether a model fits the stationary density for some set of parameters is an interesting
question in its own right. One possible approach is to add in test functions aimed at specific features of the
stationary distribution to obtain an additional set of over-identifying restrictions. Following Bierens (1990),
such a method could be refined by using an ever enlarging collection of test functions as the sample size is
increased, but the practical impact of this observation seems limited.

An alternative comprehensive comparison of a parametric density estimator can be made to a nonpara-
metric estimator to obtain a specification test. Consider the following comparison criterion:∫

(qb − q)2qω (3.6)

where q is the true density of the data and ω a weighting function.6 Instead of constructing a small number
of test functions that feature specific aspects of the distribution, a researcher specifies the weighting function
ω that dictates which ranges of data receive more emphasis in the statistical test. By design, objective (3.6)
is zero only when qb and q coincide for some admissible value of b. As before, a parameterization of qb
can be inferred from a parameterization of the generator A. The implied model of the stationary density is
parameterized correctly when the objective is zero for some choice of b. Aı̈t-Sahalia (1996b) uses this to devise
a statistical test for misspecification of the stationary density.

Following Aı̈t-Sahalia (1996b), the density q can be estimated consistently from discrete-time data using
nonparametric methods. The parameter b can be estimated using the method previously described or by min-
imizing the sample-counterpart to (3.6). Aı̈t-Sahalia (1996b) derives the limiting distribution of the resulting

4For an earlier and closely related discussion that focuses on sampled diffusions, see Kessler (2000).
5For an earlier and closely related discussion that focuses on sampled diffusions, see Kessler (2000) and for additional discussion

see Bibby, Jacobsen, and Sorensen (2004).
6Distance measures other than this L2 weighted norm can be used, such as an entropy measure.
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test statistic and applies this method to test models of the short-term interest rate process.7 One challenge
facing such nonparametric tests is producing accurate small sample distributions. The convergence to the
asymptotic distribution obtained by assuming stationarity of the process can be slow when the data are highly
persistent, as is the case with US interest rates. (See Pritsker (1998) and Conley, Hansen, and Liu (1999).)

3.4 Nonparametric Methods for Inferring Drift or Diffusion Coefficients

Recall that for a scalar diffusion, the drift coefficient can be inferred from a stationary density, the diffusion
coefficient and their derivatives. Alternatively the diffusion coefficient can be deduced from the density and
the drift coefficient. These functional relationships give rise to nonparametric estimation methods for the drift
coefficient or the diffusion coefficient. In this subsection we describe how to use local parametrizations of the
drift or the diffusion coefficient to obtain nonparametric estimates. The parameterizations become localized
by their use of test functions or kernels familiar from the literature on nonparametric estimation. The local
approaches for constructing estimators of µ or σ2 estimate nonparametrically one piece (µ or σ2) given an
estimate of the other piece.

In the framework of test functions, these estimation methods can be viewed as follows. In the case of a
scalar diffusion, ∫

(µφ′ +
1
2
σ2φ′′)q = 0. (3.7)

Construct a test function φ such that φ′ is zero everywhere except in the vicinity of some pre-specified point
y. The function φ′ can be thought of as a kernel and its localization can be governed by the choice of a
bandwidth. As in Banon (1978), suppose that the diffusion coefficient is known. We can construct a locally
constant estimator of µ that is very close to Banon (1978)’s estimator by solving the sample counterpart to
(3.7) under the possibly false assumption that µ is constant. The local specification of φ′ limits the range over
which constancy of µ is a good approximation, and the method produces a local estimator of µ at the point
y. This method is easily extended to other local parametrizations of the drift. Conley, Hansen, Luttmer, and
Scheinkman (1997) introduce a local linear estimator by using two local test functions to identify the level
and the slope of the linear approximation. Using logic closely related to that of Florens-Zmirou (1984), these
local estimators sometimes can presumably be justified when the integrability of q is replaced by a weaker
recurrence assumption.

Suppose that a linear function is in the domain of the generator. Then∫
µq = 0. (3.8)

We may now localize the parameterization of the diffusion coefficient by localizing the choice of φ′′. The
specific construction of φ′ from φ′′ is not essential because moment condition (3.8) is satisfied. For instance,
when φ′′ is scaled appropriately to be a density function, we may choose φ′ to be its corresponding distribution
function. Applying integration by parts to (3.7), we obtain∫ r

l

µ(x)φ′(x)q(x)dx =
∫ r

l

[∫ r

x

µq

]
φ′′(x)dx

provided that the localization function φ′′ has support in the interior of the state space (l, r). By localizing

7See Section 6.4 and Aı̈t-Sahalia (1996b) for an analogous test based on transition densities.
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the parameterization of the diffusion coefficient at x, the limiting version of (3.7) is:∫ r

x

µq +
σ2(x)q(x)

2
= 0.

Using (3.8), we then obtain the diffusion recovery formula derived in Aı̈t-Sahalia (1996a).

σ2 (x) =
2

q (x)

∫ x

l

µ (u) q (u) du. (3.9)

For a given estimator of µ, an estimator of σ2 can be based directly on recovery formula (3.9) as in Aı̈t-
Sahalia (1996a) or by using a locally constant estimator obtained by solving the sample counterpart to (3.7).
Not surprisingly, the two approaches turn out to be very similar.

The local approaches for constructing estimators of µ or σ2 require knowledge of estimates of the other
piece. Suppose we parameterize µ as in Aı̈t-Sahalia (1996a) to be affine in the state variable, µ(x) = −κ(x−α),
and a linear function is in the domain of the generator, then

A(x− α) = −κ(x− α).

This says that x − α is an eigenfunction of A, with eigenvalue −κ. We shall have more to say about eigen-
functions and eigenvalues in section 4. The conditional expectation operator for any interval t must have the
same eigenfunction and an eigenvalue given via the exponential formula:

Ttx = E [Xt|X0] = α+ e−κt (X0 − α) . (3.10)

This conditional moment condition applies for any t > 0. As a consequence, (α, κ) can be recovered by esti-
mating a first order scalar autoregression via least squares for data sampled at any interval t = ∆. Following
Aı̈t-Sahalia (1996a), the implied drift estimator may be plugged into formula (3.9) to produce a semiparame-
teric estimator of σ2 (x). Since (3.10) does not require that the time interval be small, this estimator of σ2 (x)
can be computed from data sampled at any time interval ∆, not just small ones.

As an alternative, Conley, Hansen, Luttmer, and Scheinkman (1997) produce a semiparameteric estimator
by adopting a constant volatility elasticity specification of the diffusion coefficient, while letting the drift be
nonparametric. The volatility elasticity is identified by using an additional set of moment conditions derived
in section 6.4 applicable for some subordinated diffusion models. Subordinated Markov processes will be
developed in 6.7.

We will have more to say about observable implications including nonparametric identification in section
6.

4 Transition Dynamics and Spectral Decomposition

We use quadratic forms and eigenfunctions to produce decompositions of both the stationary distribution and
the dynamic evolution of the process. These decompositions show what features of the time series dominate in
the long run and, more generally, give decompositions of the transient dynamics. While the stationary density
gives one notion of the long run, transition distributions are essential to understanding the full dynamic
implications of nonlinear Markov models. Moreover, stationary distributions are typically not sufficient to
identify all of the parameters of interest. We follow Wong (1964) by characterizing transition dynamics using a
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spectral decomposition. This decomposition is analogous to the spectral or principal component decomposition
of a symmetric matrix. Since we are interested in nonlinear dynamics, we develop a functional counterpart to
principal component analysis.

4.1 Quadratic Forms and Implied Generators

Previously, we demonstrated that a scalar diffusion can be constructed using a density q and a diffusion
coefficient σ2. By using quadratic forms described in Section 2, we may extend this construction to a broader
class of Markov process models. The form construction allows us to define a nonlinear version of principal
components.

Let Q be a Radon measure on the state space X. For the time being this measure need not be finite,
although we will subsequently add this restriction. When Q is finite, after normalization it will be the
stationary distribution of the corresponding Markov process. We consider two positive semi-definite quadratic
forms on the space of functions L2(Q). One is given by the usual inner product:

f1(φ, ψ) .=< φ,ψ >=
∫
φψdQ.

This form is symmetric [f1(φ, ψ) = f1(ψ, φ)] and positive semidefinite (f1(φ, φ) ≥ 0).

The second form is constructed from two objects: (a) a state dependent positive semidefinite matrix
ν and (b) a symmetric, positive Radon measure R on the product space X × X excluding the diagonal
D

.= {(x, x) : x ∈ X} with ∫
X×X−D

|x− y|2
1 + |x− y|2R(dx, dy) <∞.

It is given by:

f2(φ, ψ) .=
1
2

∫
(∇φ)∗ν(∇ψ)dQ+

1
2

∫
[φ(y)− φ(x)][ψ(y)− ψ(x)]R(dx, dy)

where ∗ is used to denote transposition.8 The form f2 is well-defined at least on the space C2
K of twice

continuously differentiable functions with compact support. Under additional regularity conditions, the form
f2 is closable, that is, it has a closed extension in L2(Q).9 However, even this extension has a limited domain.
Like f1, the form f2 is also symmetric and positive semidefinite. Notice that f2 is the sum of two forms. As
we will see, the first is associated with a diffusion process and the second with a jump process.10

4.1.1 Implied Generator

We may now follow the approach of Beurling and Deny (1958) and Fukushima (1971) by constructing a Markov
process associated with the form f1 and the closed extension of f2. In what follows we will sketch only part
of this construction. We describe how to go from the forms f1 and f2 to an implied generator. The generator
A is the symmetric solution to:

f2(φ, ψ) = −f1[(Aφ), ψ] = −
∫

(Aφ)ψdQ. (4.1)

8We may use weak gradients in the construction of f2.
9For instance if Q has density q, and q and ν are continuously differentiable, then the form f2 is closable.

10In fact there exist generalizations of this representation in which ν is replaced by a matrix-valued measure and an additional

term
∫
φ(x)ψ(x)dk(x) is introduced where k is a killing measure. See Beurling and Deny (1958) and Fukushima, Oshima, and

Takeda (1994).
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Since f2 is a positive semidefinite form, A is a negative semidefinite operator.

We explore this construction for each of the two components of f2 separately. Suppose initially that R is
identically zero and write Ad for the corresponding generator. Then

f2(φ, ψ) .=
1
2

∫
(∇φ)∗ν(∇ψ)q (4.2)

where q is the density of Q. Applying an integration-by-parts argument to (4.2) shows that Ad can be
depicted as a second order differential operator on the space C2

K of twice continuously differentiable functions
with compact support:

Adφ =
1
2

∑
i,j

νij
∂2φ

∂yi∂yj
+

1
2q

∑
i,j

∂(qνij)
∂yi

∂φ

∂yj

provided that both q and ν are continuously differentiable.11 In this formula we set νij to be the (i, j) element
of the matrix ν. Moreover, the implicit drift is

µj =
1
2q

m∑
i=1

∂(νijq)
∂yi

. (4.3)

This gives us a multivariate extension to the idea of parameterizing a Markov diffusion process in terms of a
density q and the diffusion matrix ν, with the drift being implicit.

Next suppose that ν is identically zero, and again assume that Q has a density q. Write:

f2(φ, ψ) =
1
2

∫
[φ(y)− φ(x) ] [ψ(y)− ψ(x)]R(dx, dy)

= −1
2

∫
[φ(y)− φ(x)]ψ(x)

R(dx, dy)
q(x)

q(x)dx+
1
2

∫
[φ(y)− φ(x)]ψ(y)R(dx, dy)

= −
∫

[φ(y)− φ(x)]ψ(x)
R(dx, dy)
q(x)

q(x)dx

where we used the symmetry of R. The joint measure R(dx, dy)/q(x) implies a conditional measure R(dy|x)
from which we define:

Apφ .=
∫

[φ(y)− φ(x)]R(dy|x).

We have just shown how to go from the forms to the generator of Markov processes. There is one tech-
nical complication that we sidestepped. In general there may be several closed extensions of f2 depending
on boundary restrictions. The smallest of these closed extensions always generates a semigroup of contrac-
tions. This semigroup will correspond to a semigroup of conditional expectations provided that the associated
operator A conserves probabilities. When this happens all closed extensions that lead to a Markov process
produce exactly the same process constructed with the aid of the minimal extension (e.g. Chen, Hansen, and
Scheinkman (2008) Proposition 4.6 and references therein.)12

Fukushima, Oshima, and Takeda (1994) provide sufficient conditions for conservation of probabilities. An
implication of the sufficient conditions of Fukushima, Oshima, and Takeda (1994) is that if |νij(x)| ≤ c|x|2+2δ

and q has a 2δ moment, probabilities are conserved. (See also Chen, Hansen, and Scheinkman (2008).) Another
set of sufficient conditions can be obtained by observing that a recurrent semigroup conserves probabilities
(Fukushima, Oshima, and Takeda (1994) Lemma 1.6.5). Hasminskii (1960) and Stroock and Varadhan (1979)
suggest using Liapounov functions to demonstrate recurrence.

11The continuous differentiability restriction can be weakened by introducing weak derivatives.
12When the smallest closed extension fails to conserve probabilities, we may still build an associated Markov process, provided

that we allow the process to be killed in finite time when it hits a boundary. Other boundary protocols are also possible and lead

to the study of alternative closed extensions.
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4.1.2 Symmetrization

There are typically nonsymmetric solutions to (4.1). Given a generator A, let A∗ denote its adjoint. Define a
symmetrized generator as:

As =
A+A∗

2
.

Then As can be recovered from the forms f1 and f2 using the algorithm suggested previously. The symmetrized
version of the generator is identified by the forms, while the generator itself is not.

We consider a third form using one-half the difference between A and A∗. Define:

f3(φ, ψ) =
∫ (A−A∗

2
φ

)
ψdQ.

This form is clearly anti-symmetric. That is

f3(φ, ψ) = −f3(ψ, φ)

for all φ and ψ in the common domain of A and its adjoint. We may recover a version of A+A∗
2 from (f1, f2)

and A−A
∗

2 from (f1, f3). Taken together we may construct A. Thus to study nonsymmetric Markov processes
via forms, we are led to introduce a third form, which is antisymmetric. See Ma and Rockner (1991) for an
exposition of nonsymmetric forms and their resulting semigroups.

In what follows we specialize our discussion to the case of multivariate diffusions. When the dimension
of the state space is greater than one, there are typically also nonsymmetric solutions to (4.1). Forms do
not determine uniquely operators without additional restrictions such as symmetry. These nonsymmetric
solutions are also generators of diffusion processes. While the diffusion matrix is the same for the operator
and its adjoint, the drift vectors differ. Let µ denote the drift for a possibly nonsymmetric solution, µs

denote the drift for the symmetric solution given by (4.3), and let µ∗ denote the drift for the adjoint of the
nonsymmetric solution. Then

µs =
µ∗ + µ

2
.

The form pair (f1, f2) identifies µs but not necessarily µ.

The form f3 can be depicted as:

f3(φ, ψ) =
1
2

∫
[(µ− µ∗) · (∇φ)]ψq

at least for functions that are twice continuously differentiable and have compact support. For such functions
we may use integration by parts to show that in fact:

f3(φ, ψ) = −f3(ψ, φ).

Moreover, when q is a density, we may extend f3 to include constant functions via

f3(φ, 1) =
1
2

∫
(µ− µ∗) · (∇φ)q = 0.

4.2 Principal Components

Given two quadratic forms, we define the functional versions of principal components.
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Definition 6. Nonlinear principal components are functions ψj , j = 1, 2 . . . that solve:

max
φ

f1(φ, φ)

subject to

f2(φ, φ) = 1

f1(φ, ψs) = 0, s = 0, ..., j − 1

where ψ0 is initialized to be the constant function one.

This definition follows Chen, Hansen, and Scheinkman (2008) and is a direct extension of that used by
Salinelli (1998) for iid data. In the case of a diffusion specification, form f2 is given by (4.2) and induces a
quadratic smoothness penalty. Principal components maximize variation subject to a smoothness constraint
and orthogonality. These components are a nonlinear counterpart to the more familiar principal component
analysis of covariance matrices advocated by Pearson (1901). In the functional version, the state dependent,
positive definite matrix ν is used to measure smoothness. Salinelli (1998) advocated this version of principal
component analysis for ν = I to summarize the properties of i.i.d. data. As argued by Chen, Hansen, and
Scheinkman (2008) they are equally valuable in the analysis of time series data. The principal components,
when they exist, will be orthogonal under either form. That is:

f1(ψj , ψk) = f2(ψj , ψk) = 0

provided that j 6= k.

These principal components coincide with the principal components from the canonical analysis used by
Darolles, Florens, and Gourieroux (2000) under symmetry, but otherwise they differ. In addition to maximizing
variation under smoothness restrictions (subject to orthogonality), they maximize autocorrelation and they
maximize the long run variance as measured by the spectral density at frequency zero. See Chen, Hansen,
and Scheinkman (2008) for an elaboration.

This form approach and the resulting principal component construction is equally applicable to i.i.d. data
and to time series data. In the i.i.d. case, the matrix ν is used to measure function smoothness. Of course
in the i.i.d. case there is no connection between the properties of ν and the data generator. The Markov
diffusion model provides this link.

The smoothness penalty is special to diffusion processes. For jump processes, the form f2 is built using the
measure R, which still can be used to define principal components. These principal components will continue
to maximize autocorrelation and long run variance subject to orthogonality constraints.

4.2.1 Existence

It turns out that principal components do not always exist. Existence is straightforward when the state space
is compact, the density q is bounded above and bounded away from zero and the diffusion matrix is uniformly
nonsingular on the state space. These restrictions are too severe for many applications. Chen, Hansen, and
Scheinkman (2008) treat cases where these conditions fail.

Suppose the state space is not compact. When the density q has thin tails, the notion of approximation
is weaker. Approximation errors are permitted to be larger in the tails. This turns out to be one mechanism
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for the existence of principal components. Alternatively, ν might increase in the tails of the distribution of q
limiting the admissible functions. This can also be exploited to establish the existence of principal components.

Chen, Hansen, and Scheinkman (2008) exhibit sufficient conditions for existence that require a trade-off
between growth in ν and tail thinness of the density q. Consider the (lower) radial bounds,

ν(x) ≥ c(1 + |x|2)βI

q(x) ≥ exp[−2ϑ(|x|)].

Principal components exist when 0 ≤ β ≤ 1 and rβϑ′(r)→∞ as r gets large. Similarly, they also exist when
ϑ(r) = γ

2 ln(1 + r2) + c∗, and 1 < β < γ − m
2 + 1. The first set of sufficient conditions is applicable when the

density q has an exponentially thin tail; the second is useful when q has an algebraic tail.

We now consider some special results for the case m = 1. We let the state space be (l, r), where either
boundary can be infinite. Again q denotes the stationary density and σ > 0 the volatility coefficient (that is,
σ2 = ν.) Suppose that ∫ r

l

∣∣∣∣∫ x

xo

1
q(y)σ2(y)

dy

∣∣∣∣ q(x)dx <∞ (4.4)

where xo is an interior point in the state space. Then principal components are known to exist. For a proof
see, e.g. Hansen, Scheinkman, and Touzi (1998), page 13, where this proposition is stated using the scale
function

s(x) .=
∫ x

xo

1
q(y)σ2(y)

dy,

and it is observed that (4.4) admits entrance boundaries, in addition to attracting boundaries.

When assumption (4.4) is not satisfied, at least one of the boundaries is natural. Recall that the boundary
l (r) is natural if s(l) = −∞ (s(r) = +∞ resp.) and,∫ x0

l

s(x)q(x)dx = −∞
(∫ r

x0

s(x)q(x)dx = +∞ resp.
)

Hansen, Scheinkman, and Touzi (1998) show that in this case principal components exist whenever

lim sup
x→r

µ

σ
− σ′

2
= lim sup

x→r

σq′

2q
+
σ′

2
= −∞

lim inf
x→l

µ

σ
− σ′

2
= lim inf

x→l
σq′

2q
+
σ′

2
= +∞. (4.5)

We can think of the left-hand side of (4.5) as a local measure of pull towards the center of the distribution. If
one boundary, say l, is reflexive and r is natural, then a principal component decomposition exists provided
that the lim inf in (4.5) is +∞.

4.2.2 Spectral Decomposition

Principal components, when they exist, can be used to construct the semigroup of conditional expectation op-
erators as in Wong (1964). A principal component decomposition is analogous to the spectral decomposition of
a symmetric matrix. Each principal component is an eigenfunction of all of the conditional expectation opera-
tors and hence behaves like a first-order scalar autoregression (with conditionally heteroskedastic innovations).
See Darolles, Florens, and Gourieroux (2001) for an elaboration. Thus principal components constructed from
the stationary distribution must satisfy an extensive family of conditional moment restrictions.
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Both the generator and the semigroup of conditional expectations operators have spectral (principal com-
ponent) decompositions. The generator has spectral decomposition:

Aφ =
∞∑
j=0

−δjf1(ψj , φ)ψj ,

where each δj > 0 and, ψj is a principal component (normalized to have a unit second moment) and an
eigenvector associated with the eigenvalue −δj , that is,

Aψj = −δjψj .

The corresponding decomposition for the semigroup uses an exponential formula:

T∆φ =
∞∑
j=0

exp(−∆δj)f1(ψj , φ)ψj . (4.6)

This spectral decomposition shows that the principal components of the semigroup are ordered in importance
by which dominate in the long run.

Associated with (4.6) for a diffusion is an expansion of the transition density. Write:

p(y|x, t) =
∞∑
j=0

exp(−tδj)ψj(y)ψj(x)q(y) (4.7)

where q is the stationary density. Notice that we have constructed p(y|x, t) so that

Ttφ(x) =
∫
φ(y)p(y|x, t)dy.

The basis functions used in this density expansion depend on the underlying model. Recall that an Ornstein-
Uhlenbeck process has a stationary distribution that is normal (see Example 5). Decomposition (4.6) is a
Hermite expansion when the stationary distribution has mean zero and variance one. The eigenfunctions are
the orthonormal polynomials with respect to a standard normal distribution.

4.2.3 Dependence

Spectral decomposition does not require the existence of principal components. We have seen how to con-
struct Markov processes with self adjoint generators using forms. A more general version of the spectral
decomposition of generators is applicable to the resulting semigroup and generator that generalizes formula
(4.6), see Rudin (1973), Hansen and Scheinkman (1995) and Schaumburg (2005). This decomposition is ap-
plicable generally for scalar diffusions even when a stationary density fails to exist, for a wide class of Markov
processes defined via symmetric forms. The measure q used in constructing the forms and defining a sense of
approximation need not be integrable.

The existence of a principal component decomposition typically requires that the underlying Markov pro-
cess be only weakly dependent. For a weakly dependent process, autocorrelations of test functions decay
exponentially. It is possible, however, to build models of Markov processes that are strongly dependent. For
such processes, the autocorrelations of some test functions decay at a slower than exponential rate. Operator
methods give a convenient way to characterize when a process is strongly dependent.
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In our study of strongly dependent, but stationary, Markov processes, we follow Chen, Hansen, and Car-
rasco (2008) by using two measures of mixing. Both of these measures have been used extensively in the
stochastic process literature. The first measure, ρ−mixing uses the L2(Q) formulation. Let

U
.= {φ ∈ L2(Q) :

∫
φdQ = 0,

∫
φ2dQ = 1}.

The concept of ρ−mixing studies the maximal correlation of two functions of the Markov state in different
time periods.

Definition 7. The ρ−mixing coefficients of a Markov process are given by:

ρt = sup
ψ,φ∈U

∫
ψ (Ttφ) dQ.

The process {Xt} is ρ−mixing or weakly dependent if limt→∞ ρt = 0.

When the ρ−mixing coefficients of a Markov process decline to zero, they do so exponentially. When a
Markov process has a principal component decomposition, it is ρ−mixing with exponential decay. In fact,
ρ−mixing requires something weaker.

As argued by Banon (1978) and Hansen and Scheinkman (1995), ρ−mixing is guaranteed by a gap in the
spectrum of the negative semidefinite operator A to the left of zero. Although not always symmetric, the
operator A is negative semidefinite: ∫

φ(Aφ)dQ ≤ 0

on the L2(Q) domain of A. This negative-semidefinite property follows from the restriction that Tt is a weak
contraction on L2(Q) for each t. A spectral gap is present when we can strengthen this restriction as follows:

sup
φ∈U ⋂D(A)

< φ,Aφ > < 0. (4.8)

When this condition is satisfied Tt is a strong contraction on the subspace U for each t, and the ρ−mixing
coefficients decay exponentially.

In the case of a scalar diffusion, Hansen and Scheinkman (1995) show that this inequality is satisfied
provided that

lim sup
x→r

µ

σ
− σ′

2
= lim sup

x→r

σq′

2q
+
σ′

2
< 0

lim inf
x→`

µ

σ
− σ′

2
= lim inf

x→`
σq′

2q
+
σ′

2
> 0. (4.9)

where r is the right boundary and ` is the left boundary of the state space. This restriction is a weakening
of restriction (4.5), which guaranteed the existence of principal components. Condition (4.9) guarantees that
there is sufficient pull from each boundary towards the center of the distribution to imply ρ−mixing. When
one of these two limits is zero, the ρ−mixing coefficients may be identically equal to one. In this case the
Markov process is strongly dependent.13

Since the ρ−mixing coefficients for a Markov process either decay exponentially or are equal to one, we
need a different notion of mixing to obtain a more refined analysis of strong dependence. This leads us to
consider the β−mixing coefficients:

13Recall that the term in the left-hand side of (4.9) can be interpreted as the drift of a corresponding diffusion with a unit

diffusion coefficient obtained by transforming the scale. As a consequence, condition (4.9) can also be related to Veretennikov

(1997)’s drift restriction for a diffusion to be strongly dependent.
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Definition 8. The β−mixing coefficients for a Markov process are given by:

βt =
∫

sup
0≤φ≤1

|Ttφ−
∫
φdQ|dQ.

The process {Xt} is β−mixing if limt→∞ βt = 0; is β−mixing with an exponential decay rate if βt ≤ γ exp(−δt)
for some δ, γ > 0.

At least for scalar diffusions, Chen, Hansen, and Carrasco (2008) show that the exponential decay of the
ρ−mixing coefficients is essentially equivalent to the exponential decay of the β−mixing coefficients. When
the ρ−mixing coefficients are identically one, however, the β−mixing coefficients will still decay to zero, but
at a rate slower than exponential. Thus the decay properties of the β−mixing coefficients provides a more
sensitive characterization of strong dependence.

4.3 Applications

4.3.1 Zipf’s Law

Recall Zipf’s Law discussed in Section 3.1. Zipf suggested a generalization of his law in which there was
a free parameter that related rank to size. Consider a family of stationary densities that satisfy a power
law of the form: qξ ∝ x−(2+ξ) defined on (y,∞) where y > 0 and ξ ≥ 0. Then the rank-size relation
becomes size(rank)

1
1+ξ = constant. This family of densities is of interest to economists, because of power-law

distributions that seem to describe income distribution and city sizes. With σ2(x) = α2x2, the corresponding
drift is, using equation (3.3),

µ = −ξα
2x

2
Notice that µ(y) < 0, so that y > 0 is an attainable boundary. We make this barrier reflexive to deliver the
requisite stationary density.

To study temporal dependence, we consider the pull measure:

µ

σ
− σ′

2
= −α(1 + ξ)

2
,

which is negative and independent of the state. The negative pull at the right boundary in conjunction with
the reflexive left boundary guarantees that the process has a spectral gap and thus it is weakly dependent
even in the case where ξ = 0. Since the pull measure is constant, it fails to satisfy restriction (4.5). The full
principal component decomposition we described in section 4.2 fails to exists because the boundary pull is
insufficient.

4.3.2 Stationarity and Volatility

Nonlinearity in a Markov diffusion coefficient changes the appropriate notion of mean reversion. Stationarity
can be induced by how volatility changes as a function of the Markov state and may have little to do with the
usual notion of mean reversion as measured by the drift of the diffusion process. This phenomenon is most
directly seen in scalar diffusion models in which the drift is zero, but the process itself is stationary. Conley,
Hansen, Luttmer, and Scheinkman (1997) generalize this notion by arguing that for stationary processes with
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an infinite right boundary, the stationarity is volatility induced when:∫ ∞
x

µ(y)
σ2(y)

dy > −∞ (4.10)

for some x in the interior of the state space. This requirement is sufficient for +∞ not to be attracting. For
the process to be stationary the diffusion coefficient must grow sufficiently fast as a function of the state.
In effect 1/σ2 needs to be integrable. The high volatility in large states is enough to guarantee that the
process eventually escapes from those states. Reversion to the center of the distribution is induced by this
high volatility and not by the pull from the drift. An example is Zipf’s with drift µ = 0. Conley, Hansen,
Luttmer, and Scheinkman (1997) give examples for models with a constant volatility elasticity.

Jones (2003) uses a stochastic volatility model of equity in which the volatility of volatility ensures that
the volatility process is stationary. Consider a process for volatility that has a linear drift µ(x) = α− κx and
constant volatility elasticity: σ2(x) ∝ x2γ . Jones estimates that κ is essentially zero for data he considers on
equity volatility. Even with a zero value of κ the pull measure µ/σ−σ′/2 diverges to −∞ at the right boundary
provided that γ is greater than one. Jones (2003) in fact estimates a value for γ that exceeds one. The pull
measure also diverges at the left boundary to +∞. The process is ρ-mixing and it has a simple spectral
decomposition. Stationarity is volatility induced when κ = 0 because relation (4.10) is satisfied provided that
γ exceeds one. The state-dependence in the volatility (of volatility) is sufficient to pull the process to the
center of its distribution even though the pull coming from the drift alone is in the wrong direction at the
right boundary.

Using parameter estimates from Jones (2003), we display the first five principal components for the volatility
process in Figure 1. For the principal component extraction, we use the two weighting functions described
previously. For the quadratic form in function levels we weight by the stationary density implied by these
parameter values. The quadratic form in the derivatives is weighted by the stationary density times the
diffusion coefficient. As can be see from Figure 1, this function converges to a constant in the right tail of the
stationary distribution.

While they are nonlinear, the principal components evaluated at the underlying stochastic process each
behave like a scalar autoregression with heteroskedastic innovations. As expected the higher-order principal
components oscillate more as measured by zero crossings.14 The higher-order principal components are less
smooth as measured by the quadratic form in the derivatives. Given the weighting used in the quadratic form
for the derivatives, the principal components are flat in the tails.

4.3.3 Approximating Variance Processes

Meddahi (2001) and Andersen, Bollerslev, and Meddahi (2004) use a nonlinear principal component de-
composition to study models of volatility. Recall that each principal component behaves as a univariate
(heteroskedastic) autoregression and the components are mutually orthogonal. These features of principal
components make them attractive for forecasting conditional variances and time-averages of conditional vari-
ances. Simple formulas exist for predicting the time-average of a univariate autoregression and Andersen,
Bollerslev, and Meddahi (2004) are able apply those formulas in conjunction with a finite number of the most
important principal components to obtain operational prediction formulas.

14Formally, the as expected comment comes from the Sturm-Liouville theory of second-order differential equations.
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Figure 1: The first five principal components for a volatility model estimated by Jones. The weighting
functions are the density and the density scaled by the diffusion coefficient. The parameter values are κ = 0,
α = .58× 10−6, and σ2 = 6.1252x2.66. Except for κ, the parameter values are taken from the fourth column of
Table 1 in Jones. Although the posterior mean for κ is different from zero, it is small relative to its posterior
standard deviation.

While they are nonlinear, the principal components evaluated at the underlying stochastic process each
behave like a scalar autoregression with heteroskedastic innovations. As expected the higher-order principal
components oscillate more as measured by zero crossings.11 The higher-order principal components are less
smooth as measured by the quadratic form in the derivatives. Given the weighting used in the quadratic form
for the derivatives, the principal components are flat in the tails.

4.9.3 Approximating Variance Processes

Meddahi (2001) and Andersen, Bollerslev, and Meddahi (2004) use a nonlinear principal component de-
composition to study models of volatility. Recall that each principal component behaves as a univariate
(heteroskedastic) autoregression and the components are mutually orthogonal. These features of principal
components make them attractive for forecasting conditional variances and time-averages of conditional vari-
ances. Simple formulas exist for predicting the time-average of a univariate autoregression and Andersen,
Bollerslev, and Meddahi (2004) are able apply those formulas in conjunction with a finite number of the most
important principal components to obtain operational prediction formulas.

4.9.4 Pricing

As an alternative application, Darolles and Laurent (2000) use a principal component decomposition for scalar
diffusions to approximate asset payoffs and prices under a risk neutral probability distribution. Limiting

11Formally, the as expected comment comes from the Sturm-Luiville theory of second-order differential equations.
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Figure 1: The first five principal components for a volatility model estimated by Jones. The weighting
functions are the density and the density scaled by the diffusion coefficient. The parameter values are κ = 0,
α = .58× 10−6, and σ2 = 6.1252x2.66. Except for κ, the parameter values are taken from the fourth column of
Table 1 in Jones. Although the posterior mean for κ is different from zero, it is small relative to its posterior
standard deviation.
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4.3.4 Imitating Long Memory Processes

Linear characterizations of time series typically define long memory in terms of the behavior of the spectral
density function (the Fourier transform of the autocovariance function). When the spectral density diverges
to infinity at zero, there is strong linear dependence. The degree of fractional integration is defined using the
rate at which this spectral density diverges. As we have seen, stationary Markov processes can be strongly
dependent as characterized by the behavior of the implied mixing coefficients.

The spectral density function at frequency zero is typically the variance used in a central limit approxi-
mation. From Bhattacharya (1982) and Hansen and Scheinkman (1995) and formula (3.5), we know that the
asymptotic variance for the central limit approximation for 1√

T

∫ T
0
Aφ(xt) is:

2f2(φ, φ) = −2
∫
φ(Aφ)dQ =

∫
(∇φ)∗ν(∇φ)q

where the second right-hand side expression is the formula for diffusion processes. The formula for jump
processes is different. Thus the long-run variance for the process {Aφ(xt)} is given by the form 2f2 applied
to the test function φ. This long-run variance is also the spectral density at frequency zero.

This long-run variance is not always finite, however. Using this long-run variance, we may define weak
dependence as:

sup
φ∈D(A),

∫
A(φ)2dQ=1

f2(φ, φ) <∞.

This is in effect the inverse counterpart to (4.8), and is equivalent to the restriction that the ρ−mixing
coefficients have exponential decay. This criterion also suggests how we might construct strongly dependent
diffusion processes with a divergent spectral density. Find a pair (ν,Q) and a test function φ such that for

ψ
.= µ · ∂φ

∂x
+

1
2

trace
(
ν
∂2φ

∂x∂x′

)
we have

∫
|ψ|2q <∞;

∫
ψq = 0; and

∫ (
∂φ
∂x

)∗
ν
(
∂φ
∂x

)
=∞.

Such a process gives an alternative way to produce long range dependence to the self similar fractional
Brownian motion model of Mandelbrot and Ness (1968). While these diffusions are not self-similar, they have
the mathematical advantage of being semimartingales.

We illustrate a family of scalar diffusion models that are strongly dependent. It is often argued that
strong dependence is a feature of volatility models. One important source of evidence for strong dependence
is a spectral density matrix that diverges at frequency zero. We now display one construction of a nonlinear
diffusion model that is strongly dependent. This example is taken from Chen, Hansen, and Carrasco (2008).

Consider a scalar process with a zero mean and a diffusion coefficient σ2(x) = (1 + x2)γ for 1/2 < γ < 1.
The candidate stationary density is proportional to 1/σ2. In fact this process is stationary, but its ρ−mixing
coefficients are unity. In particular, the pull measure is zero at both boundaries. Form a new process by taking
a time invariant transformation of the original process. That is, let

ψ =
σ2

2
φ′′

where φ is such that φ′(x) = (1 + x2)−η/2. Restrict η to satisfy: γ − 1/2 ≤ η ≤ 1/2. Then ψ has mean zero
and finite variance when integrated against the stationary density.15 Its long run variance, however, is infinite.

15The function φ will not typically be in the L2(Q) domain of the generator.
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Figure 2: Spectral density functions for different pairs (γ, η). Spectral densities are rescaled to integrate to
one.

Notice that ∫
σ2(φ′)2q =∞

because η ≤ 1/2. The divergence of the spectral density function near frequency zero is illustrated by Figure 2.
The rate of divergence of this spectral density function at frequency zero is shown in Figure 3 using logarithmic
scaling.

5 Hermite and Related Expansions of a Transition Density

We now consider two methods to approximate the transition density of diffusions. These methods often
lead to closed form expressions for the density; and as a consequence, these expansions are readily usable
for parametric estimation. First, we consider the univariate Hermite expansions of Aı̈t-Sahalia (2002b); by
making a judicious change of variable, these expansions use polynomial basis functions that are common across
all models. This commonality makes them particularly attractive to use in likelihood approximation. Second,
in the multivariate case, we consider the local expansions of Aı̈t-Sahalia (2001), which rely on expansions in
both the time and state dimensions. Prior to our study of transition densities, we discuss an exponential
expansion for approximating conditional expectations over small time intervals.16 This will be used as input
into some of the subsequent calculations.

16While the spectral depiction 4.6 of the exponential formula is applicable to all functions that are square integrable with

respect to Q, it can be difficult to compute.
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Figure 3: Spectral density functions for different pairs (γ, η) plotted on a log− log scale. Spectral densities
are rescaled to integrate to one.

5.1 Exponential Expansion

When diffusion coefficients are smooth, a power series expansion can be used for a subset of functions in the
domain of the generator. By a power series we mean:

T∆φ ≈
K∑
k=0

∆kAkφ
k!

, (5.1)

which converges in K. Schaumburg (2005) provides a justification for this formula for a specific collection
of functions. Consider a function φ in the image of Tt, that is a function that satisfies φ = Ttψ for some
ψ ∈ L2(Q). Then under an additional arguably weak regularity condition (see Assumption 2A in Schaumburg
(2005)), the power series converges for ∆ ≤ t.

To illustrate this result, suppose there exists a spectral decomposition of the form given in (4.6) for ψ and
hence for φ. Then

φ =
∞∑
j=0

exp(−δjt)f1(ψj , ψ)ψj .

Notice that
f1(ψj , ψ) = f1(φ, ψj) exp(δjt).

This suggests that ψ could be constructed by “inverting” the conditional expectation operator. For this
construction to work, however,

∞∑
j=0

f1(φ, ψj)2 exp(2δjt) <∞ (5.2)

which illustrates the strength of Schaumburg (2005)’s restriction that φ be in the image of Tt. See Car-
rasco, Florens, and Renuault (2007) for an extensive discussion of such restrictions for conditional expectation
operators used in a variety of econometric applications.
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When restriction (5.2) is satisfied, we can establish the approximation. Write

K∑
k=0

∆kAkφ
k!

− exp (A)φ =
∞∑
j=0

[
K∑
k=0

(−∆δk)k

k!
− exp (−∆δj)

]
f1(ψj , φ)ψj

=
∞∑
j=0

[
K∑
k=0

(−∆δk)k

k!
− exp (−∆δj)

]
exp(−δjt)f1(ψj , ψ)ψj

The discounting of the coefficients f1(ψk, ψ) by exp(−δkt) is used to limit the magnitude of the approximation
error. Notice that

exp(−tδj)
∣∣∣∣∣
K∑
k=0

(−∆δj)k

k!
− exp (−∆δj)

∣∣∣∣∣ ≤ exp(−∆δj)

[
K∑
k=0

(∆δj)k

k!
+ exp(−∆δj)

]
≤ 2.

This bound together with the pointwise (in ∆δk) of the power series expansion of the exponential can be used
in conjunction with the Dominated Convergence Theorem to show that the approximation error converges to
zero in the norm on L2(Q).

Schaumburg (2005) establishes this approximation without requiring the simple spectral decomposition
we used here. The remaining challenge in using this approach is to characterize more explicitly the set of
functions that are in the image of Tt. For instance, in Wong (1964)’s models with polynomial eigenfunctions,
it can be shown that polynomials are in the image of Tt, but it remains an interesting challenge to establish
this property for more general classes of diffusion models.

Kessler (1997) and Stanton (1997) suggest using this expansion method to construct conditional moment
restrictions to be used estimation. In what follows we will see how this expansion can be applied as input into
the approximation of transition densities.

5.2 Hermite Expansion of the Transition Function

We have already noted that a spectral decomposition of the semigroup for an Ornstein-Uhlenbeck process
with a standard normal stationary distribution is a Hermite expansion. In problems of estimation it is often
convenient to use a common expansion for alternative models, and Hermite expansion is a leading example. In
what follows, we follow Aı̈t-Sahalia (1999) and Aı̈t-Sahalia (2002b) and describe Hermite series expansions for
scalar diffusions. These expansions lead to closed form expressions which can be applied to scalar diffusions
with sufficient regularity.

It is clearly special and limiting to have a stationary distribution that is standard normal. To make the
standard normal distribution useful for approximation, we transform the state and rescale the change in the
state over an interval of time ∆. To understand the construction, the following analogy may be helpful.
Consider a standardized sum of random variables to which the Central Limit Theorem (CLT) apply. Often,
one is willing to approximate the actual sample size by infinity and use the N (0, 1) limiting distribution for
the properly standardized transformation of the data. If not, higher order terms of the limiting distribution
(for example the classical Edgeworth expansion based on Hermite polynomials) can be calculated to improve
the accuracy of the approximation.

Consider now approximating the transition density of a diffusion and think of the sampling interval ∆ as
playing the role of the sample size n in the CLT. For a small ∆, the conditional distribution is closer to being
normal because the contribution from the Brownian increment. If we properly standardize the data, then we
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can find out the limiting distribution of the standardized data as ∆ tends to 0 (by analogy with what happens
in the CLT when sample size tends to ∞). Properly standardizing the data in the CLT means subtracting
the population mean summing and dividing by the square root of the sample size. For this application, it
involves transforming the original diffusion X into another one, called Z below. In both cases, the appropriate
standardization makes N (0, 1) the leading term of the approximation. This N (0, 1) approximation is then
refined by including higher order terms based on Hermite polynomials, which are orthogonal with respect to
the leading N (0, 1) term.

5.2.1 Change of Variable and Rescaling

A property of a diffusion is that over small increments of time, first differences divided by
√

∆ are approximately
normal. The normal approximation becomes better as the interval ∆ becomes small, but the variance may be
state dependent. Thus prior to shrinking ∆ to zero, we transform the state to make the limiting approximation
a standard normal. The transformation is:

Yt ≡ γ (Xt) =
∫ Xt du

σ (u)
(5.3)

where the lower endpoint of integration is some interior point in the state space. The constructed process {Yt}
has a unit diffusion coefficient, so as to eliminate heteroskedasticity, and a drift:

µy(y) =
µ
[
γ−1 (y)

]
σ [γ−1 (y)]

− 1
2
dσ

dx

[
γ−1 (y)

]
. (5.4)

The stationary density qy for the transformed process is typically not normal, but it satisfies:

qy(y) ∝ exp
[
2
∫ y

µy(u)du
]
.

While it is possible for the transformed state to have finite upper or lower bounds, we focus on the case in
which the implied state space is R. The stationary density will have exponentially thin tails provided that the
drift µy is negative (positive) for large positive (negative) y and bounded away from zero in the tails. Thus
polynomials have finite second moments after this transformation has been applied, provided that there is
some pull towards the origin in the implied drift. As discussed in Section 4.2.3, these conditions on the pull
measure imply weak dependence of the diffusion process.

If the drift of the process {Yt} were zero, then it would be a standard Brownian motion. The first-difference
in {Yt} would have a standard normal density only after dividing by the square root of the sampling interval
∆. More generally, let py denote the transition function of the process {Yt}. Without this scaling, the first-
difference of {Yt} will converge to a degenerate measure with a unit probability mass (a Dirac mass) at zero.
To obtain the Hermite refinement of a standard normal approximation, we form

Z∆
.= ∆−1/2 (Y∆ − Y0)

and condition on Y0 = y0 = γ(x0). Let pz denote the conditional distribution of Z∆ where ∆ denotes the time
interval used in the approximation.

Since Z∆ is a known transformation of X, we can recover the transition density of X from the density of
Z∆ using the familiar Jacobian formula:

p (x|x0,∆) =
py [γ (x) |γ (x0) ,∆]

σ (x)
=
pz
(
∆−1/2 [γ(x)− γ(x0)] |γ(x0),∆

)
σ(x)∆1/2

. (5.5)

So this leaves us with the need to approximate the density function pz.
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5.2.2 Coefficients of the Expansion

Let hj denote the Hermite polynomials, the orthogonal polynomials with respect to the standard normal
density. They can be computed as:

hj (z) .= exp
(
z2

2

)
dj

dzj

[
exp

(−z2

2

)]
, j ≥ 0.

The Hermite expansion is

pz(z|y0,∆) =
exp(−z2/2)√

2π

∞∑
j=0

ηj (∆, y0)hj (z) (5.6)

with coefficients given by:

ηj (∆, y0) =
(

1
j!

)∫ +∞

−∞
hj (z) pz (z|y0,∆) dz

=
(

1
j!

)
E
(
hj

[
∆−1/2 (Y∆ − Y0)

]
|Y0 = y0

)
(5.7)

= (1/j!) T∆hj

(
∆−1/2 (Y∆ − y0)

)
A Hermite approximation to pz uses a finite number of terms in expansion (5.6). A corresponding approxi-
mation for px follows from (5.5).

Since the coefficients ηj are specific conditional moments of the process {Yt}, they can be computed using
numerical methods such as Monte Carlo integration. An attractive alternative proposed in Aı̈t-Sahalia (2002b)
is to use an exponential expansion of the form (5.1)). With (5.7) in mind, let φ(y) be a polynomial (which
also depends on y0, but y0 is held fixed here). Given growth and smoothness of the drift and diffusion
coefficients, polynomials and their iterates obtained by repeated application of the generator A are in D(A)
under regularity assumptions on the boundary behavior of the process. This guarantees that Taylor series:

K∑
k=0

∆kAkφ
k!

is well defined and a viable approximation to T∆.

Using this method, Aı̈t-Sahalia (1999) gives the formulae corresponding to popular models in finance, and
Aı̈t-Sahalia (2002b) uses this approach to approximate numerically a parametric likelihood function for scalar
diffusion estimation. Jensen and Poulsen (2002) show that this Hermite approximation works very well in
practice and that it dominates other methods for the benchmark examples they consider.

5.3 Local Expansions of the Log-Transition Function

In the univariate Hermite expansion described in section 5.2, we first deduced the Hermite expansion in terms
of polynomials in y−y0 for a given ∆. Once the Hermite coefficients ηj(∆, y0) are replaced by their Taylor series
approximation in ∆, the corresponding approximation expansion becomes local in ∆. In addition to using a
finite number of Hermite polynomials, we limited our use to a finite number of ∆ terms in the Taylor expansion
used to approximate the coefficients.17 Following Aı̈t-Sahalia (2001) we will use a similar strategy except that

17Different ways of gathering the terms are available as in the Central Limit Theorem, where both the Edgeworth and Gram-

Charlier expansions are based on a Hermite expansion.
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we will deduce directly a small ∆ expansion first. In contrast to the Hermite expansion, this expansion applies
directly to the logarithm of the transition density and permits the diffusion to be multivariate. After deducing
the ∆ expansion, we will explore an approximation based on the discrepancy between the state to which the
diffusion moves to and the current state. Formally we will deduce this as a small discrepancy approximation.
Taken together, this joint expansion provides an operational way to approximate (logarithms) of transition
densities for multivariate diffusions. Extensions to multivariate jump-diffusions are considered in Yu (2003).

5.3.1 Expansion in ∆

Aı̈t-Sahalia (2001) shows that an expansion at order K in ∆ for `(x|x0,∆) .= ln p(x|x0,∆) can be obtained in
the form:

`K(x|x0,∆) ≈ C−1(x|x0)∆−1 + C̃(x|x0) ln ∆ +
K∑
k=0

Ck(x|x0)
∆k

k!

The derivative with respect to ∆ of the approximating function is therefore:

∂`K
∂∆

(x|x0,∆) ≈ −C−1(x|x0)∆−2 + C̃(x|x0)∆−1 +
K∑
k=1

Ck(x|x0)
∆k−1

(k − 1)!
.

Before computing the coefficients of the expansion, reconsider Example 9.

Example 10. Consider a Brownian motion process with a constant drift (see Example 9). The transition
density is known to be normal with mean x0 + ∆µ and variance ∆σ2. The log density is:

`(x|x0,∆) =
1
2

[
− ln 2π − lnσ2 − ln ∆− (x− x0 − µ∆)2

∆σ2

]
.

We may compute directly the coefficients of the small ∆ expansion:

C−1(x|x0) = − (x− x0)2

2σ2

C̃(x|x0) = −1
2

C0(x|x0) = − lnσ +
(x− x0)µ

σ2
− 1

2
ln 2π

C1(x|x0) = − µ2

2σ2

More generally, these coefficients can be computed using the Kolmogorov forward and backward equations.
In particular, the forward equation is typically stated in terms of the densities, but it has a log-density
counterpart:

∂`

∂∆
(x|x0,∆) = C∗(x) +

m∑
i=1

µi(x)
∂`

∂xi
(x|x0,∆) +

m∑
i=1

m∑
j=1

∂νij(x)
∂xi

∂`

∂xj
(x|x0,∆)

+
1
2

m∑
i=1

m∑
j=1

νij(x)
∂2`

∂xi∂xj
(x|x0,∆) (5.8)

+
1
2

m∑
i=1

m∑
j=1

∂`

∂xi
(x|x0,∆)νij(x)

∂`

∂xj
(x|x0,∆)
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where

C∗(x) .= −
m∑
i=1

∂µi(x)
∂xi

+
1
2

m∑
i=1

m∑
j=1

∂2νij(x)
∂xi∂xj

This differential equation is linear in the second derivative of ` with respect to x but quadratic in the first
derivative.

5.3.2 Leading Term

The leading term in this expansion must solve:

−C−1(x|x0) =
1
2

[
∂C−1(x|x0)

∂x

]′
ν(x)

[
∂C−1(x|x0)

∂x

]
. (5.9)

This follows because the lowest power in ∆ on the left-hand side of (5.8) is −2. Only the last term on the
right-hand side contributes to this. We consider the solution that has a strict maximum at x = x0.

Example 11. Suppose that ν(x) = I. Aı̈t-Sahalia (2001) discusses when the state can be transformed so that
this restriction is satisfied. The differential equation (5.9) then has as a solution:

C−1(x|x0) = −|x− x0|2
2

.

This suggests a transition density approximation of the form:

exp
(
−|x− x0|2

2∆

)
over an interval ∆. In turn this suggests a normal approximation as the leading term. Since the leading term
will not even approximately integrate to one, we will need to explore other terms of the expansion. In this
example, by adding the expression

−m
2

ln ∆− m

2
ln 2π

to the leading term ensures that the resulting approximation is a log density. In fact it is the log density of a
multivariate normal with mean x0 and covariance matrix ∆I.

Consider next a quadratic (in x−x0) approximation to the solution to equation (5.9) determining C−1(x|x0).
The linear term is necessarily zero when the matrix ν is nonsingular. Write the second-order expansion as:

C−1(x|x0) ≈ −1
2

(x− x0)′V (x− x0).

Equation (5.9) implies the Riccati equation,

V = V ν(x0)V

with the solution of interest being:
V = ν−1(x0).

As a consequence the leading term in the expansion is:

− 1
2∆

(x− x0)′ν(x0)−1(x− x0)
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implying an approximate density:

exp
[
− 1

2∆
(x− x0)′ν(x0)−1(x− x0)

]
when we localize in both the interval ∆ and x− x0. Adding

−m
2

(ln ∆ + ln 2π)− 1
2

ln det ν(x0)

scales the implied density approximation to integrate to one. The resulting density is normal with mean x0

and covariance matrix ∆ν(x0).

We will have more to say about the x− x0 component of the expansion subsequently.

5.3.3 Next two terms

We now consider the implications of (5.8) for the next two terms in the small ∆ expansion. Adding a constant
term in x does not alter the differential equation. Thus we do not expect that the coefficients will be fully
determined from this equation alone.

To avoid higher-order terms in ln ∆, we look for solutions in which C̃(x|x0) is independent of x. Using the
previous discussion as motivation, we set

C̃(x|x0) = −m
2
.

In addition, we initialize C0(x0|x0) = − 1
2 ln det ν(x0)− m

2 ln(2π).

From the forward equation (5.8), we also have the restriction:

C̃(x|x0) =
m∑
i=1

µi(x)
∂C−1

∂xi
(x|x0) +

m∑
i=1

m∑
j=1

∂νij(x)
∂xi

∂C−1

∂xj
(x|x0)

+
1
2

m∑
i=1

m∑
j=1

νij(x)
∂2C−1

∂xi∂xj
(x|x0) (5.10)

+
m∑
i=1

m∑
j=1

∂C−1

∂xi
(x|x0)νij(x)

∂C0

∂xj
(x|x0)

After substituting the solutions for C−1 and C̃, this becomes a first-order partial differential equation in
C0(x|x0).

Recall that in Example 11, we set ν = I. In this example differential equation (5.10) simplifies and is
satisfied provided that:

m∑
i=1

∂C0

∂xi
(x|x0)(xi − x0i) = −

m∑
i=1

µi(x)(xi − x0i).

Integrating along a line segment between x0 and x we obtain:

C0(x|x0) = −
m∑
i=1

(xi − x0i)
∫ 1

0

µi [x+ u (x0 − x0)] du

since ln det I = 0.
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5.3.4 Remaining Terms

There is a recursive structure to the remaining coefficients. Since the left-hand side of (5.8) entails the
derivative with respect to ∆, whereas the right-hand side does not,

Ck+1(x|x0) = C∗k(x) +
m∑
i=1

µi(x)
∂Ck
∂xi

(x|x0) +
m∑
i=1

m∑
j=1

∂νij(x)
∂xi

∂Ck
∂xj

(x|x0)

+
1
2

m∑
i=1

m∑
j=1

νij(x)
∂2Ck
∂xi∂xj

(x|x0) (5.11)

+
1
2

m∑
i=1

m∑
j=1

k∑
r=−1

∂Cr
∂xi

(x|x0)νij(x)
∂Ck−r
∂xj

(x|x0).

where C∗0 = C∗ and C∗j = 0 for j ≥ 1. Notice that the right-hand side has a term in

∂Ck+1

∂xj
(x|x0)

obtained when r = −1. The remaining terms are computed as simple functions of derivatives of lower order
coefficients. Thus we are again left with a differential equation to solve, but it is an equation that is linear in
this derivative and not quadratic as in partial differential equation (5.9) for C−1(x|x0). We are interested in
solutions for which Ck+1(x0|x0) = 0.

5.3.5 Expansions in Powers of x− x0

Typically one cannot solve the differential equation (5.11). Instead, we can compute the coefficients of an
expansion in powers of x − x0 that is guaranteed to be accurate for x close to x0. After constructing an
expansion to a given order of each coefficient Cj(x|x0), the result is a joint expansion in ∆ and x− x0.

Like the expansion in ∆, a polynomial expansion of Cj(x|x0) can be computed explicitly in powers of
x− x0: see Aı̈t-Sahalia (2001) for details, and the order at which to expand the coefficient Cj . These Taylor
expansions of Cj(x|x0) may be computed by solving systems of linear equations with one exception, which
fortunately also has an explicit expansion in x− x0. Consider the equation (5.9) determining C−1(x|x0). As
we have previously argued the first nonzero term in the expansion is quadratic:

C−1(x|x0) = −1
2

(x− x0)′ν(x0)−1(x− x0).

obtained by solving a Riccati equation. The higher-order terms (x− x0) for C−1 can be calculated by solving
linear equations, however.

In conclusion, combining expansions in ∆ and x−x0, as described in Aı̈t-Sahalia (2001), provides a sequence
of local approximations to the function ln p(x|x0,∆). These expansions can be computed conveniently for a
multivariate diffusion process by evaluating derivatives of the drift and diffusion coefficients and solving a
Riccati equation for one term and linear equations for the remaining terms.

6 Observable Implications and Tests

We have seen in Sections 4 and 5 how to characterize transition densities of Markov processes. In this section we
explore the inverse problem. Suppose from data we can infer information about transitions. Could these data
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have come from special classes of continuous-time Markov processes? What are the observable implications of
the special types of Markov processes?

6.1 Local Characterization

By its very nature the generator gives a local counterpart to conditional moment restrictions. It gives us a
formal sense in which:

Eφ(xt+∆|xt)− φ(xt)
∆

≈ Aφ(xt).

Thus estimation of the left-hand side allows for the approximation of A. By looking at appropriately chosen
families of test functions we can learn about A provided discretization errors are small.

First, we consider the identification scheme advocated by Johannes (2004). Consider first linear test
functions parameterized as φ(x) = a · (x− x∗) for some a ∈ Rm and some x∗. Then

Aφ(x) = a · µ(x) + a ·
[∫

(y − x∗)R(dy|x)− (x− x∗)
]
.

Evaluating this at x = x∗ gives:

Aφ(x∗) = a · µ(x∗) + a ·
∫

(y − x∗)R(dy|x∗).

By letting a be each of the coordinate vectors we identify:

µ(x∗) +
∫

(y − x∗)R(dy|x∗).

Using an entirely similar argument for quadratic functions of the form (x − x∗)′V (x − x∗) for symmetric
matrices V , we may infer

ν(x∗) +
∫

(y − x∗)(y − x∗)′R(dy|x∗).

More generally, higher-order polynomials centered around x∗ will reveal higher-order moments of the condi-
tional jump distribution scaled by the jump intensity. The drift and diffusion will only contribute to the first
two conditional moments. Johannes (2004) used this observation to infer the importance of jump components
in interest rates.

Polynomials will sometimes not be in the domain of the generator. Other collections of localized test
functions can be employed in making these approximations. For instance, a · (x − x∗) might be replaced by
φ(x) = a · (x−x∗)ψ(|x−x∗|2) where ψ is a symmetric twice continuously differentiable function that is one at
zero and has compact support. Notice that the derivative of this test function at x = x∗ is a. In the absence
of jumps,

Aφ(x∗) = a · µ(x∗).

Similarly, when φ(x) = (x− x∗)′V (x− x∗)ψ(|x− x∗|2),

Aφ(x∗) = trace[ν(x∗)V ]

which can be used to identify ν.

Given that the diffusion component is a local operator, localization of first and second-order polynomials
continues to permit the identification of the drift and the diffusion coefficients. When the jump component

36



is present, we must add corrections that depend more specifically on the function ψ used in localization.
The corrections will cease to be conditional moments of the jump distribution scaled by the jump intensity
parameter λ.

Finally, in the absence of jump components we may also use a localization that is not smooth. For instance,
the infinitesimal parameters can be recovered using the familiar formulas:

µ (x∗) = lim
∆→0

1
∆

∫
|y−x∗|<ε

(y − x∗)P∆ (x∗, dy)

ν (x∗) = lim
∆→0

1
∆

∫
|y−x∗|<ε

(y − x∗) (y − x∗)′ P∆ (x∗, dy)

where P∆ is the transition distribution for the diffusion process. Florens-Zmirou (1984), Stanton (1997), Fan
and Zhang (2003), Bandi (2002), Bandi and Phillips (2003), and others consider estimation of diffusion based
on these local conditional moment restrictions. See also Bandi and Phillips (2002) for a discussion.

6.2 Total Positivity and Testing for Jumps

The local characterizations are justified by taking a limit as ∆ → 0. We now examine what can be said if
the process is only observed at a finite observation interval ∆ but arbitrarily large sample sizes. Let R be
the state space for a Markov process, and consider a family of probability distributions indexed by the time
interval ∆: P∆(·|x). Could this family of densities have come from a scalar diffusion process, i.e., a scalar
Markov process with continuous sample paths, or must a more general process be considered? Aı̈t-Sahalia
(2002c) develops statistical tests based on the total positivity restrictions on transition densities (see Karlin
and McGregor (1959a)).

While total positivity has a more general representation and probabilistic interpretation, it implies

P∆ (x,B)P∆

(
x̃, B̃

)
− P∆ (x̃, B)P∆

(
x, B̃

)
> 0 (6.1)

whenever, x < x̃ and B < B̃ (where B < B̃ is interpreted to mean that every element of B is less than every
element of B̃). Since this must hold for any choice of x̃ and B̃, there is a local (in the state) counterpart that
we express using the logarithm of the density:

∂2

∂x∂y
`(y|x,∆) > 0 (6.2)

for all x and y and interval ∆. This cross derivative restriction for each choice of x, y and ∆ is a necessary
condition for transition distributions to be those implied by a scalar diffusion.

A partial converse is also available. Suppose that the family of distribution functions of a Markov process
on R satisfies (6.1) for any positive ∆. Then under a side condition, there exists a realization of the process
such that almost all sample paths are continuous.

The following example shows how criterion (6.2) can be used to eliminate some transition densities as
coming from a model of a scalar diffusion.

Example 12. Suppose that `(y|x,∆) depends on the composite state (y, x) only through y−x. Then criterion
(6.2) is equivalent to requiring that ` be concave in y− x. It can be shown that the only admissible solution is

` (y|x,∆) = −1
2

ln(2πβ2∆)− (y − x− α∆)2

2β2∆
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where α and β are free parameters. That is the transition density is an arithmetic Brownian motion.

As an alternative, consider the generalized Cauchy density

` (y|x,∆) = − lnπ + lnα(∆)− ln
[
α(∆)2 + (y − x)2

]
where α(∆) is positive. Criterion (6.2) fails for large y − x.

Aı̈t-Sahalia (2002c) contains other examples. More generally, total positivity implies restrictions on processes
defined on state spaces other than R. Consider a continuous-time, stationary, Markov chain that can only take
countable discrete values, say, {. . . ,−1, 0, 1, . . .}. In a discrete state space, the appropriate notion of continuity
of the chain’s sample paths is the following intuitive one: the chain never jumps by more than one state at a
time, either up or down. It turns out that the restriction on the chain’s transition probabilities analogous to
(6.1) characterizes precisely this form of continuity: total positivity across all intervals restricts the process
to be a so called birth-and-death process (see Karlin and McGregor (1959b)). In this sense, a birth-and-death
process is the discrete-state analog to a scalar diffusion. See Aı̈t-Sahalia (2002c) for further discussion and
implications for derivative pricing methods, such as binomial trees.

For a fixed ∆, total positivity is a necessary restriction on the transition distribution but not a sufficient
one. Given a candidate transition distribution over an interval ∆, we did not construct a diffusion with that
transition density. Frydman and Singer (1979) study the analogous question for a finite state birth and death
process. In their study they show that to embed a single transition matrix (over an interval ∆) satisfying total
positivity in a continuous-time Markov process it is sometimes necessary that the continuous-time process be
time-inhomogeneous. They show that the total positivity function is a weaker restriction than embeddability
for a continuous-time process that is restricted to be time-homogeneous.

6.3 Principal Component Approach

We now explore an alternative approach to the embeddability question in the context of scalar diffusions: when
does there exist a (time-homogeneous) scalar diffusion process that is consistent with a given discrete-time
transition distribution? We follow Hansen, Scheinkman, and Touzi (1998) by answering this question using a
principal component decomposition. As we have seen, the existence of this decomposition is restrictive.

First, consider a scalar diffusion with stationary density q and diffusion coefficient σ2. As we have seen
there is a corresponding form constructed with these objects. Each principal component satisfies the eigenvalue
relation:

1
2

∫
φ′ψj

′σ2q = δj

∫
φψjq.

for any φ that is twice continuously differentiable for which φ′ has compact support. An integration-by-parts
argument implies that

ψj
′(x)σ2(x)q(x) = −2δj

∫ x

ψjq (6.3)

since φ′ can be localized at the point x.

To achieve identification, we must construct σ2 from a discrete-time transition operator. The density
q and the principal components ψj and associated eigenvalues δj are identifiable from discrete-time data.
The principle components are identifiable because they maximize autocorrelation. Moreover, they satisfy the
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discrete-time conditional moment restriction:18

E [φj(Xt+∆)|Xt] = exp(−∆δj)φj(Xt).

We can think of (6.3) as a set of restrictions that can be used to infer σ2. While σ2 can be identified from one
of these equations (except for the constant eigenfunction equation), over-identification comes from the fact
that the same σ2 must work for all eigenfunctions.19 Since σ2 is restricted to be positive, there is a testable
implication for even a single choice of j in (6.3) provided the constant eigenfunction is not used. Unfortunately,
statistical testing is likely to be more challenging for testing eigenfunction restrictions than for testing for total
positivity.

6.4 Testing the Specification of Transitions

The generator of a semigroup commutes with the family of conditional expectation operator that it generates:

AT∆φ = T∆Aφ (6.4)

for any φ in the domain of the generator and any ∆. This follows from the semigroup property (2.2) and the
construction of the generator as the time derivative of the semigroup (at t = 0). As emphasized by Hansen and
Scheinkman (1995), this gives rise to a set of testable restrictions beyond stationarity which we now explore.

From an abstract perspective, given a candidate generator Â (not necessarily A) and a conditional expec-
tation operator T∆ suppose

ÂT∆φ = T∆Âφ (6.5)

for any φ among a rich collection of test functions (formally a core of the generator). In what way does this
restrict the candidate Â? How might we actually test this implication?

If the candidate generator Â commutes with A, then Â cannot be distinguished from A on the basis of
(6.4). In particular, when Â is a scalar multiple of A, they commute and hence cannot be distinguished. Thus
the most one can hope for from (6.5) is the identification of the generator up to scale. As illustrated by Hansen
and Scheinkman (1995), without further restrictions, the identification problem can be more severe than this.
On the other hand, Hansen and Scheinkman (1995) show that stationary scalar diffusions can be identified up
to scale by (2.2) and the information encoded in the stationary distribution.

Stationary scalar diffusions are examples of processes that are reversible. More generally, stationary Markov
processes modelled via symmetric forms are reversible. Such models are identifiable from discrete time data
sampled at any fixed interval ∆.20 Thus the commuting restriction does not encode all of the identifying
information contained in the transition distribution.

18An alternative parametric identification and inference approach is suggested by Kessler and Sorensen (1999). They use

the fact that principal components satisfy this conditional moment restriction to build estimating equations for parameterized

diffusions. See Bibby, Jacobsen, and Sorensen (2004) for further discussion.
19There is a close relation between recovery formula (6.3) and formula (3.9) that we described previously. Suppose that a linear

function is in the domain of the generator, the drift is linear. Then the drift coefficient is an eigenfunction and the corresponding

value of δ is the negative of the derivative of this function. With these substitutions, the two recovery formulas coincide. Demoura

(1998) suggests a similar identification by looking across two distinct eigenfunctions and their first two derivatives to identify

the pair (µ, σ2). In contrast, recovery formula (6.3) avoids using second derivatives and instead uses a single eigenfunction in

conjunction with the stationary density.
20See Proposition 5 in Hansen and Scheinkman (1995).
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For reversible Markov process models, there is an equivalent statement of restriction (6.5):

E
([
Âφ(xt+1)

]
ψ(xt)

)
= E

(
φ(xt+1)

[
Âψ(xt)

])
(6.6)

for φ and ψ in the domain of Â. The restriction can be tested via statistical methods by focusing on a limited
number of test functions, or it can be made comprehensive by adapting the approach of Bierens (1990).
This type of moment condition is extended in Conley, Hansen, Luttmer, and Scheinkman (1997).21 Instead
of analyzing the forward and backward evolution of the product of two functions, φ(xt+1) and ψ(xt), the
evolution of a more general function ϕ(xt+1, xt) is used. In what follows we describe a different approach.

For stationary diffusions, there is an equivalent statement of restriction (6.5) that is deduced in Aı̈t-Sahalia
(1996b). In contrast to (6.6) reversibility is not required. We may deduce this directly from the Kolmogorov
forward and backward equations as in Aı̈t-Sahalia (1996b). Alternatively (and essentially equivalently) we
may localize the test function φ in (6.5). Let Â be a candidate generator of a diffusion with drift µ̂ and
diffusion matrix ν̂. After localization, the left-hand side of (6.5) becomes:

∑
i

µ̂i(x)
∂

∂xi
p (y|x,∆) +

1
2

∑
i,j

ν̂ij(x)
∂2

∂xi∂xj
p (y|x,∆).

Prior to localizing the right-hand side of (6.5), we apply integration by parts to a test function with compact
support in the interior of the state space and write:

T∆Âφ(x) = −
∫ [∑

i

∂

∂yi
µ̂i(y)p(y|x,∆)

]
φ(y)dy +

1
2

∫ ∑
i,j

∂2

∂yiyj
ν̂ij(y)p(y|x,∆)

φ(y)dy

By localizing the test function around a given value of y, it follows from (6.5) that

∑
i

µ̂i(x)
∂

∂xi
p (y|x,∆) +

1
2

∑
i,j

ν̂ij(x)
∂2

∂xi∂xj
p (y|x,∆) (6.7)

= −
∑
i

∂

∂yi
[µ̂i(y)p(y|x,∆)] +

1
2

∑
i,j

∂2

∂yiyj
[ν̂ij(y)p(y|x,∆)] .

Aı̈t-Sahalia (1996b) calls the difference K (y|x,∆) between the left-hand and right-hand side the transition
discrepancy.22.

Indeed, the left-hand side of the inequality is the contribution of the Kolmogorov forward equation

∂p (y, t|x, s)
∂t

= −
∑
i

∂

∂yi
[µ̂i(y)p(y, t|x, s)] +

1
2

∑
i,j

∂2

∂yiyj
[ν̂ij(y)p(y, t|x, s)] (6.8)

and the right-hand side is the contribution from the backward equation:

−∂p (y, t|x, s)
∂s

=
∑
i

µ̂i(x)
∂

∂xi
p (y, t|x, s) +

1
2

∑
i,j

ν̂ij(x)
∂2

∂xi∂xj
p (y, t|x, s). (6.9)

These two equations cannot be used as such because their left-hand-side contains the derivative of the transition
density with respect to time. Time derivatives cannot be estimated without observations on how the process

21See their appendix E for a justification.
22While the above discussion focuses on diffusions, the Kolmogorov equations have natural extensions for more general Markov

processes (such as processes with jumps) and the corresponding transition discrepancy can be defined (see Aı̈t-Sahalia (1996b)).
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changes over small intervals of time. But we can work around this problem by getting rid of the time
derivatives as follows. Under time-homogeneity, p (y, t|x, s) = p (y, t− s|x, 0) ≡ p (y|x, t− s) as discussed in
Section 2.1 and therefore: ∂p/∂t = −∂p/∂s. Combining the two equations (6.8)-(6.9) then yields the transition
discrepancy, namely the fact that the sum of the left hand sides of (6.8) and (6.9) must be zero.

Restrictions (6.6) or (6.7) could in principle be used to identify a scalar diffusion nonparametrically up to
a free scale parameter on the drift and diffusion coefficients. They are also of value in estimating and testing
parameterized diffusions processes (again up to free scale parameter). Restriction (6.6) avoids having to
estimate second derivatives of transition densities, but it is applicable only to reversible processes and requires
a specific selection of test functions.23 Restriction (6.7) gives rise to a comprehensive test in Aı̈t-Sahalia
(1996b) formalized by choosing a weighting function to use in conjunction with the discrepancy measure.
Indeed, if we parametrize the diffusion process, then K (with µ and σ2 replaced by their assumed parametric
form µ (·, θ) and σ2(·, θ) respectively) must be zero at the true parameter value under the null of correct
parametric specification. Given nonparametric estimates of the transition function, K = 0 provides a testable
implication. The statistically efficient choices of test functions or weighting functions have not been formally
analyzed to date.

6.5 Testing Markovianity

The specification analysis described above assumes that the process is Markovian. Can this be tested? A
continuous time Markov process sampled with an interval ∆ is a discrete-time Markov process. One common
approach to test a discrete-time Markov process is to include additional lags of the state vector into the state
evolution equation and test for their statistical significance. Following Aı̈t-Sahalia (2002a), we consider an
alternative approach based on the Chapman-Kolmogorov equation given in Definition 2.

Under time-homogeneity, an implication of the Chapman-Kolmogorov equation is that T2∆ = (T∆)2 as
required by the semigroup property. Stated in terms of transition densities, the Markov hypothesis can be
tested the form H0 against H1, where{

H0 : p (y|x, 2∆)− r (y|x, 2∆) = 0 for all (x, y) ∈ S2

H1 : p (y|x, 2∆)− r (y|x, 2∆) 6= 0 for some (x, y) ∈ S2

with
r (y|x, 2∆) .=

∫
z∈S

p (y|z,∆) p (z|x,∆) dz. (6.10)

Both p (y|x,∆) and p (y|x, 2∆) can be estimated from data sampled at interval ∆. The successive pairs
of observed data (X0, X∆), (X∆, X2∆), (X2∆, X3∆), etc., can be used to estimate the density p (y|x,∆) and
hence the function r given by (6.10). Meanwhile, the successive pairs (x0, x2∆), (x∆, x3∆), . . ., can be used to
estimate directly the density p (y|x, 2∆). In other words, the test compares a direct estimator of the 2∆-interval
conditional density, with the indirect estimator of the 2∆-interval conditional density based on formula (6.10).
If the process is actually Markovian, then the two estimates should be close (for some distance measure) in a
sense made precise by the use of the statistical distribution of these estimators.

More generally we could study the j∆ transitions where j is an integer greater than or equal to 2. For
larger j, there are more options for comparison. A test could be based on constructing a j∆ period transition
could be constructed from shorter ones including shorter ones including (∆, (j − 1)∆), (2∆, (j − 2)∆), . . .

23Hansen and Scheinkman (1995) derive a more general counterpart based also on the generator of the reverse-time process.
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or even from more than two shorter transitions. It is not necessary to check all of these configurations as
many will be redundant. In general, a vector of transition equalities can be tested in a single pass in a GMM
framework with as many moment conditions as transition intervals.

6.6 Testing Symmetry

The symmetry of the transition distribution implied by our use of forms to build Markov processes is restrictive.
This restriction has motivated the construction of tests of symmetry and as we have seen more general
formulations that allow for asymmetry. In one important special case symmetry is not limiting: scalar diffusions
on the real line. In higher dimensions, however, symmetry is restrictive even for diffusions. When a Markov
process is stationary, the symmetry implied by the forms implies that the process is time reversible when
initialized at the stationary distribution. Reversible Markov processes are identifiable from discrete-time data,
even without parametric restrictions. There is no aliasing problem for these processes. See Hansen and
Scheinkman (1995) for a discussion.

Florens, Renault, and Touzi (1998) propose a test for reversibility as a necessary condition to embed a
stationary, reversible continuous-time process in a discrete time process sampled at regular intervals. Their
idea is the following. A reversible process should display positive autocorrelation in the following sense. For
any test function φ,

Eφ(Xt)φ(Xt+s) ≥ 0

for any interval s. (See the Theorem in Florens, Renault, and Touzi (1998) on page 75.) To build a statistical
test, use a vector of such functions, which we denote by Φ. Form the symmetrized autocovariance matrix:

1
2

[EΦ(Xt)Φ(Xt+1)′ + EΦ(Xt+1)Φ(Xt)′] . (6.11)

While this matrix has real eigenvalues by construction, the eigenvalues should all be positive if the discretely
sampled process can be embedded in a continuous-time, reversible Markov process. Since all linear combi-
nations of test functions in Φ should show positive persistence, eigenfunctions should also display positive
persistence. Thus eigenvalues must be positive. Florens, Renault, and Touzi (1998) suggest building a test
based on the smallest eigenvalue of the sample analog to (6.11).

An alternative approach to testing reversibility is given by Darolles, Florens, and Gourieroux (2000). It
is based on nonlinear canonical analysis of the joint density of adjacent observations, say (Xt, Xt+1). With
limitations on the temporal dependence, canonical analysis produces principal component pairs of functions
say φ(Xt) and ψ(Xt+1) that maximize correlation under orthogonality constraints. This becomes a nonlinear
analysis because the functions φ and ψ can be nonlinear in the Markov state. These principal components can
be used to construct an orthogonal decomposition of the joint density. Dauxois and Nkiet (1998) use canonical
analysis as a test of independence between two random vectors and Darolles, Florens, and Gourieroux (2000)
use it produce a test of reversibility. Their statistical tests are based on the restrictions that reversibility
imposes on the canonical analysis. Under reversibility, the two functions (φ, ψ) in each orthogonal pair should
coincide.

6.7 Random Time Changes

As we remarked in section 2.6.1, models with random time changes are common in finance. There are at
least two ways to motivate such models. One formulation due to Bochner (1960) and Clark (1973) posits a

42



distinction between calendar time and economic time. The random time changes are used to alter the flow of
information in a random way. Alternatively an econometrician might confront a data set with random sample
times, a situation we will return to in section 7.3.

A model of random time changes requires that we specify two objects. An underlying Markov process
{Xt : t ≥ 0} that is not subject to distortions in the time scale. For our purposes, this process is modelled
using a generator A. In addition we introduce a process {τt} for a continuous-time specification, or as
{τj : j = 1, 2, ...} for discrete time observations. The discrete time process of interest is:

Zj = Xτj .

In section 2.6.1, we describe a specification due to Duffie and Glynn (2004) and showed that the one-step
ahead conditional expectation operator for the resulting {Zj : j = 1, 2, ...} is:

(I − ζA)−1

where A is a generator, ζ distorts the time clock of the process {Xt : t ≥ 0}, and Ǎ = ζA. As Duffie and
Glynn (2004) show, we can avoid computing the operator inverse for test functions ψ of the form:

ψ = φ− Ǎφ

for some φ in the domain of the generator Ǎ. For this convenient but flexible choice of ψ,

E[ψ(Zj+1)|Zj ] =
(
I − Ǎ

)−1
ψ(Zj) = φ(Zj),

or
E[φ(Zj+1)− Ǎφ(Zj+1)− φ(Zj)|Zj ] = 0. (6.12)

This implies an extensive array of conditional moment restrictions to be used in estimation and testing.24

Models with random time distortions present special challenges for identification and estimation. Without
observations on the directing process or sampling times, nonparametric identification of even reversible pro-
cesses breaks down. If the directing process {τj} is independent of the underlying process {Xt}, then the most
we can hope for is identification of A up to scale. It will not be possible to distinguish an original process from
one that moves though time say twice as fast. Hansen and Scheinkman (1995) establish that scalar diffusions
can be identified up to a free constant scale parameter without data on observation times. Identification is even
more challenging when the sampling or directing process is dependent on the underlying process. As we have
seen in examples 3 and 4, the generator of the original process is scaled by a scalar function of the underlying
Markov state in the characterization of the generator for a process with a distorted time scale. Thus without
data on the process {τj} we are left not being able to distinguish A from ζ∗A for some positive function ζ∗

of the Markov state. The free scale factor is a function not a constant. Finite-dimensional parameterizations,
when appropriate, will simplify or in some cases even solve this identification problem.

Consider next the case in which {τj} is directly interpreted as a set of sample times and not some unobserved
distortion in the time scale. These sampling times provide important identifying information about the possibly
dependent sampling scheme and about the underlying process {Xt}. Direct or indirect (through say trading
volume) data on the directing process will be useful in inferring the underlying process. We will have more to
say about this question in section 7.3.

24This is a particular case of Duffie and Glynn (2004), who deduce a more general class of conditional moment restrictions by

allowing for test functions that depend on Zj ’s at adjacent integers.
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7 The Properties of Parameter Estimators

7.1 Maximum Likelihood Estimation

A direct consequence of the expansion approach described in Sections 5.2 and 5.3 is the practical feasibility of
maximum likelihood estimators for discretely sampled diffusions. A fixed interval sample of a time-homogenous
continuous-time Markov process is a Markov process in discrete time. Given that the Markov state vector
is observed and the unknown parameters are identified, properties of the ML estimator follow from what is
known about ML estimation of discrete-time Markov processes.25 There is an extensive literature applicable
to discrete-time stationary Markov processes starting with the work of Billingsley (1961). The asymptotic
covariance matrix for the ML estimator is the inverse of the score covariance or information matrix where the
score at date t is ∂ ln p(Xt+∆|Xt,∆, θ)/∂θ where ln p(·|x,∆, θ) is the logarithm of the conditional density over
an interval of time ∆ and a parameter value θ.

When the underlying Markov process is nonstationary, the score process inherits this nonstationarity. The
rate of convergence and the limiting distribution of the maximum likelihood estimator depends upon growth
properties of the score process (e.g. see Hall and Heyde (1980) Chapter 6.2). A nondegenerate limiting
distribution can be obtained when the score process behaves in a sufficiently regular fashion. The limiting
distribution can be deduced by showing that general results pertaining to time series asymptotics (see e.g.,
Jeganathan (1995)) can be applied to the present context. One first establishes that the likelihood ratio has the
locally asymptotically quadratic (LAQ) structure, then within that class separates between the locally asymp-
totically mixed Normal (LAMN), locally asymptotically Normal (LAN) and locally asymptotically Brownian
functional (LABF) structures. As we have seen, when the data generating process is stationary and ergodic,
the estimation is typically in the LAN class. The LAMN class can be used to justify many of the standard
inference methods given the ability to estimate the covariance matrix pertinent for the conditional normal
approximating distribution. Rules for inference are special for the LABF case. These structures are familiar
from the linear time series literature on unit roots and co-integration. Details for the case of a nonlinear
Markov process can be found in Aı̈t-Sahalia (2002b).

Example 13. As an example of the types of results that can be derived, consider the Ornstein-Uhlenbeck
specification, dXt = −κXtdt + σdWt, where θ = (κ, σ2). The discrete-time process obtained by sampling at
a fixed interval ∆ is a Gaussian first-order autoregressive process with autoregressive parameter exp(−κ∆)
and innovation variance σ2

2κ

(
1− e−2κ∆

)
. White (1958) and Anderson (1959) originally characterized the

limiting distribution for the discrete-time autoregressive parameter when the Markov process is not stationary.
Alternatively, by specializing the general theory of the limiting behavior of the ML estimation to this model, one
obtains the following asymptotic distribution for the the ML estimator of the continuous-time parameterization
(see Corollary 2 in Aı̈t-Sahalia (2002b)):

25Identification of a multivariate continuous-time Markov process from discrete-time can be problematic when the process is

not reversible. It is well known that an aliasing problem can be present. For example, see Phillips (1973) and Hansen and Sargent

(1983).
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• If κ > 0 (LAN, stationary case):

√
N

((
κ̂N

σ̂2
N

)
−
(

κ

σ2

))

⇒ N

( 0
0

)
,

 e2κ∆−1
∆2

σ2(e2κ∆−1−2κ∆)
κ∆2

σ2(e2κ∆−1−2κ∆)
κ∆2

σ4
(
(e2κ∆−1)2

+2κ2∆2(e2κ∆+1)+4κ∆(e2κ∆−1)
)

κ2∆2(e2κ∆−1)


• If κ < 0 (LAMN, explosive case), assume X0 = 0, then:

e−(N+1)κ∆∆
e−2κ∆ − 1

(κ̂N−κ)⇒ G−1/2 ×N (0, 1)
√
N
(
σ̂2
N − σ2

)
⇒ N

(
0, 2σ4

)
where G has a χ2[1] distribution independent of the N (0, 1). G −1/2×N (0, 1) is a Cauchy distribution.

• If κ = 0 (LABF, unit root case), assume X0 = 0, then:

N κ̂N ⇒
(
1−W 2

1

)(
2∆
∫ 1

0

W 2
t dt

)−1

√
N
(
σ̂2
N − σ2

)
⇒ N

(
0, 2σ4

)
where N is the sample size, {Wt : t ≥ 0} is a standard Brownian motion and ⇒ denotes convergence in
distribution.

7.2 Estimating the Diffusion Coefficient in the Presence of Jumps

Suppose now that jumps are in fact present, in addition to the usual Brownian noise, as in

dXt = µdt+ σdWt + dUt,

where {Ut} is a pure jump Lévy process with jump measure υ and independent of the Brownian motion {Wt}.
By restricting {Ut} to be a pure Lévy process, we eliminate state dependence. In terms of the setup in Section
2, we let the conditional measure R(dy|x) = υ(du) for u = y − x. When υ is a finite measure the jump
process is referred to as a compound Poisson process. Other Lévy processes allow υ([−ε,+ε]) = ∞ for any
ε > 0, so that the process exhibits an infinite number of small jumps in any finite time interval. Typical
examples are members of the class of symmetric stable processes of index 0 < α < 2 and rate ξ > 0, for
which υ(dy) = αξαdy/ |y|1+α

. The Cauchy process corresponds to α = 1, while the limit α→ 2 (from below)
produces a Gaussian distribution. Following Aı̈t-Sahalia (2003), we assess the effect of jumps on the estimation
of the Brownian variance parameter σ2.

When the Lévy measure is finite, the tiny jumps ought to be harder to distinguish from Brownian noise.
Surprisingly, using maximum likelihood, it is possible to identify σ2 with the same degree of precision as
if there were no jumps. Specifically, when the Brownian motion is contaminated by jumps, with a known
measure, the asymptotic variance AVAR of the maximum likelihood estimator ML for the diffusion coefficient
estimator satisfies

AVARML

(
σ2
)

= 2σ4∆ + o(∆) (7.1)

so that in the limit when the sample interval shrinks to zero (∆→ 0), the MLE of σ2 has the same asymptotic
distribution as if no jumps were present. This result holds not only for the specific examples considered in
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Aı̈t-Sahalia (2003) but for all Lévy processes which stay at a finite distance from the limiting case α = 2 (see
Aı̈t-Sahalia and Jacod (2008)).

This result also states that the presence of the jumps imposes no cost on our ability to estimate σ2. From
(7.1), the leading term in the asymptotic variance expansion is the asymptotic variance that applies when jumps
are absent. In contrast, suppose we contaminated the Brownian motion with another independent Brownian
motion with known variance ς2. In that case, we could still estimate σ2, but the asymptotic variance of the
MLE would be 2

(
σ2 + ς

)2 ∆.

Aı̈t-Sahalia (2003) also studies the ability of method-of-moments to reproduce the efficiency of ML, con-
sidering in particular absolute moments of order r and shows that the optimal choice of moment functions
involves non integer values of r which are less than one.

7.3 Maximum Likelihood Estimation with Random Sampling Times

Transaction-level data in finance are not only discretely sampled in time, they are also sampled at random time
intervals. Aı̈t-Sahalia and Mykland (2003a) study the impact of including or discarding observations on the
sampling intervals in that situation. Sampling intervals {∆j : j = 1, 2, ...} are random where ∆j = τj − τj−1

is drawn conditionally upon Xτj−1 from a known distribution. By letting ∆j be drawn conditionally on
Xτj−1 , one can capture effects such as an increase in trading activity following a large price movement say at
τj−1. This model is closely related to the models developed in Section 2.6.1 except that the models described
previously allow movements in Xt, for τj−1 < t < τj , to influence the τj .

Aı̈t-Sahalia and Mykland (2003a) study three likelihood-based estimators of θ = (κ, σ) in the model

dXt = µ(Xt;κ)dt+ σdWt.

The three estimators are:

• FIML: Full Information Maximum Likelihood, using the bivariate observations (Xτj ,∆j);

• IOML: Partial information maximum likelihood estimator using only the state observations Xτj , with
the sampling intervals integrated out ;

• PFML: Pseudo maximum likelihood estimator pretending that the sampling intervals are fixed at ∆j =
∆̄.

These estimators are designed so that each one of them is subject to a specific subset of the different
effects they wish to measure. FIML is asymptotically efficient, making the best possible use of the joint data
(Xτj ,∆j). The extent to which FIML with these data is less efficient than the corresponding FIML when the
full sample path is observable is the cost of discreteness. IOML is the asymptotically optimal choice if one
recognizes that the sampling intervals are random ∆j but does not observe them. The extra efficiency loss
relative to FIML is the cost of discreteness. PFML corresponds to doing as if the sampling intervals were all
identical (pretending that ∆j = ∆̄) when in fact they are random. The extent by which PFML underperforms
FIML is the cost of ignoring the randomness.

All three estimators rely on maximizing a version of the likelihood function of the observations, i.e., some
functional of the transition density p: p(Xτj |Xτj−1 ,∆j , θ) for FIML; p̃(Xτj |Xτj−1 , θ) = E∆j

[
p(Xτj |Xτj−1 ,∆j , θ)

]
,
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that is the over the law of ∆j |Xτj for IOML; and p(Xτj |Xτj−1 , ∆̄, θ) for PFML (which is like FIML except
that ∆̄ is used in place of the actual ∆j). Under stationarity, T 1/2(θ̂ − θ̄)→ N(0,Ω). For FIML and IOML,
θ̄ = θ0, where θ0 = (κ0, σ0) is the true parameter value, but PFML is asymptotically biased.

Aı̈t-Sahalia and Mykland (2003a) derive Taylor expansions of the asymptotic variance and bias of these
estimators. A random variable from the common distribution of the sampling intervals is

∆ = ε∆0, (7.2)

where ε is deterministic and ∆0 has a given finite distribution conditional on X0. They compute Taylor
expansions in ε of the expectations of interest, around ε = 0 (the limiting case were the full continuous-time
sample path is observable), leading to results of the form:

Ω = Ω(0) + εΩ(1) + ε2 Ω(2) +O
(
ε3
)

(7.3)

θ̄ − θ0 = ε b(1) + ε2 b(2) +O
(
ε3
)

(7.4)

where the higher order terms in ε correct the leading term for the discreteness of the sampling. Differences
between estimation methods and data use the matrices Ω(i) and b(i), i = 0, 1, ....26

These characterizations are based on a modification of the infinitesimal generator. Consider first test
functions that depend on the elapsed time interval and, as we considered previously, on an initial state:

f(Xt, X0, t)

A well known extension of the infinitesimal generator is:

µ(x;κ0)
∂f(x, x0, t)

∂x
+
σ2

0

2
∂2f(x, x0, t)

∂y2
+
∂f(x, x0, t)

∂t
,

which now includes a simple derivative with respect to time.

To analyze sampling under (7.2), Aı̈t-Sahalia and Mykland (2003a) use a related construction. Consider a
test function of the form:

f(Y1, Y0,∆, θ̄, ε)

where Yj
.= X∆j

. While it is possible to condition on the random ∆ and Y0 in taking a small ε approximation,
∆ and in the case of the PFML estimator, θ̄ depend implicitly on ε. This gives rise to a related but different
extension of the infinitesimal generator:

Gf(y, y0, δ, θ, ε) = δ0

[
µ(y;κ0)

∂f(y, y0, δ, θ, ε)
∂y

+
σ2

0

2
∂2f(y, y0, δ, θ, ε)

∂y2
+
∂f(y, y0, δ, θ, ε)

∂δ

]
+

∂f(y, y0, δ, θ, ε)
∂θ

∂θ̄

∂ε
+
∂f(y, y0, δ, θ, ε)

∂ε
.

In this depiction, δ0 is used to denote the realized value of ∆0 and y0 the realized value of Y0. The scaling by
δ0 is needed because of the time distortion induced by sampling. It is reminiscent of the scaling deduced in
section 2.6.1. The additional terms are included because of the dependence of the test function on ε directly
and indirectly through θ̄.27 The corresponding Taylor approximation for the conditional expectation is:

E
[
f(Y1, Y0,∆, θ̄, ε)|Y0 = y0,∆ = εδ0

]
≈

J∑
j=0

εj

j!
Gjf(y, y0, δ, θ̄, ε)|y=y0,δ=0,θ=θ0,ε=0.

26These objects depend implicitly on the underlying parameter value, but we suppress this dependence for notational conve-

nience.
27Aı̈t-Sahalia and Mykland (2003a) refer to this new operator as a generalized infinitesimal generator.
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The two equations (7.3)-(7.4) are used to analyze the effects of a given sampling scheme on parameter
estimation. The cost of discreteness is measured by the coefficient at the first order i in ε for which the FIML
variance differs from its continuous-time limit Ω(0). It is also the error that one would make if one were to use
continuous-time asymptotics (Ω(0)) instead of the full Ω when the data are in fact discretely sampled.

The cost of ignoring sampling times is quantified by examining the first order i in ε at which the coefficient
Ω(i) for IOML differs from the corresponding coefficient Ω(i) for FIML. The cost is measured by how much
bigger the IOML coefficient at that order is than the FIML coefficient. For this example, the cost of randomness
is at least as great, and often substantially greater than the cost of discreteness.

Since the PFML estimator is asymptotically biased its asymptotic mean-square error is dominated by the
square of the bias. Its performance under an asymptotic mean-square error loss function will always be worse
than an estimator that is asymptotically unbiased. Expansion (7.4) can be use to quantify the squared bias.

The main conclusion is that the loss from not observing, or not using, the sampling intervals, will be at
least as great, and often substantially greater, than the loss due to the fact that the data are discrete rather
than continuous. While correcting for the latter effect has been the main focus of the literature in recent years,
these results suggest that empirical researchers using randomly spaced data should pay as much attention, if
not more, to sampling randomness as they do to sampling discreteness. Introducing unknown parameters in
the sampling distribution for ∆j will alter the quantitative comparison, but we know from the related results
in the section 6.7 that full identification of the diffusion can fail without some knowledge of the sampling
distribution.

Aı̈t-Sahalia and Mykland (2003b) extend this approach by developing a theory of approximation for a
broad class of estimators of a diffusion

dXt = µ(Xt;κ)dt+ σ(Xt; γ)dWt

where κ and γ are unknown parameters. As is the case in general (e.g. see Hansen (1982)), many estimators
for the parameters of a continuous time Markov process can be viewed as belonging to the class of generalized
methods of moments estimators for (κ, γ). Aı̈t-Sahalia and Mykland (2003b) construct small δ expansions of
for the asymptotic variances and, when applicable, the biases of these estimators. Applications of this approach
include the study of Euler approximation and the study of the moment conditions deduced by Hansen and
Scheinkman (1995) when they are used in constructing the estimators of diffusion parameters when data are
sampled at random intervals.

8 Conclusions

Markov models are designed to be convenient models of nonlinear stochastic processes. We show how operator
methods can contribute to useful characterizations of dynamic evolution and approximations of a likelihood
function. We described these various characterizations and some of the resulting estimation strategies and
tests based on their observable implications.
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