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RATIONAL EXPECTATIONS FROM TWO
PERSPECTIVES

I Econometricians - impose rational expectations - use cross
equation restrictions that assume agent knowledge of parameters

I Economic decision makers - make investment decisions -
forecast the future- arguably not knowing parameters

Should economic agents and econometricians be placed on a more
equal footing, or not?
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FUNDAMENTAL QUESTIONS

I When is estimation difficult?
I What are the consequences for the econometrician?
I What are the consequences for economic agents and for

equilibrium outcomes?
I What are the real time consequences of learning for competitive

security markets?
I How is learning altered when decision-makers admit that the

models are misspecified or simplified?
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APPLICATION: MACROECONOMICS AND ASSET
PRICING

1. How does statistical ambiguity alter the predicted risk-return
relation?

Explains part of the steep slope by ...

2. Can learning induce model uncertainty premia that are larger
when macroeconomic growth is sluggish?

Yes, but only if ...
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RATIONAL EXPECTATIONS ECONOMETRICS

Key words: Cross-equation restrictions
Key assumption: Investor knowledge

Illustrations from the asset pricing literature: risk prices.

Model ingredients:

I Consumption dynamics:

ct+1 − ct = µc + αzt + σcut+1
zt+1 = Azt + σzut+1,

where {ut} is an iid sequence of normally distributed random
vectors.

I - Kreps-Porteus, Epstein-Zin and others preferences in which the
intertemporal composition of risk matters - Bansal-Yaron feature
predictability.
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RISK PRICES
Recall

ct+1 − ct = µc + αzt + σcut+1
zt+1 = Azt + σzut+1,

Assume a IES = 1, a recursive utility risk parameter γ and a discount
factor β.

Price the one-period exposure to shock ut+1 with a known
distribution. Prices are quoted in terms of mean reward.

p = σc + (γ − 1)
[
βα(I − βA)−1σz + σc

]
Limiting long horizon risk prices:

p∞ =
[
σc + α(I − A)−1σz

]
+ (γ − 1)

[
σc + βα(I − βA)−1σz

]
Cross equation restrictions link the consumption dynamics and the
risk prices.
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ECONOMETRICS AND LIMITED INFORMATION

Asset pricing implications represented as conditional moment
restrictions conditioned on investors information.

Apply Law of Iterated Expectations to deduce corresponding
unconditional moment restrictions.

Hansen-Singleton, Hansen-Richard, Luttmer and others.

Exploit the potential information advantage of investors in deducing
testable restrictions.
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STATISTICAL AMBIGUITY

Question: How does statistical ambiguity alter the predicted
risk-return relation?

Two perspectives:

I Econometrician
I Economic agents
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WHEN IS STATISTICAL INFERENCE
CHALLENGING

Problem: Suppose there are two models under consideration: model a
and model b. Historical data are available to select the correct model.

Chernoff: Pose a simple decision problem and ask how likely is it to
make a mistake? What is the decay rate of the mistake probabilities
per unit of observation?

Details
I average errors or equate errors
I compare log-likelihood ratio to a threshold

10 / 38



WHEN IS STATISTICAL INFERENCE
CHALLENGING

Problem: Suppose there are two models under consideration: model a
and model b. Historical data are available to select the correct model.

Chernoff: Pose a simple decision problem and ask how likely is it to
make a mistake? What is the decay rate of the mistake probabilities
per unit of observation?

Details
I average errors or equate errors
I compare log-likelihood ratio to a threshold

10 / 38



WHEN IS STATISTICAL INFERENCE
CHALLENGING

Problem: Suppose there are two models under consideration: model a
and model b. Historical data are available to select the correct model.

Chernoff: Pose a simple decision problem and ask how likely is it to
make a mistake? What is the decay rate of the mistake probabilities
per unit of observation?

Details
I average errors or equate errors
I compare log-likelihood ratio to a threshold

10 / 38



EXAMPLE WITH NORMAL DATA

Two models

A) mean µa and variance Σ.

B) mean µb with variance Σ.

Mistake probabilities eventually decay as function of sample size at
rate:

1
8
(µa − µb)′Σ−1(µa − µb)

Call this the Chernoff rate.
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HOW CLOSE ARE MODELS STATISTICALLY?

We can ask this question in a more general context.

I Does not require normality; study behavior of relative
likelihoods.

I Does not require independence; Can be extended to Markov
processes.

I Can average mistake probabilities or equate them.
I The (overly) simplified problem of making pairwise comparison

between models remains informative, as we will see.
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A CHALLENGE TO AN ECONOMETRICIAN

Model a has the form:

ct+1 − ct = .0058 + zt + .0053u1,t+1
zt+1 = .98zt + .00025u2,t+1.

Another representation of zt:

zt = .00025
∞∑

j=0

(.98)ju2,t−j.

Illustrates a model of Bansal-Yaron: low frequency component to
consumption predictability.

Model b has the same form but the second shock is eliminated.
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MISTAKE PROBABILITIES FOR CONSUMPTION
DYNAMICS
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Mistake probability as a function of sample size for the predictable
growth model vis a vis the iid growth model.

14 / 38



LOGARITHM OF MISTAKE PROBABILITIES
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PRIORS AND POSTERIORS
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Left panel is the AR parameter for the hidden state; right panel is the
mean growth rate of consumption; red line is the prior.
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REVIEW OF RISK PRICES

I Represent risks as µ + Λu where u is a random vector with mean
zero and an identity as its covariance matrix.

I The covariance matrix of the implied risks is Σ = ΛΛ′. ’
I A asset pricing model restricts the mean return vector µ as a

function of the risk exposure Λ by assigning a risk price vector p:

µ− rf 1n = Λp

where rf is the return on a risk free asset and 1n is an n
dimensional vector of ones.
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RISK-RETURN TRADEOFF

To summarize asset return implications, maximize Sharpe ratios of
portfolios by choice of the weight vector ω:

max
ω

ω · (µ− 1nrf )√
ω′Σω

= max
ω

ω′Λp√
ω′Σω

= |p|
=

[
(µ− 1nrf )′Σ−1(µ− 1nrf )

]1/2
.
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RISK PRICES AND PUZZLES

Observations

I Risk prices - assign prices to the exposure to alternative shocks
I Risk return tradeoff - Sharpe ratios - implied by risk prices

Risk prices are of direct interest as a challenge for an asset pricing
model when they can be measured. A weaker challenge is compare to
lower bounds on the risk return tradeoff.

A steep risk-return tradeoff is a challenge for asset pricing models
without appealing to high risk aversion.
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CAN A SMALL AMOUNT OF STATISTICAL
AMBIGUITY EXPLAIN A STEEP RISK-RETURN

FRONTIER?

Recall, maximum Sharpe ratio:

|p| =
[
(µ− 1nrf )′Σ−1(µ− 1nrf )

]1/2
(1)

When |p| based on the hypothetically correct value µ is small,
changing µ to µ̃ in (1) is dominated by:[

(µ− µ̃)′Σ−1(µ− µ̃)
]1/2

(2)

Squaring (2) and dividing by eight gives the Chernoff rate:

(µ− µ̃)′Σ−1(µ− µ̃)
8

which quantifies statistical latitude in moving µ!
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CHERNOFF RATE ⇐⇒ PRICE OF UNCERTAINTY

Let us quantify the link between the statistical discrimination of
alternative models and the risk prices as depicted in empirical finance.

As a rough idea, consider a Chernoff rate per observation of .13%
quarterly or about .5% on an annual basis. This changes the quarterly
Sharpe ratio by about .1 for quarterly data.

How do we interpret this movement?
I Statistical uncertainty from the standpoint of the econometrician

;
I Aversion or statistical ambiguity on the part of investors;

Extend these ideas to dynamic, nonlinear Markov environments in a
formal way. (Anderson-Hansen-Sargent.)
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CONSUMPTION GROWTH MODEL
RECONSIDERED

I Consumption dynamics:

ct+1 − ct = µc + αzt + σcut+1
zt+1 = Azt + σzut+1,

I One period risk prices

p = σc + (γ − 1)
[
σc + βα(I − βA)−1σz

]
I Statistical analysis of

(γ − 1)
[
σc + βα(I − βA)−1σz

]
suggests an alternative interpretation. Reinterpret γ − 1 as
reflecting statistical ambiguity instead of risk aversion. For
instance, γ of about 8.5 gives the .5% decay rate per annum.
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TRANSITION TO LEARNING

The Chernoff analysis characterizes our ability to tell models apart
statistically. It studies how potent learning can be, but it has little to
say about the dynamics of learning.

Next I want to consider the real time impact of learning when there are
only weak signals about some aspects of the economic environment.

There is empirical evidence that risk premia are larger in
macroeconomic downturns. (Campbell and Cochrane) and others.

Can learning induce model uncertainty premia that are larger when
macroeconomic growth is more sluggish?
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LEARNING

Bray-Kreps taxonomy distinguishes between

I Learning about a rational expectations equilibrium

Uses learning rules with at least temporary misspecification, but
without agents addressing this misspecification.
There is no scope for uncertainty premia.

I Learning within a rational expectations equilibrium

I will explore learning within an equilibrium but include a concern for
misspecification.
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LEARNING AND THREE RELATED CONCEPTS

Outcome or signal s∗ that depends on a function of a hidden state z.
This hidden state summarizes all information potentially pertinent for
characterizing the signal distribution.

Repeated over time as in Hidden State Markov Model (HMM).

Let H denote the history and current and past signals. Compute the
distribution for z and hence s∗ conditioned on H.

I Law of iterated expectations
I Reduction of compound Lotteries
I Filtering - recursive implementation
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FILTERING

Filtering is a recursive way to reduce the lottery by averaging over the
hidden state z.
Consider a signal:

dst = κ · ztdt + σdBt

where

I {zt} be a hidden state Markov chain. exp(tA) is the transition
matrix over an interval of time t.

I Realized value of zt is a coordinate vector. κ · zt selects randomly
among the entries in the vector κ.

I dBt is a Brownian increment conditioned on the state zt.

Special case of a Hamilton regime shift model. Used by David and
Veronesi in asset pricing literature.
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FILTERING SOLUTION
Wonham gives the solution based on reducing compound lotteries
while updating probabilities based on past data.

Let z̄t = E (zt|Ht), which is the vector of hidden state probabilities.
Aim is to compute z̄t recursively.

The recursive solution is a stochastic differential equation:
represented in terms of an alternative standard Brownian motion {B̄t}:

dst = κ · z̄tdt + σdB̄t

dz̄t = A′z̄tdt +
1
σ2 [diag{z̄t}] (κ− 1nκ · z̄t) (dst − κ · z̄t) .

Observations

I Dynamics determined by the underlying intensity matrix A.
I Local volatility for the signal has the same magnitude as that

prior to reduction.
27 / 38



FILTERING SOLUTION
Wonham gives the solution based on reducing compound lotteries
while updating probabilities based on past data.

Let z̄t = E (zt|Ht), which is the vector of hidden state probabilities.
Aim is to compute z̄t recursively.

The recursive solution is a stochastic differential equation:
represented in terms of an alternative standard Brownian motion {B̄t}:

dst = κ · z̄tdt + σdB̄t

dz̄t = A′z̄tdt +
1
σ2 [diag{z̄t}] (κ− 1nκ · z̄t) (dst − κ · z̄t) .

Observations

I Dynamics determined by the underlying intensity matrix A.
I Local volatility for the signal has the same magnitude as that

prior to reduction.
27 / 38



FILTERING SOLUTION
Wonham gives the solution based on reducing compound lotteries
while updating probabilities based on past data.

Let z̄t = E (zt|Ht), which is the vector of hidden state probabilities.
Aim is to compute z̄t recursively.

The recursive solution is a stochastic differential equation:
represented in terms of an alternative standard Brownian motion {B̄t}:

dst = κ · z̄tdt + σdB̄t

dz̄t = A′z̄tdt +
1
σ2 [diag{z̄t}] (κ− 1nκ · z̄t) (dst − κ · z̄t) .

Observations

I Dynamics determined by the underlying intensity matrix A.
I Local volatility for the signal has the same magnitude as that

prior to reduction.
27 / 38



FILTERING SOLUTION
Wonham gives the solution based on reducing compound lotteries
while updating probabilities based on past data.

Let z̄t = E (zt|Ht), which is the vector of hidden state probabilities.
Aim is to compute z̄t recursively.

The recursive solution is a stochastic differential equation:
represented in terms of an alternative standard Brownian motion {B̄t}:

dst = κ · z̄tdt + σdB̄t

dz̄t = A′z̄tdt +
1
σ2 [diag{z̄t}] (κ− 1nκ · z̄t) (dst − κ · z̄t) .

Observations

I Dynamics determined by the underlying intensity matrix A.
I Local volatility for the signal has the same magnitude as that

prior to reduction.
27 / 38



CONSUMPTION DYNAMICS AND RISK PRICES

Let consumption growth be the signal.

dct = κ · zt + σdBt

= κ · z̄t + [σdBt + κ · (zt − z̄t)dt]

I State estimation error is hidden in the local evolution of
consumption.

I Local risk prices are the same under usual expected utility
model. Long run prices are altered.
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ALTERNATIVES TO EXPECTED UTILITY
PREFERENCES

I Intertemporal composition of risk matters. Kreps-Porteus
I - Distinguish between risk conditioned on z and uncertainty

about z. Segal and Klibanoff-Marinacci-Mukerji
I - Uncertainty aversion or robustness - Gilboa-Schmeidler,

Epstein-Schneider, Hansen-Sargent and others

I use preferences that are represented by minimizing over families of
probability models subject to penalization. Maccheroni, Marinacci
and Rustichini.

Exponential tilting of probabilities. Jacobson and Whittle
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EQUILIBRIUM CALCULATION

Imitate rational expectations approach.

I fictitious social planner - compute value functions and
exponentially slanted probabilities based on these functions.

I The probability distortions are the uncertainty premia in a
decentralized model with security markets.

Possible interpretation of probability distortions - computational
device for risk premia - alternative beliefs - statistical ambiguity
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ROBUSTNESS AND EXPONENTIAL TILTING

Planner with continuation values conditioned on a hidden state, say
vi + ct for i = 1, 2, ..., n.

Tilt probabilities towards the states with the smallest continuation
values

v∗i = exp
(
−vi

θ

)
for some positive value of the parameter θ. Large values of θ make v∗i
close to their constant value of unity.

The exponentially tilted probabilities are:

z̃i
t =

v∗i z̄i,t∑
i v∗i z̄i,t

.

Weight more heavily the low continuation values.
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TWO QUESTIONS

1. Where do the continuation values come from?

Answer Solve Bellman equation. (Intertemporal elasticity is
unity for simplicity.) Include additional risk adjustment or
robustness adjustment

2. Where does the exponential tilting come from:

Two alternative answers

A) A smooth ambiguity adjustment made to the continuation value.
B) Explore mistakes in the outcome of the filtering solution.
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TWO ALTERNATIVE FORMULATIONS WITH
EXPONENTIAL TILTING

1. Concern about misspecified dynamics for consumption and for
the probability updating. Recursive utility.

2. Separate concerns about misspecified dynamics and misspecified
state probabilities. Include a sensitivity analysis to priors.

Both include versions of exponential tilting and both use the filtering
solution as a benchmark. Second has two separate adjustments.
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RISK AND UNCERTAINTY PREMIA I

σ +
σ

θf
+

1
θf

∆(z̄) · ∂V(z̄)
∂z̄

Ex Utility exponential tilting exponential tilting
IES = 1 full information state estimation

σ σ
θf

1
θf
∆(z̄) · ∂V(z̄)

∂z̄

time invariant time invariant time varying

value function: V(z̄) + c;
σ: response of consumption to new information;
∆(z̄): vector response of the probabilities to new information.
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UNCERTAINTY PREMIA AS FUNCTION OF
PROBABILITY
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Peak impact at the point in which filtered probability is one half.
Cagetti, Hansen, Sargent and Williams. 35 / 38



RISK AND UNCERTAINTY PRICES

σ +
σ

θf
+

[
1
σ

(z̄t − z̃t) · κ
]

Hansen-Sargent - Fragile Beliefs and the Price of Model Uncertainty

Ex Utility exponential tilting exponential tilting
IES is one state dynamics state probabilities

σ σ
θf

(z̄−z̃)·κ
σ

time invariant time invariant time varying

value function: V(z) + c;
σ: response of consumption to new information,
z̃: is the exponentially tilted counterpart of z̄ probabilities;
κ: vector of alternative growth rates. 36 / 38



LEARNING DYNAMICS OF UNCERTAINTY
PREMIA
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Agents are selecting among two models and learning about
parameters. Hansen and Sargent 37 / 38



SOURCE OF VARIATION IN UNCERTAINTY
PREMIA

I Induced by probability slanting and hence relative magnitudes of
the continuation values;

I Asymmetry

I) the average continuation value for the model with predictable
consumption growth is lower than the model without
predictability - extra channel for model misspecification

II) good consumption growth realizations, expected consumption
growth is higher for the model with predictable consumption
growth and the relative magnitudes are closer together.

III) bad consumption growth realizations, expected consumption
growth lower for model with predictable consumption growth and
relative magnitudes across models are further away.
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