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In this entry we characterize pricing kernels or stochastic discount factors that are used
to represent valuation operators in dynamic stochastic economies. A kernel is commonly-
used mathematical term used to represent an operator. The term stochastic discount factor
extends concepts from economics and finance to include adjustments for risk. As we will
see, there is a tight connection between the two terms. The terms pricing kernel and
stochastic discount factor are often used interchangeably.

After deriving convenient representations for prices, we provide several examples of
stochastic discount factors and discuss econometric methods for estimation and testing of
asset pricing models that restrict the stochastic discount factors.

1 Representing Prices

We follow Ross (1976) and Harrison and Kreps (1979) by exploring the implications of no
arbitrage in frictionless markets to obtain convenient representations of pricing operators.
We build these operators as mappings that assign prices that trade in competitive markets
to payoffs on portfolios of assets. The payoffs specify how much a numeraire good is
provided in alternative states of the world. To write these operators we invoke the Law of
One Price, which stipulates that any two assets with the same payoff must necessarily have
the same price. This law is typically implied by but is weaker than the Principle of No
Arbitrage. Formally, the Principle of No Arbitrage stipulates that nonnegative payoffs that
are positive with positive (conditional) probability command a strictly positive price. To
see why the Principle implies the Law of One Price, suppose that there is such a nonnegative
portfolio payoff and call this portfolio a. If two portfolios, say b and c have the same payoff
but the price of portfolio b is less than that of portfolio c, then an arbitrage opportunity
exists. This can be seen by taking a long position on portfolio b, a short position on portfolio
c and using the proceeds to purchase portfolio a. This newly constructed portfolio has zero
price but a positive payoff violating the Principle of No-Arbitrage.

∗Jarda Borovicka provided suggestions that were very helpful for this entry.
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Given that we can assign prices to payoffs, let πt,t+1 be the date t valuation operator
for payoffs (consumption claims) at date t + 1. This operator assigns prices or values to
portfolio payoffs pt+1 in a space Pt+1 suitably restricted. We extend Debreu (1954)’s notion
of a valuation functional to a valuation operator to allow for portfolio prices to depend
on date t information. With this in mind let Ft be the sigma algebra used to depict the
information available to all investors at date t. We use a representation of πt,t+1 of the
form:

πt,t+1(pt+1) = E (st+1pt+1|Ft) (1)

for some positive random variable st+1 with probability one and any admissible payoff
pt+1 ∈ Pt+1 on a portfolio of assets.

Definition 1 The positive random variable st+1 is the pricing kernel of the valuation
operator πt,t+1 provided that representation (1) is valid.

If a kernel representation exists, the valuation operator πt,t+1 necessarily satisfies the Prin-
cipal of No Arbitrage.

How does one construct a representation of this type? There are alternative ways to
achieve this. First suppose that i) Pt+1 consists of all random variables that are Ft+1 mea-
surable and have finite conditional (on Ft) second moments, ii) πt,t+1 is linear conditioned
on Ft, iii) πt,t+1 also satisfies a conditional continuity restriction, and iv) the Principal of
No-Arbitrage is satisfied. The existence of a kernel st+1 follows from a conditional version
of the Riesz Representation Theorem (Hansen and Richard (1987)). Second suppose that
i) Pt+1 consists of all bounded random variables that are Ft+1 measurable, ii) πt,t+1 is linear
conditioned on Ft, iii) E(πt,t+1) induces an absolutely continuous measure on Ft+1, and
iv) the Principle of No Arbitrage is satisfied. We can apply the Radon Nikodym Theorem
to justify the existence of a kernel. In both of these cases, security markets are complete
in that payoffs of any indicator function for events in in Ft+1 are included in the domain
of the operator.1 Kernels can be constructed for other mathematical restrictions on asset
payoffs and prices as well.

As featured by Harrison and Kreps (1979) and Hansen and Richard (1987) suppose
that Pt is not so richly specified. Under the (conditional) Hilbert space formulation and
appropriate restrictions on Pt we may still apply a (conditional) version of the Riesz Rep-
resentation Theorem to represent:

πt,t+1(pt+1) = E (qt+1pt+1|Ft)

for some qt+1 ∈ Pt+1 and all pt+1 ∈ Pt+1. Even if the Principal of No Arbitrage is satisfied,
there is no guarantee that the resulting qt+1 is positive with probability one, however. Pro-
vided, however, that we can extend Pt+1 to a larger space that includes indicator functions
for events in Ft+1 while preserving the Principal of No Arbitrage, then there exists a pricing
kernel st+1 for πt,t+1. The pricing kernel may not be unique, though.

1See Rogers (1998) for a dynamic extension using this approach.
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2 Stochastic discounting

The random variable st+1 is also called the one-period stochastic discount factor process.
Its multi-period counterpart is:

Definition 2 The stochastic discount process {St+1 : t = 1, 2, ...} is

St+1 =
t+1∏
j=1

sj

where sj is the pricing kernel used to represent the valuation operator between dates j − 1
and j.

Thus the t + 1 period stochastic discount factor compounds the corresponding one-period
stochastic discount factors. The compounding is justified by the Law of Iterated Values
when trading is allowed at intermediate dates. As a consequence,

π0,t+1(pt+1) = E (St+1pt+1|F0) (2)

gives the date zero price of a security that pays pt+1 in the numeraire at date t + 1.
A stochastic discount factor discounts the future in a manner that depends on future
outcomes. This outcome dependence is included in order to make adjustments for risk.
Such adjustments are unnecessary for a discount bond, however; because such a bond has
a payoff that is equal to one independent of the state realized at date t + 1. The price of
a date t + 1 discount bond is obtained from formula (2) by letting pt+1 = 1 and hence is
given by E [St+1|F0].

More generally, the date τ price of pt+1 is given by:

πτ,t+1(pt+1) = E

[(
St+1

Sτ

)
pt+1|Fτ

]
.

for τ ≤ t. Thus the ratio St+1

Sτ
is the pricing kernel for the valuation operator πτ,t+1.

3 Risk-neutral probabilities

Given a one-period pricing kernel, we build a so-called risk neutral probability measure
recursively as follows. First rewrite the one-period pricing operator as;

πt,t+1(pt+1) = E (st+1|Ft) Ẽ (pt+1|Ft)

where

Ẽ (pt+1|Ft) = E

([
st+1

E (st+1|Ft)

]
pt+1|Ft

)
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Thus one-period pricing is conveniently summarized by a one-period discount factor for a
riskless payoff, E (st+1|Ft), and a change of the conditional probability measure implied by
the conditional expectation operator Ẽ (·|Ft). Risk adjustments are now absorbed into the
change of probability measure.

Using this construction repeatedly, we decompose the date t + 1 component of the
stochastic discount factor process:

St+1 = S̄t+1Mt+1 (3)

where

S̄t+1 =

[
t+1∏
j=1

E (sj|Fj−1)

]
is a discount factor constructed from the sequence of one-period riskless discount factors,
and

Mt+1 =
t+1∏
j=1

sj
E (sj|Fj−1)

=
St+1

S̄t+1

(4)

is a positive martingale adapted to {Ft : t = 0, 1, ...} with expectation unity. For each
date t, Mt can be used to assign ·̃ probabilities to events in Ft. Since E (Mt+1|Ft) = Mt,
the date t + 1 assignment of probabilities to events in Ft+1 is compatible with the date t
assignment to events in Ft ⊂ Ft+1. This follows from the Law of Iterated Expectations. In
effect the Law of Iterated Expectations enforces the Law of Iterated Values.

Applying factorization (3), we have an alternative way to represent πτ,t+1:

πτ,t+1(pt+1) = Ẽ
[
S̄t+1pt+1|Ft

]
Pricing is reduced to riskless discounting and a distorted (risk neutral) conditional expecta-
tion. The Ross (1976) and Harrison and Kreps (1979) insight is that dynamic asset pricing
in the absence of arbitrage is captured by the existence of a positive (with probability
one) martingale that can be used to represent prices in conjunction with a sequence of
one period riskless discount factors. Moreover, it justifies an arguably mild modification
of the “efficient market hypothesis” that states that discounted prices should behave as
martingales with the appropriate cash-flow adjustment. While Rubinstein (1976) and Lu-
cas (1978) had clearly shown that efficiency should not preclude risk-compensation, the
notion of equivalent martingale measures reconciles the points of view under greater gener-
ality. The martingale property and associated “risk-neutral pricing” is recovered for some
distortion of the historical probability measure that encapsulates risk compensation. This
distortion preserves “equivalence” (the two probability measures agree about which events
in Ft are assigned probability measure for each finite t) by ensuring the existence of a
strictly positive stochastic discount factor.

The concept of equivalent martingale measure (for each t) has been tremendously in-
fluential in derivative asset pricing. The existence of such a measure allows risk-neutral
pricing of all contingent claims that are attainable because their payoff can be perfectly
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duplicated by self-financing strategies. Basic results from probability theory are directly
exploitable in characterizing asset pricing in an arbitrage free environment. More details
can be found in the article “Econometrics of Option Pricing” in this Encyclopedia.

While we have developed this discussion for a discrete-time environment, there are
well known continuous-time extensions. In the case of continuous-time Brownian motion
information structures, the change of measure has a particularly simple structure. In
accordance to the Girsanov Theorem, the Brownian motion under the original probability
measure becomes a Brownian motion with drift under the risk-neutral measure. These
drifts absorb the adjustments for exposure to Brownian motion risk.

4 Investors’ preferences

Economic models show how exposure to risk is priced and what determines riskless rates
of interest. As featured by Ross (1976), the risk exposure that is priced is the risk that
cannot be diversified by averaging through the construction of portfolios of traded secu-
rities. Typical examples include macroeconomic shocks. Empirical macroeconomics seeks
to identify macroeconomic shocks to quantify responses of macroeconomic aggregates to
those shocks. Asset pricing models assign prices to exposure of cash flows to the identified
shocks. The risk prices are encoded in stochastic discount factor processes and hence are
implicit in the risk neutral probability measures used in financial engineering.

Stochastic discount factors implied by specific economic models often reflect investor
preferences. Subjective rates of discount and intertemporal elasticities appear in formulas
for risk-free interest rates, and investors’ aversion to risk appears in formulas for the prices
assigned to alternative risk exposures. Sometimes the reflection of investor preferences
is direct and sometimes it is altered by the presence market frictions. In what follows
we illustrate briefly some of the stochastic discount factors that have been derived in the
literature.

4.1 Power utility

When there are no market frictions and markets are complete, investors’ preferences can
be subsumed into a utility function of a representative agent. In what follows suppose the
representative investor has discounted time-separable utility with a constant elasticity of
substitution 1/ρ:

St+1

St
= exp(−δ)

(
Ct+1

Ct

)−ρ
This is the stochastic discount factor for the power utility specification of the model of
Rubinstein (1976) and Lucas (1978).2

2See Breeden (1979) for a continuous-time counterpart.
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4.2 Recursive utility

Following Kreps and Porteus (1978), Epstein and Zin (1989) and Weil (1990), preferences
are specified recursively using continuation values for hypothetical consumption processes.
Using a double CES (constant elasticity of substitution) recursion, the resulting stochastic
discount factor is

St+1

St
= exp(−δ)

(
Ct+1

Ct

)−ρ [
Ut+1

Rt(Ut+1)

]ρ−γ
where γ > 0, ρ > 0, Ut is the continuation value associated with current and future
consumption, and

Rt(Ut+1)
.
= E

[
(Ut+1)

1−γ |Ft
]

is the risk-adjusted continuation value. The parameter ρ continues to govern the elasticity
of substitution while the parameter γ alters the risk preferences. See Hansen et al. (1999),
Tallarini (2000), and Hansen et al. (2007) for a discussion of the use of continuation values
in representing the stochastic discount factor and see Campbell (2003) and Hansen et al.
(2007) for discussions of empirical implications. When ρ = 1, the recursive utility model
coincides with a model in which investors have a concern about robustness as in Anderson
et al. (2003).

The recursive utility model is just one of a variety of ways of altering investors’ pref-
erences. For instance, Constantinides (1990) and Heaton (1995) explore implications of
introducing intertemporal complementarities in the form of “habit persistence”.

4.3 Consumption externalities and reference utility

Following Abel (1990), Campbell and Cochrane (1999), and Menzly et al. (2004) develop
asset pricing implications of models in which there are consumption externalities in models
with stochastic consumption growth. These externalities can depend on a social stock of
past consumptions. The implied one-period stochastic discount factor in these models has
the form:

St+1

St
= exp(−δ)

(
Ct+1

Ct

)−ρ
φ(Ht)

φ(H0)

The social stock of consumption is built as a possibly nonlinear function of current and past
social consumption or innovations to social consumption. The construction of this stock
differs across the various specifications. The process {Ht : t = 0, 1, ...} is the ratio of the
consumption to the social stock and φ is an appropriately specified function of this ratio.
In a related approach Garcia et al. (2006) consider investors’ preferences in consumption is
evaluated relative to a reference level that is determined externally. The stochastic discount
factor is:

St+1

St
= exp(−δ)

(
Ct+1

Ct

)−ρ(
Ht

H0

)η
where the process {Ht : t = 0, 1, ...} is the ratio of the consumption to the reference level.
In effect, the social externality in these models induces a preference shock or wedge to
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the stochastic discount factor specification, which depends explicitly on the equilibrium
aggregate consumption process. Finally, Bakshi and Chen (1996) develop implications for
a model in which relative wealth enters the utility function of investors.

4.4 Incomplete markets

Suppose that individuals face private shocks that they cannot insure against but that they
can write complete contracts over aggregate shocks. Let Ft+1 denote the date t+ 1 sigma
algebra generated by aggregate shocks available up until date t + 1. This conditioning
information set determines the type of risk exposure that can be traded as of date t + 1.
Under this partial risk sharing and power utility, the stochastic discount factor for pricing
aggregate uncertainty is

St+1

St
= exp(−δ)

(
E
[
(Cj

t+1)
−ρ|Ft+1

]
E
[
(Cj

t )
−ρ|Ft

] )

= exp(−δ)
(
Ca
t+1

Ca
t

)−ρ(E [(Cj
t+1/C

a
t+1)

−ρ|Ft+1

]
E
[
(Cj

t /C
a
t )−ρ|Ft

] )
. (5)

In this example and the ones that follow, Cj
t+1 is consumption for individual j and Ca

t+1 is
aggregate consumption. Characterization (5) of the stochastic discount factor displays the
pricing implications of limited risk-sharing in security markets. It is satisfied, for instance,
in the model of Constantinides and Duffie (1996).

4.5 Private information

Suppose that individuals have private information about labor productivity that is condi-
tionally independent given aggregate information, leisure enters preferences in a manner
that is additively separable and consumption allocations are Pareto optimal given the pri-
vate information. As shown by Kocherlakota and Pistaferri (2009), the stochastic discount
factor follows from the “inverse Euler equation” of Rogerson (1985) and Kocherlakota and
Pistaferri (2009),

St+1

St
= exp(−δ)

(
E
[
(Cj

t )
ρ|Ft

]
E
[
(Cj

t+1)
ρ|Ft+1

])

= exp(−δ)
(
Ca
t+1

Ca
t

)−ρ( E
[
(Cj

t /C
a
t )ρ|Ft

]
E
[
(Cj

t+1/C
a
t+1)

ρ|Ft+1

])

where Ft is generated by the public information. As emphasized by Rogerson (1985) this
is a model with a form of “savings constraints”. Kocherlakota and Pistaferri (2009), While
the stochastic discount factor for the incomplete information model is expressed in terms
of the (−ρ)th moments of the cross-sectional distributions of consumption in adjacent time
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periods, show that in the private information model it is the ρth moments of these same
distributions (see Kocherlakota and Pistaferri (2009)).

4.6 Solvency constraints

Luttmer (1996), He and Modest (1995) and Cochrane and Hansen (1992) study asset
pricing implications in models with limits imposed on the state contingent debt that is
allowed. Alvarez and Jermann (2000) motivate such constraints by appealing to limited
commitment as in Kocherlakota (1996) and Kehoe and Levine (1993). When investors
default they are punished by excluding participation in asset markets in the future. Chien
and Lustig (2008) explore the consequences of alternative (out of equilibrium) punishments.
Following Luttmer (1996), the stochastic discount factor in presence of solvency constraints
and power utility is:

St+1

St
= exp(−δ)

(
min
j

Cj
t+1

Cj
t

)−ρ
,

and in particular,
St+1

St
≥ exp(−δ)

(
Ca
t+1

Ca
t

)−ρ
.

Thus the consumer with the smallest realized growth rate in consumption has a zero La-
grange multiplier on his or her solvency constraint, and hence the intertemporal marginal
rate of substitution for this person is equal to the stochastic discount factor. For the other
consumers the binding constraint prevents them shifting consumption from the future to
the current period.

5 Long-term risk

The stochastic discount factor process assigns prices to risk exposures at alternative invest-
ment horizons. To study pricing over these horizons, Alvarez and Jermann (2005), Hansen
and Scheinkman (2009) and Hansen (2008) use a Markov structure and apply factorizations
of the form:

St+1 = exp(−ηt)Mt+1
f̂(X0)

f̂(Xt+1)
(6)

where {Mt : t = 0, 1, ...} is a multiplicative martingale, η is a positive number, {Xt : t =
0, 1, ...} is an underlying Markov process, and f̂ is a positive function of the Markov state.
The martingale is used as a convenient change of probability, one that is distinct from the
“risk neutral” measure described previously. Using this change of measure, asset prices can
be depicted as:

π0,t+1 (pt+1) = exp [−η(t+ 1)] Ê

[
pt+1

f̂(Xt+1)
|X0

]
f̂(X0).

8



where ·̂ is the conditional expectation is built with the martingale {Mt : t ≥ 0} in (6).
The additional discounting is now constant and simple expectations can now be computed
by exploiting the Markov structure. Hansen and Scheinkman (2009) give necessary and
sufficient conditions for this factorization for a process {Mt : t ≥ 0} that implies stable
stochastic dynamics.3 While Alvarez and Jermann (2005) use this factorization to inves-
tigate the long-term links between the bond market and the macro economy, Hansen and
Scheinkman (2009) and Hansen (2008) extend this factorization to study the valuation
of cash flows that grow stochastically over time. As argued by Hansen and Scheinkman
(2009) and Hansen (2008), these more general factorizations are valuable for the study of
risk-return tradeoffs for long investment horizons.

As argued by Bansal and Lehmann (1997), many alterations to the power utility model
in section 4.1 can be represented as:

S∗t+1

S∗t
=

(
St+1

St

)[
f(Xt+1)

f(Xt)

]
(7)

for a positive function f . Transient components in asset pricing models are included to
produce short term alterations in asset prices and are expressed as the ratio of a function
of the Markov state in adjacent dates. As shown by Bansal and Lehmann (1997), this
representation arises in models with habit persistence; or as shown in Hansen (2008) the
same is true for a limiting version of the recursive utility model. Combining (7) with (6)
gives

S∗t+1 = exp(−η)Mt+1
f ∗(X0)

f ∗(Xt+1)

where f ∗ = f̂/f.

6 Inferring stochastic discount factors from data

Typically a finite number of asset payoffs are used in econometric practice. Also the
information used in an econometric investigation may be less than that used by investors.
With this in mind, let Yt+1 denote an n-dimensional vector of asset payoffs observed by the
econometrician such that

E
(
|Yt+1|2|Gt

)
<∞

with E (Yt+1Yt+1
′|Gt) nonsingular with probability one and Gt ⊂ Ft. Let Qt denote the

corresponding price vector that is measurable with respect to Gt implying that

E (st+1Yt+1|Gt) = Qt (8)

where st+1 = St+1/St. We may construct a counterpart to a (one-period) stochastic discount
factor by forming:

p∗t+1 = Yt+1
′ [E (Yt+1Yt+1

′|Gt)]−1
Qt.

3While Hansen and Scheinkman (2009) use a continuous-time formulation, discrete-time counterparts
to their analysis are straightforward to obtain.
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Notice that
E
(
p∗t+1Yt+1

∣∣Gt) = Qt,

suggesting that we could just replace st+1 in (8) with p∗t+1. We refer to p∗t+1 as a “counter-
part” to a stochastic discount factor because we have not restricted p∗t+1 to be positive.

This construction is a special case of the representation of the prices implied by a
conditional version of the Riesz-Representation Theorem (see Hansen and Richard (1987)).
Since p∗t+1 is not guaranteed to be positive, if we used it to assign prices to derivative
claims (nonlinear functions of Yt+1), we might induce arbitrage opportunities. Nevertheless,
provided that st+1 has a finite conditional second moment,

E
[(
st+1 − p∗t+1

)
Yt+1|Gt

]
= 0.

This orthogonality informs us that p∗t+1 is the conditional least squares projection of st+1

onto Yt+1. While a limited set of asset price data will not reveal st+1, the data can provide
information about the date t+ 1 kernel for pricing over a unit time interval.

Suppose that Yt+1 contains a conditionally riskless payoff. Then

E (st+1|Gt) = E
(
p∗t+1|Gt

)
By a standard least squares argument, the conditional volatility of st+1 must be at least as
large as the conditional volatility of p∗t+1. There are a variety of other restrictions that can
be derived. For instance, see Hansen and Jagannathan (1991), Snow (1991), and Bansal
and Lehmann (1997).4

This construction has a direct extension to the case in which a complete set of contracts
can be written over the derivative claims. Let Ht+1 be the set of all payoffs that have finite
second moments conditioned on Gt and are of the form ht+1 = φ(Yt+1) for some Borel
measurable function φ. Then we may obtain a kernel representation for pricing claims with
payoffs in Ht+1 by applying the Riesz Representation Theorem:

πt(ht+1) = E
(
h∗t+1ht+1|Gt

)
for some h∗t+1 in Ht+1. Then

E
[(
st+1 − h∗t+1

)
ht+1|Gt

)
= 0,

which shows that the conditional least-squares projection of st+1 onto Ht+1 is h∗t+1. In this
case h∗t+1 will be positive. Thus this richer collection of observed tradable assets implies
a more refined characterization of st+1 including the possibility that st+1 = h∗t+1 provided
that Ht+1 coincides with the full collection of one-period payoffs that could be traded by
investors. The estimation procedures of Ait-Sahalia and Lo (1998) and Rosenberg and
Engle (2002) can be interpreted as estimating h∗t+1 projected on the return information.

4These authors do not explicitly use conditioning information. In contrast Gallant et al. (1990) estimate
conditional moment restrictions using a flexible parameterization for the dynamic evolution of the data.
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7 Linear Asset Pricing Models

The long history of linear beta pricing can be fruitfully revisited within the stochastic
discount factor (SDF) framework. Suppose that

Qt = E [(λt · zt+1 + αt)Yt+1|Gt] (9)

for some vector λt and some scalar αt that are Gt measurable. Then

E [Yt+1|Gt] = α∗tQt + λ∗t · cov(Yt+1, zt+1|Gt)

where

α∗t =
1

αt + λt · E(zt+1|Gt)
λ∗t = −λtα∗t ,

which produces the familiar result that risk compensation expressed in terms of the condi-
tional mean discrepancy: E [Yt+1|Gt] − α∗tQt depends on the conditional covariances with
the factors. When the entries of zt+1 are standardized to a have conditional variances equal
to unity, the entries of λ∗t become the conditional regression coefficients the “beta’s” of
the asset payoffs onto the alternative observable factors. When zt+1 is the scalar market
return, this specification gives the familiar CAPM from empirical finance. When zt+1 is
augmented to include the payoff on a portfolio designed to capture risk associated with
size (market capitalization) and the payoff on a portfolio designed to capture risk associ-
ated with book to market equity, this linear specification gives a conditional version of the
Fama and French (1992) three factor model designed to explain cross-sectional differences
in expected returns. See Connor and Korajczyk’s chapter in this Encyclopedia for more on
factor models.

If the factors are among the asset payoffs and a conditional (on Gt) riskless payoff is
included in Yt+1, then

p∗t+1 = λt · zt+1 + αt

and thus λt · zt+1 + αt is the conditional least-squares regression of st+1 onto Yt+1.
For estimation and inference, consider the special case in which Gt is degenerate and

the vector Yt+1 consists of excess returns (Qt is a vector of zeros). Suppose that the data
generation process for {(zt+1, Yt+1)} is i.i.d. and multivariate normal. Then αt and λt are
time invariant. The coefficient vectors can be efficiently estimated by maximum likelihood
and the pricing restrictions tested by likelihood ratio statistics. See Gibbons et al. (1989).
As MacKinlay and Richardson (1991) point out, it is important to relax the i.i.d normal
assumption in many applications. In contrast with the parametric maximum likelihood ap-
proach, generalized method of moments (GMM) provides an econometric framework that
allows conditional heteroskedasticity and temporal dependence. See Hansen (1982). More-
over, the GMM approach offers the important advantage to provide an unified framework
to testing of conditional linear beta pricing models. See Jagannathan et al. (2009) for an
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extensive discussion of the application of GMM to linear factor models. We will have more
to say about estimation when Gt is not degenerate in our subsequent discussion.

Suppose that the conditional linear pricing model is misspecified. Hansen and Jagan-
nathan (1997) show that choosing (λt, αt) to minimize the maximum pricing error of payoffs
with E(|pt+1|2|Gt) = 1 is equivalent to solving the least squares problem:5

min
λt,αt,vt+1,E((vt+1)2|Gt)<∞

E
[
(λt · zt+1 + αt − vt+1)

2|Gt
]

subject to Qt = E (vt+1Yt+1|Gt) .

This latter problem finds a random variable vt+1 that is close to λt · zt+1 + αt allowing for
departures from pricing formula (9) where vt+1 is required to represent prices correctly. For
a fixed (λt, αt), the “concentrated” objective is:

[E[λt · zt+1 + αt)Yt+1|Gt]−Qt]
′ [E (Yt+1Yt+1

′|Gt)]−1
[E[λt · zt+1 + αt)Yt+1|Gt]−Qt]

which is a quadratic form the vector of pricing error. The random vector (λt, αt) is chosen
to minimize this pricing error. In the case of a correct specification, this minimization
results in a zero objective; but otherwise it provides a measure of model misspecification.

8 Estimating parametric models

In examples of stochastic discount factors like those given in section 4, there are typically
unknown parameters to estimate. This parametric structure often permits the identification
of the stochastic discount factor even with limited data on security market payoffs and
prices. To explore this approach, we introduce a parameter θ that governs say investors’
preferences. It is worth noting that inference about θ is a semi-parametric statistical
problem since we avoid the specification of the law of motion of asset payoffs and prices
along with the determinants of stochastic discount factors. In what follows we sketch the
main statistical issues in the following simplified context.

Suppose that st+1 = φt+1(θo) is a parameterized model of a stochastic discount factor
that satisfies:

E [φt+1(θo)Yt+1|Gt]−Qt = 0

where φt+1 can depend on observed data but the parameter vector θo is unknown. This
conditional moment restriction implies a corresponding unconditional moment condition:

E [φt+1(θo)Yt+1 −Qt] = 0. (10)

As emphasized by Hansen and Richard (1987), conditioning information can be brought in
through the back door by scaling payoffs and their corresponding prices by random variables

5Hansen and Jagannathan (1997) abstract from conditioning information, but what follows is a straight-
forward extension.
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that are Gt measurable. Hansen and Singleton (1982) show how to use the unconditional
moment condition to construct a generalized method of moments (GMM) estimator of the
parameter vector θo with properties characterized by Hansen (1982). See also the GMM
entry by A. Hall in this Encyclopedia.

As an alternative, the parameterized family of models might be misspecified. Then the
approach of Hansen and Jagannathan (1997) described previously could be used whereby
an estimator of θo is obtained by minimizing:[

1

N

N∑
t=1

φt+1(θ)Yt+1 −Qt

][
1

N

N∑
t=1

Yt+1Yt+1
′

]−1 [
1

N

N∑
t=1

φt+1(θ)Yt+1 −Qt

]
.

with respect to θ. This differs from a GMM formulation because the weighting matrix
in the quadratic form does not depend on the stochastic discount factor, but only on the
second moment matrix of the payoff vector Yt+1. This approach suffers from a loss of
statistical efficiency in estimation when the model is correctly specified, but it facilitates
comparisons across models because the choice of stochastic discount factor does not alter
how the overall magnitude of the pricing errors is measured.

As in Hansen and Jagannathan (1997) and Hansen et al. (1995), the analysis can be
modified to incorporate the restriction that pricing errors should also be small for payoffs
on derivative claims. This can be formalized by computing the time series approximation
to the least squares distance between a candidate, but perhaps misspecified, stochastic
discount factor from the family of strictly positive random variables zt+1 that solve the
pricing restriction:

E(zt+1Yt+1 −Qt) = 0.

See Hansen et al. (2007) for more discussion of these alternative approaches to estimation.
So far we have described econometric methods that reduce conditional moment restric-

tions (9) and (10) to their unconditional counterparts. From a statistical perspective, it
is more challenging to work with the original conditional moment restrictsion. Along this
vein, Ai and Chen (2003) and Antoine et al. (2007) develop nonparametric methods to es-
timate conditional moment restrictions used to represent pricing restrictions. In particular,
Antoine et al. (2007) develop a conditional counterpart to the continuously-updated GMM
estimator introduced by Hansen et al. (1996) in which the weighting matrix in GMM objec-
tive depends explicitly on the unknown parameter to be estimated.6 These same methods
can be adapted to take account explicitly of conditioning information while allowing for
misspecification as in Hansen and Jagannathan (1997).
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