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Abstract

Millions of American homes still have lead paint. Due to high inspection costs, programs
target intervention to children with high lead levels. Only households willing to undergo the
hassle of visiting a doctor receive screening. Is self-selection an effective targeting mecha-
nism? I analyze geocoded screening data on 2 million Illinois children and exploit variation
in travel costs due to physicians’ openings and closings. Travel costs reduce screening among
low- and high-risk households alike, without improving targeting. High-risk households are
willing to pay $29-389 more than low-risk households for screening. Screening incentives
appear cost-effective because of lead poisoning externalities.

1 Introduction

Sources of lead exposure are still pervasive in US homes despite evidence that early childhood

poisoning is associated with reduced IQ (Ferrie et al. 2015) and educational attainment (Aizer
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1 INTRODUCTION

et al. 2018, Grönqvist et al. 2017, Reyes 2015a), and an increased risk of criminal activity (Aizer

& Currie 2019, Feigenbaum & Muller 2016, Reyes 2015b, 2007). Two thirds of the Illinois housing

stock, almost 3.6 million homes, was built prior to the residential lead paint ban in 1978 and may

have lead paint.1 Remediating these homes so that children do not ingest or inhale lead dust could

cost up to $37.9 billion, and would involve stripping or painting over the lead paint while the

home is temporarily vacated.2 Despite the prevalence of lead paint, poisoning rates are relatively

low: at current levels, 2.2 percent of Illinois children born in 2014 had lead poisoning (Figure 1:

Panel A).3 Thus, it is hard for policy makers to identify homes where clean-up would be socially

beneficial, similar to difficulties arising when targeting energy efficiency programs (Boomhower

& Davis 2014, Allcott & Greenstone 2017).

To identify homes requiring clean-up, lead poisoning prevention programs in the US rely on

early childhood health screenings that reveal lead exposure. Because small children are not sys-

tematically in school, this approach hinges on families travelling to their doctor’s office for lead

screening. This sort of barrier to policy uptake is known as a hassle or ordeal, and hassles may

explain why lead screening rates are lower than 60 percent even in areas where the State of Illinois

requires universal screening (Figure 1: Panel B).

This paper investigates the impact of ordeals on lead poisoning prevention. Specifically, what

is the impact of higher screening costs? Do these ordeals improve targeting efficiency, or do they

hinder timely detection and remediation of lead hazards? When only program recipients know their

private value of receiving a program, ordeals may reduce inclusion errors. That is, recipients who

do not need it may select out of the program to avoid these ordeals (Nichols & Zeckhauser 1982),

lowering health care costs. Households may have private information on lead hazards in their home

if they know how well-preserved the paint coat is or if they have off-the-record property inspection

results. However, Alatas et al. (2016) note that households with high potential benefits may also

1Source: American Community Survey (2017).
2Source: Author’s calculation based on data from the Department of Housing and Urban Development.
3During my sample period, the Illinois Department of Public Health (IDPH) referred children to services if they

had a blood lead level of 10µg/dL or higher. In 2019, IDPH lowered the threshold to 5µg/dL following Centers for
Disease Control and Prevention guidelines that recognize no safe level of lead exposure.
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face higher costs per ordeal, for example because they do not have a car and thus must travel for a

longer time to visit a doctor. In this case, ordeals may increase exclusion errors: poisoned children

may be less likely to see a screening provider, leading to high private and social costs.

To study the effect of ordeals on lead poisoning prevention, I link geocoded administrative

data on lead screening for the universe of over 2 million children born in Illinois between 2001

and 2014 to housing age information from assessor files. Screening data include information on

realized poisoning risk for the subsample of screened children, and housing age data provide ex-

ante observable risk for both screened and unscreened children. First, I estimate the elasticity of

screening with respect to travel costs, where travel costs are proxied by distance to health care

providers. To assuage concerns of endogeneity in households’ location relative to providers, my

empirical analysis exploits providers’ openings and closings.4 I compare children born in the same

location in different years who face different sets of providers. The key identifying assumption

is that openings and closings of medical doctor offices are orthogonal to trends in lead screening.

Second, I study how travel costs affect which households select into screening, in terms of both

ex-ante observable and ex-post realized risk. The key identifying assumption needed to study

selection is that, while children may obtain other services when they get screening, households

with a high or low risk of lead poisoning expect similar benefits from these additional services.

First, being 15 minutes farther away from a lead-screening provider (two-way) decreases the

likelihood of screening by 9 percent, on average. Second, I find no evidence that households who

get screened despite facing higher costs have higher observable or unobservable exposure risk.

In other words, I find no evidence that ordeals improve targeting efficiency. Third, proximity to

providers improves timely detection of lead poisoning, but it does not increase take-up of remedia-

tion funding. Thus, removing barriers to screening may not lead to increased remediations, perhaps

due to partial compliance with abatement regulations or limited awareness of remediation funding.

Moreover, proximity to high-quality providers, as measured either by screening outcomes or med-

4A growing literature leverages closures of health care providers, such as abortion clinics, Social Security Ad-
ministration field offices, and bank branches to estimate the effect of travel costs on take-up of different programs
(Deshpande & Li 2019, Nguyen 2019, Lu & Slusky 2016, 2017, Lindo et al. forthcoming, Venator & Fletcher 2019).
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ical school attended, increases screening more than proximity to low-quality providers, suggesting

supply-side intervention may also affect screening.

Data on households’ revealed preference for screening allow me to estimate the social value

of the existing lead screening policy and counterfactual prevention policies. I use travel costs

in the logit framework to estimate the willingness-to-pay (WTP) for screening of households in

homes with different lead exposure risk. I simulate the impact of four screening policies: travel

subsidies, pay-for-performance incentives for providers, an increase in screening locations, and

universal screening for children in old homes. Consistent with the low incidence of lead poisoning,

I estimate that the average household in the most at-risk homes has a WTP for screening of $6.14,

$29-389 higher than the the average low-risk household. All counterfactual screening policies I

examine result in modest benefits for the marginal households. Yet, these policies may be cost-

effective when accounting for reductions in lead exposure externalities, consistent with the large

impacts of programs targeting disadvantaged children found by Hendren & Sprung-Keyser (2019).

By contrast, increasing remediations does not appear to be cost-effective.

This paper contributes to three strands of literature. First, a robust body of literature identifies

travel costs as an important determinant of take-up of social benefits, including childcare subsidies,

disability insurance, small business loans, and health care services (Currie 2006, Rossin-Slater

2013, Herbst & Tekin 2012, Deshpande & Li 2019, Nguyen 2019, Lu & Slusky 2016, 2017, Einav

et al. 2016, Lindo et al. forthcoming, Venator & Fletcher 2019). In the US, limited access to vac-

cines, including information barriers, scheduling challenges, and transportation costs, appears to

contribute to vaccine delays among disadvantaged families (Brito et al. 1991, Carpenter & Lawler

2019). In India, small financial incentives appear more cost-effective at increasing immuniza-

tion take-up than improving supply (Banerjee et al. 2010). I use travel costs to elicit households’

willingness-to-pay for information about their exposure risks, related to a large environmental eco-

nomics literature surveyed by Kuwayama & Olmstead (2015) that uses travel costs to estimate the

recreational value of environmental amenities. My paper shows that travel costs decrease timely

detection of lead hazards, potentially imposing a large externality on society.
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Second, a large literature studies the targeting efficiency of welfare programs.5 Hoffmann

(2018) finds that poor Indian households are very elastic with respect to non-monetary prices, such

as travel costs. I find no evidence that high-risk households differentially select into screening

at higher distances, suggesting that households at high risk for lead exposure in the US may dis-

proportionally dislike travel hassles, too. My findings suggest that travel costs may have worse

targeting properties than bureaucratic ordeals, which have been shown to improve targeting effi-

ciency in the US (Kleven & Kopczuk 2011, Finkelstein & Notowidigdo 2018, Einav et al. 2019).

Third, an emerging literature examines the efficacy of environmental regulations. Due to scarce

resources, regulators often rely on self-reporting and imperfect monitoring, resulting in rampant

non-compliance (Duflo et al. 2013, 2018, Gibson 2019, Reynaert & Sallee 2018, Vollaard 2017,

Zou 2018). In this context, the ability to target resources for inspections and clean-ups can sig-

nificantly improve environmental and public health outcomes (Greenstone & Meckel 2019). My

paper sheds light on how health screening policies affect the detection of environmental hazards in

private homes where universal inspections may be infeasible.

Section 2 discusses how travel distance may affect targeting efficiency in light of a model of

households’ screening decision. Section 3 describes the data I use in this paper. Sections 4 and 5

analyze screening take-up and the costs and benefits of different lead poisoning prevention policies.

2 Theoretical Framework

First, this section shows how travel costs affect selection into screening, building on the classical

work of Nichols & Zeckhauser (1982) and its extension by Alatas et al. (2016). Second, it dis-

cusses how the planner’s screening rule may differ from the private optimum due to lead poisoning

externalities.

5See Hanna & Olken (2018) for a review of research in developing countries.
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2.1 The Household’s Screening Take-Up Decision

I model screening as an insurance mechanism, with benefits if a child is found to be lead-poisoned.

In my model, screening benefits derive from assignment of the lead-poisoned child to case manage-

ment aimed at reducing lead poisoning damages.6 Thus, I ignore potential benefits from learning

that a home is lead-safe. Parents’ perceived screening benefits depend on several factors, including

information about exposure risk, degree of risk aversion, degree of altruism towards the child,7 be-

liefs about treatment costs and feasibility (which may correlate with home-ownership) as well as

recovery probability,8 and additional benefits from visiting the doctor, such as having a physical ex-

amination or an immunization shot.9 My model does not require assumptions on these parameters;

the revealed-preference approach in Section 5 allows me to compare willingness-to-pay (WTP)

estimates to estimates of screening benefits computed for different parameter values.

Let bi be household i’s perceived benefit from screening their child for lead exposure. Let the

cost of screening child i, ci, be a function of the nominal screening price, p, and the opportunity

cost in terms of the parents’ wage, wi and travel time, ti, which is proportional to distance from a

healthcare provider, di. Here, I abstract from heterogeneity in p for simplicity, although the cost

of a blood lead test in Illinois varies based on the child’s insurance coverage.10 Then, child i is

screened if and only if

bi ≥ ci = witi + p. (1)

6Case management occurs mostly at home and includes nutritional education and information about reducing
exposure in the home, a home inspection, and referral to lead remediation services, which are generally subsidized for
low-income households. Billings & Schnepel (2018) show that such case management fully reverses lead poisoning
damages in a sample of North Carolina children.

7The evidence on how much parents value reductions in their children’s health risk relative to reductions in their
own risk is mixed (see for example, Gerking & Dickie 2013, Gerking et al. 2014)

8Myerson et al. 2018 show that increasing treatment access increases screening, evidence of an “ostrich effect”, a
term coined by Galai & Sade (2006).

9Not observing these additional services does not bias the selection analysis if benefits from these additional
services are not correlated with screening benefits.

10While lead screening is fully covered for children enrolled in Medicare or All Kids, nominal prices range
between $0-43 for uninsured or private insurance (http://www.leadsafeillinois.org/uploads/documents/
LeadSafeILDirectory061.pdf, accessed in June 2019), with an average venous test costing $31 (Kaplowitz et al.
2012). I discuss how this variation in prices affects my estimates of households’ WTP for screening in Section 5.1.
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2.1 The Household’s Screening Take-Up Decision 2 THEORETICAL FRAMEWORK

Because ti ∝ di, this inequality yields a cutoff d̄i above which a child is not screened:

d̄i =
bi− p

wi
. (2)

I assume that screening benefits are increasing in risk, that is b′(ri)> 0: the higher the potential

exposure, the higher the probability that screening detects poisoning and leads to timely interven-

tion. Then, riskier children will have a higher willingness-to-travel for screening, as predicted by

the classic ordeals model (Nichols & Zeckhauser 1982), that is the cutoff is increasing in risk:

∂ d̄i

∂ r
=

∂bi

∂ r
1
wi
≥ 0. (3)

Figure 2 illustrates how risk affects the relationship between screening and distance. High-risk

households are less sensitive to distance than low-risk households: their screening rates decline

less sharply with distance (left panel). Therefore, the share of screened children that is high-risk

increases with distance (right panel).

However, the model’s predictions become ambiguous if we consider travel mode, following

Alatas et al. (2016). Let ai denote the family’s assets, and assume that assets are negatively corre-

lated with risk, a′(ri) < 0, and that travel time is negatively correlated with assets. For example,

assume travelling by car is faster than walking or using public transit: ti(ai,di) ∝
di
ai

. Then,

d̄i ∝ ai
bi− p

wi
, (4)

∂ d̄i

∂ ri
∝

∂ai

∂ r
bi− p

wi︸ ︷︷ ︸
<0

+ai
∂bi

∂ r
1
wi︸ ︷︷ ︸

>0

Q 0. (5)

In a model with assets, individual distance cutoffs may either increase or decrease in risk.

While the second term in equation (5) is still positive, the first term is negative: riskier households

face higher travel times conditional on distance, and are therefore willing to travel only shorter
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distances on average. Thus, the effect of reducing distance to providers on the average riskiness

of screened children is an empirical question. In Section 4.2, I exploit providers’ openings and

closings to answer this question.

2.2 The Planner’s Problem

The socially optimal level and targeting of screening may not coincide with the individual opti-

mum. Lead exposure has externalities: lead-poisoned children negatively affect their classroom

peers (Gazze et al. 2019) and are more likely to engage in risky and criminal behavior (Aizer &

Currie 2019, Feigenbaum & Muller 2016, Reyes 2015b, 2007). Detecting lead hazards may also

prevent exposure of future residents.

I model the social benefits of screening a child as the sum of three components.11 First, I

consider the private benefit, bi− ci. Second, I add the averted externality i would have imposed

on society if they had not been screened, ei. Third, I add the discounted value of the avoided

externalities from preventing exposure among children j ∈ J who will live in i’s building in the

future.12 Summing over the set of screened children S, this yields

B = ∑
i∈S

( bi− ci︸ ︷︷ ︸
PrivateValue

+ ei︸︷︷︸
Externality

+δ ∑
j

e j ∗Lives in i’s building j︸ ︷︷ ︸
PreventionValue

). (6)

Thus, some households with low private benefits may have a high social value of screening if they

have a large externality or prevention value.

The planner cannot optimally target screening without knowing ex-ante the externality terms

in equation (6). Housing age may proxy imperfectly for exposure risk at each home. In this case,

screening based on observable risk may be better than self-selection based on private benefits. In

my empirical analysis, I estimate both the average prevention value of screening (Section 4.3) and

the societal benefits of different screening policies (Section 5.2).

11Here, I abstract from the medical sector costs of increasing screening.
12e j will depend on the riskiness of each building, and may be zero.
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3 Data

My analysis requires data on children’s screening outcomes, travel costs, lead exposure risk, and

lead remediations. First, I link birth records to blood lead test data to construct children’s screening

histories. Second, I geocode children’s addresses at birth and lead-screening providers’ addresses

to measure the distance a child has to travel to get screening. Third, I link these individual-level

data to address-level housing age and remediation data to construct unique measures of exposure

risk and remediation activity at birth addresses. Appendix Table A.1 provides child-level summary

statistics for the variables included in the analysis.

3.1 Childhood Lead Screening Measures

The Illinois Department of Public Health (IDPH) collects children’s blood lead records from physi-

cians and laboratories. Federal guidelines mandate that all children on Medicaid must be screened

for lead poisoning at ages one and two.13 In addition, IDPH requires screening for all children

living in high-risk zip codes, defined by housing age and demographic characteristics.

IDPH provided birth and death certificates for almost 4.5 million children born in Illinois be-

tween 1991 and 2016. These records include each child’s name and birth date, allowing me to

link these data to the universe of 5.4 million blood lead tests performed in Illinois between 1997

and 2016, with a match rate of 86 percent (Appendix Figure A.1). Appendix Table A.2 shows that

matched and unmatched tests have similar observable characteristics based on the child’s residence

address at time of test. Because lead test records are incomplete prior to 2001, I limit my analysis

to children born after 2000. I also limit the analysis to children born before 2015 to ensure I ob-

serve each child’s outcome by age two. I classify non-deceased children not linked to any tests as

not screened. Appendix Tables A.3 and A.4 show the number of tests and unique children in my

original sample, and the number remaining after each data cleaning and linkage step.

IDPH lead test records include test date, blood lead level (BLL), test type (capillary or venous),

13The effects of lead exposure are worst in small children. Therefore, in the remainder of my paper I focus on
screening and exposure by age two. The findings and conclusions carry through in the larger sample.
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provider and laboratory identifiers, and Medicaid status. Capillary tests are prone to false positives

due to surface contamination with lead dust. Thus, capillary tests that show elevated blood lead

levels (EBLLs), defined as blood lead levels above 9 micrograms per deciliter of blood (µg/dL),

need to be confirmed by another test. For each child, I keep the highest venous test when available,

or the highest confirmed capillary test when available. Appendix Table A.5 reports the composition

of tests in my sample, including 70,000 confirmed EBLLs from over 22,000 children. Laboratories

have different minimum reporting limits, meaning BLLs are bottom-censored; I correct for these

limits to obtain correct population estimates of lead exposure.14

Birth records also include family characteristics, such as mother’s marital status, age, educa-

tion, and race, as well as child’s address at birth. I geocode these addresses to link the blood lead

data to housing age information (see Section 3.3) and Census block group median income from

the 2015 American Communities Survey. After geocoding, I obtain a sample of over 2 million

children and over 2.9 million tests linked to these children. I use birth address rather than address

at testing time because I only observe subsequent addresses conditional on a child being screened

for lead. Appendix Table A.6 shows that even if a third of households in my sample move within

a two-year period, most households remain in homes and zip codes with the same exposure risk.

3.2 Provider Access Measures

IDPH collects the name and address of providers who perform lead tests. Screening providers can

be individuals, small groups of doctors, or hospitals. Appendix Table A.7 shows that 24 percent

of providers in my sample are individuals. I code a provider as entering or exiting the sample

the first or last year that I observe them ordering tests, respectively. On average, 4.5 percent of

providers enter each year and 4.8 percent exit. Appendix Figure A.3 displays how providers’

locations change from the beginning to the end of my sample, while Appendix Figure A.4 shows

14I determine the cutoff for each laboratory based on the distribution of test results for that laboratory by both test
type and year. Appendix Figure A.2 shows an example of a laboratory with a very apparent cutoff at 5µg/dL. Some
laboratories have a thin left tail of test results below the estimated cutoff: I reassign those test results to the cutoff
value. For each cutoff-year-type cell, I use laboratories without cutoffs to compute the average BLL for tests below
that cutoff and I reassign all test results at the cutoff to this average value.
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the distribution of providers across neighborhoods and years.

To construct a measure of travel costs for all children in my sample, I calculate the distance

“as the crow flies” between the child’s birth residence and the closest provider open during the

child’s birth year.15 While the median child has a provider within 1.2 kilometers (Appendix Figure

A.5), over 90 percent of screened children did not get tested at their closest provider (Appendix

Figure A.6), likely due to preference for continued care after a move (Raval & Rosenbaum 2018)

or insurance network constraints. Section 4.1 investigates the relationship between distance to

closest provider and actual distance travelled.

The impact of nearby providers may depend on the quality of the available providers. For

example, Vivier et al. (2001) document heterogeneous screening rates across providers in Rhode

Island. I use the 2019 USNews ranking of the medical school the provider attended as one measure

of quality, which has been shown to affect opiod prescription rates (Schnell & Currie 2018). I

obtain medical school attended by linking providers to the 2019 Medicare Physician Compare

File (MPCF) through name, address, and practice name.16,17 I also consider measures of quality

that directly capture a provider’s lead screening behavior: I define providers as higher quality if

they screen more children and/or screen them at the right times according to federal and state

guidelines as follows. Because I do not observe a child’s provider if the child is not screened,

I calculate a provider’s screening rate as the screening rate for children born within the median

distance households travel to see that provider, and I weigh unscreened children by the inverse

of their distance.18 Because federal guidelines mandate that all children on Medicaid must be

screened for lead poisoning at ages one and two, I compute the share of Medicaid children a

provider screened at age one who have a second test by age two. I also compute the share of

EBLLs detected by each provider with a required follow-up within 90 days.19 I then aggregate

15For computational reasons, to identify closest providers I use a search algorithm that conditions on the median
catchment distance of each provider, which may overstate distance for children farther away than the median, thus
biasing the estimated effect of distance downward. In the sample of screened children, this procedure assigns 7.09
percent of tests to a minimum distance that is higher than the actual distance travelled to obtain the test.

16For organizations with multiple providers, I average the rankings.
17Only one percent of providers in the MPCF are pediatricians.
18For most providers, the median child’s address is within 7 kilometers of their provider’s address.
19Appendix Figure A.7 shows that only around 50 percent of EBLLs have a follow-up test.
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these screening-based measures into a summary quality index. Finally, I consider a provider’s

ability to perform capillary tests as an indicator of quality, because capillary testing may reduce

the barrier to screening if households are averse to venous blood draws.

Providers’ screening-based quality measures and providers’ medical schools may capture dif-

ferent aspects of a provider’s practice. Indeed, Appendix Figure A.8 shows that these different

measures are imperfectly correlated. One explanation is that a provider’s screening record is in-

fluenced by their patient base: providers in neighborhoods with high shares of disadvantaged chil-

dren have higher screening rates (Appendix Figure A.9).20 Moreover, more educated households

visit providers of higher observable quality, such as providers who attended higher-ranked medical

schools, but may be less able to sort based on unobservable screening rates (Appendix Table A.8).

My empirical analysis is robust to using different quality measures.

3.3 Childhood Lead Exposure Pathways

Although children can be exposed to lead through several channels, deteriorating lead paint, which

was used in homes until 1978, is the most common source of lead exposure in Illinois (Abbasi et al.

2020). In this paper, I use a house’s construction year to proxy for a child’s observable risk of lead

exposure. To do so, I link birth addresses to parcel-level housing data in the Zillow Transaction

and Assessment Dataset that includes information on when each house was built.21

I define children living in homes built before 1930 as high-risk. Older homes have a higher

risk of lead paint hazards: HUD estimates that 87 percent of houses built before 1940 in the US

have lead paint, compared to 69 percent of houses built between 1940 and 1959 and 24 percent

of houses built between 1960 and 1977 (HUD, 2011). In related work using IDPH data, Abbasi

et al. (2019) find that children living in homes built prior to 1930 have the highest BLLs, after

controlling for children’s demographic characteristics, zip code, and birth year fixed effects.

20Appendix Figure A.10 shows the location of providers of different quality in Illinois.
21More information on accessing the data can be found at http://www.zillow.com/ztrax. The results and opinions

are those of the author and do not reflect the position of Zillow Group.
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3.4 Lead Hazard Remediations

To measure lead hazard abatement following EBLL detection, I use data on addresses that re-

ceive remediation funding under HUD’s lead hazard control programs.22 Because these funds are

targeted to low-income property owners, these data do not cover the universe of lead hazard reme-

diations. Yet, they provide a useful picture of case management following EBLL detection in the

absence of more complete data.

4 Empirical Analysis: Travel Costs and Child Lead Screening

This section builds on the model in Section 2 to investigate how travel costs affect screening. First,

I estimate the elasticity of screening with respect to travel costs. Second, I study how travel costs

affect selection into screening. Third, I estimate the effect of travel costs on timely EBLL detection

and hazard remediation. Fourth, I investigate how the quality of nearby providers affects screening.

To study the relationship between screening take-up and travel costs, I exploit changes in dis-

tance to providers over time due to providers’ openings and closings. As providers open and close,

children born at the same location but in different years face different sets of providers. This ap-

proach is internally valid if the timing of openings and closings is exogenous to trends in screening

rates over time. This condition would be violated if providers open in areas where public health

officials target campaigns to increase screening rates, or if providers open in richer, low-risk areas

with decreasing screening rates. To investigate the plausibility of this assumption, I estimate the

following regression:

ScreeningRategy = ∑
τ

βτEntryg,y−τ +∑
τ

γτExitg,y−τ +ηg +ξy + εi, (7)

where ScreeningRategy is the screening rate in neighborhood g and birth cohort y; Entryg,y−τ and

22The data were collected for a project with Stephen Billings, Michael Greenstone, and Kevin Schnepel, titled “Na-
tional Evaluation of the Housing and Neighborhood Impact of the HUD Lead-Based Paint Hazard Control Program,
1993-2016” and funded by HUD.
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Exitg,y−τ are leads and lags of providers’ entries and exits, defined as changes in the distance

between the neighborhood centroid and the closest provider; ηg is a set of neighborhood fixed

effects and ξy is a set of birth cohort fixed effects. Figure 3 plots the βτ and γτ coefficients from

estimating equation (7) at the level of Census block and provider catchment area with a radius of

500 meters. My estimates suggest that providers’ entries and exits are not correlated with pre-

existing trends in screening rates. Moreover, Appendix Table A.9 shows no correlation between

openings and closings and lagged neighborhood characteristics at the Census tract or block level.

Figure 3 suggests that providers’ openings and closings provide exogenous variation in travel

costs over time. I leverage this variation in a linear probability model that compares children born

in the same location in different years, controlling for location and birth year fixed effects, by

estimating the following equation:

Yigy = βdi +ηg +ξy + εi, (8)

where Yigy is an outcome for child i born in neighborhood g in year y, di measures a child’s distance

to the closest open provider during their birth year, ηg is a set of location fixed effects and ξy is a

set of birth year fixed effects. My preferred specification defines location as Census block, but my

results are robust to considering zip code, tract, block group, or address. I cluster standard errors

at the zip code level to allow for arbitrary correlation in exposure sources and screening behavior.

The next sections examine the effect of distance on different outcomes. First, I estimate the

effect of travel costs on screening by looking at an indicator for whether a child is screened by

age two. Second, I study selection by examining indicators for a screened child having certain

characteristics, such as living in a home built prior to 1930, being black or hispanic, or having

a single, teen, or low-education mother. Third, I estimate the effect of travel costs on timely

poisoning detection and remediation by looking at age at test and an indicator for a HUD-funded

remediation at the address within three years.

14
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4.1 Do Travel Costs Decrease Screening?

Children born in homes closer to providers have higher screening rates on average, and this fairly

linear pattern holds after controlling for location fixed effects (Figure 4). In the raw data, this

relationship does not hold for children farther than ten kilometers from providers, but 93 percent

of the children in my sample live within ten kilometers of a provider.23 In my main analysis, I drop

the 31,178 children who are farther than 20 kilometers from a provider (2.6 percent of the original

sample), as they are likely very different from the rest of the sample. Columns 1–2 of Appendix

Table A.10 show that including these outliers attenuates the estimated elasticity of screening with

respect to travel costs, because these outliers have a lower elasticity.

Panel A of Table 1 estimates that being one kilometer farther away from a lead-screening

provider, a 30 percent increase over the mean distance, decreases the likelihood that a child is

screened by age two by 0.4 percentage points, or 0.9 percent relative to the mean. These estimates

imply an elasticity of screening with respect to distance to the closest provider of -0.03. Because

most households do not visit their closest provider, Panel A of Table 2 estimates the relationship

between distance to the closest provider at birth and distance travelled to get a child’s first lead

test in the sample of screened children. Being 1,000 meters farther away to the closest provider

translates into an extra 75-280 meters travelled to get screening, depending on the specification.

Using this first stage relationship to predict distance from provider of choice for all children in

the sample, Panel B of Table 2 estimates that being one kilometer farther away from the provider

of choice, a 13.4 percent increase over the mean, reduces screening by 1.3-7.2 percentage points,

yielding an elasticity of -0.21 to -1.01. Einav et al. (2016) estimate that doubling the distance to a

radiation facility reduces take-up of cancer treatment by 2 percent, implying an elasticity of -0.02,

while Herbst & Tekin (2012) estimate an elasticity of -0.13 for take-up of childcare subsidy.

Interpreting the magnitude of the effect of distance on screening take-up requires data on house-

holds’ transportation mode, which I do not observe. Thus, I use car travel times for reference.

23Appendix Figure A.5 shows that on average, a child is 3.3 kilometers away from the closest provider, and the
distribution is right skewed.
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Using the HERE API to compute travel times for a 12 percent random subsample of the data,

Table 3 estimates a reduction in screening likelihood per minute of travel time of 0.4 percentage

points. This estimate is statistically indistinguishable from the estimate for travel costs, measured

in kilometers, consistent with average travel times in Illinois being 1–1.5 minutes (Agbodo & Nuss

2017).24 Lead screening requires a single appointment, that is a two-way trip to the doctor. There-

fore the estimates in Table 1 imply that a $6.25 increase in travel costs (a fifteen-minute two-way

trip at 7.5 kilometers each way and $25 hourly wage), decreases screening take-up by 9 percent.25

63.5 percent of children born in a high risk zip code in 2014 were screened by age two; Panel B of

Table 1 implies that the screening rate would have been 3 percentage points higher (4.72 percent)

if all these children had a provider within 1 kilometer.

This section argues that providers’ opening and closing affect screening for lead exposure

through changes in travel costs. Providers’ openings and closings could also affect the salience

of lead screening in a neighborhood. Table 4 investigates the potential role of information in me-

diating the effect of travel costs. First, Columns 1-3 show that the estimated effect of travel costs

on screening is robust to controlling for screening rates at the neighborhood-cohort level. This

finding suggests that the effect of providers’ openings and closings cannot be fully explained by

word-of-mouth among neighbors about screening. Second, Column 5 uncovers heterogeneous ef-

fects of travel costs on screening rates for siblings: travel costs have stronger effects for younger

siblings whose older siblings have already been screened, unless the older sibling has an EBLL.

This finding suggests that a household is less willing to travel for screening after they acquire in-

formation that their home does not have lead hazards. Indeed, Column 6 shows that travel costs

have a smaller, if not reversed, impact on screening when an immediate neighbor has an EBLL.

24Appendix Table A.11 shows that households in Chicago are more sensitive to distance, suggesting that transit
availability does not mitigate ordeals in this case. Indeed, Appendix Figure A.11 shows that households in tract with
low car ownership rates see larger effects of provider distance on screening rates.

25Source: Bureau of Labor Statistics.
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4.1.1 Robustness Checks

The estimated effect of travel costs is robust to different specifications, sample selection criteria,

travel costs measures, functional forms, and outcome definitions. Table 1 shows robustness to

controlling for different sets of location fixed effects, including building fixed effects, suggesting

that the location of providers’ openings and closings is not correlated with children’s characteristics

that also affect their likelihood of screening. Moreover, Appendix Table A.12 finds evidence that

travel costs decrease screening independently of the subsample of children used for the analysis:

for children born closer to providers, small absolute increase distances appear to have larger effects,

although the resulting elasticities are in the same order of magnitude.

Appendix Table A.10 explores different specifications and distance measures. Columns 3 and

6–7 include child-level controls and Census block group trends. Controlling for neighborhood

trends helps assuage concerns that neighborhood changes over time, such as gentrification, are

driving the estimated relationship between screening rates and distance to providers. Column 4

uses average distance from the closest five providers, to take into account that households do not

always visit the closest provider. While attenuated with respect to my preferred estimate, the coef-

ficient on this variable is negative and significant. Column 5 uses distance from the Census block

centroid to remove variation in travel costs due to children living in different buildings within the

same block, yielding estimates that are not statistically distinguishable from my preferred estimate.

Related, Appendix Table A.13 includes both distance to the closest provider and distance to the five

closest providers: because distance to closest provider has a higher explanatory power, provider

density does not appear to mediate my findings. Appendix Table A.14 shows that proximity to

providers who accept new patients and patients on Medicaid matters most for screening take up.

Appendix Table A.15 shows that logistic and ordinary-least-square regressions that include

regressors’ block-level means but omit block fixed effects yield similar findings to my preferred

linear probability model. This approach avoids the incidental parameters problem (Neyman &

Scott 1948) and is equivalent to the linear fixed effects model if there is no correlation between

the relevant regressors and the group fixed effects (Mundlak 1978, Chamberlain 1984, Bafumi &
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Gelman 2016). This equivalence is important because Section 5.1 uses the logit framework to

estimate the differential willingness-to-pay of different households for screening. Moreover, this

table shows that my choice of focusing on screening by age two is without loss of generality, as

I find similar effects of distance on screening by different ages, likely because most screening

happens by age two (Appendix Figure A.12).

4.2 Do Travel Costs Affect Selection into Screening?

The previous section finds that travel costs decrease screening take-up. Section 2 discusses how the

effect of travel costs on selection is theoretically ambiguous. On the one hand, families with low

exposure risk will not be willing to pay the higher travel cost. On the other hand, children facing

high travel costs, who may also be at high risk, might forego screening. This section estimates how

the composition of screened children changes with travel costs.

I estimate equation (8) on the sample of screened children, with children’s characteristics as the

dependent variable. I include ex-ante observable and unobservable exposure risk, as measured by

housing age and lead levels. Consider two children living next to each other, one in an old house

and one in a new house. There is a clinic 250 meters away, and both get screened. Years later, two

new families with children move in; the clinic is closed and the closest provider is now a kilometer

away. Only the child in the old house gets screened. Among the screened children in this example,

the probability that a child lives in an old home increases with distance: it is 0.5 at 250 meters and

1 at one kilometer. Data from this example would suggest that hassles improve targeting based on

observable risk, as illustrated in Figure 2.

Table 5 does not support the hypothesis that the marginal child who is screened at farther dis-

tances has higher observable or unobservable exposure risk. Children screened at higher distances

are less likely to live in a home built prior to 1930, and have slightly lower BLLs (only significant

when controlling for Census tract fixed effects). Consistent with ability to pay being a barrier to

screening, children screened at higher distances are also slightly less likely to be black or hispanic,

with significant estimates only when controlling for tract fixed effects. Appendix Table A.16 shows
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that these findings are largely robust to including time-varying neighborhood controls.

4.3 Does Proximity to Providers Improve Children’s Outcomes?

The finding that travel costs decrease screening for high- and low-risk children alike suggests that

increased travel costs may hinder detection of lead-poisoning. If lower detection rates lead to lower

remediation rates in affected homes, future residents may face increased poisoning risk, too. This

section investigates how travel costs affect the likelihood and timeliness of detecting an EBLL, as

well as the likelihood of remediations and future EBLLs at the same location.

Column 1 of Table 6 shows that children who live one kilometer closer to a provider are 3.3

percent more likely to be diagnosed with an EBLL. Moreover, Columns 2 and 3 show that children

one kilometer closer to providers are screened six days earlier on average, and are younger when

their highest BLL is recorded. Early detection may improve long-term outcomes by reducing

exposure (Billings & Schnepel 2018). Column 4 finds no evidence that proximity to providers

is associated with higher HUD-funded remediation activity at a child’s home within three years

of birth. Consistent with the lack of impact of travel costs on remediations, Column 5 shows no

evidence of lower future EBLL rates for homes closer to providers.26 Temporary remediations

could also explain the lack of impact of travel costs on future poisoning rates.

These findings suggest that travel costs may affect outcomes for poisoned children, but do not

have affect future residents. These results question the prevention value of screening policies.

4.4 Does Providers’ Quality Affect Screening?

One interpretation of the findings in this section is that after a provider exits, children have less

access to health care in general, and forego lead screening as well as other health treatments. How-

ever, measles immunization rates in Illinois are above 97 percent.27 The first dose of the measles-

26Remediations and repeated EBLLs in the same home are rare, although my sample includes over 2,000 of these
events. Appendix Table A.17 shows that the null effects are robust to limiting the sample to children with a higher
incidence of these events, as well as to different techniques that correct for small sample bias.

27Source: Illinois School Board of Education. https://www.isbe.net/Documents/Immunization_17-18.
xlsx accessed on 2019/08/17.
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mumps-rubella vaccine needs to be administered at age one, the same age Medicaid recomments

a first lead screening. Although immunization shots are available also at mobile clinics and lo-

cal health departments, the disparity in immunization and screening rates suggests that providers

and/or families exercise more discretion for screening decisions than they do for immunization

decisions. An extensive literature documents large disparities in providers’s practice styles (Mul-

lainathan & Obermeyer 2019, Kwok 2019, Fadlon & Van Parys 2019, Silver 2019, Currie et al.

2016, Van Parys 2016, Fletcher et al. 2014, Epstein & Nicholson 2009).

Does access to high-quality providers affect screening take-up? Appendix Table A.8 shows that

highly-educated households sort into high-quality providers, which may confound the estimates of

the effect of provider quality. Parents may more easily observe a provider’s alma mater and select

on that, than their screening record. Thus, I test for sorting by investigating whether proximity

to a provider with a good screening record has additional explanatory power over proximity to

a provider who attended a top 20 medical school. Screening quality measures include whether

providers offer less-invasive capillary tests, adherence to screening guidelines, and screening rates.

I regress a child’s screening indicator on indicators for providers’ presence within concentric areas

of a child’s birth address as well as indicators for the presence of high-quality providers:

Yigy =∑
k

βkAnyProviderInKi+∑
k

γkHighScreeningQualityInKi+∑
k

δkTop20MedSchoolInKi+ηg+ξy+εi,

(9)

where k ∈< 1km, 2−5km, 5−10km,10−20km.

Figure 5 shows that children closer to providers have higher screening rates, and the more so

if they are closer to high-quality providers. Convenient access to providers appears to get families

“in the door”; once families travel to a provider, high-quality providers disproportionally increase

screening rates, as measured by all quality variables. Moreover, screening-based quality measures

have additional predictive power beyond a provider’s alma mater, suggesting that these results are

not driven by households with a higher propensity to screen selecting to visit providers with better

education. Thus, provider training may increase screening.
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5 Benefits of Counterfactual Prevention Policies

The previous section finds that travel costs decrease screening take-up and timely poisoning de-

tection and do not improve targeting. Could policies that increase screening improve outcomes for

poisoned children and society at large? This section exploits variation in travel costs to estimate

households’ willingness-to-pay (WTP) for screening and simulates the impact of five counterfac-

tual policies aimed at increasing screening and/or remediations.

5.1 Exposure Risk and Willingness-to-Pay for Screening

This section estimates the WTP for screening of households with different observable characteris-

tics. Children living in homes built prior to 1978 are five percentage points (11 percent) more likely

to be screened than children living in newer and less risky homes, after controlling for block fixed

effects (Appendix Table A.10). Are households in older homes also less sensitive to travel costs?

To answer this question, Table 7 presents results from both the linear probability model in equa-

tion (8) and an equivalent logit model. Column 1 reports estimates for the whole sample, while

other columns report estimates for subsamples, obtained by interacting a household’s distance to

the closest provider with indicators for household characteristics.

To derive the WTP for screening, I follow Einav et al. (2016) and I define the utility from

screening as

ui = αi−βi(θidi + p), (10)

where di is distance from provider, θi is household i’s opportunity cost of travel time, p is the

nominal price of a screening test, and αi and βi are preference parameters. Assuming that αi =

δ
αXi + εi, βi = δ

β Xi and that εi follows a Type I Extreme value distribution, household i’s WTP

for screening is αi
βi
− θidi− p. As discussed in Section 4.1.1, to avoid the incidental parameters

problem (Neyman & Scott 1948) while still being able to recover αi, I include block-level means

of relevant regressors but omit block fixed effects.

Table 7 shows that the average household has a negative WTP for screening and that house-
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holds in riskier homes have the highest WTP. The average household in a home built prior to 1930

is willing to pay $6.14 for screening. Similarly, households with low socioeconomic status have

a higher WTP for screening than better off households, consistent with their heightened risk even

after controlling for housing age. Because Panels A and B of Table 7 do not show large differ-

ences in the elasticity to travel costs, βi, these different WTPs suggest households have different

valuations of screening benefits, αi.

If all households face the same price for a test, the estimates in Table 7 imply that households

in pre-1930 homes are willing to pay up to $29.16 more than households in newer homes. If,

instead, households living in pre-1930 homes have no co-pay while low-risk households pay full

price ($43), the difference in WTP between high- and low-risk households becomes negative.

Conversely, the difference widens to $72.16 if riskier households pay full price due to lack of

insurance. Moreover, households do not often visit their closest provider. To address the second

concern, I can divide the WTP estimates by the average relationship between minimum and actual

distance, 75-281 meters per kilometer (Table 2), yielding a difference in WTP of $103.77-388.80.

Still, my definition of travel costs likely overestimates WTP as high-risk households are less likely

to drive meaning they need more time to travel a given distance.28

To interpret the magnitude of these WTP estimates, I need a measure of screening benefits.29

Section 2 discusses how under risk-neutrality and perfect information, perceived benefits are the

converse of the expected costs of lead poisoning. By contrast, perceived benefits exceed expected

poisoning costs under risk aversion and fall short of them if households underestimate treatment

effectiveness or overestimate treatment costs. Households in pre-1930 homes have a 0.8 percentage

point higher likelihood of an EBLL than households in new homes (Column 4, Appendix Table

A.18), but estimates of the cost of an EBLL vary widely. On the one hand, Gazze et al. (2019)

find that children with EBLLs have test scores that are 0.031 standard deviations lower than their

siblings, implying a net present value of lifetime earnings lost to lead poisoning of $5,616 and an

28Appendix Figure A.13 shows a negative correlation between car ownership rates and the share of homes built
prior to 1930 for Census tracts with fewer than 50 percent of homes built prior to 1930.

29Using data on chelation treatment for severe lead poisoning, (Agee & Crocker 1996) estimate that parents are
willing to pay $16.11 to reduce their child’s lead levels by one percent.
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expected lifetime cost of living in a pre-1930 home relative to a new home of $45.30 On the other

hand, the correlation between IQ losses and BLLs implies an expected lifetime cost of living in a

pre-1930 home relative to a new home of $910 (Schwartz 1994), but this estimate does not account

for unobserved innate ability correlated with lead exposure. Most parameter values for benefits and

WTP indicate parents may overvalue screening, although neither estimate includes the opportunity

cost of the additional time parents spend caring for a poisoned child.

5.2 Policy Counterfactuals

This section simulates the societal benefits of four screening policies and one remediation policy

in the 2014 cohort as modeled in equation (6). First, I look at incentives for households and

providers. Then, I look at a policy opening screening locations in each zip code. Finally, I evaluate

a 100 percent screening requirement for children in homes built prior to 1930. Moreover, I compare

these policies to subsidizing full remediation for addresses with EBLLs.

Table 8 reports the number of additional children screened and additional poisoning cases de-

tected under each policy. I compute additional detection rates assuming that marginal children have

the average poisoning rate in the 2014 cohort, based on my finding that hassles do not improve tar-

geting (Section 4.2). When evaluating the screening mandate for old homes, I use the poisoning

probability among children living in old homes. I compute the private benefits of each policy by

summing the WTP for screening of the marginal households, bi− ci, estimated in Section 5.1.31 I

assume the prevention benefits from the screening policies are zero based on the lack of evidence

that proximity to providers reduces future exposure (Section 4.3). The majority of these policies’

monetary costs involve transfers to health care or insurance providers. Examining the opportunity

cost of using public funds for these policies is outside the scope of this paper.

30I use estimates by Chetty et al. (2014) that a one-standard-deviation-decrease in test scores is associated with a
12 percent decrease in earnings at 28 and 2018 Current Population Survey data to compute a lifetime earnings profile,
assuming a growth rate of real labor productivity of 1.9 percent and a discount rate of 3.38 (that is, the 30-year Treasury
bond rate).

31The reported private benefits estimates are not rescaled by the relationship between actual and closest distance
discussed in the previous section, which would imply smaller private benefits for each policy.
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Because estimates of the externality of lead exposure ei are not available, I use a value of

$5,617. This figure is based on estimates in Gazze et al. (2019) that a lead-poisoned child decreases

all of their peers’ test scores by 0.01 standard deviations per grade.32 Because this value omits the

crime costs of lead poisoning, it likely underestimates the total externality of lead poisoning.33 All

the screening policies I study appear to be cost-effective for externality values lower than $5,617.

First, I simulate the effect of giving households incentives for screening, following a large lit-

erature on immunization incentives (Banerjee et al. 2010, Bronchetti et al. 2015). I assign variable

incentives based on the zip code average realized travel distance, valued at 1.2 minutes per kilome-

ter and $25 per hour ($10.5 on average). I identify the marginal children screened under this policy

as those whose WTP turns from negative to positive under the counterfactual policy, weighting

by the realized probability of screening for a given WTP. Column 1 of Table 8 shows that this

policy’s private benefits are positive but lower than the incentives disbursed as many inframarginal

households receive subsidies.

Second, I consider a pay-for-performance incentive for low-performing providers. Although

pay-for-performance programs among physicians have had mixed success (Li et al. 2014), physi-

cians appear to respond to increased payments (Alexander & Schnell 2019). For providers in

high-risk zip codes with screening rates lower than 50 percent, I assume the policy leads them

to screen an additional random 10 percent of children in their catchment area. Column 2 of Ta-

ble 8 shows that this policy would lead to screening around four times more children than the

household incentive, but achieve a similar private benefit, due to poorer targeting. Dividing the

policy’s private benefits among the 216 providers affected yields an incentive of $1,230, or $5.24

per additional child.

Third, I simulate a provider opening at the centroid of each zip code without providers in

2014. In the past, lead screening was offered at the Special Supplemental Nutrition Program for

32I use estimates by Chetty et al. (2014) that a one-standard-deviation decrease in test scores is associated with a
12 percent decrease in earnings at 28 and 2018 Current Population Survey data to compute a lifetime earnings profile,
assuming a growth rate of real labor productivity of 1.9 percent and a discount rate of 3.38 (that is, the 30-year Treasury
bond rate).

33As a reference, Heckman et al. (2010) estimate that 38–66 percent of the value of preschool programs is at-
tributable to crime reductions.
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Women, Infants, and Children (WIC), the single largest point of access to health-related services

for low-income preschool children in the US (General Accounting Office 1999), and WIC status

appears associated with increased screening (Vaidyanathan et al. 2009). Alternatively, pharmacies

could acquire lead screening kits at a cost of $382 for 48 tests. Column 3 of Table 8 shows that

this policy would only screen 882 more children, consistent with households responding to even

small distances. Yet, the benefits for these marginal children appear higher than the program’s cost

because capillary screening kits are cheap.

Fourth, I consider a mandate to screen all children in homes built prior to 1930, which lever-

ages observable exposure risk to target screening. Column 4 of Table 8 shows that, compared to

the screening incentive in Column 1, this policy yields fewer additional screenings and lower pri-

vate benefits, but similar rates of poisoning detection. This result is consistent with the finding in

Section 4.2 that households do not self-select into screening based on better information about un-

observable risk. Thus, the social planner may be able to target screening based only on observable

risk. However, it may be prohibitively costly to screen all children in old homes.

Fifth, I consider a policy that keeps screening constant but assumes perfect remediation after

EBLL detection, preventing new lead poisoning cases at homes with previous cases. In the 2014

cohort, 638 homes had an EBLL. Because 10.3 percent of addresses with EBLLs in the 2001–2003

cohorts have another child with EBLLs within 10 years, I assume that remediating these 638 homes

would prevent 66 new cases. The average remediation cost in the HUD data for the 2010–2016

period is $10,646, suggesting lead poisoning externalities need to be on the order of $100,000 for

remediations to be cost-effective in terms of prevention benefits only. Importantly, I do not have

estimates of averted case management costs that would factor in prevention benefits.

This section evaluates the social benefits of five screening and remediation policies. Overall,

policies increasing screening rates have modest private benefits for marginal children, but may be

cost-effective after taking into account lead-poisoning externalities as small as $3,500. Specifically,

I consider a screening subsidy, which allows households with the highest WTP at the margin to

select into screening, and find that even this policy has small private benefits. Then, I consider
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supply-side policies such as a pay-for-performance (PFP) incentive and an increase in provider

locations, and find that while both have worse targeting outcomes than the screening subsidy, PFP

leads to higher screening rates and thus higher poisoning detection rates. To better study targeting, I

next consider a screening mandate in old homes, and find that it leads to similar poisoning detection

rates as the subsidy, suggesting that households do not have private information on unobservable

risks. Finally, I examine perfect remediation and find it not to be cost-effective because of the

uncertainty in turnover of residents at each address.

6 Conclusion

Lead paint in millions of US homes potentially endangers children’ health. Lead poisoning preven-

tion programs rely on childhood blood lead screening to identify these hazards, but screening may

create hassles for families with small children. This paper examines screening take-up in Illinois

and evaluates counterfactual prevention policies. I find that travel costs decrease screening rates

but do not affect selection into screening based on either observable or unobservable exposure

risk. Policies incentivizing screening have low private benefits, yet may be cost-effective when

accounting for total societal benefits from averted poisoning externalities.

My findings suggest that decreasing travel costs, for example through subsidies, could increase

screening without reducing targeting efficiency. Moreover, because provider quality affects screen-

ing, provider training may cost-effectively increase screening. Finally, increased provider access

appears to improve timely detection of lead poisoning but is not associated with higher remediation

activity, suggesting case management may need improvement.
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Figure 1: Lead Screening and Exposure Rates in the Illinois 2014 Cohort
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Notes: The figure plots screening and exposure rates for children born in Illinois in 2014. Panel A plots the number of
children born, screened, and with blood lead levels 10+ in the whole sample and for the sample of children in pre-1930
and 1930-1978 homes. Panel B plots screening rates by age two by risk-level of the birth zip code.

Figure 2: Relationship between Distance and Screening Rates, by Risk
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Notes: The figure illustrates the screening predictions from the ordeals model. The left panel plots hypothetical
screening rates by distance for low risk (L) and high risk (H) households. The right panel plots the share of screened
children who are high risk by distance as implied by the relationships plotted in the left panel.
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Figure 3: Year-by-Year Effects of Openings and Closings
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(b) Provider Catchment Level, 500m Radius
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Notes: The figure plots DD coefficients on year-by-year entry and exit dummies, at the block (Panel A) level, and
provider catchment with 500 meter radius level (Panel B). At the block level, entries and exits are defined as changes
in distance from the area centroid to the closest provider. The outcome variable is the predicted screening probability
of a child born in each level-year (levels are block and provider catchment), as predicted by a linear probability model
including distance to closest open provider, level and birth cohort fixed effects. Coefficients on entry and exit in each
panel are estimated in a single regression. The vertical line indicates the entry or exit period. For areas with entries
or exits the sample is limited to a balanced panel in the [-4,4] window around the entry or exit. Year and block or
provider fixed effects are included. T-1 is the omitted category. The vertical bars are 95 percent confidence intervals.
Standard errors are clustered at the block and provider level, respectively.
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Figure 4: Determinants of Screening: Distance to Providers

.3
.3

5
.4

.4
5

.5
.5

5
S

cr
ee

ne
d 

b 
y 

A
ge

 2

0
20

00
00

40
00

00
60

00
00

80
00

00
1.

0e
+

06
C

hi
ld

re
n

<=1km 1-2km 2-5km 5-10km 10-20km >20km
Distance to Closest Open Provider

Children Screened b y Age 2

-.
04

-.
02

0
.0

2
.0

4
.0

6
D

iff
er

en
tia

l S
cr

ee
ni

ng
 R

at
e 

R
el

at
iv

e 
to

 >
20

km

<=1km 1-2km 2-5km 5-10km 10-20km >20km
Distance to Closest Open Provider

Controls Zip FE
Block FE

Notes: The figure plots the average likelihood of a child being screened by age two by distance to closest open provider.
The bars in the left panel show the number of children in each distance bin on the left y-axis, and the line represents
their screening rates on the right y-axis. The right panel plots screening rates for each distance bin relative to children
born 20 kilometers or further from open providers controlling for children and home characteristics (short-dash line),
zip fixed effects (grey long-dash line), and block fixed effects (black line).
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Figure 5: Determinants of Screening: Provider Quality
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Notes: The figure plots the effect of having any provider (blue bars), a high-quality provider based on the definition
in each panel (orange bars) and a provider who attended a top 20 medical school (maroon bars) within each concen-
tric buffer indicated on the x-axis on screening take-up. The quality index includes screening rates in a provider’s
catchment area, as well as a provider’s rate of follow up within 90 days on cases of EBLLs and a provider’s rate of
adherence to Medicaid guidelines, that is the rate at which children on Medicaid screened by that provider at age one
have a second test at age two. Providers’ catchment areas are computed based on the median distance of children to
their screening providers in my sample. Within catchement areas, I compute provider-level screening rates by weight-
ing unscreened children by the inverse of their distance to the provider. The sample includes all geocoded children
born 2001-2014 whose closest provider is within 20 kilometers. Each regression includes birth year and block fixed
effects. Vertical bars display 95% confidence intervals based on standard errors clustered at the zip code level.
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Table 1: Determinants of Screening: Distance to Closest Provider

Dependent Variable: Screened by Age 2
(1) (2) (3) (4) (5)

Panel A: Continuous Distance

Distance to Closest -0.008*** -0.004*** -0.004*** -0.004*** -0.003***
Open Provider (0.001) (0.000) (0.001) (0.001) (0.001)

Panel B: Binned Distance

Closest Open Provider 0.072*** 0.040*** 0.040*** 0.041*** 0.032***
within 1Km (0.008) (0.006) (0.007) (0.009) (0.012)
Closest Open Provider 0.055*** 0.026*** 0.028*** 0.033*** 0.023*
1-2Km (0.007) (0.006) (0.007) (0.009) (0.012)
Closest Open Provider 0.030*** 0.015** 0.017** 0.028*** 0.012
2-5Km (0.007) (0.006) (0.007) (0.009) (0.012)
Closest Open Provider -0.011* -0.006 0.001 0.013* 0.006
5-10Km (0.006) (0.005) (0.005) (0.007) (0.010)

Mean Outcome Variable 0.46 0.46 0.46 0.46 0.47
N 2050536 2050553 2050533 2018383 1463352
Zip Code FE X
Tract FE X
Block Group FE X
Block FE X
Home FE X

Notes: ∗p< 0.10,∗∗ p< 0.05,∗∗∗ p< 0.01. The table displays the impact of distance to the closest provider open during
a child’s birth year on the likelihood of a child being screened by age two. Panel A reports the effect of a continuous
distance measure in kilometers, while Panel B reports the effect of binned distance indicators. The sample includes all
geocoded children born 2001-2014 whose closest provider is within 20 kilometers. Each column includes birth year
fixed effects and a set of location fixed effects for the location indicated at the bottom of each column. Standard errors
clustered at the zip code level in parentheses.
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Table 2: Determinants of Screening: Distance to Provider of Choice

(1) (2) (3) (4) (5) (6)

Panel A: First Stage. Dependent Variable: Distance Travelled

Distance to Closest Open 0.281*** 0.166*** 0.075** 0.273*** 0.170*** 0.115***
Provider (0.029) (0.028) (0.032) (0.026) (0.028) (0.044)
Distance to Closest Open 0.007 -0.021 0.016
Provider X Home Pre1930 (0.020) (0.020) (0.040)
Home Pre1930 -0.271*** -0.227*** -0.253***

(0.058) (0.058) (0.074)
Mean Outcome Variable 7.74 7.74 7.54 7.57 7.57 7.44
N 585638 585544 543689 439831 439736 412402

Panel B: Second Stage. Dependent Variable: Screened by Age 2

Predicted Distance to -0.013*** -0.022*** -0.072*** -0.028*** -0.052*** -0.077***
Provider of Choice (0.001) (0.002) (0.017) (0.002) (0.006) (0.012)

Mean Outcome Variable 0.456 0.456 0.528 0.463 0.463 0.534
N 2048804 2041205 1529622 1450087 1445900 1113929
Tract FE X X
Block Group FE X X
Block FE X X

Notes: ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01. Panel A estimates the impact of distance to the closest provider open
during the year of a test on the actual distance travelled to get the child’s first test for the sample of screened children.
Panel B estimates the effect of predicted distance from provider of choice on the likelihood a child is screened in the
whole sample. Each column predicts distance from provider of choice using the first stage in Panel A in that column.
Each column includes year fixed effects and a set of location fixed effects for location indicated at the bottom of each
column. Panel A includes standard errors clustered at the zip code level in parentheses. Panel B includes standard
errors bootstrapped in 500 iterations.
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Table 3: Determinants of Screening: Car Travel Times

Dependent Variable: Screened by Age 2
(1) (2) (3) (4)

Panel A: Travel Distance

Distance to Closest -0.008*** -0.004*** -0.004*** -0.005***
Open Provider (0.001) (0.001) (0.001) (0.002)

Panel B: Travel Time

Travel Time to Closest -0.006*** -0.004*** -0.004*** -0.003**
Open Provider (Minutes) (0.001) (0.001) (0.001) (0.001)

Mean Outcome Variable 0.46 0.46 0.46 0.46
N 244954 245018 244930 193050
Zip Code FE X
Tract FE X
Block Group FE X
Block FE X

Notes: ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01. The table examines the relationship between car travel times and screen-
ing likelihood in a 12 percent random sample stratified by block group and birth year. For this sample, I used the
STATA command georoute (Weber & Peclat 2016), based on the HERE API which limits free requests to 250,000
observations, to estimate travel times by car to the closest open provider. Panel A estimates the impact of distance to
the closest provider open on the likelihood a child is screened in this subsample. Panel B estimates the effect of travel
time in minutes on the likelihood a child is screened. Each column includes year fixed effects and a set of location
fixed effects for location indicated at the bottom of each column. Standard errors clustered at the zip code level in
parentheses.
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Table 4: Determinants of Screening: Information

Dependent Variable: Screened by Age 2
(1) (2) (3) (4) (5) (6)

Distance to Closest Open Provider -0.003*** -0.003*** -0.005*** -0.003*** -0.002*** -0.004***
(0.000) (0.001) (0.001) (0.000) (0.001) (0.001)

Share Tested in Geography-Cohort 0.427*** 0.171*** -0.109***
(0.017) (0.011) (0.005)

Distance to Closest Open Provider X -0.006***
Post Tested Child (0.002)
Distance to Closest Open Provider X 0.007***
Post Child with BLL 10+ (0.003)
Post Tested Child -0.553***

(0.009)
Post Child wit BLL 10+ -0.022*

(0.012)
Distance to Closest Open Provider X 0.012***
EBLL within a Year of Birth within 15m (0.001)
EBLL within a Year of Birth within 15m 0.058***

(0.004)

Mean Outcome Variable 0.46 0.46 0.46 0.46 0.46 0.46
N 2050429 2049377 1404918 1052305 1052305 2018383
Children per Geography-Cohort 69.02 26.00 4.95
Tract FE X
Block Group FE X
Block FE X X
Mother FE X X

Notes: ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01. The table displays the impact of distance to the closest provider open during a child birth year on the likelihood a child
is screened by age two. Columns 1-3 control for the share of children born in a child’s neighborhood-cohort, with neighborhood defined at the bottom of each
column. Columns 4-5 limit the sample to children with siblings and control for mother and birth order fixed effects. Standard errors clustered at the zip code level
in parentheses.
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Table 5: Selection into Screening Conditional on Distance

Dependent Variable: BLL 10+ BLL By Home Black Hispanic Single Mother 20 Mother High
By Age 2 Age 2 Pre1930 Mother or Younger School or Less

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Tract and Year FE

Distance to Closest -0.0003** -0.0052* -0.0047*** -0.0023*** -0.0021*** -0.0019*** -0.0002 -0.0008
Open Provider (0.000) (0.003) (0.001) (0.000) (0.001) (0.001) (0.000) (0.001)

Panel B: Block and Year FE

Distance to Closest -0.0004 -0.0084 -0.0012** -0.0004 -0.0002 0.0006 0.0002 -0.0004
Open Provider (0.000) (0.007) (0.001) (0.000) (0.001) (0.001) (0.001) (0.001)

Mean Outcome Variable 0.02 2.93 0.46 0.23 0.33 0.49 0.12 0.16
N 890091 890091 645177 890091 890091 890091 890091 890091

Notes: ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01. The table displays the impact of distance to the closest provider open during a child’s birth year on selection into
screening by age 2. The sample includes all geocoded children born 2001-2014 whose closest provider is within 20 kilometers and who are screened. Outcome
variables are indicated in each column. Panel A reports the effects controlling for the child’s birth tract, Panel B controls for child’s birth block. Each regression
includes birth year fixed effects. Standard errors clustered at the zip code level in parentheses.
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Table 6: Effect of Proximity to Providers on EBLL Detection, Detection Timing, and Prevention

Dependent Variable: BLL 10+ Age at Age at Remediation Future BLL 10+
Detected First Test Highest Test within 3 Years Detected

(1) (2) (3) (4) (5)

Distance to Closest -0.0003*** 0.1934*** 0.1811*** 0.0000 -0.0002
Open Provider (0.000) (0.051) (0.050) (0.000) (0.000)

Mean Outcome Variable 0.009 20.434 21.325 0.001 0.016
N 2018383 1194748 1194748 2018383 476357
Block FE X X X X X

Notes: ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01. The table displays the impact of distance to the closest provider open during a child birth year on the outcome indicated
in each column. The sample includes all geocoded children born 2001-2014 whose closest provider is within 20 kilometers. Each column includes birth year and
block fixed effects. Standard errors clustered at the zip code level in parentheses.
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Table 7: Heterogeneity in Willingness to Pay for Screening

Sample: All Home Vintage Black Hispanic Single Mother Mother 20 or Younger
Pre1930 1930-1978 Post1978 No Yes No Yes No Yes No Yes

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Panel A: Logit Marginal Effects

Distance to Closest -0.010*** -0.008*** -0.009*** -0.008*** -0.010*** -0.005** -0.010*** -0.004* -0.014*** 0.001 -0.011*** 0.002
Open Provider (0.002) (0.002) (0.002) (0.001) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Panel B: OLS Coefficients

Distance to Closest -0.006*** -0.005*** -0.005*** -0.006*** -0.006*** -0.005*** -0.006*** -0.005*** -0.008*** 0.000 -0.006*** 0.001
Open Provider (0.001) (0.001) (0.001) (0.001) (0.001) (0.002) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Panel C: Average Willingess to Pay

Average WTP ($) -5.258*** 7.808*** -5.140*** -23.632*** -5.892*** 5.017*** -6.468*** 5.101*** -5.362*** 1.218*** -3.436*** 2.721***
(0.001) (0.002) (0.001) (0.027) (0.001) (0.002) (0.001) (0.001) (0.000) (0.000) (0.000) (0.000)

P-value Equality w/ Ref 0.000 0.000 0.000 0.000 0.000 0.000

Mean Outcome Variable 0.463 0.600 0.453 0.288 0.438 0.572 0.406 0.604 0.391 0.585 0.449 0.602
N 1451137 505167 578901 367069 1189347 261790 1036904 414233 916396 534741 1323733 127404

Notes: ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01. The table displays the marginal effects of distance to providers on the likelihood of a child being screened by age
two from logit (Panel A) and OLS (Panel B) models on different subsamples indicated in each column. Estimates for each set of columns, that is home vintages
(Columns 2-4), race (Columns 5-6), ethnicity (Columns 7-8), mother’s marriage status (Columns 9-10), and mother’s age (Columns 11-12), are estimated in a
single regression that interacts distance with the characteristic indicator in each column. Panel C reports average willingness-to-pay for screening for the average
household in each subsample as estimated by the logit model in Panel A. The sample includes all geocoded children born 2001-2014 whose birth address matched
a parcel record, and whose closest provider is within 20 kilometers and either opened or closed during their birth year. Each column includes birth year indicators,
child-level demographic controls, and block-level averages of all included regressors. Standard errors clustered at the zip code level in parentheses.
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Table 8: Policy Counterfactuals

Policy: Household Provider Diffused Pre1930 Screening Remediation
Incentive Incentive Screening Mandate Follow-Through

(1) (2) (3) (4) (5)

Additional Children Screened, 1,000 15.91 50.70 0.88 11.31

Additional BLLs 10+ Detected, 1,000 0.14 0.43 0.01 0.15

Change in Private Welfare, $1,000 370.09*** 265.70*** 9.92*** 194.83***
(3.55) (3.83) (0.34) (2.35)

Externality, $1,000 759.54*** 2420.85*** 42.10*** 833.98***
(1.82) (3.24) (0.43) (2.37)

Prevention, $1,000 393.72***
(4.70)

Total Benefits, $1,000 1129.63 2686.55 52.02 1028.81 393.72

Cost, $1,000 434.71 1774.47 7.02 6792.15

Notes: ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01. The table displays the impact of the counterfactual policies in each column on the 2014 cohort. Additional cases
detected are the product of additional children screened and the poisoning probability in the 2014 cohort (0.0085) except in Column 4 which uses the poisoning
probability conditional on living in an old home (0.0131). The sum of the additional children’s WTP yields the private benefits of each policy. WTP is estimated in
a logit model that includes demographic and block-group level controls. The externality of each EBLL case is assumed to be $5,617. Household incentives average
$10.5. Columns 1 and 3 count children whose willingness-to-pay (WTP) turns positive under the policy as additionally screened. Column 2 simulates increases
in screening rates for low-screening providers in high-risk zip codes of 10 percentage points. Column 3 simulates providers opening at the zip code centroid for
each zipcode-year cell without open providers, at $7.96 per test. Column 4 assumes remediations in 638 homes with EBLLs in 2014 prevent 66 new cases in the
following ten years, at the baseline re-poisoning rate of 10.3 percent, for an externality benefit of $8,794 each. Average remediation cost are $10,646 per house.
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Figure A.1: Match Rate between Blood Lead Levels and Birth Records

.8
6

.8
8

.9
.9

2
.9

4

%
 o

f 
T

e
s
ts

 M
a
tc

h
e
d

2001 2003 2005 2007 2009 2011 2013

Birth Cohort

Notes: The figure plots the percent of tests successfully linked to birth records by birth cohort as recorded in the test
data.

Figure A.2: Distribution of Test Results of Laboratory with Cutoff at 5 µg/dL

Notes: The figure plots the number of tests on the y-axis by BLL result on the x-axis for one laboratory in our sample.
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Figure A.3: Location of Providers Operating in IL in 2001 and 2014

Notes: The figure plots the distribution of open providers in Illinois in high and low risk zip codes in the years 2001
(left) and 2014 (right).

Figure A.4: Distribution of Providers within Neighborhoods
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Notes: The figure plots the distribution of open providers at the tract-year (left panel) and block-year (right panel)
level in Illinois, conditional on a neihgborhood having a provider. The vertical red line indicates the mean number of
provider in a neighborhood-year.
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Figure A.5: Distance to Closest Providers
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Notes: The figure plots the distribution of distance in kilometers from children’s birth address to the closest provider
open during the child’s birth year. Distance is censored at 20km for ease of visualization. The red vertical line indicates
the mean of the variable in the uncensored data.

Figure A.6: Distance to Providers
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Notes: The left panel plots the distribution of distance in kilometers between children’s address at test and the provider
associated with the test. The right panel plots the distribution of the difference in kilometers between distance traveled
at test and minimum distance between address at test and the closest active provider during the test’s year. In both
graphs, distance is censored at 20km for ease of visualization. The red vertical line indicates the mean of the variable
in the uncensored data.
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Figure A.7: Follow-up Rates
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Notes: The figure plots follow-up rates in IL for tests that identify an EBLL by risk-level in birth zip code.

Figure A.8: Providers: Correlation in Quality Measures
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Notes: The figure plots on the y-axis the average z-scores of adherence to follow-up guideline (left panel) and screening
rate (right panel) by ranking of the medical school each provider earned their degrees at on the x-axis.
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Figure A.9: Providers: Correlation between Provider Quality and Neighborhood Characteristics
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Notes: The figure plots on the y-axis the share of providers who are from top 20 medical schools (left panel) and who
have a quality index above median (right panel) by share of black children born in the provider’s census block group
on the x-axis.

Figure A.10: Location of Providers, by Quality

Notes: The figure plots the distribution of open providers by quality (left panel) and ranking of medical school of
record (right panel) in Illinois in high and low risk zip codes over the years 2001-2014. High-quality providers are
defined as having a quality index above median.

51



Figure A.11: Determinants of Screening: Providers Distance, by Car Ownership
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Notes: The figure plots the regression estimates of the effect of distance to closest provider on the likelihood that a
child is screened by age two by quartile of car ownership rates in the child’s Census tract, controlling for tract, block
group, or block fixed effects. Tract-level car ownership in 2000 is measured in Census data. Vertical bars indicate 95%
confidence intervals based on standard errors clustered at the zip code leve.

Figure A.12: Cumulative Distribution of Age at First Blood Lead Test
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Notes: The figure plots the cumulative distribution of age of first test in Illinois over time.
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Figure A.13: Correlation between Car Ownership and Housing Age
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Notes: The figure plots the average car ownership rates by quantiles of share of pre-1930 homes in Census tract using
2000 Census data, and fits a quadratic line.
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Table A.1: Summary Statistics: Children

Sample: Whole Sample Screened Children
Mean Standard Deviation Mean Standard Deviation

(1) (2) (3) (4)

Home Pre1930 0.348 0.476 0.451 0.498

Home 1930-1977 0.399 0.490 0.391 0.488

Low Income 0.278 0.448 0.366 0.482

Black 0.179 0.383 0.226 0.418

Hispanic 0.246 0.431 0.319 0.466

Single Mother 0.384 0.486 0.490 0.500

Mother 20 or Younger 0.091 0.287 0.119 0.324

Mother Less than High 0.012 0.109 0.019 0.137
School
Mother High School, 0.103 0.304 0.135 0.342
No Diploma
EBLL within a Year of Birth 0.054 0.226 0.079 0.269
within 15m
EBLL within a Year of Birth 0.104 0.305 0.139 0.346
15-100m
Chicago Born 0.283 0.450 0.380 0.485

High Risk Zip excl. Chicago 0.169 0.375 0.204 0.403

Screened by Age 2 0.456 0.498 1.000 0.000

Highest BLL by Age 2 2.919 2.596 2.919 2.596

BLL 10+ by Age 2 0.020 0.140 0.020 0.140

Distance to Closest 2.279 3.195 1.934 3.004
Open Provider
Has Provider w/ 0.308 0.462 0.382 0.486
Capillary in 1Km
Has High Quality 0.295 0.456 0.374 0.484
Provider in 1Km
Has Provider w/ 0.033 0.178 0.039 0.193
Top20 Degree in 1Km

N 2050536 934099

Notes: The table displays summary statistics for the covariates in the sample. Columns 1-2 include all geocoded
children whose birth address matched a parcel record for birth cohorts 2001-2014, while Columns 3-4 limit the sample
to children whose birth address is within 2 kilometers of a provider opening or closing during their birth year.
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Table A.2: Summary Statistics: Matched and Unmatched Blood Lead Tests

Sample: Unmatched Matched
Mean Standard Deviation Mean Standard Deviation

(1) (2) (3) (4)

Geocoded 0.729 0.445 0.762 0.426

Home Pre1930 0.540 0.498 0.545 0.498

Home 1930-1977 0.350 0.477 0.349 0.477

Low Income Block Group 0.458 0.498 0.457 0.498

Share Black in Tract 0.262 0.352 0.283 0.372

Share Hispanic in Tract 0.226 0.291 0.243 0.300

Fraction Less than High 0.561 0.184 0.577 0.176
School
Chicago Residence 0.428 0.495 0.468 0.499

N 715273 4707326

Notes: The table displays summary statistics for the unmatched (Columns 1-2) and matched (Columsn 3-4) tests in
the sample. Housing age and Census characteristics of block group and tracts are based on the child’s address at time
of test.
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Table A.3: Sample Size and Linkages

Children with 

Birth Records

# Tests # Children # Tests # Children # Children

(1) (2) (3) (4) (5)

Total 5,403,722 2,653,402 5,403,722 2,653,402 4,465,487

Matched to Birth Record 4,692,618 2,166,694 4,685,569 2,160,081 4,465,487

Geocoded 3,587,020 1,820,517 4,167,897 1,903,385 3,847,728

Born between 2001-2014 2,664,302 1,392,758 2,935,018 1,281,933 2,123,496

Linked to Parcel Data 1,926,388 1,007,129 2,144,859 890,637 1,466,015

Drop follow-up 1,851,106 1,004,026 2,064,753 890,637 1,466,015

1,850,783 1,003,859 1,722,482 780,980 1,465,336

Tests Linked to Test Address Test Linked to Birth Address

Linkage with Census 

Block Data

Notes: The table displays the number of tests and unique children in my original sample (first row) and those remaining after each data cleaning and linkage step.
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Table A.4: Screening Rates and Average Blood Lead Levels

Geocoded Non-Geocoded Geocoded Non-Geocoded

Screening Rate (%) 60% 58% 76% 74%

Avg. Blood Lead Level (ug/dL) 2.55 2.52 2.40 2.39

ChicagoIllinois

Notes: The table displays the screening rates and average blood lead levels in Illinois and Chicago, respectively, in the
sample of geocoded (Columns 1 and 3) and non-geocoded (Columns 2 and 4) births (for screening rates) and tests (for
average BLLs).
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Table A.5: Sample Size and Extent of Lead Exposure

Number of 

Tests, Excl. 

Follow-Up

Number of Tests, 

Excl. Follow-Up, 

Linked to Covariates

Number of 

Children

(1) (2) (3)

Panel A: Any Test Type

Total 2,557,184 1,594,313 953,749

Elevated (>10ug/dL) 77,919 37,310 27,175

Confirmed Elevated 70,171 32,319 22,579

Panel B: Capillary Tests

Total 990,734 729,945 512,185

Elevated (>10ug/dL) 25,463 15,384 14,125

Confirmed Elevated 17,715 10,393 11,305

Panel C: Venous Tests

Total 1,566,449 864,367 538,225

Elevated (>10ug/dL) 52,456 21,926 14,827

Notes: The table displays the number of tests (Column 1), number of tests excluding those that are within 90 days of a
previous test (Column 2), and the number of children (Column 3) in my sample (Total) and those that display elevated
levels, for any test (Panel A), capillary (Panel B), and venous (Panel C). I show separately the number of confirmed
capillary tests, that is capillary tests that are followed up by another elevated level within 90 days, be it venous or
capillary.
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Table A.6: Estimates of Fraction of Movers in Sample

Sample: Siblings Tested Child
(1) (2)

Moved 0.356 0.331

Moved to House with Different Risk 0.154 0.150

Moved to Zip Code with Different Risk 0.082 0.069

N 480865 883816

Notes: The table displays the share of households estimated to move within a two year period in my sample. Column
1 indentifies movers among households with multiple children as those with a change in birth address between births.
Column 2 indentifies movers among households with a tested child as those whose residence address at time of test
differs from the birth address. Houses are defined as having different risk if one is built before 1930 and one after.
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Table A.7: Summary Statistics: Providers

Mean Standard Deviation
(1) (2)

Years Open 8.172 6.051

Individual Provider 0.242 0.428

Top20 Degree 0.029 0.168

Top 21-50 Degree 0.175 0.380

Unranked Degree 0.685 0.465

Performs Capillary 0.636 0.481

High Quality 0.703 0.457

N 4542

Notes: The table displays summary statistics for the providers in the sample.
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Table A.8: Provider Choice: Mother’s Education and Provider Quality

Dependent Variable: Distance Traveled Performs Follow Up Medicaid Screening Top 20
over Minimum Capillary Rate Guidelines Rate Med School

(1) (2) (3) (4) (5) (6)

High School, 0.341*** 0.003 -0.014** -0.048*** -0.024 0.006**
No Diploma (0.059) (0.004) (0.007) (0.011) (0.018) (0.002)
High School 0.599*** 0.008* 0.002 -0.075*** -0.030 0.005**
Diploma (0.075) (0.004) (0.007) (0.013) (0.020) (0.002)
Some College 0.961*** 0.006 0.020** -0.132*** -0.086*** 0.006**

(0.078) (0.004) (0.008) (0.016) (0.022) (0.002)
College Degree 1.228*** 0.019*** 0.069*** -0.246*** -0.055 0.009**
(4 Years) (0.106) (0.005) (0.010) (0.021) (0.039) (0.004)
More than College 1.265*** 0.021*** 0.083*** -0.305*** -0.024 0.013***

(0.116) (0.005) (0.011) (0.023) (0.044) (0.005)
Unknown 0.740*** 0.021*** 0.015 -0.093*** -0.007 -0.003

(0.091) (0.006) (0.011) (0.021) (0.033) (0.003)

Mean Outcome 4.49 0.89 0.17 0.19 1.73 0.03
N 743207 996858 971138 813208 739903 996858
Block FE X X X X X X

Notes: ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01. The table displays the correlation between a monther’s education and the distance the household travels to visit a
provider for lead screening (Column 1) and the quality of the provider visited (Columns 2-6). Outcomes in Columns 3-5 are z-scores. Each column includes birth
year and census block fixed effects. Standard errors clustered at the zip code level in parentheses.
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Table A.9: Lagged Determinants of Providers’ Entry and Exit, Neighborhood Level

Dependent Variable: Entry Exit Distance To Entry Exit Distance To
Closest Provider Closest Provider

Neighborhood Level Tract Block
(1) (2) (3) (4) (5) (6)

Number of Providers -0.0445*** 0.1794*** -0.1424*** -0.0509** 0.2575*** -0.2172***
(0.009) (0.012) (0.036) (0.022) (0.029) (0.080)

Number of Births 0.0001 0.0001 -0.0024 0.0000 0.0000 0.0014
(0.000) (0.000) (0.002) (0.000) (0.000) (0.001)

Share Screened 0.0158 0.0126 -0.3001 0.0001 -0.0003 -0.0063
(0.012) (0.013) (0.191) (0.000) (0.000) (0.012)

Average BLL 0.0005 0.0009 -0.0598** 0.0000 0.0000 -0.0017
0.001 (0.002) (0.027) (0.000) (0.000) (0.001)

Share Homes Pre-1930 0.0152 -0.0052 -0.2432 -0.0003 0.0000 0.0135
(0.012) (0.014) (0.303) (0.000) (0.000) (0.017)

Share Black 0.0122 0.0732*** 0.1365 0.0003 0.0003 0.0024
(0.025) (0.028) (0.243) (0.000) (0.000) (0.013)

Share Hispanic 0.0227 0.0087 -0.1596 -0.0001 0.0001 -0.0129
(0.021) (0.023) (0.203) (0.000) (0.000) (0.009)

Share Single Mothers 0.0006 0.0150 -0.4121 0.0002* 0.0000 -0.0232**
(0.015) (0.016) (0.342) (0.000) (0.000) (0.011)

Share Mothers 20 -0.0486** -0.0159 0.3604 -0.0003** -0.0001 0.0139
or Younger (0.020) (0.026) (0.392) (0.000) (0.000) (0.013)
Share Mothers High School 0.0368** 0.0368** 0.0280 0.0000 0.0003 -0.0159
or Less (0.019) (0.018) (0.247) (0.000) (0.000) (0.011)

Mean Outcome Variable 0.0398 0.0535 2.8021 0.0005 0.0008 1.6101
N 32019 32019 32019 361900 361900 361830

Notes: ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01. The table displays the correlates of the likelihood that a provider opens (Columns 1,4) or closes (Columns 2,5) and
average distance to providers (Columns 3,6) in a given year at different neighborhood levels. Observations in Columns 1-3 are at the tract-year level and in Columns
4-6 at the block-year level. Characteristics are lagged by one year, and all reflect births except for BLLs and number of providers. Each column includes year fixed
effects and the neighborhood fixed effects indicated at the top of each column. Standard errors clustered at the neighborhood level in parentheses.
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Table A.10: Determinants of Screening: Provider Access, Robustness Checks

Dependent Variable: Screened by Age 2 (1) (2) (3) (4) (5) (6) (7)

Distance to Closest Open Provider -0.0005** -0.0028*** -0.002*** -0.001*** -0.004*** -0.003*** -0.005***
(0.000) (0.001) (0.001) (0.000) (0.001) (0.001) (0.001)

Distance to Closest Open Provider X 20+km Away 0.0027***
(0.001)

20+km Away -0.0239
(0.015)

Black 0.047*** 0.051***
(0.004) (0.005)

Hispanic 0.110*** 0.110***
(0.005) (0.005)

Single Mother 0.051*** 0.042***
(0.004) (0.004)

Mother 20 or Younger 0.016*** 0.013***
(0.002) (0.002)

Mother High School or Less 0.005 0.006*
(0.003) (0.003)

Home Pre1930 0.050***
(0.006)

Home 1930-1977 0.050***
(0.004)

EBLL within a Year of Birth within 15m 0.067***
(0.005)

EBLL within a Year of Birth 15-100m 0.014***
(0.003)

Mean Outcome Variable 0.46 0.46 0.46 0.46 0.46 0.46 0.46
N 2076225 2076225 2050533 2018383 2018351 2018383 1434900
Block FE X X X X X X
Block Group FE X
Block Group Trend X
Distance Measure: Avg of 5 Closest Providers X
Distance Measure: From Block Centroid X

Notes: ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01. The table displays the impact of distance to the closest provider open during a child birth year on the likelihood of a
child being screened by age two. Columns 4 and 5 use different distance measures, indicated at the bottom of those columns. The sample includes all geocoded
children born 2001-2014 whose birth address matched a parcel record. Columns 3-7 limit the sample to children within 20km of an open provider. Each column
includes birth year fixed effects and location fixed effects per the bottom of each column. Standard errors clustered at the zip code level in parentheses.
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Table A.11: Determinants of Screening: Provider Access, by Zip Code Risk

Dependent Variable: Screened by Age 2
Sample: Chicago High-Risk w/out Chicago Low-Risk

(1) (2) (3)

Panel A: Tract and Year FE
Distance to Closest -0.011** -0.002* -0.003***
Open Provider (0.005) (0.001) (0.001)

Panel B: Block and Year FE
Distance to Closest -0.008 -0.001 -0.003***
Open Provider (0.006) (0.002) (0.001)

Mean Outcome Variable 0.61 0.55 0.34
N 576731 330241 1100179

Notes: ∗p< 0.10,∗∗ p< 0.05,∗∗∗ p< 0.01. The table displays the impact of distance to the closest provider open during
a child birth year on the likelihood of a child being screened by age two for different subsamples indicated in each
column. The sample includes all geocoded children born 2001-2014 whose closest provider is within 20 kilometers.
Each column includes birth year and block fixed effects. Standard errors clustered at the zip code level in parentheses.
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Table A.12: Determinants of Screening: Provider Access, Different Samples

Dependent Variable: Screened by Age 2
Sample: 10KM 5KM 2KM 1KM 0.5KM

(1) (2) (3) (4) (5)

Distance to Closest -0.006*** -0.009*** -0.018*** -0.027*** -0.030
Open Provider (0.001) (0.002) (0.004) (0.008) (0.019)

Mean Outcome Variable 0.46 0.47 0.50 0.54 0.57
N 1933096 1809487 1407149 893976 412857
Block FE X X X X X

Notes: ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01. The table displays the impact of distance to the closest provider open
during a child birth year on the likelihood of a child being screened by age two. The sample includes all geocoded
children born 2001-2014 whose birth address matched a parcel record and who are born within the distance indicated
at the top of each column from an open provider. Each column includes birth year and block fixed effects. Standard
errors clustered at the zip code level in parentheses.
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Table A.13: Determinants of Screening: Provider Access and Density

Dependent Variable: Screened by Age 2
(1) (2) (3)

Distance to Closest Open Provider -0.003*** -0.003*** -0.003***
(0.001) (0.001) (0.001)

Distance to 5 Closest Open Providers -0.001*** -0.001*** -0.001***
(0.000) (0.000) (0.000)

Mean Outcome Variable 0.46 0.46 0.46
N 2050535 2050515 2018367
Tract FE X
Block Group FE X
Block FE X

Notes: ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01. The table displays the impact of distance to the closest and the five closest
providers open during a child birth year on the likelihood of a child being screened by age two. The sample includes
all geocoded children born 2001-2014 whose birth address matched a parcel record within 20km of an open provider.
Each column includes birth year fixed effects and location fixed effects per the bottom of each column. Standard errors
clustered at the zip code level in parentheses.
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Table A.14: Determinants of Screening: Provider Availability

Access Variable: Accepts New Patients Accepts Medicaid Patients Accepts New & Medicaid Patients
Sample: All Low Income All Low Income All Low Income

(1) (2) (3) (4) (5) (6)

Closest Open Provider 0.018** 0.019 0.025*** 0.020 0.031*** 0.031
within 1Km (0.008) (0.021) (0.009) (0.021) (0.008) (0.021)
Closest Open Provider 0.014* 0.019 0.021** 0.018 0.026*** 0.028
1-2Km (0.008) (0.021) (0.008) (0.021) (0.008) (0.021)
Closest Open Provider 0.015* 0.017 0.020** 0.017 0.024*** 0.025
2-5Km (0.008) (0.023) (0.008) (0.023) (0.008) (0.022)
Closest Open Provider 0.007 0.023 0.010 0.020 0.012* 0.021
5-10Km (0.007) (0.021) (0.007) (0.021) (0.007) (0.020)
Closest Open Provider 0.054*** 0.051*** 0.060*** 0.053*** 0.051*** 0.040***
within 1Km, High Quality (0.009) (0.015) (0.008) (0.012) (0.007) (0.012)
Closest Open Provider 0.046*** 0.043*** 0.052*** 0.046*** 0.044*** 0.035***
1-2Km, High Quality (0.008) (0.015) (0.007) (0.011) (0.006) (0.011)
Closest Open Provider 0.035*** 0.033** 0.041*** 0.038*** 0.031*** 0.025**
2-5Km, High Quality (0.008) (0.014) (0.007) (0.011) (0.006) (0.011)
Closest Open Provider 0.019*** 0.005 0.023*** 0.011 0.018*** 0.005
5-10Km, High Quality (0.007) (0.015) (0.005) (0.012) (0.005) (0.012)
Closest Open Provider 0.009 0.015 0.014** 0.001 0.011** -0.002
10-20Km, High Quality (0.006) (0.015) (0.005) (0.013) (0.005) (0.012)

Mean Outcome Variable 0.46 0.60 0.46 0.60 0.46 0.60
N 2018383 563938 2018383 563938 2018383 563938
Block FE X X X X X X

Notes: ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01. The table displays the impact of distance to the closest provider operating during a child birth year and distance to a
provider possessing the characteristic indicated in each column on the likelihood of a child being screened by age two. The sample includes all geocoded children
born 2001-2014 whose closest provider is within 20 kilometers (odd columns) or among those, only children living in low-income block groups (even columns).
Each column includes birth year and block fixed effects. Standard errors clustered at the zip code level in parentheses.
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Table A.15: Determinants of Screening: Provider Access, Logit Model

Dependent Variable: Screened by Age 1 Screened by Age 2 Screened by Age 6
Specification: OLS Logit OLS Logit OLS Logit

(1) (2) (3) (4) (5) (6)

Distance to Closest -0.003*** -0.027*** -0.005*** -0.027*** -0.005*** -0.023***
Open Provider (0.001) (0.006) (0.001) (0.006) (0.001) (0.005)
Home Pre1930 0.037*** 0.197*** 0.050*** 0.225*** 0.063*** 0.281***

(0.004) (0.023) (0.006) (0.026) (0.006) (0.029)
Home 1930-1977 0.037*** 0.203*** 0.050*** 0.226*** 0.064*** 0.280***

(0.003) (0.019) (0.004) (0.021) (0.005) (0.022)
Black 0.024*** 0.135*** 0.051*** 0.219*** 0.094*** 0.417***

(0.004) (0.020) (0.005) (0.021) (0.005) (0.023)
Hispanic 0.089*** 0.428*** 0.109*** 0.477*** 0.127*** 0.590***

(0.005) (0.022) (0.005) (0.023) (0.005) (0.024)
Single Mother 0.029*** 0.130*** 0.042*** 0.184*** 0.050*** 0.256***

(0.003) (0.015) (0.004) (0.016) (0.004) (0.017)
Mother 20 or Younger 0.003 0.017* 0.013*** 0.060*** 0.019*** 0.132***

(0.002) (0.010) (0.002) (0.009) (0.002) (0.012)
Mother Less High School 0.002 -0.009 0.006* 0.024* 0.012*** 0.091***
or Less (0.003) (0.014) (0.003) (0.014) (0.003) (0.017)
EBLL within a Year of Birth 0.049*** 0.252*** 0.067*** 0.311*** 0.043*** 0.265***
within 15m (0.005) (0.020) (0.005) (0.022) (0.003) (0.020)
EBLL within a Year of Birth 0.009*** 0.069*** 0.014*** 0.065*** 0.013*** 0.063***
15-100m (0.003) (0.013) (0.003) (0.013) (0.002) (0.012)

Marginal Effect of Distance -0.006*** -0.007*** -0.005***
to Closest Open Provider (0.001) (0.001) (0.001)
Mean Outcome Variable 0.32 0.32 0.46 0.46 0.61 0.61
N 1451137 1451137 1451137 1451137 1451137 1451137

Notes: ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01. The table displays OLS coefficients and coefficients and marginal effects from logit models of the impact of distance to
the closest provider operating during a child birth year on the likelihood of a child being screened by age 1 (Column 1-2), age 2 (Column 3-4), and age 6 (Column
5-6). The sample includes all geocoded children born 2001-2014 whose birth address matched a parcel record, and whose closest provider is within 20 kilometers.
Each column includes birth year indicators and block-level averages of all included regressors. Standard errors clustered at the zip code level in parentheses.
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Table A.16: Selection into Screening Conditional on Distance: Robustness Checks

Dependent Variable: BLL 10+ BLL By Home Black Hispanic Single Mother 20 Mother High
By Age 2 Age 2 Pre1930 Mother or Younger School or Less

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Tract and Year FE

Distance to Closest -0.0003** -0.0044** -0.0043*** -0.0024*** -0.0026*** -0.0026*** 0.0000 -0.0009**
Open Provider (0.000) (0.002) (0.001) (0.001) (0.001) (0.001) (0.000) (0.000)

Panel B: Block and Year FE

Distance to Closest -0.0001 -0.0003 0.0000 0.0001 0.0009** 0.0010* 0.0001 -0.0002
Open Provider (0.000) (0.001) (0.000) (0.000) (0.000) (0.001) (0.000) (0.000)

Mean Outcome Variable 0.02 2.99 0.46 0.24 0.38 0.48 0.12 0.16
N 697482 697482 645177 697482 697482 697482 697482 697482

Notes: ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01. The table displays the impact of distance to the closest provider open during a child birth year on selection into screening
by age two. The sample includes all geocoded children born 2001-2014 whose closest provider is within 20 kilometers and who are screened. Outcome variables
are indicated in each column. Panel A reports the effects controlling for the child’s birth tract, Panel B controls for child’s birth block. Each regression includes
birth year fixed effects as well as tract or block level time-varying controls such as average BLLs by age 2, share of pre1930 homes, share black, share hispanic,
share single mothers, share teen mothers, and share of mothers with high school education or less. Standard errors clustered at the zip code level in parentheses.
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Table A.17: Effect of Proximity to Providers on Prevention, Robustness Checks for Rare Events

Specification: Low Income Block Block with Remediation Logit Penalized Logit
(1) (2) (3) (4)

Panel A: Remediation within 3 Years

Distance to Provider 0.0000 0.0001 -0.0092 -0.0087
(0.000) (0.002) (0.031) (0.031)

Mean Outcome Variable 0.003 0.052 0.001 0.001
N 563938 54134 1636204 1636204

Panel B: Future BLL 10+ Detected

Distance to Provider -0.0007** -0.0038** 0.0089 0.0089
(0.000) (0.002) (0.011) (0.010)

Mean Outcome Variable 0.073 0.136 0.035 0.035
N 437433 43008 1199562 1199562

Notes: ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01. The table displays the impact of distance to the closest provider open
during a child birth year on the likelihood of remediation within three years (Panel A) and of future poisoning (Panel
B). The sample includes all geocoded children born 2001-2014 whose closest provider is within 20 kilometers, with
further constraints indicated in each column. Standard errors clustered at the zip code level in parentheses, except for
Column 4 which reports standard errors under the assumption of homoscedasticity.
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Table A.18: Determinants of Lead Exposure

Dependent Variable: Highest BLL by Age 2 BLL 10+ by Age 2
(1) (2) (3) (4)

Home Pre1930 0.415*** 0.316*** 0.010*** 0.008***
(0.025) (0.023) (0.001) (0.001)

Home 1930-1977 0.030* 0.067*** -0.001* 0.000
(0.016) (0.019) (0.001) (0.001)

Low Income 0.003 -0.002***
(0.014) (0.001)

Black 0.255*** 0.180*** 0.003 0.002**
(0.050) (0.026) (0.002) (0.001)

Hispanic -0.161*** -0.115*** -0.007*** -0.004***
(0.024) (0.017) (0.001) (0.001)

Single Mother 0.025** 0.026** 0.001* 0.001***
(0.010) (0.011) (0.000) (0.001)

Mother 20 or Younger 0.038*** 0.020 0.000 -0.001*
(0.014) (0.015) (0.001) (0.001)

Mother Less than High 0.039 0.055* 0.003*** 0.005***
School (0.028) (0.031) (0.001) (0.001)
Mother High School, 0.154*** 0.149*** 0.005*** 0.005***
No Diploma (0.017) (0.017) (0.001) (0.001)
EBLL within a Year of Birth 2.281*** 2.078*** 0.167*** 0.157***
within 15m (0.133) (0.135) (0.010) (0.010)
EBLL within a Year of Birth 0.231*** 0.128*** 0.008*** 0.004**
15-100m (0.024) (0.028) (0.001) (0.002)

Mean Outcome Variable 2.97 2.99 0.02 0.02
N 671156 645177 671156 645177
Zip FE X X
Block FE X X

Notes: ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01. The table displays estimates of the impact of various variables on a child’s
maximum blood lead level (Columns 1-2) and likelihood of having an elevated blood lead level (Columns 3-4) by age
two. The sample includes all geocoded children born 2001-2014 whose birth address matched a parcel record, and
whose closest provider is within 20 kilometers. Each column includes birth year and block fixed effects. Standard
errors clustered at the zip code level in parentheses.
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