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The Effect of Uncertainty on Investment: 
Evidence from Texas Oil Drilling †

By Ryan Kellogg *

This paper estimates the response of investment to changes in uncer-
tainty using data on oil drilling in Texas and the expected volatility 
of the future price of oil. Using a dynamic model of firms’ investment 
problem, I find that: (i) the response of drilling activity to changes in 
price volatility has a magnitude consistent with the optimal response 
prescribed by theory, (ii) the cost of failing to respond to volatility 
shocks is economically significant, and (iii) implied volatility data 
derived from futures options prices yields a better fit to firms’ invest-
ment behavior than backward-looking volatility measures such as 
GARCH. (JEL C58, D92, G13, G31, L71, Q31)

The real options literature, beginning with Marschak (1949) and Arrow (1968) 
and developed in Bernanke (1983), Pindyck (1991), and Dixit and Pindyck (1994), 
explains how firms should make decisions about investments that involve sunk costs. 
Real options theory views such investments as options in that, at any point in time, 
a firm may choose to either invest immediately or delay and observe the evolution 
of the investment’s payoff. A key insight is that the option to delay has value when 
future states of the world with positive returns to investing and states with negative 
returns are both possible, even holding the expected future return constant at its 
present level. Thus, in the presence of irreversibility and uncertainty, a naïve invest-
ment timing rule—proceed with an investment if its expected benefit even slightly 
exceeds its cost—is suboptimal because it does not account for the value of con-
tinuing to hold the option. Instead, firms should delay irreversible investments until 
a significant gap develops between the investments’ expected benefits and costs. 
Moreover, as uncertainty increases, real options theory tells us that the incentive to 
delay should grow stronger and the gap between the expected benefit and cost neces-
sary to trigger investment should widen.

While real options theory therefore prescribes how firms should carry out irre-
versible investments in uncertain environments, it is not empirically well-known 
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how firms actually proceed in such situations. In particular, the theory’s central pre-
diction that firms should be more likely to delay investment if uncertainty increases, 
all else equal, has received only limited empirical scrutiny. The primary aim of this 
paper is therefore to assess the extent to which firms’ responses to changes in uncer-
tainty align with the theory, using data on oil drilling activity in Texas coupled with 
market-based expectations of the volatility of the future price of oil.

I first show, in a descriptive analysis, that increases in the expected volatility of the 
future price of oil are associated with decreases in drilling activity, conditional on 
the expected future oil price level. The core of this paper is then aimed at assessing 
whether the magnitude of the empirical relationship between drilling and uncer-
tainty is aligned with the prediction from a real options model of investment. I con-
struct and estimate a dynamic, econometric model of firms’ optimal drilling timing 
that is based on Rust’s (1987) nested fixed point approach but allows the volatility 
of the process governing future oil prices to vary over time. The use of this model 
allows me to do more than carry out a simple “yes/no” test of whether or not firms 
respond to changes in uncertainty: I can also ask whether the magnitude of firms’ 
responses in the data agrees with the magnitude prescribed by the model. To the best 
of my knowledge, this paper is the first in the real options literature to empirically 
address this question.

I find that the response of drilling investment to changes in uncertainty is broadly 
consistent with optimal decision-making. That is, when the expected volatility of the 
future price of oil increases, drilling activity decreases by a magnitude that aligns 
with that predicted by the real options model. The close adherence of firms’ drilling 
decisions to the theory is underscored by a related finding that firms have a substan-
tial economic incentive to time their investments optimally: ignoring within-sample 
variation in oil price volatility can reduce the value of a drilling prospect by more 
than 25 percent.

These results provide a micro-empirical foundation for a large number of appli-
cations of real options theory that implicitly assume that firms optimally make 
decisions in the presence of time-varying uncertainty. In industrial organization, 
for instance, Pakes (1986), Dixit (1989), Grenadier (2002), Aguerrevere (2003), 
and Collard-Wexler (2013) model the implications of uncertainty and sunk costs 
for investment, entry, and research and development in several settings and under 
various forms of competition. The general dynamic oligopoly model of Ericson and 
Pakes (1995) is built on a framework in which firms treat many decisions as options.  
In macroeconomics, Bernanke (1983); Hassler (1996); Bloom (2009); Bloom, Bond, 
and Van Reenen (2007); and Bloom et al. (2012) construct models that emphasize 
the importance of changes in economy-wide uncertainty in determining the level 
of aggregate investment. In international trade, Handley (2012) and Handley and 
Limão (2012) model the effect of trade policy uncertainty on exporters’ investment 
and entry decisions. Finally, in the environmental and resource economics literature, 
Arrow and Fisher (1974), among others, discuss the role of uncertainty in dictating 
when “green” investments should be undertaken.

I conduct my analysis using a detailed dataset of well-level drilling activity in 
Texas obtained from the Texas Railroad Commission. I combine the drilling data 
with information on the expected future oil price and price volatility from the New 
York Mercantile Exchange (NYMEX). I derive my measure of expected price 
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 volatility from the NYMEX futures options market, in which volatility is implicitly 
traded and priced. Under a hypothesis that the market is an efficient aggregator of 
information, the implied volatility from futures options will incorporate more infor-
mation about the distribution of future prices than backward-looking volatility mea-
sures derived from price histories alone. Consistent with this hypothesis, I find that 
when I measure expected price volatility using historic volatility (either directly or 
via a GARCH model) rather than implied volatility, the model does a relatively poor 
job of fitting the data, and the estimated response of investment to changes in vola-
tility is attenuated and imprecise. These results complement research in the finance 
literature that finds that, across many commodity and financial markets, implied vol-
atility tends to be a better predictor of future volatility better than  backward-looking 
measures (Poon and Granger 2003; Szakmary et al. 2003).

There exist previous studies that have empirically examined whether investments 
respond to changes in uncertainty, though without linking the magnitudes of the 
estimated effects to theory. Several of these studies, like this one, focus on nat-
ural resource industries. Hurn and Wright (1994); Moel and Tufano (2002); and 
Dunne and Mu (2010) examine the impact of resource price volatility on offshore 
oil field investments, gold mine openings and closings, and refinery investments, 
respectively. None of these papers uses implied volatility to measure expected price 
volatility—the uncertainty measure is the historic realized variance of commodity 
prices—and they collectively find mixed evidence on whether increases in vola-
tility reduce investment. Other micro-empirical work includes Guiso and Parigi 
(1999), which finds evidence from a cross-sectional survey that Italian firms whose 
managers subjectively report high levels of expected demand uncertainty tend to 
have relatively low levels of investment. List and Haigh (2010) meanwhile provides 
experimental evidence that investment timing decisions of agents (drawn from stu-
dent and professional trader subject pools) are generally responsive to changes in 
payoff uncertainty.

Another set of papers in the macroeconomics literature measures the response 
of aggregate output and investment to changes in economy-wide uncertainty, as 
measured by the volatility of stock market returns or interest rates (Hassler 2001; 
Alexopoulos and Cohen 2009; Bloom 2009; and Fernández-Villaverde et al. 2011). 
A related work is Leahy and Whited (1996), which examines firm-level investment 
and stock return volatilities. These papers generally find that increases in volatility 
are associated with decreases in output or investment. However, factors that influ-
ence the expected level of investments’ payoffs are difficult to proxy for in this 
literature, so that a negative correlation between first and second moment shocks 
(a possibility suggested by Bachmann, Elstner, and Sims 2013) may cause these 
estimates to be downward-biased (away from zero). Leahy and Whited (1996) also 
notes that fluctuations in stock returns likely reflect the volatility of factors beyond 
those impacting the future revenues associated with new, marginal investment 
opportunities.

This paper’s focus on the Texas onshore drilling industry as its object of study, 
combined with econometric modeling of the firms’ investment timing problem, 
confers valuable advantages relative to previous work. First, I possess data at the 
level of each individual investment—the drilling of each well—and need not rely on 
aggregate data or accounting data. Second, the NYMEX futures and futures options 
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markets provide measures of the expected level and volatility of each investment’s 
expected return that, in principle, incorporate all available information at the time of 
the investment. Such measures are not available in most industry settings, and they 
also allow for a separation of first and second moment shocks. Finally, I take advan-
tage of the fact that oil production is a highly competitive industry, with no one 
firm able to influence the price of oil, and I focus my analysis on oil fields in which 
common pool issues are not a concern. I am therefore able to treat each firm’s invest-
ment decision as a single-agent dynamic investment problem. This approach, which 
would be questionable in most other industries, allows me to measure the magnitude 
of firms’ response to uncertainty relative to the theoretical optimum, going beyond a 
simple test of whether or not firms respond to uncertainty shocks at all.

In what follows, I first discuss relevant institutional details of the Texas onshore 
drilling industry and the datasets I use. Section II follows with a descriptive analysis 
of the data. The remainder of the paper focuses on the construction and estimation of 
a structural model of the drilling investment problem with time-varying uncertainty: 
Section III presents the model, Section IV discusses the estimation procedure, and 
Section  V follows with the estimation results. Section  VI provides concluding 
remarks.

I. Institutional Setting and Data

A. Drilling Description, Types of Wells Used in This Study, and Drilling Data

Oil and gas reserves are found in geologic formations known as fields that lie 
beneath the earth’s surface, and the mission of an oil production company is to 
extract these reserves for processing and sale. To recover the reserves, the firm needs 
to drill wells into the field. Drilling is an up-front investment in future production; 
if a drilled well is successful in finding reserves, it will then produce oil for a period 
of several years, requiring relatively small operating expenses for maintenance and 
pumping. The firm does not know in advance how much oil will be produced (if any) 
from a newly drilled well, though it will form an expectation of this quantity based 
on available information, such as seismic surveys and the production outcomes of 
previously drilled wells. The price that the firm will receive for the produced oil is 
also not known with certainty at the time of drilling. Conversations with industry 
participants have indicated that some, though not all, firms use the NYMEX market 
to hedge at least some of their price risk. This use of the NYMEX indicates that risk 
aversion over future oil prices is unlikely to influence drilling decisions, since any 
firm that is risk averse can hedge the price risk away.

Drilling costs range from a few hundred thousand dollars for a relatively shallow 
well that is a few thousand feet deep to millions of dollars for a very deep well (as 
much as 20,000 feet deep). Once drilled, these costs are almost completely sunk: the 
labor and drilling rig rental costs expended during drilling cannot be recovered, nor 
can the expensive steel well casing and cement that run down the length of the hole. 
Drilling can therefore be modeled as a fully irreversible investment.

Wells can be one of three types: exploratory, development, or infill. Exploratory 
wells are drilled into new prospective fields, and if successful they can not only be 
productive themselves but also lead to additional drilling activity. Development wells 
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are those that follow the exploratory well: they increase the number of penetrations 
into a recently discovered field in order to drain its reserves. Finally, infill wells are 
drilled late in a field’s life to enhance an oil field’s production by “filling in” areas of 
the reservoir that have not been fully exploited by the pre-existing well stock.

In this paper, I exclude exploratory and development wells and analyze only the 
subset of data corresponding to infill wells. This exclusion facilitates this study in 
two important ways. First, examining only infill wells constrains the set of available 
drilling options to those that exist within a finite, known set of fields. Thus, I need 
not be concerned with the creation of new options through new field discoveries or 
leasing activity. Second, the majority of production from a typical infill well takes 
place within the first year or two of the well’s life: because infill wells tap only 
small isolated pools of oil that have been left behind by older wells in a field, their 
productive life is quite short. Thus, I may rely on liquid near-term futures to provide 
expected prices and volatilities that are relevant for these wells rather than less liq-
uid long-term futures.

I also distinguish wells drilled in fields operated by a single firm from wells drilled 
in fields operated by multiple firms. The process by which production companies 
acquire leases—rights to drill on particular plots of land—often leads to situations 
in which several firms have the right to drill in and produce from a single field (see 
Wiggins and Libecap 1985). This division of operating rights leads to a common 
pool problem to the extent that each firm’s actions lead to informational and extrac-
tion externalities for its neighbors, suggesting that in such situations a dynamic 
game is needed to model firms’ drilling problem. This paper avoids this substantial 
complication by focusing exclusively on wells drilled in sole-operated fields, for 
which a single-agent model is sufficient to model drilling behavior.1

I obtained drilling data from the Texas Railroad Commission (TRRC) “Drilling 
Permit Master and Trailer” database, yielding information regarding every well 
drilled in Texas from 1977 through 2003.2 These data identify when each well was 
drilled, which field it was drilled in, whether it was drilled for oil or for gas, and the 
identity of the production company that drilled it. During the 1993–2003 period for 
which I also observe data on drilling costs and expected oil prices, I observe a total 
of 23,279 oil wells.3 Of these, 17,456 are infill wells and 1,150 are infill wells drilled 
in sole-operated fields.4

1 Industry participants have suggested that the degree of strategic interaction amongst firms drilling infill wells in 
common pool fields may be limited in practice because infill drilling targets tend to be small pools that are geologi-
cally isolated from other parts of the field. In addition, the TRRC regulates the minimum distance from a neighbor’s 
lease at which a well may be drilled. Correspondingly, the time series of infill drilling in all fields, including com-
mon pools, is very similar to that for sole-operated fields (see online Appendix Figure A1). I nevertheless focus my 
analysis on sole-operated fields to be conservative, though estimating the model using the full sample of infill wells 
yields very similar results to those presented in Section V.

2 While drilling data exist beyond 2003, industry participants have indicated that the dramatic increase in oil and 
natural gas prices that began in 2004 increased drilling activity to the extent that the rig market became extremely 
tight. Long wait lists developed when large production companies locked up rigs on long-term contracts so that the 
spot rental market could not allocate rigs based on price. Because these unobservable wait lists disconnect drilling 
decisions from observed drilling, I only use data through 2003.

3 I define an oil well as a well that is marked as a well for oil (rather than for “gas” or “both”) on its TRRC drill-
ing permit and is drilled into a field for which average oil production exceeds average natural gas production on an 
energy equivalence basis (1 barrel of oil is equivalent to 5.8 thousand cubic feet of gas).

4 I define infill wells as those that are drilled into fields discovered prior to January 1, 1990. I define a  sole-operated 
field as one for which, in every year from 1993 to 2003, only a single firm is listed as a leaseholder in the field’s 
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The time series of Texas-wide drilling activity is depicted in Figure 1 as the num-
ber of wells drilled per month. These data appear to be noisy because they are integer 
count data ranging from 2 to 19 wells per month. The time series of drilling activity 
in a larger sample that includes wells drilled in common pool fields, provided in the 
online Appendix as Figure A1, does not exhibit this noisiness, confirming that it is 
due to the integer count nature of the data rather than a systematic feature of the 
industry.5

The drilled wells are spread over 663 sole-operated fields and 453 firms. 
The mean number of wells per field is 1.73, and I observe only one well drilled in the 
majority of fields in the data. The maximum number of wells I observe in any field 
is 31. In addition to the 663 fields in which I observe drilling, I also observe 6,637 
sole-operated oil fields in which no infill wells are drilled. The median number of 
wells per firm is 1, the mean is 2.54, and the maximum is 31. Thus, the majority of 
wells in the dataset can be characterized as having been drilled by small firms in 
relatively small, old fields with few remaining drilling opportunities.

annual production data. This definition allows a field to be traded from one firm to another but disallows fields in 
which several firms operate simultaneously on different leases.

5 I have also estimated a model using quarterly data rather than monthly data. Though the quarterly aggregation 
does substantially reduce the noise in drilling activity, it also loses important variation in prices and volatility. The 
estimate of firms’ sensitivity to volatility in a quarterly model is therefore quite noisy: the point estimate of β from 
the dynamic model is 1.429 with a standard error of 1.281.
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Figure 1. Time Series of Monthly Drilling Activity, Oil Futures Prices, and Implied 
Volatility from Futures Options Prices

Notes: Oil futures prices are 18-month-ahead prices from the NYMEX. Implied volatility is 
calculated from futures options prices per the discussion in Section ID. Drilling activity corre-
sponds only to infill oil wells drilled in sole-operated fields.
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B. Oil Production

I acquired oil production data from the TRRC’s “Final Oil and Gas Annuals” 
dataset to assess the production that resulted from the observed drilling activity. 
Unfortunately, drilling data can only be matched to production records for a fraction 
of drilled wells. There are two impediments to merging these data. First, drilling 
data may only be linked to production data using the name of the lease, which is not 
uniform across the drilling and production databases.6 Even after making a number 
of corrections to lease names (such as changing all instances of “and” to “&” and 
removing all periods), I am only able to match 527 of the 1,150 drilled wells to a 
lease in the production data. Second, the TRRC records monthly oil production at 
the lease level, not the well level, because individual wells are not flow-metered.  
I am therefore only able to identify production from wells that are drilled on leases 
on which there exist no other producing wells and there is no subsequent drilling: 
this is the case for 160 of the 527 matched wells. For these 160 wells, I tabulate the 
total production of each for the three years subsequent to drilling: the median well 
produces 8,417 barrels (bbl), and the mean produces 15,395 bbl. Seven (4.4  percent) 
of the wells are dry holes that produce nothing; the maximum production is  
164,544 bbl.

Figure 2 displays the average monthly production profile of a drilled well in the 
sample. Production begins immediately subsequent to drilling, and depletion of the 
oil pool results in a fairly steep production decline so that a typical well’s monthly 
production falls to one-half of its initial level only seven months into the well’s 

6 The lease names in the drilling and production datasets come from different forms that are filed by producers at 
potentially very different times. According to TRRC staff, the two datasets were never intended to be merged together.

Figure 2. Average Monthly Production Profile from a Drilled Well

Notes: Production data are from the subset of observed drilled wells that are the only active 
producing well on their respective lease for the first 36 months subsequent to drilling. This sub-
set amounts to 160 of the observed 1,150 drilled wells from 1993 to 2003.
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life. In addition, Anderson, Kellogg, and Salant (2014) show that firms do not alter 
 production rates or delay production due to oil price changes: the shape of the pro-
duction profile is consistent throughout the data, including the 1998–1999 period 
when the price of oil was very low. This profile is consistent with a production tech-
nology in which production rates are constrained by geologic characteristics of the 
oil reservoir such as its pressure, the remaining volume of oil near the well, and rock 
permeability. It is also consistent with low operating expenses, so that the probabil-
ity that the oil price will fall below the point at which revenues equal operating costs 
is extremely low. Thus, the option value represented by the ability to adjust a well’s 
production rate in response to price changes is negligible, implying that drilling and 
production do not need to be modeled as a compound option.

C. Expected Oil Prices

I measure expected oil prices using the prices of NYMEX crude oil futures con-
tracts, obtained from Price-Data. With risk neutral traders and efficient aggregation 
of information by the market, the futures price is in theory the best predictor of 
the future price of oil. In practice, while futures prices have been found to provide 
slightly more precise predictions than the current spot price (i.e., a no-change fore-
cast) during the 1993–2003 period I study here (Chernenko, Schwarz, and Wright 
2004), the improvement is not statistically significant. Moreover, when data through 
2007 are used, spot prices actually slightly outperform futures prices, though again 
the difference is not statistically significant (Alquist and Kilian 2010). Given the 
slightly superior performance of NYMEX futures during the sample period of this 
paper and the fact that a majority of producers claim to use futures prices in making 
their own price projections (Society of Petroleum Evaluation Engineers 1995), I 
will use futures prices as the measure of firms’ expected price of oil. In a secondary 
specification, I explore how the use of spot prices impacts the results.

I focus on the prices of futures contracts with 18 months to maturity.7 This matu-
rity is the longest time horizon for which NYMEX futures are traded regularly (on 
84 percent of all possible trading days over 1993–2003). In addition, the typical 
production profile of drilled infill wells suggests that 18 months might be a reason-
able forecast horizon for a firm to use when evaluating a drilling prospect, since 
approximately one-half of the well’s total expected discount production is likely to 
be exhausted at this time.8

Futures prices are consistent with mean-reverting expectations about the future 
price of oil, as shown in Figure 3. When the front-month (nearest delivery month) 
oil price exceeds approximately $20/bbl (real 2003 US$), the price of an 18-month 
futures contract tends to be lower than the front-month price, and the reverse holds 
when the front-month price is below $20/bbl.

7 In reality, it is rare that a NYMEX futures contract has a time to maturity of exactly 18 months (548 days), since 
the available contracts that can be traded have maturities that are either one full month or one full quarter apart. 
On any given trading date, I therefore treat contracts with a time to maturity that is within 46 days of 18 months as 
having a maturity of 18 months. When more than one such contract is traded on any given trading date, I average 
the prices across the contracts.

8 This half-life is derived by fitting a hyperbolic curve to the average production data (Figure 2) and extrapolating 
production beyond three years. Based on this curve and a 9.9 percent real discount rate (see Section IVA), half of a 
typical well’s expected discounted production is exhausted in 19.1 months.
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D. Expected Oil Price Volatility

I derive my primary measure of firms’ expected future price volatility from the 
volatility implied by NYMEX futures options prices.9 Across numerous commodity 
and financial contracts, implied volatility has been found to be a better predictor of 
future volatility than measures based on historic price volatility, including GARCH 
models (Poon and Granger 2003; Szakmary et al. 2003). Intuitively, if markets are 
efficient then options prices incorporate up-to-date information beyond that avail-
able from price histories alone, improving their predictive power.

The classic formula for the value of a commodity option contract is based on 
the Black-Scholes model (1973) and given by Black (1976). Given the price of 
an option, its time to maturity and strike price, the price of the underlying futures 
contract, and the riskless rate of interest, Black’s formula can be inverted to yield 
the expected volatility implied by the option.10 An important assumption of Black 
(1976) is that, on any given trade date, the volatilities of prices across all times to 
maturity are equal.11 However, it is apparent in Figure 3 that front-month futures 
prices are, on average, more volatile than 18-month futures prices, violating this 
assumption. Hilliard and Reis (1998) shows that, in this case, applying Black (1976) 
to 18-month futures options yields the average volatility of futures price contracts 
with maturities between the front-month and 18 months. The empirical analysis 
below requires the volatility of 18-month futures prices rather than this average. 
In online Appendix 1, I discuss how I correct the Black (1976) implied volatilities 
to address this issue. The resulting time series of implied 18-month futures price 

9 I obtained data on daily crude futures options prices from Commodity Systems Inc.
10 I use the interest rate on treasury bills (obtained from HSH Associates) to measure the riskless rate of interest.
11 The Black (1976) formula also assumes that the options are European and that volatility is not stochastic. As 

discussed in online Appendix 1, however, these assumptions are likely to be of minor importance in this setting.

Figure 3. NYMEX 18-Month and Front-Month Oil Futures Prices

Source: Monthly averages of NYMEX futures prices obtained from PriceData
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 volatilities is given in Figure 1 alongside the time series of 18-month futures prices 
(both series are averages of daily observations within each month).

In secondary empirical specifications, I construct volatility forecasts using historic 
futures price volatility rather than implied volatility derived from futures options. 
These specifications address the possibility that oil production firms’ volatility fore-
casts differ from those of the market. One possible forecast is a no-change forecast; 
that is, the expected future volatility of the NYMEX futures price is its recent his-
toric volatility. Figure 4 compares the historic volatility of the futures price, mea-
sured over a rolling window of one year, to the implied volatility series. Historic 
volatility sometimes deviates substantially from implied volatility: it is relatively 
high in 1997 and low in 1998, and it does not reflect the implied volatility spikes in 
1999 and September 2001.

I have also forecast volatility using a GARCH(1, 1) model. For each date in the 
dataset, I estimate the GARCH parameters using a four-year rolling window of daily 
18-month futures prices.12 At each date, I then use the estimated GARCH model to 
forecast volatility over the upcoming month. The average forecasted volatility over 
this month is then used as the measure of firms’ expected price volatility. Figure 4 
plots the series of GARCH volatility forecasts. These GARCH forecasts align more 
closely with the implied volatilities than do simple historic volatilities, though the 

12 In the GARCH model, the mean price equation is a seventh-order autoregression; this number of lags is 
necessary to eliminate serial correlation in the price residuals. A GARCH(1, 1) process is then sufficient to elimi-
nate conditional heteroscedasticity in the residuals (the p-value for rejecting a null hypothesis of no conditional 
heteroscedasticity is 0.423).

Figure 4. Comparison of Implied Volatility to the One-Year Historic Volatility of the 
Future Price and a GARCH(1, 1) Forecast

Notes: Implied volatility is calculated from futures options prices as described in Section ID. 
Historic volatility at any point in time is the standard deviation of the return on the 18-month 
futures price within a 1-year rolling window. The GARCH(1, 1) model is estimated at each 
date using a 4-year rolling window of 18-month futures prices.
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GARCH and implied volatility time series still differ substantially at various points, 
most notably 1997–1998 and late 2001.

E. Drilling Costs

The primary source for information on drilling costs is RigData, a firm that col-
lects data on daily rental rates (“dayrates”) for drilling rigs from surveys of drill-
ing companies and publishes these data in its Day Rate Report (1990–2005).13  
Rig rental comprises the single largest line-item in the overall cost of a well, and 
industry sources have suggested that at typical dayrates rig rental accounts for one-
third of a well’s total cost.14 Because I observe dayrates but not other components 
of drilling costs, I assume that non-rig costs are constant in real terms and equal to 
twice the rig rental cost at the average sample dayrate. This constant cost assump-
tion seems reasonable over the 1993–2003 sample. Prices for steel, which factor into 
prices for drill pipe, bits, and well casing, were fairly stable over this time, nominally 
increasing by an average of 1.8 percent per year according to data from the Bureau 
of Labor Statistics. Other substantial components of cost, such as site preparation, 
construction, and general equipment rental (pumps, for example), should be based 
primarily on prices for non-specialized labor and capital inputs and therefore also 
be stable in real terms.15 As for the assumption that these non-rig costs constitute 
two-thirds of total drilling costs on average, I explore the use of alternative ratios as 
robustness tests when estimating the model.

Because drilling rigs are pieces of capital that are specific to the oil and gas indus-
try, rig rental rates are positively correlated with oil and gas prices and, accordingly, 
vary over the sample frame. For a well of average depth (5,825 feet in the sample), 
the dayrate ranges from $5,327 to $10,805, with an average of $6,710.16 Given an 
average drilling time of 19.2 days, the average rig rental cost for a well is there-
fore $128,834, and average non-rig costs, estimated to be twice this amount, are 
$257,667 (all figures in real US$(2003)).

For each month in the sample, I calculate the total drilling cost of an average well 
as the sum of 19.2 days times the prevailing dayrate for that month (in real terms) 
with average non-rig costs. The time series of drilling costs for an average well is 

13 The oil production firms that hold leases, make drilling decisions, and are the focus of this study do not actu-
ally own the drilling rigs that physically drill their wells. Rigs are instead owned by independent drilling companies 
that contract out their drilling services. See Kellogg (2011) for further information regarding the contracting pro-
cess between production firms and drilling companies.

14 This one-third figure was suggested by RigData and substantiated by information from the Petroleum Services 
Association of Canada’s (PSAC’s) Well Cost Study (summers of 2000 through 2004). This study provides a break-
out of the costs of drilling representative wells across Canada during the summer months. For the non-Arctic, 
 non-offshore areas that most closely resemble conditions in Texas, rig rental costs averaged 35.2 percent of total costs.

15 Evidence in support of this claim is available from the 2002, 2003, and 2004 PSAC Well Cost Studies, during 
which time the specifications for the representative wells were essentially unchanged. These data indicate that  non-rig 
drilling costs changed, on average, by only −0.2 percent in 2003 and +3.1 percent in 2004. Rig-related drilling costs, 
however, increased by 9.8 percent in 2003 and 30.9 percent in 2004, following increases in the price of oil.

16 RigData reports dayrates separately for rigs drilling wells between 0 and 5,999 feet deep and for rigs drill-
ing wells between 6,000 and 9,999 feet deep. The dayrates used in this study are the average of these two depth 
classes for the Gulf Coast/South Texas region. The RigData dataset is quarterly and continuously reported from 
1993 onward. Because I conduct my analysis at a monthly level, I generate monthly dayrate data by assigning 
each quarterly reported dayrate to the central month of each quarter and then linearly interpolating dayrates for the 
intervening months. The alternative approach of simply treating dayrates as constant within each quarter has only 
a minor effect on the estimated results.
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plotted alongside oil futures prices in Figure 5. The positive correlation between 
these two series is readily apparent.

II. Descriptive Results

Figure 1 plots the three time series of primary data: drilling activity, oil futures 
prices, and implied oil price volatility from futures options. Several features of 
the plot are worth noting. First, drilling activity rises and falls with the oil price. 
In particular, the oil price crash of 1998–1999 that was driven by the Asian financial 
crisis (Kilian 2009) is associated with a sharp reduction in drilling activity. Second, 
following the 1998–1999 price crash, oil prices rapidly recovered and by the begin-
ning of 2000 actually surpassed their pre-1998 levels. However, oil drilling did not 
enjoy a similar recovery: activity did increase once prices began to rise in the sum-
mer of 1999 but recovered only to approximately two-thirds of its pre-1998 level. 
Why did drilling activity not reach its earlier level despite such a high oil price? 
The third line on the graph—implied volatility—suggests that an increase in uncer-
tainty following the 1998 price crash may have caused producers to delay the exer-
cise of their drilling options. Implied volatility increases sharply in 1998 and remains 
at an elevated level for the remainder of the sample; this high level of volatility is 
associated with the period in which expected oil prices were high yet drilling activ-
ity was low. Moreover, several positive shocks to volatility subsequent to 1999, such 
as the volatility spike following September 11, 2001, appear to be associated with 
reductions in drilling activity.

A descriptive statistical analysis using a hazard model confirms that the nega-
tive relationship between drilling and expected price volatility that is apparent in 
Figure  1 is in fact statistically significant. The unit of observation in this analy-
sis is an individual drilling prospect, and I model 7,787 such prospects: the 1,150 

Figure 5. Drilling Costs and Oil Futures Prices

Notes: Oil futures prices are 18-month-ahead prices from the NYMEX. Drilling costs are those for 
an average well that requires 19.2 days of drilling time. These costs are based on daily rig rental 
rates obtained from RigData, as discussed in Section IE.
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observed infill wells plus one prospect for each of the 6,637 sole-operated fields in 
which I observe no drilling activity. In doing so, I treat prospects that exist within 
the same field as independent of one another. While this treatment does not allow 
for the modeling of factors that might cause wells within the same field to be drilled 
at nearly the same time, the fact that most fields have zero or one well suggests that 
the impact of modeling all drilling decisions independently of one another may  
be minor.

I choose a hazard model, rather than an OLS regression of drilling investment on 
expected price and volatility that would be more typical of both the macro and micro 
real options literatures, to capture the idea that drilling activity should decline over 
time as the set of available options is gradually reduced through drilling.17 In the 
simplest possible model, I model the hazard rate γ (t) as an exponential function of 
the expected future price level and expected price volatility per (1) below.

(1)  γ (t) = exp( β 0  +  β p  · Pric e t−3  +  β v  · Vo l t−3 ) .

In estimating both this model and the structural model described below, I lag all 
covariates by three months, as industry participants have indicated that the engineer-
ing, permitting and rig contracting processes generally drive a three month wedge 
between the decision to drill and the commencement of drilling. For inference, I use 
a “sandwich” variance-covariance matrix estimator that allows arbitrary within-field 
correlation of the likelihood scores (Wooldridge 2002).18 In practice, this estimator 
increases the estimated standard errors by about 25 percent, on average, relative to 
the standard BHHH estimator.

The results of estimating (1) are presented in column 1 of Table 1. A $1 increase 
in the expected future price of oil is associated with an increase in the likelihood 
of drilling of 4.1  percent, and a one  percentage point increase in expected price 
volatility is associated with a decrease in the likelihood of drilling of 3.0 percent.  
Both of these point estimates are statistically significant at the 1  percent level. 
Column  2 includes the cost of drilling as an additional covariate and finds that 
drilling costs are negatively associated with drilling, as expected (though the rela-
tionship is not statistically significant). Oil prices and volatility continue to be 
positively and negatively, respectively, associated with drilling in this specification. 
Columns 3 and 4 show that these correlations are robust to allowing for unobserved 
 prospect-specific heterogeneity and a time trend.

Because these descriptive results, in the absence of an economic model, cannot 
speak to the optimality of firm decision-making or welfare, the remainder of this 

17 Nonetheless, results from an OLS regression are similar to those from the hazard model. When I regress the 
log of the number of wells drilled each month on the oil price, volatility, and drilling cost, I obtain estimated coef-
ficients of 0.082, −0.035, and −0.398, respectively. These coefficients are all similar, statistically and economically, 
to those from the analogous hazard model regression in column 2 of Table 2 (in which percent impacts are measured 
away from one rather than zero).

18 Wooldridge (2002) shows that this approach, which is analogous to clustering in linear regression models, 
still produces consistent estimates of the parameters even though serial and cross-well correlation within each field 
is not explicitly accounted for in the likelihood function. I also use this approach when estimating the structural 
model, discussed in Sections III through V. I have also estimated these models while clustering the standard errors 
on time rather than field to account for cross-sectional correlation of the likelihood scores that might arise from 
technological or macroeconomic shocks. These estimated standard errors are generally similar to those obtained 
from the standard BHHH estimator.
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paper focuses on formulating and estimating a model of the infill drilling  problem 
faced by oil production companies in Texas. The primary goal of this model is to 
relate firms’ observed responses to changes in uncertainty to the theoretically opti-
mal response.

III. A Model of Drilling Investment Under Time-Varying Uncertainty

A. Model Setup

Consider a risk-neutral, price-taking oil production firm that is deciding whether 
to drill some prospective well i at date t. Using geologic and engineering estimates, 
the firm generates an expectation regarding the monthly oil production from the well 
should it be drilled. The present value of the well’s expected revenue is then equal 
to the sum, over the months of the well’s productive life, of the product of the well’s 
expected monthly production with the expected oil price each month, net of taxes 
and royalties, and discounted at the firm’s discount factor δ. Rather than model this 
discounted sum explicitly, I model it instead as simply the product  r i   P t  . Here,  r i  rep-
resents the sum of the well’s expected monthly production, net of taxes and royal-
ties, and discounted so that it is in present value terms.19  P t  represents the “average” 

19 A narrow view of  r i  suggests that I am assuming that the ongoing production from any previously drilled wells 
in the same field as well i is unaffected by the drilling of well i. This assumption is incorrect if the new well is, at 
least to some extent, only accelerating the recovery of reserves from the field rather than exploiting new reserves 
that the existing well stock did not reach. However, the model can handle wells drilled with the purpose of accel-
eration by interpreting the expected productivity  r i  as the expected production of the new well net of its expected 
impact on the production from the existing well stock (if any).

Table 1—Hazard Model Results for the Probability of Drilling

Basic
exponential

hazard

Include
drilling

cost
Prospect-specific 

heterogeneity

Drilling cost
and

time trend
Coefficient on covariate (1) (2) (3) (4)

Oil futures price ($/bbl) 1.041*** 1.056*** 1.056*** 1.055***
(0.016) (0.021) (0.021) (0.021)

Implied volatility of future 0.969*** 0.976** 0.976** 0.967**
 price (percent) (0.008) (0.010) (0.010) (0.013)
Drilling cost ($100,000) — 0.754 0.754 0.716

— (0.175) (0.175) (0.170)
Linear time trend (in years) — — — 1.019

— — — (0.021)

Unobserved heterogeneity
 (inverse Gaussian distribution)

No No Yes No

log likelihood −3,979.5 −3,978.5 −3,978.5 −3,977.9

Notes: Reported coefficients are hazard ratios: the multiplicative effect on the hazard rate of a one unit increase in the 
covariate. All estimates use prices of futures and options that are 18 months from maturity. All covariates are lagged 
by three months. Standard errors are estimated using a sandwich estimator that allows for correlation of the likelihood 
scores across wells within the same field, thereby accounting for spatial and serial correlation. Significance levels are 
for a two-tailed test that the coefficient is different from one.

*** Significant at the 1 percent level.
 ** Significant at the 5 percent level.
  * Significant at the 10 percent level.
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oil price that will prevail over all barrels of oil expected to be produced by the well, 
so that the product  r i   P t  is equal to the original discounted sum of monthly revenue. 
In the estimation that follows, I will use the 18-month futures price of oil as  P t  . 
This simplification allows me to model the price level using only the single state 
variable   P t  rather than a vector of state variables for the expected price in each 
month of the well’s productive life.

I emphasize that  r i   P t  is the firm’s expectation of the value that will be obtained 
from drilling. Realized value may differ substantially from  r i   P t  because the realized 
oil price may differ from  P t  (though the firm could hedge this risk away) and because 
realized production may differ from  r i  . Recall that some of the wells observed in the 
sample yielded zero oil production. Clearly, a dry hole was not the firms’ expected 
outcome for these wells.

In month t, the well’s drilling cost is equal to the sum of non-rig costs  c i  with 
the product of the dayrate  D t  and the number of days  d i  required to drill the well.20 
Then, given an expected oil price  P t  and a dayrate  D t , the expected profits  π it  from 
drilling the well are given by the function  π i  :

(2)  π it  =  π i ( P t ,  D t ) =  r i   P t  −  c i  −  d i   D t  .

It will be useful for estimation to rearrange (2), defining the expected productiv-
ity of a well as the ratio of its expected production  r i  to its drilling cost at the aver-
age dayrate. Denote this cost by   

_
 C   i  =  c i  +  d i   

_
 D   and let this ratio be denoted by  x i  . 

Further, let   ̃  c  denote  c i /  
_
 C   i  and let   ̃  d  denote  d i /  

_
 C   i . Assuming that the ratio of non-rig 

costs to total costs at the average dayrate is constant across wells implies that both  
  ̃  c  and   ̃  d  are constant across wells (in the reference case model, I set   ̃  c  = 2/3 and  
  ̃  d    
_
 D   = 1/3 per the discussion in Section  IE). Then, expected profits  π it  can be  

re-written as (3) below, in which all cross-well productivity heterogeneity relevant 
to the drilling timing decision is collapsed into the single variable  x i .

(3)  π it  =  π i ( P t ,  D t ) =   
_
 C   i ( x i   P t  −   ̃ c  −   ̃ d  D t ).

I treat all firms as price takers, in the sense that they believe that their decisions 
do not impact  P t  or  D t  . This assumption almost certainly holds institutionally. 
The market for oil is global, and Texas as a whole constitutes only 1.3 percent of 
world oil production. With respect to oil producers’ monopsony power in the market 
for drilling services, the largest firm in the dataset is responsible for only 2.2 percent 
of all wells drilled in Texas during the sample period, a quantity that seems insuf-
ficient for exertion of substantial market power.

Let the processes by which firms believe the price of oil and rig dayrates evolve be 
first-order Markov and given by (4) and (5) below.  P t  denotes the oil price  (18-month 

20 I assume that  d i  does not vary over time. Learning-by-doing could cause  d i  to decrease as more wells are 
drilled in the field (Kellogg 2011); however, since most of the observed sole-operated fields have only a few new 
wells during the sample, this effect is likely to be negligible. Technological progress might also decrease  d i  over 
time; this possibility is part of the motivation for allowing for a time trend in an alternative specification.
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NYMEX future) in the current month t, and  P t + 1  is the price in month t + 1.  D t  and  
D t + 1  represent the current and next month’s dayrates.21

(4)  ln  P t+1  = ln  P t  + μ( P t  ,  σ  t  2 ) −  σ  t  2 /2 +  σ t   ε t+1 

(5)  ln  D t+1  = ln  D t  +    μ ( D t  ,     σ   t  2 ) −     σ   t  2 /2 +     σ  t      ε   t+1  .

The firm’s current expectation of the volatility of the oil price is denoted by  σ t  , 
and the price shock  ε t + 1  is an i.i.d. standard normal random variable that is real-
ized subsequent to the firm’s drilling decision in the current period. Because I do 
not observe expectations of dayrate volatility     σ  t  , I assume this volatility is a scalar 
 multiple of the oil price volatility so that     σ  t  = α σ t . The cost shock     ε   t+1  is drawn 
from a standard normal that has a correlation of ρ with  ε t + 1 .

μ( P t ,  σ  t  2 ) and    μ ( D t ,     σ   t  2 ) denote the expected price and drilling cost drifts as sta-
tionary functions of the current expected level and volatility of the oil price and 
dayrate. Dependence of these drifts on the price and dayrate levels allows for 
the mean reverting expectations exhibited by NYMEX futures prices (Figure 3). 
I also allow the drifts to depend on volatility because, as pointed out by Pindyck 
(2004), an increase in volatility may increase the marginal value of storage and 
therefore raise near-term prices. In addition, a volatility increase may also affect 
investments related to oil production and consumption (via the real options mech-
anism considered here, for example), affecting expectations of future prices. 
The specification and estimation of μ( P t ,  σ  t  2 ) and    μ ( D t ,     σ   t  2 ) is discussed in 
Section IVA, where I also discuss the estimation of the correlation of oil price 
shocks  ε t+1  with dayrate shocks     ε   t+1 .

B. Optimal Drilling with Time-Varying Volatility

The firm’s problem at a given time t is to maximize the present value of the well  V it  
by optimally choosing the time at which to drill it. This optimal stopping problem is 
given by (6) below, in which Ω denotes a decision rule specifying whether the well 
should be drilled in each period τ ≥ t as a function of  P τ  and  D τ  (conditional on the 
well not having been drilled already).  I τ  denotes a binary variable indicating the out-
come of this decision rule each period, and δ denotes the firm’s real discount factor.

(6)  V it  =  max    
Ω
   E [  ∑  

τ=t
   

∞

    δ  τ−t   I τ   π i ( P τ  ,  D τ ) ] .
In formulating (6), I assume that firms holding multiple drilling options treat them 

independently of one another. Given that I only observe zero or one well drilled in 
most fields in the sample, this assumption does not seem particularly strong. In those 
cases in which a firm holds multiple drilling options within the same field, it may 
be that the outcome from drilling one well may convey information regarding other 
prospects. That is, if the first well drilled by a firm in a field turns out to be highly 

21 These transition functions are the discrete time analogue to geometric Brownian motion with drift (see Dixit 
and Pindyck 1994). Volatility is assumed to be constant within each time step.
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productive, the firm may increase its estimate of  x   i  for its remaining prospects.22 
This contingent reevaluation will result in temporal clustering of drilling activity in 
multi-well fields relative to what would be predicted by (6) alone.

Because drilling a well is irreversible and because future prices and costs are 
uncertain, the decision rule for maximization of (6) is not simply to invest in the first 
period in which  π it  ≥ 0. The firm must trade off the value of drilling immediately 
against the option value of postponing the investment to a later date, at which time 
the expected oil price may be higher or the drilling cost lower. This trade-off is cap-
tured by restating the optimal stopping problem as the Bellman equation (7) below, 
in which  V i  represents the current maximized value of the drilling option as a func-
tion of the state variables P, D, and σ (from which I now remove the subscript t). 
P′, D′, and σ′ denote next period’s state.

(7)  V i (P, D, σ) = max  {  π i (P, D), δ · E[ V i (P′, D′, σ′ )] }  .

Equation (7) includes the firm’s expected oil price volatility σ as a state variable 
even though it does not appear in the profit function  π i (∙). Volatility impacts drilling 
decisions through its impact on the distribution of next period’s expected oil price 
P′ given the current expected price P. An increase in σ increases the variance of P′ 
conditional on P, thereby increasing the value of holding the drilling option relative 
to the value of drilling immediately.

Intuition suggests that the solution to (7) will be governed by the following “trig-
ger rule:” at any given P, D, and σ, there will exist a unique  x * (P, D, σ) such that it 
will be optimal to drill prospect i if and only if  x i  ≥  x * (P, D, σ). Furthermore,  x *  will 
be strictly decreasing in P and strictly increasing in D and σ. The following condi-
tions on the stochastic processes governing the evolution of P, D, and σ (none of 
which is rejected by the data) are sufficient for this trigger rule to hold. S denotes 
the state space.

 (i) δE[P′ | P, D, σ] < P ∀P, D, σ ∈ S (oil prices cannot be expected to rise more 
quickly than the rate of interest).

 (ii)   ∂E[P′ | P, D, σ]
  _ ∂P

   <   1 _ δ  , with the same holding for D and σ, ∀P, D, σ ∈ S (the 
expected rates of change of each state variable cannot increase too quickly 
with the current state).

 (iii) ρ < 1 (oil price shocks and dayrate shocks are not perfectly correlated).

 (iv) The distribution of P′ is stochastically increasing in P, with the same holding 
for D and σ.

22 The process by which firms learn about the quality of fields through drilling is examined by Levitt (2011), 
which develops and estimates a dynamic learning model. That paper’s approach cannot be used here because it 
requires data on oil production outcomes for all drilled wells and because the separate identification of learning 
effects and location-specific heterogeneity requires observations of different firms drilling wells in the same field 
(as well as an assumption of no cross-firm information spillovers).
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 (v) δE[π(P′, D′, σ′ )|P, D, σ] < π(P, D, σ) ∀P, D, σ ∈ S (the Hotelling condi-
tion necessary for drilling to be optimal: expected profits cannot rise more 
quickly than the rate of interest).

It is straightforward to show that conditions (i)–(iii) imply that π(s) − E[π(s′ | s)] 
is strictly increasing in P and  x i  , and strictly decreasing in D and σ. Given this result 
and conditions (iv) and (v), a fixed point contraction mapping argument given in 
Dixit and Pindyck (1994) proves that the trigger  x * (P, D, σ) must exist. There must 
also exist similar triggers  P * (D, σ,  x i ),  D * (P, σ,  x i ), and  σ * (P, D,  x i ), represent-
ing the minimum price, maximum drilling cost, and maximum volatility at which 
 drilling is optimal as functions of the other variables. The existence of all four trig-
gers implies that  x * (P, D, σ) must be strictly decreasing in P and strictly increasing 
in D and σ.

Thus, an increase in expected volatility σ will cause a fully optimizing firm to 
increase the productivity trigger  x *  necessary to justify investment, holding the 
expected price and dayrate constant. Consider such a firm for which the price vola-
tility expectation σ is equal to the volatility implied by the futures options market, 
which I denote by  σ  m . Figure 6 illustrates how the firm’s critical productivity  x *  will 
vary with P and  σ  m  for a well with an average drilling cost at the average sample 
dayrate. The relationship between  x *  and P is shown at both low (10 percent) and 
high (30 percent) levels of expected price volatility  σ  m . At both volatility levels,  x *  
decreases with price so that less productive wells may be drilled in relatively high 
price environments. Holding price constant,  x *  is greater in the high volatility case 
than the low volatility case.

Figure 6. The Impact of Expected Oil Price Volatility  
on the Expected Production Required to Trigger Drilling

Notes: The relationships shown are for a well of average cost facing an average dayrate, so that 
the drilling cost is $386,501. The model used to generate these curves uses the state transition 
parameters estimated in Section IVA.
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Now, however, suppose that firms have time-varying expectations about future 
volatility that coincide with those of NYMEX market participants but do not take 
these expectations into account when making drilling decisions, so that in terms of 
the model σ is effectively constant over time. In this case, the two lines in Figure 6 
will coincide. It is this difference in investment behavior between firms that respond 
to  σ  m  and those that do not that will provide identification in the empirical exercise 
described below. Note, however, that an observed lack of response to  σ  m  could also 
reflect the possibility that, while firms properly take expected volatility into account 
when making investment decisions, they hold a belief that volatility σ is constant 
over time rather than equal to the time-varying  σ  m . Thus, to the extent that the data 
imply differences between σ and  σ  m , I will not be able to identify whether the differ-
ences are due to suboptimal investment decision-making or to differences between 
firms’ beliefs and those of the broader market.

I capture the extent to which firms optimally respond to the market’s implied 
volatility  σ  m  by parameterizing firms’ beliefs through a behavioral parameter β. 
First, I define  

_
  ln σ   to be the average log of the market volatility over the first year of 

the sample (12.8 percent) and let ln  σ  d  be the deviation of  ln  σ  m  from  
_
  ln σ  . That is,

(8) ln  σ  m  =  
_
  ln σ   + ln  σ  d  .

I then relate the firms’ expected volatility σ to  σ  d  via (9):

(9)  ln σ =  
_
  ln σ   + β ln  σ  d  .

Through this formulation, the behavioral parameter β regulates the extent to which 
firms respond to changes in  σ  m . A firm that behaves according to β = 1 is a firm that 
shares the market’s beliefs regarding future price volatility and correctly optimizes 
its investment decisions according to those beliefs. Conversely, a firm with β = 0 
does not respond to changes in  σ  m  because it either has beliefs that are orthogonal 
to  σ  m  or does not optimize its investment decisions correctly. The primary objective 
of the empirical work is to obtain an estimate of β and test whether the estimate is 
consistent with investment behavior that is an optimal response to beliefs that coin-
cide with those of the market.

The final component of the model is the process by which firms believe volatility 
itself evolves over time. Like the price and dayrate processes, I assume this process 
is first-order Markov per equation (10):

(10) ln  σ  m ′ = ln  σ  m  +  μ σ ( σ  m ) −  γ  2 /2 + γ η′.

In (10), γ denotes the volatility of the volatility process, and η′ is an i.i.d. stan-
dard normal random variable.  μ σ ( σ  m ) denotes the expected change in volatility as 
a function of the current volatility. This function can be set to zero to allow for 
random walk beliefs or it can be specified to allow for mean reversion, though in 
practice the distinction will not substantially impact the estimation results. I discuss 
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the  specification of  μ σ ( σ  m ) and the estimation of γ in Section IVA below. Note that, 
by specifying the volatility evolution process on market volatility  σ  m , firms’ beliefs 
about the evolution of their expected volatility σ will be scaled by β.23

IV. Empirical Model and Estimation

The parameter of primary interest is β, the behavioral parameter that reflects 
firms’ sensitivity to the implied volatility of the price of oil. To obtain an estimate 
of β, I must also estimate the parameters α, ρ, and γ that govern the state transition 
processes as well as the oil price and dayrate drift functions μ( P t  ,  σ  t  2 ) and    μ ( D t  ,     σ   t  2 ). 
An estimate of the discount factor δ is also required. In what follows, I first dis-
cuss how I estimate these “secondary” parameters independently of the full model 
before turning to the estimation of β via a procedure based on the nested fixed point 
approach of Rust (1987).

A. Estimates of the Discount Factor and State Transition Processes

While the firms’ discount factor δ can in principle be estimated as part of the 
nested fixed point routine, obtaining precise inference in practice is challenging.  
I adopt the standard approach in the literature by setting δ in advance. According 
to a 1995 survey by the Society of Petroleum Evaluation Engineers, the median 
nominal discount rate applied by firms to cash flows is 12.5 percent. Given average 
inflation over 1993–2003 of 2.36 percent, I set δ equal to the quotient 1.0236/1.125, 
approximately 0.910.

I assume that μ( P t  ,  σ  t  2 ), the expected drift of the log oil futures price, is the sta-
tionary linear function given by (11):

(11) μ( P t ,  σ  t  2 ) =  κ p0  +  κ p1  P t  +  κ p2  σ  t  2  .

Per equation (4), consistent estimates of  κ p0  ,  κ p1 , and  κ p2  may be obtained via an 
OLS regression of E[ln  P t+1 ] − ln  P t  +  σ  t  2 /2 on  P t  and  σ  t  2 . Because the reference case 
specification uses 18-month futures prices for  P t , I use 19-month futures prices to 
measure E[ln  P t+1 ] in this regression. I estimate that  κ p0  = 0.0094,  κ p1  = −0.00054, 
and  κ p2  = 0.401. These values are consistent with mean reversion to an oil price of 
$19.51 per barrel at the sample average volatility of 19.4 percent.

I similarly assume that    μ ( D t ,     σ   t  2 ), the expected dayrate drift, is a linear function 
of the current dayrate, so that    μ ( D t ,     σ   t  2 ) =  κ d0  +  κ d1  D t  +  κ d  2     σ   t  2 . There does not 
exist a futures market for rig dayrates to facilitate estimation of the  κ d . Rather than 
attempt to estimate these parameters from a short time series of quarterly drilling 
cost observations, I instead assume that the parameters  κ d0 ,  κ d1  , and  κ d  2   match those 
from the oil price drift equation, with  κ d1  rescaled by the ratio of the average dayrate 
to the average oil price.

I next estimate the scalar parameter α, the ratio of dayrate volatility     σ  t  to oil price 
volatility  σ t . To do so, I first calculate  ξ t  = ln  P t  − ln  P t−1  and     ξ   t  = ln  D t  − ln  D t−1  

23 Specifically, firms’ belief about the volatility of volatility will be β γ, and their belief about the expected drift 
of volatility will be β μ σ ( σ   m ).
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in each period. α is then estimated by the ratio of the standard deviation of     ξ   t  to 
the standard deviation of  ξ t . I then estimate ρ, the parameter governing correlation 
between dayrate and oil price shocks, to be the correlation coefficient between     ξ   t  
and  ξ t  . The estimate of α is 1.16, and that for ρ is 0.413.

Finally, I specify and estimate equation (10), which dictates how firms believe 
current implied volatility  σ  m  will evolve into next month’s implied volatility.  
There do not exist markets that allow for direct measurement of either the expected 
change in volatility  μ σ ( σ  m ) or the volatility of volatility γ. I therefore rely on the time 
series of volatility realizations. For  μ σ ( σ  m ), I make use of two specifications: the first 
is a random walk volatility forecast ( μ σ ( σ  m ) = 0), and the second is a mean-revert-
ing expectation. Firms might reasonably have a random walk forecast because a unit 
root cannot be rejected in the implied volatility data.24 Alternatively, the GARCH 
analysis of historic volatility realizations discussed in Section ID indicates mod-
est mean reversion in expected future volatility. When the month-ahead GARCH 
forecast (the forecast used in generating the time series in Figure 4) is relatively 
high, the two-month ahead forecast predicts a fall in volatility, and the reverse holds 
when the month-ahead forecast is relatively low. Therefore, as an alternative to the 
random walk, I also estimate  μ σ ( σ  m ) using expected mean reversion rates derived 
from the GARCH forecasts. I estimate that, in a simple linear mean reversion model, 
the expected change in logged volatility is given by 0.0326 minus 0.0010 times the 
current volatility (in annualized percent).25 This estimate implies that if the current 
volatility is 10 percent, then the expected volatility next month is 10.22 percent. 
In contrast, if the current volatility is 35 percent, then the expected volatility next 
month is 34.86 percent.

In the random walk specification, I estimate γ, the volatility of the volatility pro-
cess, to be the standard deviation of ln  σ  t+1  m

   − ln  σ  t  m . This value is 0.119. Under 
the mean-reverting specification, I first correct ln  σ  t+1  m

   − ln  σ  t  m  for the predicted 
change in volatility between the two months before taking the standard deviation. 
This value is 0.118.

B. Primary Empirical Model and Estimation

Given the state transition functions estimated above, the remaining unknowns in 
the econometric model are the behavioral parameter β and the unobserved expected 
productivity of each drilling prospect, the  x i . Given a value for β and the realized oil 
prices, dayrates, and oil price volatilities, the solution to the model determines the 
productivity cutoffs  x  t  *  each period. Because all firms face the same price, volatility, 
and dayrate processes,  x  t  *  will be the same for all prospects in the data at any given 
time. If  x i  is modeled as identical across prospects, then all firms would make the 
decision to drill at the same time, a prediction that conflicts with the spread of drill-
ing activity over time evident in Figure 1. Clearly, there must exist a distribution of  
x i  across prospects.

24 In an augmented Dickey-Fuller test, the p-value for rejecting the null of a unit-root process with 12 lags is 0.2417.
25 To obtain this estimate, I regress, for each month for which four years of data are available to estimate the 

GARCH model (July 1994 –December 2003), the difference between the two-month and one-month GARCH vola-
tility forecasts on the one-month GARCH forecast. I then correct the constant term by γ squared divided by two.
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It is therefore tempting, at first, to estimate a model in which expected productiv-
ity  x i  varies across prospects but for each individual prospect is constant over time. 
However, this model is also incapable of rationalizing the data. Given the trigger 
rule described in Section III, such a model implies that in each period t all wells with 
productivity  x i  >  x  t  *  will be drilled. Now consider what would happen should  x *  rise 
in period t + 1, perhaps because the oil price fell or because volatility increased. 
In this case, only prospects with  x i  ≥  x  t+1  *   will be drilled. However, all such pros-
pects will already have been drilled in period t since  x  t+1  *   >  x  t  * . Thus, an implication 
of a model in which  x i  does not vary over time is that there cannot be any drilling 
activity following an increase or no change in  x * . Such a model is clearly inconsis-
tent with the drilling data. In 1999, for example, the expected price is considerably 
lower than it was in 1998 and the expected volatility is higher; however, drilling 
activity does not go to zero.

To fit the data, the model requires changes in the  x i  over time or some other 
mechanism to smooth out drilling activity. That said, the true productivity of each 
prospect is constant, since the underlying geology is time-invariant. Moreover, new 
information that would cause a firm to update its expectation of a prospect’s pro-
ductivity does not arrive exogenously on its own, since the prospective reservoir is 
buried thousands of feet below the surface. Nonetheless, there exist several possible 
 mechanisms capable of explaining the drilling data. First, a firm’s evaluation of any 
given prospect’s productivity is likely not stable over time, even if the information 
set does not change. The process by which geologists and engineers develop an esti-
mate of a prospective well’s production is inherently challenging and error-prone. 
They must make inferences about a buried oil reservoir using only limited informa-
tion from seismic surveys, production outcomes from previously drilled wells, and 
electromagnetic “logs” of the rock characteristics at nearby wells. Any individual 
geologist or engineer may change his or her views regarding a prospect as more time 
is spent studying the information, and different personnel may draw different con-
clusions from the same set of information (much like different econometricians may 
draw different inferences from the same data). Such re-evaluations of prospects, 
which are anecdotally common in the industry, particularly if there is personnel 
turnover, can drive substantial variation in a prospect’s  x i  over time. Second, firms 
may sometimes “discover” new prospects in old fields in their analyses of their data. 
Observationally, such discoveries are equivalent to an increase in the  x i  of what had 
been a low-quality prospect. Third, firms can engage in costly gathering of infor-
mation by, for example, taking a seismic survey of their field, thereby triggering a 
revision of expected productivity. Similarly, the results from the drilling of one well 
may yield information about the quality of another prospect. Finally, variance in the 
lag between the decision to drill and the actual commencement of drilling may arise 
due to delays in engineering design, management approval, permitting, or drilling 
contracting. These stochastic lags will lead to drilling at times not predicted by  
the model.

Rather than separately model each of the mechanisms above, I instead account 
for them jointly by allowing each well’s expected productivity  x i  to vary over time. 
In the absence of data on firms’ engineering estimates, their use of seismic surveys, 
or well-specific delays in drilling, separate identification of each source of time vari-
ation would require strong functional form assumptions and a substantially more 
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complex model than that given here.26 Allowing the  x i  to vary over time is closest 
in spirit to the prospect reevaluation mechanism and is sufficient for the model to 
predict drilling activity following an increase in the productivity cutoff  x * .

In the reference case empirical specification, I treat the log of expected productiv-
ity as an i.i.d. normal variable across both prospects i and time t, with a mean μ and 
variance ζ that are to be estimated in the main estimation procedure (along with the 
behavioral parameter β). Given μ and ζ, the number of wells that the model predicts 
will be drilled at any time t is given by the expected number of prospects for which   
x it  exceeds  x  t  * .

Despite the emphasis of the above discussion on time variance in  x it , there may 
exist some persistent cross-sectional heterogeneity in the expected productivity of 
each prospect. I therefore also consider a model in which log  x it  is the sum of a 
time-invariant normally distributed random variable  φ i  , with mean and standard 
deviation given by  μ 1  and  ζ 1 , and an i.i.d. normal variable  ν it  with a zero mean and 
standard deviation  ζ 2 . In this specification, I estimate  μ 1 ,  ζ 1 , and  ζ 2  in addition to β.

Note that I do not explicitly model expected productivity as a stochastic state 
variable when solving the Bellman equation (7). That is, I do not model firms as 
anticipating or waiting for future changes in  x i  , so there is no option value in this 
dimension. I do so because the mechanisms discussed above that drive changes in 
the  x i  over time do not reflect exogenous inputs of new information or actual changes 
in the underlying geology, so that firms do not anticipate and wait for exogenous 
productivity shocks (unlike, for example, the Rust (1987) model in which Harold 
Zurcher receives new information about the state of each bus when it arrives in his 
shop).27 This modeling choice is supported by the data. If I instead structure the 
model so that firms do anticipate productivity shocks, the model’s ability to match 
actual drilling behavior is substantially reduced because firms have a very strong 
incentive to wait for a large positive shock and then drill as soon as one is realized. 
This incentive effectively mutes firms’ incentive to respond to uncertainty about 
future oil prices, so that the model fails to predict the response of drilling to oil price 
volatility that is apparent in the data.28

Given the state transition processes discussed in Section IVA, the parameters gov-
erning the distribution of the  x it , the behavioral parameter β, and the realized monthly 
time series of futures prices, rig dayrates, and implied volatilities (denoted by P, D, 
and σ, respectively), the model’s solution yields the likelihood that a given prospect 

26 For example, a firm that undertakes a seismic survey is, in reality, making an endogenous investment that 
should in principle be modeled dynamically in conjunction with the drilling model. The present model can, how-
ever, accommodate costly information gathering to the extent that drilling a well can be viewed as a compound 
investment: when prices rise or volatility falls so that the firm contemplates drilling, it undertakes a seismic survey 
before drilling the well. I also continue to model each prospect independently, abstracting away from the process 
by which the drilling of a well in a field can influence the firm’s beliefs about other prospects in the same field. 
This abstraction may result in unmodeled correlation of drilling activity in fields with multiple wells drilled, moti-
vating the use of a clustered variance-covariance estimator (Wooldridge 2002).

27 In the context of firms’ revisions of a prospect’s expected productivity based on a reanalysis of preexisting 
information, thinking of firms as anticipating and waiting for future shocks to expected productivity seems prob-
lematic because neither the underlying true productivity of the prospect nor the available information will actually 
change. The possibility that an engineer might, in the future, positively update the evaluation of the prospect doesn’t 
actually increase the prospect’s value, so firms shouldn’t wait for such reevaluations.

28 The estimated variance over time in expected productivity is sufficiently large (in order to rationalize drill-
ing during low price periods) that it swamps oil price volatility. When I model firms as anticipating this variation, 
increasing β to even 2.0 has essentially no effect on simulated drilling.
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will be drilled in any given month t conditional on not having been drilled already. 
This likelihood is simply the probability that  x it  exceeds the trigger productivity  x  t  * .  
Starting from the initial period of January 1993, these conditional probabilities yield 
the probability that any given prospect will be drilled in each month t as well as the 
probability that the prospect will not be drilled by the end of the sample.29 These 
probabilities form the basis for the likelihood function. Let  I it  denote an indica-
tor variable that takes on a value of one if prospect i is drilled in month t and zero 
otherwise, let T denote the final month of the sample, let  N t  denote the number of 
wells actually drilled at t, and let  N 0  denote the number of prospects not drilled  
( N 0  = 6,637, the number of undrilled sole-operated fields).30 The log-likelihood 
function is therefore:

(12)  ℓ(( N 1 ,  N 2 , … ,  N T ),  N 0  | P, D, σ; β, μ, ζ)

   =  ∑  
t=1

   
T

    N t  log Pr( I it  = 1 | P, D, σ; β, μ, ζ)

  +  N 0  log Pr( I it  = 0 ∀t | P, D, σ; β, μ, ζ).

Estimation of β, μ, and ζ is carried out by maximizing this likelihood function 
using a nested fixed point routine. The outer loop searches over the unknown param-
eters while the inner loop solves the model and calculates the likelihood function at 
each guess. Details regarding this simulation and estimation procedure, such as the 
discretization of the state space used to numerically solve the model, are provided 
in online Appendix 2. The specification with cross-sectional heterogeneity proceeds 
by integrating the likelihood over the distribution of  φ i .

V. Estimation Results and Discussion

A. Reference Case Estimation Results

I begin by estimating the version of the model in which log  x it  is assumed to be 
i.i.d. across prospects i and time t. As a baseline, column 1 of Table 2 provides the 
estimation results when I impose the restriction that β = 0; that is, firms do not 
respond to changes in implied volatility.31 I find that a broad distribution of expected 
productivity  x it  is needed to sufficiently smooth the model’s simulated drilling activ-
ity such that it rationalizes the data. The estimated mean μ and standard deviation ζ 
of log  x it  are −0.431 and 3.023, respectively. Here, and throughout the presentation 
of the results,  x it  is given in barrels of expected discounted production per $100,000 
of drilling cost at the average rig dayrate. These estimates together imply that, in 

29 For example, the probability that the prospect will be drilled in February 1993 is the conditional probability 
that it is drilled in February 1993 multiplied by the probability that it was not drilled in January 1993. The prob-
ability that it is drilled in March 1993 is then the conditional probability that it is drilled in March 1993 multiplied 
by the probability that it was not drilled in February 1993 or earlier, and so on.

30 Throughout this section, I use “drilled” as shorthand for the drilling decision. As with the descriptive hazard 
model, I allow for a three-month lag between the drilling decision and the actual start of drilling. Thus, for example, 
the model’s drilling probability for January 1993 is matched with drilling activity for April 1993. The final period 
of the sample is September 2003, which is matched with drilling activity for December 2003.

31 With β = 0, the random walk and mean reverting specifications for future volatility are equivalent.
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the model, the average prospect at any point in time is expected to produce only 
63 barrels of oil per $100,000 of cost, well below the productivity necessary to 
justify investment at any reasonable oil price.32 This estimate reflects the presence 
of a large number of fields in the data (6,637) in which no drilling occurs. A large 
 estimate of the variance ζ is therefore necessary to rationalize the observed drilling. 
For example, a prospect with average costs and a log  x it  3.5 standard deviations 
greater than the mean will be expected to produce 25,578 barrels of oil, sufficient to 
trigger drilling over a range of prices and implied volatilities in the sample.

In column 2, I allow β to be a free parameter and model firms as having random 
walk beliefs about future volatility. I obtain a point estimate of β of 1.118. This value 
is very close to one in both an economic and statistical sense (the standard error is 
0.141),33 consistent with an optimal response of investment to volatility  expectations 
that match the implied volatility of NYMEX futures options.34 Moreover, a likeli-
hood ratio test strongly rejects, with a p-value less than 0.001, a null hypothesis 
that firms do not respond at all to implied volatility (β = 0).35 The time series of 
predicted drilling under models I and II are given in Figure 7, alongside actual drill-
ing activity.36 The prediction from model II, allowing for a response to volatility, 

32 The 63 barrel per $100,000 figure is equal to exp(−0.431 + 3.02 3 2 /2).
33 Standard errors are clustered on field (thereby accounting for within-field spatial and serial correlation) and 

take into account the standard errors of the estimated parameters in the price drift function (11). Clustering the stan-
dard errors on month-of-sample, which would account for broader cross-sectional correlation (perhaps associated 
with technological or macroeconomic shocks), generally results in smaller standard errors than those that are not 
clustered at all. See online Appendix 2 for details on the standard error calculations.

34 Note that, in column 2, the distribution of log  x it  is estimated to have a lower mean and higher variance than in 
column 1. This shift in parameters is necessary to rationalize non-zero drilling activity in early 1999 when oil prices 
were low and implied volatility was high: the increased variance allows simulated prospects to have an expected 
quality  x it  greater than the high drilling trigger productivity  x  t  

∗  during this period.
35 Rejection of the restricted estimate with a test size of 5 percent requires a difference in log likelihoods of 

1.92. A likelihood ratio test does not take clustering of the likelihood scores on field into account so will therefore 
underestimate the true p-value.

36 To connect the structural model to the descriptive hazard model from Section II, I have taken the simulated 
drilling data and used it to reestimate specification II from Table 1 (technical note: to deal with the fact that the 

Table 2—Results from Estimation of the Dynamic Model

Beta
restricted

to
zero

Reference case,
random

walk volatility 
forecast

Reference case,
mean

reverting
volatility

Small
firm

subsample

Large
firm

subsample
Parameter (1) (2) (3) (4) (5)

β (sensitivity to volatility) — 1.118 1.191 1.136 1.085
— (0.141) (0.188) (0.127) (0.212)

μ (mean of log( x it )) −0.431 −12.045 −12.616 −18.991 −6.998
(2.668) (7.993) (8.183) (15.025) (9.068)

ζ (SD of log( x it )) 3.023 6.961 7.212 9.268 5.282
(0.887) (2.664) (2.733) (4.991) (3.039)

log likelihood −8,670.5 −8,661.2 −8,661.3 −4,350.9 −4,309.7

Notes: All estimates use prices of futures and options that are 18 months from maturity.  x it  is expressed as expected 
oil production (in bbl) divided by the cost of drilling (in $100,000) at the average sample dayrate. Drilling data are 
matched to drilling likelihoods with a three month lag. Columns 4 and 5 assume that firms have a random walk fore-
cast for future volatility. Standard errors are estimated using a sandwich estimator that allows for correlation of the 
likelihood scores across wells within the same field, thereby accounting for spatial and serial correlation. Standard 
errors also account for the sampling error in the estimated function for the expected drift of future oil prices.
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yields a better fit to the data, particularly during the 1999 low price period and the 
volatility spike following September 11, 2001. More broadly, the model that does 
not allow a response to time-varying volatility underpredicts drilling in the early part 
of the sample and overpredicts drilling in the latter part. Allowing for a volatility 
response largely corrects these mispredictions, though there remain sections of the 
time series, such as early 1997, that the model does not fit well (and, of course, the 
model smoothes over the month-to-month noise in the actual drilling data).37

In column  3 of Table  2, I model firms as having mean-reverting beliefs about 
future volatility. When endowed with these beliefs, firms believe that changes in vol-
atility will not be persistent, and they will therefore not respond as strongly to such 
changes as they would with a random walk forecast. Thus, the column 3 estimate 
indicates a higher value of β of 1.191 (s.e. = 0.188) because the value of 1.118 
from column 2 will not yield sufficient sensitivity to volatility to match the data.38 
The random walk and mean-reverting models yield nearly identical log likelihoods 
(−8,661.2 versus −8,661.3), so they cannot be distinguished by the data. In the pre-
sentation of the results from alternative specifications and robustness tests below, I 
will focus on the results from the random walk specification and simply footnote the 

number of simulated wells each month is not an integer, I multiply the number of wells by 10 and then round to the 
nearest integer before estimating (I also multiply the number of undrilled wells by 10)). The estimated coefficients 
on the oil price, volatility, and drilling cost are 1.034, 0.966, and 0.949. Each of these numbers is well within the 
95 percent confidence interval of the estimates obtained from the actual data as presented in column 2 of Table 1.

37 Estimating the model on the sample of all infill wells, rather than the reference case sample of infills in sole-
operated fields, yields essentially the same estimate of β as in the reference case (the point estimate is 1.117). The 
reduction in the noise in the drilling data (see online Appendix Figure A1 for a plot of drilling data from all infill 
wells) also improves the fit of the model: when I regress actual drilling on simulated drilling, I obtain an  R  2  of 0.260 
with the reference case data and 0.471 with the data from all infills.

38 To be clear, this estimate uses implied volatility, not GARCH volatility, as the measure of expected volatility 
over the current month. The GARCH model is used only to generate a forecast of expected mean reversion.
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Figure 7. Predicted Drilling from the Estimated Model versus Actual Drilling

Notes: Predicted drilling with no volatility response corresponds with the estimates of col-
umn 1 of Table 2, in which the behavioral parameter β is restricted to zero. Predicted drilling 
with a volatility response refers to column 2 of Table 2, in which β is estimated to be 1.118.



1724 THE AMERICAN ECONOMIC REVIEW juNE 2014

mean reverting results, which are consistently qualitatively similar to those from the 
random walk specifications.

When a model allowing for time-invariant prospect-specific heterogeneity is esti-
mated, the log likelihood is maximized when this heterogeneity ( ζ 1 ) is zero and 
the model’s other parameters match the Table 2, column 2 or column 3 estimates 
discussed above (depending on whether the random walk or mean-reverting volatil-
ity specification is used). Persistent prospect-level heterogeneity would be manifest 
in the data as a steady decrease in the rate of drilling activity over time as the best 
prospects are gradually removed from the pool.39 However, such a decrease is not 
a prominent feature of the data. An explanation for the lack of empirical support 
for prospect-level heterogeneity is likely to be that all drilling prospects were mar-
ginal at the start of the dataset in 1993. Any particularly promising prospects were 
likely to have already been “skimmed off” before this year, especially given that 
there were periods of very high oil prices in the early 1980s and during 1990–1991.  
Thus, at the beginning of my dataset in 1993, there were no ex ante “best” prospects 
in the pool to drill first, meaning that overall prospect quality—and therefore the rate 
of drilling—would not decline substantially over time.40

B. Firms’ Incentive to Respond Optimally

Why might the estimate of drilling activity’s response to changes in expected 
volatility accord so well with theory? Given the small size of many of the firms 
in the data, it seems unlikely that they are formally solving Bellman equations. 
However, they may have developed decision heuristics that roughly mimic an opti-
mal decision-making process. Moreover, the firms have a strong financial incentive 
to get their decision-making at least approximately right. Consider a firm that has 
a drilling prospect of average cost that is expected to produce 17,000 bbl and faces 
an average dayrate (so that the drilling cost is $386,501). The value of the pros-
pect to the firm, over a range of prices and for several expected price volatilities, is 
given in Figure 8. Suppose that the firm is somewhat myopic, acting as if volatility 
were 15 percent when volatility is actually 30 percent (both of these values are well 
within the range of in-sample realizations). In this case, the firm will incorrectly 
choose to drill when the oil price is between $29 and $35/bbl, losing as much as 
$29,000 in value. Put another way, behaving optimally rather than myopically in 
this example can increase the prospect’s value by 27 percent. Expanding the range 
of volatilities, and therefore the extent to which the firm can be incorrect, naturally 
increases the potential loss from suboptimal behavior. In the extreme, ignoring vola-
tility—and therefore option value—altogether can cause a firm to drill a prospect 
with an expected profit of nearly zero despite the fact that holding the prospect can 
have substantial value. In the example above, a firm that completely ignored price 

39 Even without time-invariant prospect-level heterogeneity, the model would still predict a steady decrease in 
drilling over time because the total number of prospects available (7,787) is finite. Adding time-invariant heteroge-
neity steepens the rate of decrease.

40 It may also be that the effects of any decline in prospect quality over time caused by heterogeneity have been 
masked by technological improvements, such as adoption of 3-D seismic imaging, that have pushed prospects’ 
expected productivity upward.
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volatility of 30  percent would drill at a price of $23/bbl, achieving an expected 
profit of $4,500, even though holding the prospect has a value of $135,000.

Do different types of firms respond differently to volatility shocks? In Figure 9 
and columns 4 and 5 of Table 2, I examine whether there is a difference in drill-
ing behavior between small and large firms. I classify each firm as small or large 
based on the total number of wells (including non-infill wells) the firm drills during 
the 1993–2003 sample period, splitting the sample at the median number of wells 
per firm.41 Figure 9 plots the time series of drilling activity by each type of firm 
against futures prices and implied volatility. Though the time series are noisy, the 
drilling rates of small and large firms overlay each other fairly closely, suggesting 
that the two types respond similarly to price and volatility signals. When I estimate 
the model separately for each type, the estimates are statistically and economically 
indistinguishable: the estimated β for small firms is 1.136 while that for large firms 
is 1.085 (columns 4 and 5 of Table 2).42 Thus, it is not the case that small firms 
in this industry are “unsophisticated” and cannot respond properly to market sig-
nals. Instead, small firms respond to volatility shocks as optimally as do large firms, 

41 In the reference case sample (1,150 infill wells in sole-operated fields), the median well is drilled by a firm that 
drilled 49 wells in total over 1993–2003.

42 Under a hypothesis that firms believe volatility is mean reverting, the point estimates (standard errors) for β in 
columns 4 and 5 are 1.212 (0.187) and 1.181 (0.201), respectively. The log likelihoods are −4,350.7 and −4,310.0.
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Figure 8. Comparison of the Value of Holding a Drilling Prospect  
to the Profits from Drilling

Notes: The relationships shown are for a drilling prospect with an expected production 
of 17,000 bbl and an average depth, facing an average dayrate, so that the drilling cost is 
$386,501. With expected oil price volatilities of 0 percent, 15 percent, and 30 percent, drilling 
is triggered at oil prices of $23, $29, and $36/bbl, respectively. The model used to generate 
these curves has a behavioral parameter β = 1 and uses the state transition parameters esti-
mated in Section IVA of the text (with a random walk volatility forecast). Values shown are 
taken directly from the model’s value function.
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 perhaps reflecting the possibility that it is difficult for a firm to survive in this highly 
competitive environment if its decision-making is poor.

C. Sources of Identification

The above results indicate that, in periods of high expected oil price volatility, 
drilling activity falls in a way that is commensurate with the predictions of real 
options theory. This section examines which aspects of the data drive the identifica-
tion of this result and also studies whether realized production data can offer addi-
tional identifying variation.

A prominent feature of the data is that volatility is greater at the end of the sample 
than at the beginning, and drilling activity is lower at the end of the sample then at 
the beginning. This feature raises the question of the extent to which identification 
is coming from an overall trend in the data. I examine this issue by including in the 
model a time trend in wells’ expected productivity  x it . The results from estimating 
this model are presented in column 2 of Table 3. I find that the estimated time trend is 
effectively zero, with a point estimate of a productivity increase of about 0.1 percent 
per year that is not statistically significant. Moreover, the estimate of β is virtually 
unchanged.43 This result is related to the lack of evidence for prospect-specific het-
erogeneity, which, like a time trend, would be manifest as a steady decrease in drill-
ing activity over time. Identification of β does not appear to arise from such a trend.

I next examine the extent to which the reference case results are driven by the 
sharp increase in volatility and commensurate decrease in drilling activity that 

43 Under a hypothesis that firms believe volatility is mean reverting, the point estimate (standard error) for β in 
column 2 of Table 3 is 1.194 (0.189), with a log likelihood of −8,661.3.

Figure 9. Time Series of Monthly Drilling Activity Split by Small versus Large Firms, 
with Oil Futures Prices and Implied Volatility from Futures Options Prices

Notes: Drilling activity is broken into small versus large firms at the median firm size (mea-
sured by total number of wells drilled) in the dataset. Oil futures prices are 18-month ahead 
prices from the NYMEX. Implied volatility is calculated from futures options prices per the 
discussion in Section ID. Drilling activity corresponds only to infill oil wells drilled in sole-
operated fields.
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occurred in the summer of 1998. To do so, I model a permanent shock to the  x it  that 
begins in July 1998 and is common to all prospects, thereby removing this source 
of identifying variation. The results from estimating the model while including this 
shock are given in column 3 of Table 3. The estimated shock is large, decreasing 
log  x it  by 0.433, although it is not statistically significant. The point estimate of β 
is not significantly affected, changing from 1.118 in the reference case to 1.137 
here.44 This result suggests that identification does not strongly rely on the sub-
stantial changes that occurred in the summer of 1998—other variation, such as that 
occurring around the events of September 11, 2001, is also important.45 However, 
with the inclusion of the post-July 1998 productivity dummy, the likelihood func-
tion exhibits strong nonconcavities, and the data cannot reject an alternative local 
maximum at β = 0.453, shown in column 4 of Table 3 (the difference in log likeli-
hoods between columns 3 and 4 is only 0.4). Thus, statistical power is coming in no 
small part from the sharp changes in volatility and drilling that occurred in 1998.46

44 Under a hypothesis that firms believe volatility is mean reverting, the point estimate (standard error) for β in 
column 3 of Table 3 is 1.208 (0.198), with a log likelihood of −8,659.1. There is an alternative local maximum with 
an estimated β of 0.385 and a log likelihood of −8,660.4.

45 I have also examined the importance of 9/11 to the results by estimating a specification in which there is a com-
mon shock across all prospects for September 2001 through January 2002. The log likelihood for this specification is 
maximized at β = 1.101, though again there is another local maximum at 0.631. The difference between these esti-
mates’ log likelihoods is larger than that of the post-July 1998 shock model, however. The log likelihood at the estimate 
of 1.101 is −8,661.0, while that at the 0.631 estimate is −8,662.4. A likelihood ratio test rejects the local maximum at 
the 10 percent level, with the caveat that this test does not take the clustering of standard errors into account.

46 It seems unlikely that there was an actual sudden (and potentially confounding) drop in wells’ productivity 
in 1998, since productivity is a function of geology and there is no obvious reason why firms’ beliefs about the 
geologic characteristics of oil reservoirs would simultaneously decrease. In addition, the statistical insignificance of 
the estimated coefficient on the post-July 1998 dummy in column 3 is consistent with the absence of a true shock.

Table 3—Alternative Specifications: Sources of Identification

Reference
case

model
Time
trend

July
1998 

dummy

July 1998 dummy, 
alternative local 

maximum

Model includes 
production

data
Parameter (1) (2) (3) (4) (5)

β (sensitivity 1.118 1.117 1.137 0.453 0.923
 to volatility) (0.141) (0.138) (0.127) (0.280) (0.169)
μ (mean of log( x it )) −12.045 −11.922 −20.913 −3.113 −3.709

(7.993) (9.107) (15.667) (4.160) (4.428)
ζ (SD of log( x it )) 6.961 6.920 9.959 3.964 4.166

(2.664) (3.065) (5.261) (1.400) (1.487)
Time trend (years) 0.001

(0.038)

Dummy for date 0.433 0.250
 ≥ July 1998 (0.501) (0.169)
log likelihood −8,661.2 −8,661.2 −8,659.5 −8,659.9 −9,457.9

Notes: All estimates use prices of futures and options that are 18 months from maturity.  x it  is 
expressed as expected oil production (in bbl) divided by the cost of drilling (in $100,000) at 
the average sample dayrate. Drilling data are matched to drilling likelihoods with a three month 
lag. All estimates assume that firms have a random walk forecast for future volatility. Column 5 
involves estimates of parameters not shown; full estimates are given in online Appendix 3. 
Standard errors are estimated using a sandwich estimator that allows for correlation of the like-
lihood scores across wells within the same field, thereby accounting for spatial and serial cor-
relation. Standard errors also account for the sampling error in the estimated function for the 
expected drift of future oil prices.
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Finally, I explore the extent to which the data on realized production—for the 
subset of 160 wells for which production is observable—can provide additional 
information for identification of β. In principle, the realizations of well productivity 
(discounted lifetime production divided by the cost of drilling) should be related to 
variation in the trigger productivities  x *  over time and should therefore be informa-
tive for β. Below, I summarize my use of the productivity data in this regard; details 
can be found in online Appendix 3.

To make the production data comparable to the  x *  trigger productivities, I first 
transform them from production over the first three years of each well’s life to total 
discounted production over each well’s lifetime, estimating hyperbolic decline 
curves to carry out the extrapolation. I then divide each well’s discounted lifetime 
production by its estimated drilling cost at the average dayrate to obtain its realized 
productivity (in barrels per $ of drilling cost). Figure 10 plots (in logs) each well’s 
thusly calculated realized productivity against the  x *  productivity triggers generated 
by the reference case model. This figure reveals two obstacles to using the realized 
productivity data in the model. First, these data are extremely noisy, reflecting the 
substantial geologic uncertainty involved in drilling for oil and masking any obvious 
relationship between realized productivity and  x * . Second, in this sample of wells 
average productivity falls substantially below the average  x * . This shortfall is consis-
tent with selection: the wells for which productivity is observable are those drilled 
in leases in which no other wells were subsequently drilled or operated, and this 
lack of follow-up activity may have been due to poor results from the initial well. 
Data from the 367 drilled wells for which I have production data but there also exist 

Figure 10. Realized Productivity versus Productivity Triggers  x *  
from the Reference Case Model

Notes: Production data are from the subset of observed drilled wells that are the only active 
producing well on their respective lease for the first 36 months subsequent to drilling (these 
are 160 of the observed 1,150 drilled wells from 1993 to 2003). Realized productivity for each 
well is the estimated lifetime discounted production (in barrels) divided by the cost of drilling 
(in real 2003 US$). Dry holes are plotted as having a log(productivity) of −12.
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other active wells provide support for this selection mechanism, in that they exhibit 
substantially higher productivity on average.47 Figure 10 also provides the logged 
“break-even” productivity each period. This productivity level falls below  x *  due 
to option value, and the figure shows that the median well for which production is 
observed performs slightly worse than break-even. In levels, however, the right-tail 
of highly productive wells implies that these 160 wells earn strictly positive profits 
on average, consistent with real options theory’s prescription that expected profits 
from irreversible investments should be strictly positive.48

With the above issues in mind, I augment the model and likelihood function 
to incorporate the productivity realization data. As discussed in detail in online 
Appendix 3, the augmented likelihood function takes into account both the prob-
ability of each productivity realization (which will depend on  x *  each period and on 
the estimated variance of productivity realizations about their expectation) and the 
probability that production is observable for each drilled well (which will depend 
on the well’s productivity). I find that making use of the production data does not 
substantially influence the estimate of β. As shown in column 5 of Table 3, the esti-
mate of β in this specification is 0.923 with a standard error of 0.169, still consistent 
with an optimal response by firms to changes in oil price volatility.49 The production 
data do shift the estimated distribution of well productivities, raising the mean μ 
and lowering the standard deviation ζ, though the estimates still lie well within the 
95 percent confidence interval from the reference case.50 The full set of estimated 
parameters from this model is given in online Appendix 3.

D. Alternative Specifications

Alternative Measures of Expected Volatility.—The analysis thus far has used 
implied volatility from the NYMEX futures options market as the measure of 
firms’ oil price volatility expectations. Column 2 of Table 4 reports results in which 
expected volatility is instead measured by the historic volatility of futures prices 
over a one year rolling window. The use of historic volatility yields a worse fit to 
the drilling data than does implied volatility, evidenced by the substantial decrease 
in the log likelihood relative to the implied volatility results in column 1 of Table 4. 
Moreover, the estimate of β is only 0.348 and not statistically significant, indicat-
ing that firms do not respond as strongly to historic volatility as they do to volatility 
signals that are reflected in the NYMEX futures options market.51

47 For these 367 wells, the noise in their leases’ monthly production data makes it impractical to estimate each 
well’s productivity. However, I have estimated the average production across these wells. They are substantially 
more productive on average than the 160 drilled wells that are the only active wells on their lease, consistent with 
selection. The estimated average log realized productivity in the 367 well sample is −2.482, while that for the 160 
well sample is −4.109. Consistent with the selection story, the majority of these wells’ leases exhibit production 
from wells that come online after the well in question was drilled.

48 The average estimated discounted profit for the 160 well sample is $243,720, relative to an average drilling 
cost of $403,697. The median well, however, loses $121,469.

49 Under a hypothesis that firms believe volatility is mean reverting, the point estimate (standard error) for β in 
column 5 of Table 3 is 0.938 (0.172), with a log likelihood of −9,457.7.

50 These changes have a net effect of reducing expected production conditional on drilling, thereby better match-
ing the production data.

51 Under a hypothesis that firms believe volatility is mean reverting, the point estimates (standard errors) for 
β in columns 2, 3, and 4 are 0.292 (0.323), 0.790 (0.281), and 1.690 (0.447), with log likelihoods of −8,669.7, 
−8,666.1, and −8,663.8, respectively.



1730 THE AMERICAN ECONOMIC REVIEW juNE 2014

Column  3 of Table  4 uses the GARCH(1, 1) model to forecast future volatil-
ity. This model yields an estimate of β of 0.587 that is statistically significant at 
the 1  percent level, though the fit of the model is still substantially worse than 
when implied volatility is used (the decrease in the log likelihood is equal to 4.8). 
The reduced fit reflects the fact that, while GARCH provides a closer match to 
implied volatility than does historic volatility, the GARCH and implied volatility 
series still diverge substantially at several points in time (Figure 4). This result, as 
well as that obtained from the direct use of historic volatility, suggests an explana-
tion for why some previous empirical studies (Hurn and Wright 1994; Moel and 
Tufano 2002) have not found strong evidence that time-varying volatility signifi-
cantly affects investment. These studies measure firms’ volatility expectations using 
historic volatility, which may only be a noisy measure of firms’ true beliefs because 
it does not reflect up-to-date information regarding volatility shocks.

Front-Month Rather than Futures Prices.—Column  4 of Table  4 considers a 
model in which firms respond to the front-month price and volatility of oil rather 
than 18-month futures and volatilities. I replace the price series  P t  with the NYMEX 
front-month futures contract, and I replace the market’s implied 18-month price 
volatility  σ  m  with that of front-month futures options. Because firms’ use of current 
prices as expected prices is consistent with a no-change forecast for the price of oil, 
I set the price and cost drift functions μ( · ) and    μ ( · ) to zero. The estimate of β from 
this model is 1.679, with a relatively large standard error of 0.572. The front month 
model also yields a weaker fit to the data than does the reference case model, with a 
log likelihood of −8,662.5 rather than −8,661.2. The increase in β, imprecision, and 
decreased fit with the front month model likely reflects the zero expected price drift 
assumption inherent in the use of front-month prices. A relatively high  volatility 
state in this model is not associated with an expectation that prices will increase 
in the future, as was the case in the reference case model. In addition, the lack of 
mean reversion in the price forecast means that firms would not expect an increase 

Table 4—Alternative Specifications of Price and Volatility Beliefs

Reference case
model (Table 2, 

column 2)

Historic volatility
of futures prices,
one year window

GARCH
volatility

Front-month
futures and

implied volatility
Parameter (1) (2) (3) (4)

β (sensitivity to volatility) 1.118 0.348 0.587 1.679
(0.141) (0.338) (0.194) (0.572)

μ (mean of log( x it )) −12.045 −0.331 −2.481 −3.462
(7.993) (2.587) (3.552) (2.972)

ζ (SD of log( x it )) 6.961 2.996 3.745 4.146
(2.664) (0.860) (1.189) (1.000)

log likelihood −8,661.2 −8,670.4 −8,666.0 −8,662.5

Notes:  x it  as expressed in expected oil production (in bbl) divided by the cost of drilling (in $100,000) at the aver-
age sample dayrate. Drilling data are matched to drilling likelihoods with a three month lag. All estimates assume 
that firms have a random walk forecast for future volatility. Standard errors are estimated using a sandwich estima-
tor that allows for correlation of the likelihood scores across wells within the same field, thereby accounting for 
spatial and serial correlation. Standard errors also account for the sampling error in the estimated function for the 
expected drift of future oil prices.
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in the oil price during periods such as 1998–1999 when the front-month price was 
low (and expected volatility was high). Because expectations of higher prices in the 
future dampen the incentive to drill today, a higher estimate of β is required in order 
to offset the use of a no-change price forecast and fit the data.

Alternative Discount Rate and Drilling Cost Assumptions.—The estimates here-
tofore have been based on an assumed 12.5 percent nominal discount rate, taken 
from a 1995 survey by the Society of Petroleum Evaluation Engineers. Columns 2 
and 3 of Table 5 examine the use of alternative discount rates. A 14.5 percent dis-
count rate yields an estimate of β of 1.189 while a 10.5 percent discount rate yields 
β = 0.973.52 Neither estimate is statistically distinct from one. These changes to 
the estimated β are in line with real options theory’s predictions. As the discount 
rate increases, firms value the future less, option value decreases, and firms become 
less responsive to changes in expected volatility. Thus, to fit the empirical volatil-
ity response, the volatility sensitivity parameter β must increase when the assumed 
discount rate increases.

Finally, columns  4 and 5 of Table  5 examine the estimates’ sensitivity to the 
assumption that rig costs constitute one-third of total drilling costs on average. 
Assuming a value of 20 percent or 50 percent does not substantially alter the esti-
mate of β.

VI. Conclusions

The importance of irreversibility and uncertainty in investment decision-making 
has been recognized since Marschak (1949) and Arrow (1968). Theoretical work 

52 Under a hypothesis that firms believe volatility is mean reverting, the point estimates (standard errors) for β in 
columns 2 through 5 of Table 5 are, in order, 1.281 (0.139), 1.027 (0.197), 1.194 (0.189), and 1.194 (0.191). The 
log likelihoods are −8,661.5, −8,661.8, −8,662.0, and −8,660.9.

Table 5—Alternative Specifications: Discount Rates and Drilling Costs

Reference
case model
(Table 2,

column 2)

14.5 percent 
nominal
discount

rate

10.5 percent 
nominal
discount

rate

Rig costs 
average 

20 percent of
total drilling cost

Rig costs
average

50 percent of
total drilling cost

Parameter (1) (2) (3) (4) (5)

β (sensitivity to volatility) 1.118 1.189 0.973 1.122 1.127
(0.141) (0.176) (0.174) (0.143) (0.133)

μ (mean of log( x it )) −12.045 −10.164 −11.470 −12.871 −13.163
(7.993) (7.599) (8.045) (8.545) (7.672)

ζ (SD of log( x it )) 6.961 6.325 6.776 7.237 7.336
(2.664) (2.538) (2.684) (2.847) (2.555)

log likelihood −8,661.2 −8,661.5 −8,661.3 −8,661.9 −8,661.0

Notes: All estimates use prices of futures and options that are 18 months from maturity.  x it  is expressed as expected 
oil production (in bbl) divided by the cost of drilling (in $100,000) at the average sample dayrate. Drilling data are 
matched to drilling likelihoods with a three month lag. All estimates assume that firms have a random walk fore-
cast for future volatility. Standard errors are estimated using a sandwich estimator that allows for correlation of the 
likelihood scores across wells within the same field, thereby accounting for spatial and serial correlation. Standard 
errors also account for the sampling error in the estimated function for the expected drift of future oil prices.
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has since derived optimal timing rules for irreversible investments and demonstrated 
that firms should defer projects when uncertainty is relatively high. These concepts 
have taken a prominent role in industrial organization and the macroeconomic mod-
eling of aggregate investment. However, there has been a shortage of empirical evi-
dence regarding the extent to which firms actually take option value into account 
when making irreversible investments.

This paper tests the sensitivity of firms’ investment decisions to changes in the 
uncertainty of their economic environment by assembling a new, detailed dataset 
that combines information on well-level oil drilling with expected oil price volatil-
ity data from the NYMEX futures options market. I build and estimate a dynamic 
model of firms’ drilling investment timing problem, taking advantage of industry 
features that make a single-agent approach appropriate. I find not only that firms 
reduce their drilling activity when expected volatility rises but also that the magni-
tude of this reduction is consistent with the optimal response prescribed by theory. 
This result provides micro-empirical support for the frequent use of real options 
models in economic research. It is also consistent with the existence of a strong 
incentive for firms to behave optimally. I find that the cost of failing to respond to 
changes in volatility can be substantial, potentially exceeding 25 percent of a drill-
ing prospect’s value at in-sample oil price and volatility realizations.

I also show that a forward-looking measure of expected price volatility derived 
from futures options is a more powerful determinant of drilling behavior than are 
backward-looking measures based on historic volatility. The relative strength of 
the implied volatility measure is consistent with the hypothesis that participants in 
the NYMEX commodity market and physical industry participants share common 
beliefs about future price uncertainty. This result thereby provides support for the 
use of data from financial markets as measures of firms’ expectations in applied 
work. It is also well-aligned with other research regarding the predictive power of 
option-based implied volatility and supports the intuition that options prices incor-
porate up-to-date information about uncertainty shocks that cannot be conveyed by 
price histories alone.
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ONLINE APPENDIX 

“The Effect of Uncertainty on Investment: Evidence from Texas Oil Drilling” 

by Ryan Kellogg 

 

 

Appendix 1: Construction of the time series of implied futures price volatility 

This appendix describes how I construct a time series of the implied volatility of 18-

month NYMEX oil futures contracts. As discussed in the main text, I cannot simply use the 

Black (1976) formula directly because it assumes that the term structure of volatility (the 

function by which the volatility of the future price of oil varies as time to maturity increases) is 

constant. My strategy for addressing this issue proceeds in three steps. First, I use the realized 

volatility of futures prices to estimate the average term structure of volatility. Second, I use 

liquidly traded short-term futures options to generate a time series of the implied volatility of 

one-month futures option contracts. Because a one month time horizon is short, this time series is 

equivalent to the time series of the implied volatility of one-month futures price contracts. 

Finally, I combine the one-month futures price volatilities with the estimated term structure to 

generate the desired time series of the implied volatility of 18-month futures price contracts.
1
 

The remainder of this appendix discusses these three steps in turn. 

Let Ft,τ denote the price of a NYMEX futures contract traded at date t with time to 

maturity τ measured in months.
2
 For each t and τ, I calculate the realized volatility at t of the τ-

month futures contract as the standard deviation of ln(Fs,τ / Fs-1,τ) for all dates s within the 6 

months prior and subsequent to t.
3
 Let this volatility be denoted by σt,τ. I then estimate the term 

structure of futures price volatility by regressing the log of σt,τ on fixed effects for each τ and t:
4
  

 ln σt,τ = ητ + δt + ετ,t (A1.1) 

                                                 
1
 An alternative procedure to that used here would use the term structure of the implied volatility of futures options 

directly to derive the implied volatility of 18-month futures prices. This approach would use the fact that the 

volatility of a τ-month futures price is equal to the volatility of a τ-month futures option plus τ times the derivative of 

the futures option term structure (with respect to τ) at τ. The use of the derivative implies that this approach requires 

a very precise estimate of the term structure of futures options’ implied volatility. Thin markets for futures options 

beyond 6 months render this procedure impractical. For example, 18-month futures options are traded, on average, 

only 18 days each year from 1993-2003. 
2
 Time to maturity in months is equal to the time to maturity in days divided by 365.25, multiplied by 12, and 

rounded to the nearest whole number. 
3
 Observations Fs,τ for which date s - 1 is missing (for example, if s - 1 is a Sunday) are excluded. 

4
 I use the log of σt,τ as the dependent variable rather than the level because the levels regression does not yield an 

estimated term structure that is stable over time. In levels, the term structure is has a steeper slope during 1999-2003 

than in the earlier part of the data. 
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The fixed effects ητ represent the estimated term structure while the δt control for the 

level of volatility on each date t. Given estimates of these fixed effects, the predicted volatility of 

a τ-month futures price on date t is given by At·exp(ητ), where At = exp(δt + v
2
 / 2) and v

2
 is the 

variance of the estimated residuals. Thus, for a fixed trade date t, varying τ will trace out the term 

structure of volatility. Figure A2 verifies that the term structure of volatility is stable over the 

sample by plotting two estimates of the term structure: one using data from 1999-2003 and 

another using data prior to 1999. The constant term A for each plotted estimate is set so that the 

one-month future price volatility is 31%, approximately equal to the average one-month 

volatility over 1993-2003. The plots overlay each other closely, indicating that the term structure 

of volatility is stable over the sample despite the substantial increase in the overall level of 

volatility after 1999.  

Given the estimated term structure (the ητ), all that is needed to compute expected 18-

month futures price volatilities is a time-series of short-run (one month) expected futures price 

volatilities. I derive this time series from the implied volatility of short-term futures options with 

a time to maturity between 60 and 180 days. The implied volatility of options with a shorter time 

to maturity are noisy, potentially reflecting low option values and integer problems (options 

prices must be in whole cents), while options with a longer time to maturity are thinly traded.  

For each trade date and time to maturity within the 60 to 180 day window, I use the Black 

(1976) model to find the implied volatilities of the call and put options that are nearest to at-the-

money.
5
 I then estimate the implied volatility term structure by regressing the log of each 

option’s implied volatility on its time to maturity τ (in days), a call/put dummy, and trade date 

fixed effects δt.
6
 I then use this estimated term structure (the estimated coefficient on τ) to 

extrapolate implied volatility back to a 30 day maturity.  

As a validation check on the this procedure, I compare the average, over 1993-2003, of 

the estimated implied volatilities of 30-day futures options to the average realized volatility of 

one-month futures prices over the same timeframe. These two averages should be approximately 

equal given the short one month time to maturity. The former series has an average volatility of 

                                                 
5
 The Black (1976) model assumes that the options are European rather than American and that volatility is not 

stochastic. Neither of these assumptions holds here; however, their effects are likely to be minor and they save 

considerable computational complexity. Hilliard and Reis (1998) demonstrate that the American premium is no 

more than 2% of the European option price for volatilities similar to those considered here. Stochastic volatility acts 

in the opposite direction, causing the Black (1976) model to slightly over-price at-the-money options (this effect is 

particularly small for the relatively short maturities considered here); see Hull and White (1987), Wiggins (1987), 

and Poon and Granger (2003). The argument that these assumptions are of minor effect is supported by the close 

agreement between the average realized and average implied volatility over the 1993-2003 sample. 
6
 Inspection of the residuals indicates that a linear term structure specification is appropriate. Moreover, when a 

squared time to maturity term is added, it is not statistically significant (p-value = 0.114). 
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30.83% while the average of the latter is 31.07%. The closeness of these two numbers (derived 

from two completely different data sets) supports the argument that implied volatilities from one-

month futures options can be used as implied volatilities of one-month futures prices. 

Finally, I convert the time series of implied volatilities of one-month futures prices to 

implied volatilities of 18-month futures prices using the estimated term structure of futures price 

volatility (the ητ). This conversion amounts to multiplying the one-month volatility at each trade 

date t by exp(η18 - η1). 
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Appendix 2: Numerical solution and estimation methods 

A2.1 Value function iteration 

I solve the value function (12) on a grid of points in (P,D,σ,x) space (in logs) using 

standard value function iteration. An important factor in defining the grid is that, while the price, 

dayrate, and volatility states that are realized in the data are bounded, the stochastic processes for 

these variables (equations 4, 5 and 10) imply that agents place nonzero probabilities on 

realizations outside of these bounds. Thus, the value function must be solved for states extending 

beyond the boundaries of the data. The state space I use extends from one-fifth of the lowest 

realized price and dayrate to five times the highest price and dayrate, and from one-half the 

lowest realized volatility to twice the highest volatility. With this state space, marginal 

reductions or extensions in size do not substantially affect the estimated parameters or the value 

function within the range of realized observations. 

I found that a relatively dense grid was required to accurately capture the effects of 

stochastic volatility. The grid I use has 1,875,000 points: 50 price states by 50 dayrate states by 

15 volatility states by 50 productivity states. Starting from this density, the estimated results are 

insensitive to increases or decreases in the number of grid points.  

In the full estimation routine, the initial value function used for each guess of parameters 

is the value function from the previous guess. For the first parameter guess, the initial value 

function is zero in all states. The convergence criterion is a tolerance of 10
-6

 on the sup norm of 

the value function (the value function used in the computations is in units of $386,501, the 

average drilling cost at the average dayrate). Increasing the tolerance to 10
-7

 has essentially no 

affect on the parameter estimates or value function. 

With the value function solved, I can then find, for any given P, D, and σ, the critical 

productivity x* such that drilling is optimal iff 
*

ix x . Because the P, D, and σ realizations do 

not coincide with the grid states used in the model, I use linear interpolation to find *x . At each 

xi grid point, I calculate the value function at the realized P, D, and σ by linearly interpolating the 

value function between the states immediately above and below the P, D, and σ. I then find the 

smallest xi grid point such that the value of waiting exceeds the realized profits from drilling 

immediately and the largest xi such that it is optimal to drill immediately (these two values of xi 

will be adjacent grid points). Interpolation gives *x  as the productivity level for which the firm is 

indifferent: the value of waiting equals the value of drilling immediately. As described in the 

text, the realized time series of P, D, and σ can then be combined with a parameterized 

distribution on the xit to yield the probability that a given prospect will be drilled each period. 
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In most of the estimated models, there is no initial conditions problem because the 

productivity shocks xit are modeled as iid. An initial conditions problem is present, however, in 

the specification allowing for time-invariant prospect heterogeneity (though the specification 

ultimately finds no evidence of such heterogeneity). I address this issue by extending the 

simulation back to January 1992, so that by 1993, when drilling likelihoods start to be taken, an 

equilibrium is approximately reached. This extension requires the interpolation of missing rig 

dayrate data for the fourth quarter of 1992.   

 

A2.2 Estimation 

I search for the parameters β, μ, and log ζ that maximize the log-likelihood function (13) 

via a gradient-based search that uses the BFGS method for computing the Hessian at each step (I 

take the logarithm of ζ to allow for negative values in the parameter search). I accelerate the 

search by conducting it in two stages. First, holding β fixed, I search for the μ and log ζ that 

maximize the likelihood. This stage is fast because changing μ and ζ does not require re-solving 

the model. The outer-most loop then searches for β. The stopping criterion is a tolerance on the 

likelihood function (scaled down by a factor of 10,000) of 10
-10

 for the μ and ζ loop and 10
-8

 for 

the β loop. 

To compute the standard errors of the parameter estimates, I obtain the likelihood score 

of each observation (drilling prospect - month) numerically. With respect to each parameter θk, I 

calculate the derivative of the log likelihood for observation j as 
( ) ( )

2

j k k j k k

k

θ ε θ ε

ε

  l l
. For the 

parameters β and μ, I use a value for εk of 0.001, and for log ζ I use a value of 0.0001 because the 

likelihood function is particularly concave in this parameter. The standard errors are robust to 

values of εk that are an order of magnitude larger or smaller. 

I adjust the standard errors to account for the fact that the parameters of the expected 

price drift function (11) are estimated in a first stage.
7
 Denoting the first-stage parameters (κp0, 

κp1, and κp2) and log-likelihood function by θ1 and L1, and denoting the second-stage parameters 

(β, μ, and ζ) and log-likelihood function by θ2 and L2, I apply the procedure of Murphy and Topel 

(1985) using equation (A2.1), 

                                                 
7
 The volatility of volatility (γ), the ratio of dayrate volatility to oil price volatility (α), and the correlation between 

dayrate and price shocks (ρ) are also estimated in a first stage. However, I found that these parameters contributed 

only negligibly to the standard errors of the main parameter estimates in the reference case model. To reduce 

computational burden, the results presented in the paper therefore ignore these parameters when computing Murphy 

and Topel two-step standard errors. In the mean-reverting volatility beliefs specifications, I also account for 

sampling error in the estimation of the parameters governing the volatility mean reversion function. 
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R1 is simply the inverse of the variance-covariance matrix from the least-squares estimate 

of the price drift function (11), which I compute using standard errors clustered on month-of-

sample.
8
 R2 is the inverse of the unadjusted (and non-clustered) second-stage variance-

covariance matrix. Calculation of R3 requires numerical derivatives of the second-stage 

likelihood function with respect to the first-stage parameters. I calculate these derivatives in the 

same way that I calculate those with respect to the second stage parameters, as discussed above. 

The perturbations I use for κp0, κp1, and κp2 are 10
-5

, 10
-6

, and 10
-3

, respectively. 

For the specifications that yield estimates of β near one, the above procedure roughly 

increases the estimated standard errors by a factor of 3, a magnitude similar to that found in 

several examples in Murphy and Topel (1985). The adjustment is not substantial for other 

specifications, however, as their unadjusted standard errors are already large. 
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 Clustering on year rather than month-of-sample does not substantially affect the estimated standard errors. 
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Appendix 3: Estimation including productivity realizations 

This appendix provides details of the process by which I use production data from the 

subset of wells for which production is observable to estimate an expanded version of the 

structural model. I first discuss how I transform the raw production data into estimates of each 

well’s total discounted lifetime productivity. I then discuss the construction of an augmented 

likelihood function that incorporates these productivity data. 

 

A3.1 Calculating discounted lifetime productivity 

For 160 of the 1,150 wells in the sample, I observe the well’s monthly production for the 

first three years of the well’s life. The dynamic model presented in the main text, however, is 

based on the productivity of each well, defined as its discounted total lifetime production divided 

by its drilling cost at the average rig dayrate. To transform the three years of production data for 

each well into an estimate of discounted total lifetime production, I employ a decline curve 

analysis. The simplest possible approach would be to fit a hyperbolic curve to the average 

production decline data shown in figure 2 in the paper and then use this curve to extrapolate 

production for future years of each well’s life. However, one strong feature of the production 

data is that decline rates are less steep for wells that are relatively productive. Therefore, I allow 

the parameters governing the hyperbolic decline to vary with the observed three-year production 

volumes. 

Specifically, denoting the production from well i in month t as qit, and denoting the log of 

well i's total production in its first three years as Qi3, I estimate the hyperbolic decline equation 

(A3.1) on the pooled monthly data from all 160 wells: 

 
0 1 3(

0 1 3

3

)
( )( )1 ii

i

i

Qtq
Q

Q
t

     
     (A3.1)  

The parameters α1 and γ1 allow the estimated decline curve to steepen or flatten for more 

productive wells.
9
 I estimate that α0 = 0.337, α1 = -0.0269, β = 0.144 (t is measured in months 

since drilling), γ0 = 3.97, and γ1 = -0.319. The negative estimates for α1 and γ1 are consistent with 

a shallower decline rate for more productive wells.
10

 

                                                 
9
 While the β term could in principle also be interacted with total three-year production, it becomes very difficult for 

the estimator to converge when this interaction is included. Intuitively, allowing for this additional flexibility is 

unnecessary, as providing flexibility in the decline curve intercept (through α1) and “slope” (through γ1) is sufficient. 
10

 As an alternative approach, I have also attempted to estimate decline curves well-by-well. However, the estimates 

are generally too noisy to be useful, especially as some wells are actually estimated to have increasing production 

over their first three years, which makes it impossible to project an eventual decline. 
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For each of the 160 wells, I use the estimate of equation (A3.1) to extrapolate future 

production, and I then apply the discount factor used in the model (see section IV.A of the paper) 

to obtain the well’s discounted total lifetime production. Finally, I divide this number by the 

well’s estimated drilling cost at the average dayrate (this cost depends on the number of days 

needed to drill the well, as described section I.E in the paper) to obtain its realized productivity 

(in barrels per $ of drilling cost). These realized productivity data are plotted in figure 10 in the 

main text. 

 

A3.2 Augmenting the likelihood function 

With the inclusion of the realized productivity data, the likelihood function must now 

incorporate the probability of each productivity realization (which will depend on x* each period 

and on the variance of productivity realizations about their expectation) and the probability that 

production is observable for each drilled well (which will depend on the well’s productivity). 

The resulting likelihood function involves three pieces, which I now describe in turn. 

The first piece of the likelihood for each drilled well is that given by equation (13) in the 

text:  the probability that drilling would occur in the month the well was actually drilled (or not 

occur at all during the sample in the case of an undrilled prospect). This part of the likelihood 

does not change, and for undrilled prospects this is the only part of the likelihood. 

The second piece of the likelihood applies only to wells for which productivity is 

observed (160 of the 1,150 wells). Some notation is required. Let Yit denote the realized 

productivity of well i drilled in month t, and let yit denote its log. Let Zit denote the expected 

productivity of well i drilled in month t, and let zit denote its log. This expectation is the firm’s 

expectation of the well’s productivity after it has made the decision to drill but before drilling is 

completed. Thus, zit has a normal distribution, with mean μ and standard deviation ζ (the two 

parameters that govern the distribution of xit as discussed in section IV.B in the text), that is left-

truncated at the log of the productivity trigger at time t. In a slight abuse of notation, let xt* now 

denote the logged productivity trigger. Finally, let 
*

( )
dry t

P x  denote the probability of a dry hole as 

a probit function of xt*. Specifically, 
*

( )
dry t

P x  is given by equation (A3.2) below, in which τ0 and 

τ1 are parameters to be estimated. 

 
1

*
* 0( ) 1 t

dry t

x
P x





 
  

 
  (A3.2)  

Given an expected productivity zit, yit will be -∞ with probability 
*

( )
dry t

P x  and will 

otherwise be normally distributed about zit with variance 
2

p
 , following (A3.3): 
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It is the variance term 
2

p
  that allows for noise in the production realizations so that they can be 

rationalized by the model. Also note that the distribution of yit is designed so that E[Yit] = Zit. 

Let f(yit|zit) denote the distribution of yit conditional on zit and on the well not being dry 

(i.e., f(yit|zit) is the second part of (A3.3)). Let g(zit|xt*) denote the truncated normal distribution 

of zit, conditional on xt*. The contribution of production realization yit to the likelihood is then: 

     

 
*
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t
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The third and final piece of the likelihood contribution from each drilled well is the 

probability that production from the well is observable in the data. There are two components of 

this probability, which I denote by Pobs. The first is the probability that the well can be matched 

to a lease name in the production database. I take this probability, which I denote by Pmatch, to be 

exogenous to the model and fix it to equal the observed match rate in the data, 527/1150. The 

second component addresses selection. The probability of observing a drilled well’s production 

should increase if its realized productivity is low relative to expectations, and it should also 

increase if xt* is high, since fewer wells are drilled when the trigger productivity is high (and 

trigger productivities are serially correlated). I therefore specify Pobs per equation (A3.4) below, 

in which λ0, λ1, and λ2 are parameters to be estimated: 

 

 
1

* *
* * 2 0( )

( , ) ( , ) 1 it t t
obs it t match it t match

y x x
P y x P s y x P

 



    
       

  
  (A3.4) 

   

Note that equation (A3.4) implies that the probability of observing a dry hole, for which 

yit = -∞, is equal to Pmatch. Thus, for all wells for which production is observed, the final 

component of their likelihood is given by 
*( , )obs it tP y x . 

For the drilled wells for which I do not observe production, I must compute the 

probability that production is unobserved, conditional on the trigger productivity xt* at the time 
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of drilling. This computation requires a double integral over realized productivity conditional on 

expected productivity and over expected productivity conditional on xt*. The probability that 

production is unobserved is therefore given by equation (A3.5): 

 
*

* * * * *( ) 1 ( ) (1 ( )) ( , ) ( | ) ( | )

t

unobs t match dry t dry t it t it it

x

it it t itP x P P x P x s y x f y z dy g z x dz

 



  
        

    (A3.5)    

For all wells for which production is unobserved, the final component of their likelihood 

is given by 
*( )unobs tP x . This completes the likelihood. 

Estimation involves six parameters not present in the reference case model: the 

parameters τ0 and τ1 that dictate how the dry hole probability varies with xt*, the parameter σp 

that dictates the variance of the realized production data, and the parameters λ0, λ1, and λ2 that 

dictate which productivity observations are likely to be observable. The estimates of these 

parameters, which correspond to the estimates presented in column V of table 3 in the text, are: 

τ0: -9.257 (5.492) 

τ1:  2.997 (5.520) 

σp:  1.765 (0.068) 

λ0:  1.712 (5.492) 

λ1:  5.847 (3.472) 

λ2: -2.061 (2.560) 

The estimates of τ0 and τ1 are imprecise but consistent with a modest decrease in the 

probability of a dry hole as xt* increases. At the sample average xt* of -2.629, the estimates 

imply that the probability of a dry hole is 1.4%. For comparison, I observe 7 dry holes out of the 

160 observed wells and 1,150 total wells. The σp parameter is large and precisely estimated, 

consistent with the noise in realized productivity plotted in figure 10 in the paper. The λ0, λ1, and 

λ2 estimates are consistent with the probability of observing production varying negatively with 

realized productivity and positively with xt*. The parameters imply that a one standard deviation 

increase in realized productivity from the sample mean xt* of -2.629 to -2.629 + σp reduces the 

probability of observing the well’s production from 12.1% to 8.0%. For reference, I observe 

production for 13.9% (=160/1150) of the drilled wells. Thus, given the parameter estimates, 

observed productivity realizations must on average be lower than the sample mean xt* in order to 

attain the 13.9% observation rate. 
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Figure A1: Infill drilling in sole operated vs. all fields 

 

 

       Figure A2: Estimated term structures of futures price volatility 

  
Notes: The figure displays two term structures, one estimated using data from before 

1999, the other using data from 1999-2003. Volatility of a one-month future is set to 

31.0% for both term structures. 
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