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Abstract— Primate feeding behavior is characterized by a
series of jaw movement cycles of different types making it
ideal for investigating the role of motor cortex in controlling
transitions between different kinematic states. We recorded
spiking activity in populations of neurons in the orofacial
portion of primary motor cortex (MIo) of a macaque monkey
and, using a Granger causality model, estimated their functional
connectivity during transitions between chewing cycles and
from chewing to swallowing cycles. We found that during
rhythmic chewing, the network was dominated by excitatory
connections and exhibited a few ”out degree” hub neurons,
while during transitions from rhythmic chews to swallows,
the numbers of excitatory and inhibitory connections became
comparable, and more temporarily varying ”in degree” hub
neurons emerged. Furthermore, based on shared connections
between neurons between different networks, networks from
same state transitions were quantitatively shown to be more
similar. These results suggest that networks of functionally
connected neurons in MIo change their operative states with
changes in kinematically defined behavioral states.

I. INTRODUCTION

Primate feeding behavior is characterized by a series of
cycles of different types–ingestion, manipulation, chewing,
swallowing [1]. Previous studies employing single electrode
recording techniques [2], [3] have shown that majority of
neurons in MIo show activity related to rhythmic chewing,
preswallowing and/or swallowing. However, how functional
connectivity in network of spiking neurons changes depend-
ing on different types or states of kinematically defined
cycles has not been well investigated. Furthermore, how
changes in networks of neurons can be assessed is a research
in network science itself. In this study, we simultaneously
recorded jaw kinematics and spiking activity of neuronal
ensemble in the orofacial area of MI and used the generalized
linear model framework to characterize conditional spike
rates as functions of spiking history of all neurons in the
ensemble. Then, we used a generalized notion of causality
in a Granger sense to identify network of causally related
neurons during transitions between different kinematic states.
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By computing the ratios of shared edges between identified
networks, similarity or dissimilarity between networks of
causally related spiking neurons were assessed. The rest of
this paper is organized as follows. Section II describes
behavioral tasks and data collection and briefly explains a
point process framework for assessing the causal interactions,
in a Granger sense, among multiple neurons. Section III
describes the results, and Section IV discusses the analysis
results.

II. METHOD

A. Behavior task and data collection

All of the surgical and behavior procedures were approved
by the University of Chicago IACUC and conform to the
principles outlined in the Guide for the Care and Use of Lab-
oratory Animals. One female macaque monkey was trained
to feed with her right hand while restrained in a primate
chair. Her head was restrained with a halo coupled to the
cranium through chronically implanted headposts. Detailed
methods of collecting jaw kinematic data are described in
detail elsewhere [4], [5]. Three dimensional jaw kinematic
data were collected in the coordinate system of the cranium
using an infrared light video-based motion analysis system
(Vicon Motion Tracking System with 10 MX 40 cameras
with sampling rate of 250 Hz) which tracked reflective
markers coupled to the mandible and cranium using bone
screws. The marker coordinates were bi-directionally low-
pass filtered with a 4th order Butterworth filter with 15 Hz
cutoff frequency.

Using movements of the mandibular marker, jaw move-
ment cycles were defined by two consecutive maximum
gapes (i.e., maximum open). The cycles in each feeding se-
quence were then assigned into five different cycle types: in-
gestion, manipulation, stage-1 transport, rhythmic chew and
swallow [1]. In this study, we focused on transitions between
two consecutive rhythmic chew cycles (Chew Transitions)
and between rhythmic chewing and swallow cycles (Swallow
Transitions). 94.4% of chew cycle durations were shorter
than 600 ms, with the mode and mean being approximately
300 ms. Thus 300 ms was used to represent a canonical
duration of one chew cycle for the rest of the study.

We recorded multiple single unit spiking activities from
a chronically implanted 100-electrode Utah microelectrode
array (1.5 mm in length, 10 x 10 grid, 400 µm interelectrode
spacing, Blackrock Microsystems, Utah, USA,) in the oro-
facial area of primary motor cortex (MIo) on the left side of
the monkey. Spiking activities from up to 96 channels were
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recorded at 30 kHz. Spike waveforms were sorted offline
using a semiautomated method incorporating a previously
published algorithm [6]. The signal to noise ratio (SNR)
for each unit was defined as the difference in mean peak to
trough voltage divided by twice the mean standard deviation
computed from all the spikes at each sample points. All the
units with SNR< 3 were discarded for the current study.
The data for each neuron were converted to a binary time
series with 1 ms temporal resolution over a window of [-300,
300] ms centered on the maximum gape [0]ms separating
either two chewing cycles (Chew Transitions, 833 events), or
a Chew and swallow cycle (Swallow Transitions, 65 events).
Among neurons available for analysis, we used 71 neurons
whose mean spike rates over the time window of interest
exceeded 2 spikes/sec. Then, for each type of transition, the
data were further divided into three Time Windows: 1 for
[-300, 0], 2 for [-150, 150], and 3 for [0,300] ms.

B. Analysis

A neural spike train is modeled as a point process [7], [8],
which is characterized by its conditional intensity function
(CIF), λ(t|H(t)), where H(t) denotes the spiking history of
all neurons in the ensemble up to time t. In the generalized
linear model (GLM) framework, the log CIF was modeled as
a linear combination of the covariates, H(t), which describes
the neural activity dependencies [9]. Thus the logarithm of
the CIF for neuron i is expressed by

log λi(t|θi,H(t)) = θi,0 +
N∑

n=1

Mi∑
m=1

θi,n,mRn,m(t), (1)

where θi,0 relates to a background level of activity, and θi,n,m
represents the effect of ensemble spiking history Rn,m(t) of
neuron n on the firing probability of neuron i at time t for
n = 1, ..., N neurons. In this work, we denote the spike count
of neuron n in a time window of length W covering the time
interval [t−mW, t−(m−1)W ) as Rn,m(t) for n = 1, ..., N
and m = 1, ...,Mi. In this analysis we intuitively set W
to 3 ms to obtain a relatively small number of parameters
while maintaining the necessary temporal resolution. In order
to select a model order, Mi, for each neuron i we fit
several models with different history durations MiW to each
spike train and then identified the best approximating model
from among a set of candidates using Akaike’s information
criterion (AIC) [10], [11]. Using this criterion, an optimum
model order for each neuron was selected to minimize the
criterion. For each neuron Mi were ranged from 1 to 20 in
our analysis.

Recently a point process framework for assessing causal
relationship between neurons was proposed in [12]. Based on
Granger’s definition of the causality [13], a potential causal
relationship from neuron j to i can be assessed based on the
log-likelihood ratio given by

Γij = log
Pr(future of i|past of everyone)

Pr(future of i|past of everyone except j)
. (2)

If past values of neuron j contain information that helps
predict future values of neuron i, the log likelihood ratio of

(2), Γij , is greater than zero. The equality of Γij to zero holds
when neuron j has no causal influence on i. This statistical
framework for assessing Granger causality can be applied to
any modality as well as binary neural spike train data [14].

In summary, the Granger causality from neuron j to i
is identified in the following way. First, the point process
likelihood function of neuron i, denoted by Li(θi|H(t)), is
calculated using the parametric CIF of (1); It relates the ith
neuron’s spiking probability to possible covariates such as
its own spiking history as well as the concurrent activity of
other simultaneously recorded neurons [9]. Next, we assess
the causal relationship from neuron j to i by calculating the
relative reduction in the likelihood of neuron i obtained by
excluding the covariate effect of neuron j (spiking history
of neuron j) compared to the likelihood obtained using all
the covariates, (spiking history of all neurons). The log-
likelihood ratio, Γij , is given by

Γij = log
Li(θi)

Li(θ
j
i )
, (3)

where the parameter vector θj
i is obtained by re-optimizing

the parametric likelihood model after excluding the effect
of neuron j. Since the likelihood Li(θi) is always greater
than or equal to the likelihood Li(θ

j
i ), the log-likelihood

ratio Γij is always greater than or equal to 0. If the spiking
activity of neuron j has a causal influence on that of neuron
i in the Granger sense, the likelihood Li(θi) is greater than
Li(θ

j
i ). The equality holds when neuron j has no influence

on i. The Granger causality measure given by (3) provides an
indication of the extent to which the spiking history of neuron
j affects the spike train data of neuron i, but little insight into
which of these interactions are statistically significant. To
address this issue, multiple hypothesis testing was performed
based on the likelihood ratio test statistic [15],[16]. Thus,
we can construct two N × N causality matrices, whose
(i, j)th element represents the relative causality strength from
neuron j to i; and corresponds to either statistically sig-
nificant or insignificant interaction, respectively. Excitatory
and inhibitory influences of neuron j on neuron i can be
distinguished by the sign of

∑Mi

m=1 θi,j,m that represents an
averaged influence of the spiking history of neuron j on
neuron i.

Once the causality matrix was obtained for each data
set, degrees for each neuron that showed any statistically
significant interactions (p < 0.005) were computed. A degree
of neuron i was defined as the number of neurons that
are connected to neuron i by at least one interaction [17].
Since the resultant networks are bidirectional graphs, both
in-degrees (number of connections made into a neuron) and
out-degrees (number of connections made out of a neuron)
were examined per each Time Window under each transition.
Due to the high demand on CPU time, it was not feasible to
perform calculations on a PC or a small cluster environment.
MATLAB codes were modified from those used in [18],
compiled, and run as the executables distributedly on the
Cray machine, Beagle.

SCIS-ISIS 2012, Kobe, Japan, November 20-24, 2012

978-1-4673-2743-5/12/$31.00 ©2012 IEEE 1068



III. RESULTS

Sets of causality networks of 71 spiking neurons were
obtained for the Chew and Swallow Transitions over different
Time Windows using the method in [12]. Fig. 1 (a) shows the
kinematic traces of the mandibular marker during consecu-
tive chew cycles (Chew Transition in green), or consecutive
Chew and Swallow cycles (Swallow Transition in yellow).
Those two traces are remarkably similar during the chew
cycle prior to the transition (maximum gape), but diverge
during the swallow, which is characterized by a long slow
open phase of the gape cycle. Fig. 1 (b), (c), and (d) show
the statistically significant causal interactions (p < 0.005)
for Chew Transitions at three different times relative to the
maximum gape (at 0 ms) between two consecutive cycles:
Time Window 1 was from [−300, 0] ms, Time Window 2 was
from [−150, 150] ms, and Time Window 3 was from [0, 300]
ms. (e), (f), and (g) show the statistically significant causal
interactions (p < 0.005) for Swallow Transitions at the same
Time Windows as in (b),(c), and (d) respectively. As shown
in (b)∼(d), the majority of the connections is excitatory
during Chew Transitions, while in (e)∼(g), more inhibitory
connections are present during Swallow Transitions. Gross
connection topology did not change as much as the results
seen in spiking neuron networks from the arm area of
MI around visual cues [18]; rather within each transition
connection patterns appeared to be fairly similar over the
three Time Windows.

Fig. 2 shows in- and out-degree counts of each neuron
for each Time Window for Chew transition. As seen in
Fig. 1, excitatory connections are dominant, and in-degree
and out-degree patterns are fairly similar across all three
Time Windows. Neuron # 20 shows an unusually high
degree, both in and out, of excitatory interactions across all
Time Windows. Neuron #57 is the second largest hub in
out-degree across all Time Windows, while in in-degree, the
number of incoming connections for the neuron increases as
the cycles progress from one rhythmic chew to the next.

Fig. 3 shows in- and out-degree counts for each Time
Window for Swallow Transition. Unlike Fig. 2, inhibitory
connections are more prominent than the excitatory counter-
parts for both in- and out-degrees, but a striking difference
between those two types of degrees is that there is only a
small fraction of neurons that show non-zero and high in-
degrees, while all neurons examined here have non-zero and
small out-degrees. Thus, only in-degree hub neurons exist in
this transition. Furthermore, those hub neurons dynamically
change during a transition from a rhythmic chew cycle to a
swallow cycle.

As Figs. 1 ∼ 3 show, similarity among networks under
each state and difference between networks across different
states are visually apparent. In order to quantitatively assess
the similarity between two different networks, we can look at
the proportion of edges (connections) they share in common.
For any two graphs, for example, A and B, sharing the same
nodes (neurons), let m and n be the edge sets of A and B,
respectively, and let k = m

∩
n, that is, let k be the edges
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Fig. 1. Causality networks estimated in different Time Windows relative to
the maximum gape between two consecutive cycles. (a) Mandibular marker
trajectories for Chew Transition in yellow and Swallow Transition in green.
(b∼g): Causality networks estimated at different times relative to maximum
gape at 0 ms. Left column for Time Window [−300, 0] ms, middle column
[−150, 150], and right column [0, 300] ms. Each dot indicates a neuron
at a location on the array of the electrode that recorded that neuron. The
location of the array is such that the upper right corner corresponds to
caudomedial and the right edge roughly aligns to the central sulcus. Red
lines indicate excitatory connections while blue lines inhibitory connections.
(b)∼(d) for Chew Transitions show predominantly excitatory connections;
(e)∼(g) for Swallow Transitions show more balanced numbers of excitatory
and inhibitory connections, and slightly fewer connections.
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Fig. 2. The in- and out-degrees of all neurons obtained from all three
Time Windows for Chew Transitions. Top: (a)∼(c) show in-degrees of all
neurons from Time Windows 1, 2, and 3 respectively . Bottom: (d)∼(f) show
out-degree of all neurons from Time Windows 1, 2, and 3 respectively.In
each window, a red bar indicates a number of excitatory degree while a
blue bar indicates a number of inhibitory degree multiplied by −1 for a
neuron. Neuron #20 is a dominant hub neuron in this transition, especially
in out-degree.
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Fig. 3. The in- and out-degrees of all neurons obtained from all three
Time Windows for Swallow Transition. Top: (a)∼(c) show in-degrees of
all neurons from Time Windows 1, 2, and 3 respectively. Bottom: (d)∼(f)
show out-degree of all neurons from Time Windows 1, 2, and 3 respectively.
Plotting scheme here is the same as that in Fig. 2. More excitatory
connections in and out of neurons than the Chew Transition. In-degrees
and out-degrees exhibit different patterns for this transition. Only a fraction
of neurons receive inputs from other neurons while most neurons are making
a few number of connections outward.

that are common to A and B. Without loss of generality,
let the number of elements in m be less than the number of
elements in n. Now, we define the proportion of edges A
and B share to be k/m.

Table I gives those values. For a set A or B, CC or CS
denotes Chew Transition or Swallow Transition respectively
and a number after ”/” denotes Time Window 1, 2, or 3.
Consistently low values for the pairs coming from different
states (≤ 0.27) are observed. One interesting result here is a
relatively low ratio in the comparison between CS/1 and CS/3
where actual swallowings happen in CS/3 so that there is a
huge bahavioral difference and gross feature of the network
topology does not change drastically, the edges that shared
between those two network is minimal among the pairs of

TABLE I
RATIOS OF PAIRWISE SHARED EDGES BETWEEN TWO NETWORKS OF

GRANGER CAUSALLY RELATED NEURONS

A \ B CC/1 CC/2 CC/3 CS/1 CS/2 CS/3
CC/1 0.52 0.47 0.22 0.23 0.26
CC/2 0.53 0.22 0.23 0.27
CC/3 0.23 0.25 0.27
CS/1 0.43 0.35
CS/2 0.52

networks from a same state.

IV. DISCUSSIONS

Primates intercalate swallows into chewing sequences
[19]. Previous studies [2], [3] have shown that the majority
of neurons in MIo show activity related to rhythmic chewing,
preswallowing and/or swallowing, suggesting that primate
MIo may play a critical role in the regulation of mastication,
swallowing, and transitioning between the two. Yao et al. [2]
showed that a subset of neurons exhibiting chewing related
activities was also modulated in relation to swallow of solid
foods or juice rewards. Furthermore, simple properties of
single unit spike rates such as peak firing frequency did
not show significant differences over chewing or swallow
cycles. Yamamura et al. [3] showed that inactivation of
MIo affected preswallow activity, but not swallow activity
itself in terms of EMG parameters. Thus, in addition to
continuously monitoring jaw and tongue kinematics during
feeding behavior, neurons in MIo may pay attention to state
transitions from rhythmic chewing to swallowing.

In order to investigate whether we can detect changes in
networks of spiking neurons associated with states during
feeding, we looked specifically at Chew Transition and Swal-
low Transition using a Granger causality measure for point
process models [12] applied to multiple spike trains recorded
from MIo. Our results reveal that two completely different
types of causal networks during chewing and swallowing.
During Chew Transitions, the majority of neurons is inter-
acting with each other via excitatory connections with a few
hub neurons with very high in- and out-degrees. In contrast,
during Swallow Transitions, inhibitory connections are more
common and in- and out-degree patterns are asymmetric: The
majority of neurons exhibits a small number of out-degrees,
while only a small fraction of neurons receives inputs at all
from other neurons. Different neurons form in-degree hubs at
different Time Windows. Thus the current analysis illustrates
time- and state-dependent functional effects of single MIo
neuron on other neurons and how network topology changes
across kinematic state transitions.

Furthermore, as Fig. 3 (a) and (d) show, the network
structure during a rhythmic chew cycle prior to the transition
to a swallow cycle is already completely different from that
during continuation of rhythmic chew cycles. This implies
that MIo changes network connectivity in anticipation of a
swallow at least one cycle earlier than the swallow actually
occurs, and by looking at similarity between CS/1 and CS/3
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networks, we suspect that networks in Swallow Transition are
dynamically changing while their gross connection topology
remain completely different from that in Chew Transition.
Thus, looking at earlier Time Window for Swallow Tran-
sition would give us a better estimate on when functional
connectivity of MIo neurons changes its gross network
connectivity patterns.

This study was limited only to neurons from MIo, but
clearly feeding behavior involves a very complex sensory-
motor interactions. Therefore, in order to further increase
our understanding of complex sensory-motor behaviors such
as feeding, we should look at properties of networks of
spiking neurons from multiple areas that are considered to
be involved in the behavior.
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