ELASTICITY ON THE LINEAR DEMAND CURVE

Prepared by Kanit Kuevibulvanich

Consider a linear demand function denoted by

$$
Q^{d}=a-b P
$$

We find the endpoint co-ordinates on each axis:

$$
\begin{array}{ll}
\text { at } P=0 \Rightarrow Q^{d}=a & \ldots \text { horizontal intercept } \\
\text { at } Q^{d}=0 \Rightarrow P=\frac{a}{b} & \ldots \text { vertical intercept }
\end{array}
$$

Also, find the midpoint co-ordinate of P and Q^{d} :
at $P=\frac{a}{2 b} \Rightarrow Q^{d}=\frac{a}{2} \quad \ldots$ midpoint
Recall the own-price elasticity of demand:

$$
\eta_{Q^{d}, P}=\frac{\% \Delta Q^{d}}{\% \Delta P}=\frac{d Q^{d}}{d P} \frac{P}{Q^{d}}
$$

We need to find $\frac{d Q^{d}}{d P}$ from the demand function: $\frac{d Q^{d}}{d P}=-b$. Hence, we can simply find the ownprice elasticity of demand by substituting P and Q^{d} into: $\quad \eta_{Q^{d}, P}=-b \frac{P}{Q^{d}}$.

Observation I - At the vertical-intercept endpoint: $\eta_{Q^{d}, P}=-\infty$ (perfectly elastic)

Proof Substitute $Q^{d}=0$ and $P=\frac{a}{b}$; therefore, $\eta_{Q^{d}, P}=-b \frac{(a / b)}{0}=-\frac{a}{0}=-\infty$.

Observation II - At the quantity demanded lower than midpoint: $\eta_{Q^{d}, P}<-1$ (elastic)
Proof If $Q^{d}<\frac{a}{2} \Rightarrow \frac{1}{Q^{d}}>\frac{2}{a}$ and $P>\frac{a}{2 b}$; hence, $P\left(\frac{1}{Q^{d}}\right)>\frac{2}{a}\left(\frac{a}{2 b}\right) \therefore \eta_{Q^{d}, P}=-b\left(\frac{P}{Q^{d}}\right)<-b\left(\frac{1}{b}\right)<-1$.

Observation III - At the midpoint: $\eta_{Q^{d}, P}=-1$ (unitary elastic)
Proof Substitute $Q^{d}=\frac{a}{2}$ and $P=\frac{a}{2 b}$; therefore, $\eta_{Q^{d}, P}=-b \frac{(a / 2 b)}{a / 2}=-\frac{a / 2}{a / 2}=-1$.

Observation IV - At the quantity demanded higher than midpoint: $-1<\eta_{Q^{d}, P}<0$ (inelastic)
Proof If $Q^{d}>\frac{a}{2} \Rightarrow \frac{1}{Q^{d}}<\frac{2}{a}$ and $P<\frac{a}{2 b}$; hence, $P\left(\frac{1}{Q^{d}}\right)<\frac{2}{a}\left(\frac{a}{2 b}\right) \therefore \eta_{Q^{d}, P}=-b\left(\frac{P}{Q^{d}}\right)>-b\left(\frac{1}{b}\right)>-1$.

Observation $V-$ At the horizontal-intercept endpoint: $\eta_{Q^{d}, P}=0$ (perfectly inelastic)
Proof Substitute $Q^{d}=a$ and $P=0$; therefore, $\eta_{Q^{d}, P}=-b \frac{0}{a}=0$.

