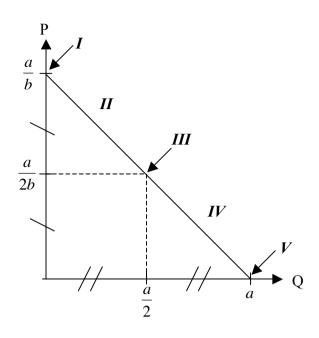
ELASTICITY ON THE LINEAR DEMAND CURVE

Prepared by Kanit Kuevibulvanich



Consider a linear demand function denoted by $Q^d = a - bP$

We find the endpoint co-ordinates on each axis:

at
$$P = 0 \Rightarrow Q^d = a$$
 ... horizontal intercept

at
$$Q^d = 0 \Rightarrow P = \frac{a}{b}$$
 ... vertical intercept

Also, find the midpoint co-ordinate of P and Q^d :

at
$$P = \frac{a}{2b} \Rightarrow Q^d = \frac{a}{2}$$
 ... midpoint

Recall the own-price elasticity of demand:

$$\eta_{Q^d,P} = \frac{\%\Delta Q^d}{\%\Delta P} = \frac{dQ^d}{dP} \frac{P}{Q^d}$$

We need to find $\frac{dQ^d}{dP}$ from the demand function: $\frac{dQ^d}{dP} = -b$. Hence, we can simply find the own-price elasticity of demand by substituting P and Q^d into: $\eta_{Q^d,P} = -b\frac{P}{Q^d}$.

Observation I – At the vertical-intercept endpoint: $\eta_{O^d,P} = -\infty$ (perfectly elastic)

Proof Substitute
$$Q^d = 0$$
 and $P = \frac{a}{b}$; therefore, $\eta_{Q^d, P} = -b \frac{\binom{a/b}{b}}{0} = -\frac{a}{0} = -\infty$.

Observation II – At the quantity demanded lower than midpoint: $\eta_{O^d,P} < -1$ (elastic)

Proof If
$$Q^d < \frac{a}{2} \Rightarrow \frac{1}{Q^d} > \frac{2}{a}$$
 and $P > \frac{a}{2b}$; hence, $P\left(\frac{1}{Q^d}\right) > \frac{2}{a}\left(\frac{a}{2b}\right)$ $\therefore \eta_{Q^d,P} = -b\left(\frac{P}{Q^d}\right) < -b\left(\frac{1}{b}\right) < -1$.

Observation III – At the midpoint: $\eta_{Q^d,P} = -1$ (unitary elastic)

Proof Substitute
$$Q^d = \frac{a}{2}$$
 and $P = \frac{a}{2b}$; therefore, $\eta_{Q^d,P} = -b\frac{\binom{a/2b}{2b}}{\binom{a/2}{2}} = -\frac{a/2}{\binom{a/2}{2}} = -1$.

Observation IV – At the quantity demanded higher than midpoint: $-1 < \eta_{O^d,P} < 0$ (inelastic)

Proof If
$$Q^d > \frac{a}{2} \Rightarrow \frac{1}{Q^d} < \frac{2}{a}$$
 and $P < \frac{a}{2b}$; hence, $P\left(\frac{1}{Q^d}\right) < \frac{2}{a}\left(\frac{a}{2b}\right)$ $\therefore \eta_{Q^d,P} = -b\left(\frac{P}{Q^d}\right) > -b\left(\frac{1}{b}\right) > -1$.

Observation V – At the horizontal-intercept endpoint: $\eta_{O^d,P} = 0$ (perfectly inelastic)

Proof Substitute
$$Q^d = a$$
 and $P = 0$; therefore, $\eta_{Q^d,P} = -b\frac{0}{a} = 0$.