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Inspired by the hypercycle model of the origins of chemical life on earth, this paper

develops an autocatalytic model of the co-evolution of economic production and

economic firms, represented as skills. The production and distribution of goods by

firms are only half of what is accomplished in markets. Firms are produced and

transformed, via learning, through goods passing through them. Through means of

both agent-based and analytic modeling, this article establishes three principles

of social organization that provide sufficient foundations for the unconscious

evolution of technological complexity: structured topology, altruistic learning and

stigmergy.

1. Introduction
The production and distribution of goods by firms are only half of what is
accomplished in markets. Firms also are produced and transformed through goods
passing through them. This transformation is not just a matter of profits. Skills and the
core competencies that define firms are developed and maintained through ‘learning by
doing’ and other learning processes that are triggered by exchange among firms. In
periods of decentralization and outsourcing, like today, it is more evident than ever that
linked chains of skills are distributed across firms. In this context especially, evolution in
and learning of distributed skill sets reverberates directly into the reconstitution of
firms. Evolving links among firms, in turn, guide and shape the recombinant new-
product possibilities latent in distributed skill sets.

The duality of this co-evolution between product and organization is often ignored,
as analysts assume away one side of the dynamics in order to focus attention on the
other. A number of economists, including many who publish in this journal, are aware
of the issue of co-evolution (e.g. March and Simon, 1958; Nelson and Winter, 1982;
Hughes, 1983, 1987; Dosi et al., 1992, 2000; Malerba and Orsinigo, 1993; Nelson, 1994,
1995; Warlien, 1995; Landesmann and Scazzieri, 1996; Powell, 1996; McKelvey, 1997;
Antonelli and Marchionatti, 1998; Coriat and Dosi, 1998; Rosenkopf and Tushman,
1998). However, more tools are needed to help to analyze the nonlinear and
path-dependent dynamics of feedback among evolving networks that such processes
entail.

One place to turn for analytic inspiration is chemistry. From the chemical
perspective, life is an interacting ensemble of chemicals that reproduces itself through
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time, in the face of turnover of its parts.1 Biological organisms are not fixed entities;
they are autocatalytic networks of chemical transformations, which continually

reconstruct both themselves and their physical containers. The origin-of-life problem,
under this view, is how such an ensemble can self-organize, from a ‘soup’ of random

chemicals in interaction and flux.

This chemical perspective can be applied to the analysis of co-evolution of products

and firms through the following analogy: skills, like chemical reactions, are rules that

transform products into other products. Products, like chemicals, are transformed by

skills. Firms, like organisms, are containers of skills that transform products. Trade, like
food, passes transformed products around through exchange networks, renewing skills

and thereby firms in the process. In the macroeconomic aggregate, product inputs flow

into, and outputs flow out of, this trading network of firms and skills.

Firms in this view are sites through which a distributed ‘chemical reaction’

production process flows. At minimum, firms can be considered to be mere collection
bins for diverse skills. Trading among firms regulates both the activation and the

evolution of skill sets distributed across firms. Composition of skills within firms

evolves, among other methods, through learning-by-doing: the more a skill is used,
the more the skill is reinforced. Skills not used are forgotten. These two processes of
learning and forgetting impose selection pressure on an evolving network-of-

skills-through-firms production system. The ‘origin-of-life’ problem for markets is to

discover how a randomly distributed set of skills across firms can self-organize, through

exchange, into a coherent product-transformation network,2 which then reproduces
itself through time and ‘grows’ a set of firms to sustain it.

Inspired by a specific literature in chemistry, that on hypercycles, in this paper

we develop one family of economic production  models that operationalizes this
co-evolutionary perspective on markets. Extensions beyond the hypercycle framework

will be discussed at the end of this paper.

The ‘hypercycle’ is a specific model of the chemical origin of life pioneered by Eigen

(1971) and Eigen and Schuster (1979), and extended by others (e.g. Kauffman, 1986,

1993; Hofbauer and Sigmund, 1988; Fontana and Buss, 1994; full literature reviewed
in Stadler and Stadler, 2002). From random distributions of chemicals, the hypercycle

model seeks to find and to grow sets of chemical transformations that include

self-reinforcing loops: {1→2, 2→3, 3→4, …, n→1}. Chemical cycles are crucial to the
issue of life because they are the motors behind the self-reproduction of metabolic

networks, in the face of continuous turnover in component chemicals. Without cycles,
there is no positive feedback for growth; without them, any chemical reaction left to

1From the physics and biological points of view, additional criteria to the definition of life are
sometimes added. Physicists (e.g. Prigogine and Glansdorff, 1971) sometimes add the criterion of
far-from-equilibrium throughput of energy. Biologists (e.g. Maturana and Varela, 1980) sometimes add
the criterion of permeable encapsulation.

2Such a network could be called a ‘metabolism’ or a ‘technology’, depending upon the application
context.
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itself will stop or ‘die’. Eigen and Schuster, Hofbauer and Sigmund, and others have

explored how variation in reaction rates, in density, and in number of components

affected the dynamic stability or ‘survivability’ of various classes of hypercyclic chemical

reactions, within a well-stirred liquid reaction tank. Boerlijst and Hogeweg (1991) and

Padgett (1997) extended the investigation beyond the original liquid context to a spatial

topology of interaction.

Viewing economics as chemistry entails extraordinarily minimalist assumptions

about economic production: firms become nothing more than bins of transformation

rules; products randomly flow in and through these bins, without purpose; rules

reproduce or die only as functions of use. There is no guiding intelligence, either at the

level of the market or at the level of the firm.3 In such a minimalist setup, the analytic

question is: can any coherent and self-reproducing systems of production (that is,

coevolved sets of products and firms) emerge? And if they can, what mechanisms affect

the likelihood of such emergence? A priori one might not expect much complex

economic organization to be possible from randomly iterated rules. Yet the history of

chemical and biological life on earth suggests that minimalist systems can generate

astounding complexity under the right circumstances. Intelligence, we speculate, may

not have been necessary for markets to emerge.4 We are not arguing thereby that

humans are no more complicated than chemicals. We are arguing that a surprising

amount of social and economic organization does not depend on humans being

complicated.

2. The hypercycle model of economic production
We shall describe our hypercycle model of economic production in pseudo-

algorithmic fashion, because we have implemented it in the form of an agent-based

simulation.5 First we shall describe our core models of production and learning. These

will give the logic of our basic ‘dependent variable’: hypercycle emergence. Then

we shall describe experimental variations of our core model—number of products,

interaction topology, mode of learning, input environment, and input search. These

are the ‘independent variables’ that may affect the likelihood of hypercycle emergence.

The simplest versions of our spatial hypercycle model can be solved analytically. We

3This is not only bounded rationality, this is the absence of consciousness altogether.

4Hayek (1948) made a similar ‘self-organizing’ argument about the operation of markets that we are
making about the emergence of markets.

5Our agent-based model is publicly available for both demonstration and modification, and can be
found on the web site http://repast.sourceforge.net under the application module HYPERCYCLE.
Repast is a comprehensive software framework and library for creating agent-based simulations, built
in the Java language. It was developed at the Social Science Research Computing Center at the
University of Chicago.
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present such solutions below, both to verify and to aid interpretation of the simulation
results.6

2.1 Core model of production

1. There are three components in the model: rules (‘skills’), balls (‘products’), and bins
(‘firms’).

2. Rules/skills transform balls/products into other balls/products. For example, if
balls/products are indexed by i = 1, 2, 3, …, n, then the set of transformation rules
obeying a cyclic structure7 would be represented as {1→2, 2→3, 3→4, …, n→1}. The
set of transformation rules we call a ‘technology’; n indexes the ‘complexity’ of the
technology.

3. Rules/skills are contained in bins/firms. At the beginning of each simulation run,
skills are just randomly distributed across available firms, without any logic. The
number of firms initially is large.

4. Bins/firms are arrayed on a spatial grid, with wrap-around boundaries. Each firm
has eight possible nearest-neighbor trading partners.

5. At each asynchronous iteration of the model, a random rule is chosen ‘looking for
action’. The firm containing that rule/skill reaches into the input environment
(modeled as an urn) and draws an input ball/product. If the input ball/product
selected is compatible with that rule, then the ball/product is transformed according
to that rule. (For example, if a firm possessed an activated ‘1→2’ skill, and it drew a
‘1’ as input from the urn environment, then it would transform the input ‘1’ into the
output ‘2’.) If the ball/product selected could not be processed by the activated rule,
then input ball/product passes through the firm into the output environment (also
modeled as an urn) unchanged.

6. Products successfully transformed within the firm are passed randomly to one of the
firm’s eight possible trading partners. If that trading partner possesses a compatible
skill, then it transforms the product further, and passes that along in a random
direction. (For example, if the second firm possessed a ‘2→3’, then after receiving the
output ‘2’ from the first firm, it would transform the ‘2’ into a ‘3’, and then pass that

6In economics, though not in physics, there is frequently a fruitless methodological debate about
agent-based modeling versus analytic modeling. Our position is that one can and should do
both—namely, solve simple settings analytically and then scale up through computer modeling.
Analytic solutions are more transparent than computer simulations, but frequently require the
imposition of highly restrictive and unrealistic homogeneity assumptions. Computers can numerically
solve highly non-linear models with heterogeneous agents in non-homogeneous topologies, and there
is no reason not to let them do so as long as one can understand the results.

7Rule sets more general than the cyclic structure are of course quite possible to set up and explore. In
this paper we restrict ourselves to the cyclic structure in order to root ourselves in the pre-existing
literature on hypercycles. In future papers, we intend to explore other rule sets. The HYPERCYCLE
code has already been written with this extension in mind.
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on to a third firm or possibly back to the first.) In this way, transformed products
pass through sequences or chains of skills.

7. Bins/firms continue passing around transformed products among themselves until
the product lands on a firm that does not possess a compatible skill to transform it
further. At that point the product is ejected into the output environment. And a new
input ball is selected to begin the iterative process all over again.

Overall, the production process looks like this: input balls/products come in from an
input environment, then pass in random directions through randomly distributed
production chains of skills, being transformed en route, until they pass back out into
an output environment. For this random production process to self-organize into
coherence, there must be some sort of a feedback mechanism. For us, this is learning
through trade.

2.2 Core model of learning

1. ‘Learning by doing’ is modeled in chemical fashion as follows: if one skill transforms
a product and  then passes it on  to another  transforming skill, then a skill is
reproduced. We call such a sequence a ‘successful transaction’, since both sides
transform products.8 Which of the two skills is reproduced in a successful
transaction is an experimental variation within the model, to be discussed below.

2. ‘Forgetting’ is modeled in chemical fashion as follows: whenever one skill repro-
duces anywhere in the system, another skill, randomly chosen from the overall
population of skills, is killed off. The total population volume of  skills in the
population thereby is held constant.9

3. Once a firm loses all its skills, it ‘goes bankrupt’ or ‘dies’, never to recover any skills.

Learning by firms is equivalent here to reproduction of their skills. Learning by firms
and reproduction of skills, we argue, are the same process, just described at different
levels of analysis. This is like a germ’s eye view of disease: instead of focusing on the
organism getting sick, we focus instead on the reproduction and spread of germs. Firms
learn and adapt in our model, but the underlying mechanism  is not  conscious
reasoning. Rather it is the reproduction of their inherited skills through use.10 Firms are
kept alive or are killed off solely through the ‘chemical’ reactions of skills that operate
through them.

This combination of learning, forgetting and dying imposes selection pressure on
the production system of skills. In the face of inexorable forgetting, skills must

8Final consumption is the output urn.

9This conservation-of-skills assumption mimics the conservation-of-mass assumption in chemistry.
While perhaps too harsh an assumption for many human populations, this constraint is one
chemistry-style way to model competition among firms.

10In future extensions of this model, we intend to add diffusion of skills among trading firms, in order
to mimic ‘collaborative dialogue’. But that extension is not developed in this paper.
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reproduce in order to survive. In the harsh conservation-of-skills setup employed here,
indeed, the very success of rules in one place in the system imposes sharply competitive
selection pressure on rules elsewhere in  the system. Heavily used subsets of the
distributed skill set reproduce, and rarely used subsets of the distributed skill set
disappear. The death of a firm is an absorbing state that permanently eliminates its
unsuccessful skills.11 As the skill composition of rules within firms thereby evolves,
surviving firms cluster into mutually reinforcing trading  groups, reminiscent of
Marshallian industrial districts. And production chains of compatibly sequenced rules
self-organize their way through these spatially contiguous groups of firms.

A conscious desire to cooperate, indeed consciousness at all, is not necessary for
mutually reinforcing clusters of trading firms to emerge and to survive. In this model,
the minimal requirement for long-term survival, both of firms and of clusters, is to
participate in at least one spatially distributed production chain that closes in on itself,
to form a loop. Not all production chains within a trading cluster need be closed into
loops. And more than one loop within a cluster is possible, in which case we may have a
dense hypercyclic network of spatially distributed production rules. But loops within
distributed chains of skill are crucial, not for production itself, but for the competitive
reproduction of skills. Loops set up positive feedbacks of growth in skills that give firms
that participate in them the reproductive ability to out-produce firms that do not. Put
another way, clusters of firms can produce products with or without hypercycles, but
firms whose skill sets participate in production chains that include loops have the
further capacity to keep renewing each other through time. This is the chemical
definition of life.

From our chemical perspective, therefore, the secret to understanding competitive
success, both of firms and of industrial districts, is to find the conditions that foster the
spontaneous self-organization of skills into self-reinforcing hypercyclic production
chains, which wend their way through firms, knitting them together in trade and
helping them to reproduce each other through continuous learning.

2.3 Experimental variations

There are five ‘independent variables’—that is, experimental treatments in the simu-
lation model—whose effect on the likelihood of finding and sustaining self-organized
hypercycles of skills will be explored in this paper.

1. Complexity. A parametrically fixed volume of rules or skills is scattered randomly
around the space of firms at the beginning of each run. In this paper, there are 200 rules
being scattered. We vary the composition or ‘complexity’ of the rule set so scattered. In a
cyclic structure of rules, complexity is indexed by n. We shall vary n from 2 to 9: that is,
we shall explore 2-skill hypercycles, 3-skill hypercycles, and so forth, up to 9-skill

11Allowing the entry of new firms is another obvious extension to our model that we do not explore
here.
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hypercycles. Presumably the more complex the rule set, the more difficult it will be to
find and to sustain hypercyclic production chains.

2. Interaction topology. The basic spatial topology for trading to be explored in this
paper is the 10 × 10 wraparound grid. That is, at the beginning of each run, there are
100 firms, one firm per cell in the grid, each of which can trade products with their eight
nearest neighbors. This is the so-called Moore-neighborhood topology.12

As experimental variation, we shall compare the hypercycle behavior of this spatial
topology to that of the non-spatial ‘well-stirred liquid reactor’ topology, more
traditional in chemistry. In non-spatial or random topology every rule is equally likely
to pass a product to any other surviving rule, irrespective of spatial/firm location.

A major finding in the existing hypercycle literature (Hofbauer and Sigmund,
1988: 96) is that non-spatial hypercycles are dynamically stable up to 4-elements, but
not beyond that. In other words, in non-spatial interaction when hypercyclic sets are
5-elements and up, one or more of the component chemicals is always driven to zero
during the reaction process, thereby breaking the reproductive loop and causing the
hypercycle to ‘crash’. This is a ‘complexity barrier’ that self-organizing hypercycles, and
hence ‘life’, cannot penetrate when chemical interaction is non-spatial or random.
Padgett (1997) has shown that in spatial interaction topologies, dynamically stable
hypercycles of complexity 5-elements and above can be grown, albeit at increasingly
lower frequencies at higher levels of complexity. Spatial interaction, in other words, can
break the complexity barrier. Presumably this is one reason why complicated chemical
life is embodied. We shall reconfirm both the Hofbauer and Sigmund (1988) non-
spatial findings and the Padgett (1997) spatial findings here, in a new context.13

3. Learning/reproduction. In the spatial topology setting, there are two variants of
‘learning by doing’ that can and will be explored:14

1. ‘Source reproduction’ is where the originating rule in a successful transaction is
reproduced.

2. ‘Target reproduction’ is where the receiving rule in a successful transaction is
reproduced.

12In future work we plan to investigate additional topologies as well. Padgett (1997) used 4-neighbor
(von Neumann) neighborhoods. The impact of social networks of various kinds, such as cliques and
small worlds, is an especially important avenue to explore.

13The models in this paper are extensions of the model presented in Padgett (1997). The main
extension is to add explicit products that are being transformed. In the earlier paper, there were
action–reaction chains of ‘play’, but nothing was actually produced or accomplished. We believe that
the setup in Padgett (1997) was appropriate to the emergence of informal organization among people
within a firm, whereas this setup here is more appropriate to trading among firms in an economy.

14In non-spatial interaction, these two reproduction modes behave identically (see the appendix). Space
is what separates target from source. In Padgett (1997), a third mode was also explored: ‘joint repro-
duction’, where both rules in a successful transaction reproduce. Because two rules are reproduced in
this hybrid, two offsetting skills need to be killed off to preserve conservation-of-mass.
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For example, if (1→2) receives a 1 from the input environment, transforms it into a 2,
and then successfully passes that 2 onto a neighboring (2→3), who transforms it again,
then ‘source reproduction’ is where the initiating (1→2) reproduces, and ‘target repro-
duction’ is where the recipient (2→3) reproduces.15 Variation in mode of reproduction
thus defines who benefits from the transaction.

We think of source reproduction as ‘selfish learning’, because the initiator of the
successful transaction reaps the reward (like a teacher). And we think  of target
reproduction as ‘altruistic learning’, because the recipient of the successful transaction
reaps the reward (like a student). ‘Selfish’ and ‘altruistic’ are verbal labels that accurately
characterize who benefits. In using these suggestive labels, however, one should avoid
importing motivational connotations. In the minimalist models developed here, there
are no motivations—just actions and reactions, like in chemistry.

Padgett (1997) demonstrated that, in comparison with source reproduction, target
reproduction dramatically increases the likelihood of growing stable hypercycles. And
it also increases the spatial extensiveness and complexity of the firm cluster that
hypercycles produce. Both of these findings will be reconfirmed here.

In addition to these three experimental manipulations, two more experiments will
be performed here, which vary the input environment in which hypercycles grow. Such
additional experiments were not possible in Padgett (1997), because previously there
was no explicit modeling of products or of product environments.

4. Input environment. Input environments of resources or products can be conceived as
fixed or as variable, and they can be conceived as rich or as poor.

Among fixed resource environments,

1. ‘Rich’ input environments will be modeled by letting the input urn of resources
contain all possible inputs, never to be depleted even as products/resources are
withdrawn.

2. ‘Poor’ input environments will be modeled by letting the input urn of resources
contain only one possible input (by convention, we call that ‘1’), not depleted even as
products/resources are withdrawn.

Among variable resource environments,

3. ‘Endogenous’ input environments will be modeled by letting the input urn be
constructed over time by the outputs of the production system. Under the
endogenous-environment variant, in other words, our model will withdraw one
input product, transform it into other products through distributed production
chains, and then place the final output back into the original input urn.

At initialization, we set the endogenous input environment to be equal to the poor
resource environment (that is, ‘all 1s’), in order see if and when the economy can by

15Of course the recipient (2→3) could easily turn into an initiator in the next tick, if a neighboring
(3→4) is subsequently found.
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itself transform an initially poor environment into one more supportive of its own life.

Structurally, therefore, the endogenous resource environment migrates between the

fixed-poor resource environment and the fixed-rich resource environment.

Presumably, rich input environments are more congenial to hypercycle emergence

than are poor environments. What is less clear a priori is the relative ranking of

endogenous environments. Given that we have defined ‘rich’ virtually as nirvana

(namely as ‘all possible inputs available all the time, never to be depleted’), our

expectation is that nothing can outperform that. However, modelers of social insect

behavior (e.g. Camazine et al., 2001) have discovered that ‘stigmergy’—the ability of

social insects to transform their physical environments into nests, mounds, paths, and

the like—can sometimes exert surprisingly powerful feedback onto the development

of social organization itself. The open question,  therefore,  is whether the social

organization achievable in the endogenous environment is superior in any way to that

achievable in the rich environment.

5. Input search. The final experimental manipulation we shall perform varies the

precision of search through the environment:

1. ‘Random search’ is when an activated rule reaches into the input environmental urn

and chooses inputs randomly, in proportion to what is there.

2. ‘Selective search’ is when an activated rule reaches into the input environmental urn

and selects the exact input it needs to transform, if it is there.

Random search is like literal chemistry.16 Selective search is more like animal behavior.17

This is the only place in the model where we vary degree of intelligence. We expect the

more intelligent selective-search procedure to outperform the stupid random-search

procedure in finding and nurturing production hypercycles.

In the appendix, we lay out mathematically the operationalization of all these

experimental variations, for the very simple special case of two skills and two firms.

To sum up the logic of our modeling enterprise: chemistry teaches us that life is an

ensemble of products and transformation rules that reproduces itself through time.

Distributed economic production activity qualifies under this minimal definition,

especially if the fragility and malleability of both firms and their skills are recognized.

We take the analogy between economic and chemical exchange to its extreme by

assuming away all human rationality and even consciousness, holding on only to the

features of blind adaptive learning and selection. We hope to demonstrate that firms,

production chains, and industrial districts can emerge and reproduce even under these

minimalist  assumptions. And  we hope  to  discover the structural and interactive

imperatives that help to foster economic self-organization.

16Metaphorically we think of this as ‘the intelligence of an atom, bouncing around’.

17Metaphorically we think of this as ‘the intelligence of a cow, looking for grass’.
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3. Results: hypercycle emergence
The basic findings from our agent-based simulation model of hypercycle economies are
presented in Figures 1 and 2. These figures present on their y-axes our dependent
variable: long-term18 probability19 of hypercycle survival. They present on their x-axes

Figure 1 (a) Source reproduction and selective search. (b) Target reproduction and selective

search. Each point is an average of 30 simulation runs.

18Our operational definition of ‘long-term’ came inductively from observing many, many runs, and
how long even the slowest among them took to converge to equilibrium. We finally settled on the
following as liberal stopping points for our simulations: 30 000 ticks for 2-element hypercycles; 40 000
ticks for 3-element hypercycles; 60 000 ticks for 4-element hypercycles; 80,000 ticks for 5-element
hypercycles; 120 000 ticks for 6-element hypercycles; 180 000 ticks for 7-element hypercycles; 250 000
ticks for 8-element hypercycles; and 300 000 ticks for 9-element hypercycles. For the more complex of
these hypercycles, much computing time was required.

19Each of the points in these graphs represents the average of 30 simulation runs.
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varying degrees of complexity in the simulated economies’ technologies: simple 2-skill
technologies, slightly more complicated 3-skill technologies, and so forth, up to our
most complex 9-skill technologies. Different lines within these graphs present the
results of our various experimental manipulations: interaction topology, mode of
reproduction/learning, and input environments. Figure 1 presents these comparisons
for selective search; Figure 2 presents these comparisons for random search.

Much information is contained in these graphs, so we shall unpack the findings one
independent variable at a time.

3.1 The effect of spatial topology

As Hofbauer and Sigmund (1988) have shown analytically, and as we have already
mentioned, non-spatial hypercycles face a dynamic ‘complexity barrier’ at the level of
5-elements and above. In the non-spatial or ‘liquid’ topology of random interaction,

Figure 2 (a) Source reproduction and random search. (b) Target reproduction and random

search. Each point is an average of 30 simulation runs.

Economic production as chemistry 853



where there are no firms, the volumes of the various reproducing skills undergo
accelerating  oscillations under  a  hypercycle  regime with  complex  rule  sets, until

eventually one skill is driven to zero, thereby breaking the reproductive loop and
causing the overall hypercycle to ‘crash’. This finding is reconfirmed in our simulations,

it being  displayed graphically by the  fact that hypercycle survival rates abruptly

plummet from 100%  to 0%  in the non-spatial portion  of all of our  figures, as
complexity passes the threshold from 4-skills to 5-skills.

In sharp contrast to this dynamic instability among 5+ skills, once spatial constraints

on interaction are introduced—that is, once firms with delimited trading patterns are
permitted—then higher complexity in skill sets becomes dynamically possible (albeit
not 100% of the time). This finding is illustrated graphically by the fact that, for
complexity five skills and above, survival rates of spatial hypercycles are equal to or are

superior to survival rates of non-spatial hypercycles.20

Another way of expressing these findings is this: non-spatial ‘freedom of trade’ of

every skill with every other, with no firms to channel that trade, generates so much
volatility in skill reproduction that complexity becomes dynamically unsustainable. The
opposite extreme—complete internalization of all skills within a single firm—

eliminates entirely the trade that renews learning. Skills spatially dispersed through
clusters of firms are necessary (but not sufficient) in our model for economic
production markets to be sustainably complex. Simple economies, with four or fewer

products, do not need firms or spatial clusters of firms to reproduce. But complicated
economies, with five or more products, do.

To understand why this is the case, let us first show representative pictures of

equilibrium outcomes for successful spatially embedded hypercycles, and then give a
verbal description of how a typical run develops.21 Figure 3 presents some 5-skill
hypercycles produced by target reproduction, under a variety of environmental and

search conditions. Ellipses are firms; number pairs are skills; arrows are routes through
which products can successfully be transformed. When arrows are solid, they are part of
one or more cyclic loops of arrows—that is, part of a hypercycle. The total number of

distinct cycles22 and the volume of rules per firm are also reported in these diagrams. In
all successful ‘no crash’ runs, final convergence was to a single extended cluster of firms,
through which ran one or usually more hypercycles of sequenced skills.

As is evident in the pictures by the dotted arrows, even in long-term equilibrium not
all surviving firms or skills participate in hypercycles. ‘Parasites’—namely, firms and

20We exclude the expected terrible performance of the fixed-poor environment from this statement.

21Readers can visually see for themselves at http://repast.sourceforge.net, under the application module
HYPERCYCLE.

22One cycle is distinct from another if at least one node in the loop is different. Usually, as is illustrated
in Figure 3, multiple hypercycles are produced by our model and overlap into a dense hypercyclic
network. Such redundancy of ‘metabolic pathways’ gives resilience to a cluster in the face of selection
pressure, which is why hypercycles overlap in the first place. Redundancy is sometimes viewed as a
mystery by those who equate natural selection with maximal efficiency.
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skills who do not themselves help to keep others alive, but simply ‘free ride’ on the
reproductive work of others—are both possible and common in our model. In
chemistry, unlike in rational choice theory, free riders do not necessarily threaten
successful cooperation in the core, if the core is strong enough.23 In a subsequent

Figure 3 Representative 5-skill hypercycles at equilibrium: target reproduction. Ellipses are

firms; within ellipses, number pairs are skills; products flow along arrows. Solid arrows

participate in hypercycles. Dotted arrows link to parasite rules. Boxes give the total volume of

rules contained within corresponding ellipses.

23‘Strong enough core’ means overlapping hypercycles. A single hypercycle, while possibly stable in and
of itself, is more vulnerable to parasites than are overlapping hypercycles that reinforce each other.
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section on hypercycle structure near the end of this paper,  we shall report the

percentage parasites produced under various conditions.

The way these hypercyclic spatial clusters emerge is usually as follows: initially, as

explained above, skills are just randomly scattered over the grid of firms. Given the

parameter values used here—200 rules and 100 firms—this random distribution is also

a fairly thin distribution, albeit one with slight inhomogeneities. At the random outset,

there are hundreds or thousands of discrete spatially distributed cycles, some quite

convoluted indeed, just because of the combinatorics of random trading among 100

firms. As reproduction and selection processes kick in, however, skills and firms start to

die, leaving surviving firms, which trade heavily amongst each other, to congeal

throughout the grid.24 These multiple spatial clusters then begin to compete with one

another in the reproduction of their skills: each continuing to grow as long as a hyper-

cycle is contained within it, but then decaying once interior hypercycles have crashed.

Eventually only one cluster remains.

This surviving hypercyclic cluster may or may not itself be dynamically stable over

the long term. Even after ‘victory’, in other words, a hypercycle can (and often does)

crash; ‘survival of the fittest’ may or may not be good enough for ‘life’.

The observed process reminds one generically of the origin of the universe. As

physical space expanded, an initially uniform distribution of particles developed very

slight inhomogeneities, which then positively fed back on one other through gravity

until galaxies and stars were produced.25 Expanding space ‘broke the symmetry’ of

random ‘liquid’ interaction, creating localized inhomogeneities that grew.

In our case, the primary feedback reason for observed spatial clustering is

‘memory’—namely, the inscription of the past into the structure of the firm. Successful

transactions reproduce compatible skills that are located in neighboring firms. This

creates the following positive feedback among compatible-skilled neighboring firms:

the more the skills are activated, the more they reproduce, the more they are activated,

the more they reproduce. The volume of skills in a firm at a given point in time thereby

becomes the cumulative history of past interaction with its compatible neighbors.

Meanwhile, the counterbalancing forgetting process kills off skills randomly in the

population. Firms not participating in positive feedbacks among neighbors eventually

get cleaned out of their initial skills. Long-term success or failure of a given firm is the

path-dependent result not only of that firm’s own history, but also of that firm’s

neighbors’ histories.

None of this would have been true without physical space, or some social-network

functional equivalent to space (cf. Cohen et al., 2001). Spatial or other constraint on

interaction ‘breaks the symmetry’ of firms potentially trading with all other firms, and

allows localized skill inhomogeneities to form. Positive feedback through continued

24In early stages when all clusters are thin and extended, these multiple clusters overlap to such an
extent that to call them ‘multiple’ is poetic license.

25Of course, we do not wish to imply by this simple statement that such feedback was linear or smooth.
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trading then inscribes the memory of past interactive success into the structure of each
co-adapting firm.

A second mechanism behind spatial clustering, not present in Padgett (1997), is
chaining. The physical act  of passing  products  around orchestrates  sequences of
learning. Not only do compatible neighbors have positive feedback loops in their
own growths, but also compatible neighbors trigger other compatible neighbors. Thus
feedback loops are evoked more efficiently once hypercyclic clusters begin to emerge.
Perhaps this is one evolutionary reason for why artifacts, either physical or symbolic, are
helpful for humans learning in groups (cf. Hutchins, 1995). The mere act of passing
around transformed products, even when purposeless, coordinates learning sequences
of humans through chaining.

3.2 The effect of reproduction/learning mode

Embedding production and trading in physical (or social) space has a second
non-obvious consequence: it induces an asymmetry between target and source
reproduction.26 There is no difference between ‘selfish’ and ‘altruistic’ when there are
no firms, or other types of organisms, to begin with.

In the production and nurture of hypercycles, target reproduction is superior
to source reproduction. This is shown in Figures 1 and 2 by the facts that in all
cases where target and source differ in the first place the survival plots of target
reproduction are displaced to the right of the corresponding survival plots of source
reproduction. Rephrasing this finding at a different level of analysis, spatial hypercycles
of whatever complexity are easier to grow when learning by firms is altruistic than when
it is selfish.

As explained in Padgett (1997), the basic reason for this superiority of target
reproduction, or altruistic learning, is repair. Target reproduction combats dynamic
instability in a way that source reproduction does not. The basic process of dynamic
instability, causing hypercycles to crash, is that as one skill reproduces rapidly, under
competition other skills are driven to zero, thereby breaking the reproductive loop
of skills. Spatial topology distributes  this dynamic into an overlapping series of
neighborhoods, thereby inducing local heterogeneity. This opens the door for localized
co-adaptive feedbacks to operate.27 But source reproduction, or selfish learning, does
not really attack the basic dynamic instability itself. Source reproduction is this: an
initial activated rule passes on its transformed product to a neighboring compatible
rule, causing the original activated rule to reproduce. Under source reproduction,
frequently activated rules reproduce more frequently, often eventually driving out of
business even compatible neighbors on whom they depend for their own survival.
As we shall see in the next section, other factors like endogenous environment can

26As shown in the appendix, in non-spatial topology target and source reproduction become identical
processes.

27To repeat: spatial topology is necessary but not sufficient for complex hypercycle emergence.
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sometimes moderate this destructive dynamic, but source reproduction in and of itself
does not eliminate the non-spatial instability problem.

In contrast,  target reproduction is this: an initial activated rule passes on its
transformed product to a neighboring compatible rule, causing the recipient rule to
reproduce. Here the more frequently the initial rule is activated the more frequently the
second recipient rule reproduces. In this way, a hypercycle can repair itself: as the
volume of one skill in a loop gets low, high volumes of compatible skills in neighboring
firms reach in to that low-volume skill to build it back up. Peaks and valleys along loops
are smoothed.

This simulates altruistic behavior, although here of course no skill or firm is ‘trying
to preserve’ the hypercycle. Target-reproduction repair does not guarantee that a
hypercycle will survive, but it does directly alleviate the dynamic instability problem
that afflicts both the non-spatial and the spatial-source settings.

This repair mechanism can also be shown analytically for one special case of
our model. In the appendix we derive differential equations of skill growth for the
extremely simple 2-skill-hypercycle setting of a single dyad: two adjacent firms trading
only with each other. Box 1 collates these differential-equation results for ease of
inspection. In our agent-based simulations interlinked dyads are proliferated across
the entire  grid, generating interaction effects  not  captured in the  stripped-down
dyadic setting. Simplification,  however,  permits analytic solutions not otherwise
possible. Such solutions are useful both to increase transparency and to double-check
computer code.

The analytic contrast between target reproduction and source reproduction is most
sharply and cleanly illustrated in the setting of fixed-rich environment. There, in both
of the target-reproduction equations, E(n12,t+1) always goes up when n12,t < n21,t, and
E(n12,t+1) always goes down when n12,t > n21,t. The converses are true for E(n21,t+1). In
other words, target reproduction generates a consistent tendency toward homeostatic
stability, over the entire range of n12. In sharp contrast, in both of the corresponding
source-reproduction equations, both E(n12,t+1) and E(n21,t+1) equal zero. Source
reproduction exhibits no built-in tendency toward homeostatic stability: n12 drifts
in random-walk fashion until eventually it crashes into the absorbing states of either
n12 = 0 or n12 = 1.

For hypercycles more complex than the 2-element dyad, we can no longer derive
solutions analytically. But the simulations show this basic dyadic finding to be true
more generally. Target reproduction generates higher rates of hypercycle survival than
does source reproduction for all corresponding spatial settings. To repeat, the mech-
anism generating this sizable superiority is direct ‘altruistic’ repair of complementary
rules by each other. Target reproduction repairs hypercycles without intending to do
so, once given the precondition of spatial ‘symmetry breaking’, which induces the
distinction between altruistic and selfish in the first place.
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3.3 The effect of input environment

Figures 1 and 2 also point to the existence of a second repair mechanism, more relevant
to source (‘selfish’) reproduction than to target (‘altruistic’) reproduction.

In the learning mode of target reproduction, hypercycles survived at almost as high
rates under the endogenous environment as they did under the fixed-rich environment.
This result fit with our expectations, which were that, although no environment could
outperform ‘nirvana’, production hypercycles might be able effectively to build their
way out of a poor environment into one more supportive of themselves. The slight
inferiority of endogenous was due only to the fact that sometimes they were not quick
enough to do so.28 But usually, they were impressively quick.

The same comparison for source reproduction, however, generated quite a surprise:
hypercycle survival rates under endogenous environments actually were superior to
fixed-rich (‘nirvana’) environments, and by a substantial amount. It was not true that
the boost given to source reproduction by endogenous environment lifted it to the level
of target reproduction. But it came close.

After some detective work,29 we discovered the reason behind this surprising
phenomenon. As explained above, source reproduction left to itself generates
self-destructive (‘cancerous’) growth. Namely, the more skills are activated, the more
they reproduce,  the more they are activated,  etc., until the neighboring partner
upon whom that skill depends is destroyed. For complex hypercycles, this is fatal.
Endogenous environments do not eliminate this cancerous growth, but they help to
control it. The mechanism is this: The more a skill reproduces and hence is activated,
the more it consumes its compatible input in the environment, and transforms it into
something else. The environment of compatible resources for low-volume skills thereby
is enriched, while the environment of compatible resources for high-volume skills is
starved. This does not completely smooth the peaks and valleys around the hypercycle,
as does the more direct skills-to-skills intervention of target reproduction.30 But the
indirect skills-to-environment-to-skills method of regulation, induced by environ-
mental endogeneity, does function to keep skill-volume peaks within bounds.

This reminds one of ‘stigmergy’ among social insects (e.g. Camazine et al., 2001).
Ants coordinate their behavior with one another not directly but indirectly through
modifying their environment (for example through pheromones), in ways that
feedback to their own behaviors. This leads not to static equilibrium behavior, but

28Appropriate 2-skill equations in Table 1 support this interpretation: differential equations of skill
growth for the fixed-rich and the endogenous environments are identical, both for target and for source
reproduction, except for the boundary condition of input balls being present in the endogenous urn.

29The detective strategy that finally worked was comparing the sequentially updated distribution of
rules/skills to the sequentially updated distribution of output balls/products, for a large number of
sample runs.

30Hence target reproduction remains superior to source reproduction plus endogenous.
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rather to flexible physical structures (like ‘roads’) that have the capacity to adapt, both
to exogenous shocks and to what the ant colony itself does.

Supporting this analogy further is our observation that product outputs in our
model do not converge to a fixed composition under endogenous environments. Peaks
of modal product production stochastically change through time, like waves, even in
hypercycle skill equilibrium. Such moving peaks are observed to be very sharp under
selective search (‘specialized production’), whereas they are more gentle under random
search (‘diversified production’).

This flexible-output capacity can be understood through equation (7) in Box 1.
Output ‘1’ increases in volume the more ‘2→1’ skills there are, and it decreases in
volume the more ‘1→2’ rules there are. As explained above, this protects enough against
cancerous growth to permit the skill equations (2)–(6) to kick in.31 But these skill
equations operate homeostatically to bring n12 and n21 back into line. Eventually n21 >
n12 tips over to n21 < n12, producing a switch in modal output. And so the output cycling
continues.

No particular production output is favored over any other in this model.32 So there is
no basis for defining ‘optimality’ in output. The flexibility of output produced by this
model, however, demonstrates that endogenous hypercyclic production systems have
considerable capacity for collective adaptation, were such adaptation to be rewarded.
In the short-run, output can be shifted easily without any radical reorganization of
hypercyclic production chains. In the long-term, output has to shift around, or else the
natural repair mechanism of endogenous environment will be disabled.33

We close this section with the following evolutionary speculation: assuming that
greater complexity is good for some reason not specified in this paper, then endogenous
environments permit selfish learning to thrive and to compete, even though altruistic
learning is ‘naturally’ better. Target reproduction and endogenous environments are
redundant: if target reproduction is present, then endogenous environments are not
needed. But if selfish learning is presumed for whatever reason, then endogenous
environments are crucial for progress in technological complexity.

31We have observed in our simulations that the skill differential equations operate on a slower time scale
than the product equations, especially for selective search, even though they were not explicitly
designed to do so.

32In other words, there are no consumers with particular tastes.

33This sentence  applies more to selective search  than to random search. In random  search the
distribution of output is peaked, but somewhat gently so (‘diversified output’). In specialized search,
the distribution of output is extremely peaked (‘specialized output’). Unconstrained this specialized
output poses no problems to the reproducibility of hypercycles, since output rotates around, thereby
renewing all skills along the chain. But if this rotating output stopped, then eventually some skills
would be starved into death, especially those skills located at the end of long ‘food chains’ of trans-
formed products. Such long chains, of course, are characteristic of complex technologies
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Box 1 Growth-of-skill equations for the 2-element hypercycle in a trading dyad

Volume of rules/skills: n12 + n21 = N

Volume of balls/products: b1 + b2 = B

Growth-of-skill equations:

1. Non-spatial topology: unchained

2. Spatial topology: fixed-rich environment, with selective search

(a) Source reproduction of rules

(b) Target reproduction of rules

3. Spatial topology: fixed-rich environment, with random search

(a) Source reproduction of rules

(b) Target reproduction of rules

4. Spatial topology: fixed poor environment, with either search

(a) Source reproduction of rules
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3.4 The effect of search intelligence

The main finding about degree of search intelligence is a negative one. Contrary to our
expectations, selective search did not improve the chances of hypercycle emergence
over random search. There is no significant difference34 between the data reported in
Figure 1 and the data reported in Figure 2.

Box 1 Continued

4(b) Target reproduction of rules

5. Spatial topology: endogenous environment, with selective search

(a) Source reproduction of rules

as long as b1 > 0 and b2 > 0.

(b) Target reproduction of rules

as long as b1 > 0 and b2 > 0.

6. Spatial topology: endogenous environment, with random search

(a) Source reproduction of rules

(b) Target reproduction of rules

7. Spatial topology: endogenous environment, with either search

(a) Either method of reproduction of balls
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34Perhaps one might make a case for a slight difference between the two search settings for source
reproduction under the fixed-rich environment. But that difference goes in the opposite direction from
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Selective search does increase the speed of convergence to equilibrium, compared
to random search. It just does not change the equilibrium outcome. The decision
tree representations of the 2-skill hypercycle, in the appendix, reveal why this is true.
Search procedure affects the second branch of those trees. Selective search triggers the
sequences specified in the appendix. Random search only adds the probability of one
half of branching into ‘no change’ to these selective-search sequences. Other than this,
nothing is altered.

In this context, therefore, search efficiency is not all it is sometimes cracked up to be.
Search efficiency may be beneficial for a particular agent. But search efficiency through
a given structure does not itself alter the evolution of that structure.

More generally, intelligence is not necessary for complexity to emerge—a point
we knew already from observing evolution. Rather the evolutionary sequence is the
opposite: complexity is necessary for intelligence to emerge.

4. Results: hypercycle structure
Finally, in addition to reporting on emergence, we report on structure: what sorts of
‘industrial districts’—that is, what sorts of firms and firm clusters—are generated by
our hypercycle model of economic production? Table 1 presents data, for successful
non-crash hypercycles only, on three features of equilibrium spatial clusters: average
number of firms supported by the hypercycles, average number of discrete skills35 per
firm, and average percentage of discrete skills that are parasites.

There are a few subtleties in these data, but the primary finding is quite simple:
reproduction/learning mode has a more substantial effect on the shape and nature of
firm  clusters  than does either resource environment or search procedure. Target
reproduction (‘altruistic learning’) generates more surviving firms, who are more
multi-skilled in character, than does source reproduction (‘selfish learning’). And target
reproduction tolerates more parasitic free-riding than does source reproduction, with
no ill effect on hypercycle survival. The quantitative impact of target reproduction on
the number-of-skills profile of firms is modest, but it is noticeable and consistent. The
quantitative impact of target reproduction on the number of surviving firms in trading
clusters is substantial. And altruistic learning’s high tolerance of free-riding may be
less surprising than the fact that this tolerance is not weeded out, even in a sharply
competitive, zero-sum context.

The mechanism that produced these morphological features is the same as that

our expectations: random search there is superior to selective search. Rather than try to make some-
thing out of this isolated instance, we prefer to stick to our basic finding of ‘no significant difference’
between the search procedures.

35We use the term ‘discrete skills’ to refer to non-redundant skills. The total volume of skills in this
conservation-of-mass simulation was fixed at 200, as we explained above. But most of these are
replications. ‘Discrete skills’ are the number of unique types of skills located in each firm, summed
across all surviving firms.
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which produced the corresponding metabolic effect: direct repair. In target reproduction,
high-volume skills reach out to low-volume (hence threatened) compatible neighbors,
whether those neighbors are contributing to the hypercycle that sustains themselves or
not. In contrast, consistency of effect across morphological and metabolic levels does
not apply to our second repair mechanism: endogenous environment. The stigmergy
mechanism of endogenous environment controls cancerous growth, but it does not
induce selfish skills pro-actively to reach out to restructure and thereby to save their
neighbors. Because neighbors are not changed, firm and cluster morphologies are not
changed.

An intriguing second-order effect contained in Table 1 is that increasing techno-

Table 1 Structure of non-crash hypercyclic spatial clusters, at equilibrium

Selective Random

Source Target Source Target

Rich Endog. Rich Endog. Rich Endog. Rich Endog.

(A) Average number of surviving firms
2-skill 7.2 7.6 12.1 12.7 8.1 7.8 13.3 12.2
3-skill 5.5 6.0 10.9 12.0 6.1 6.7 12.4 10.6
4-skill 5.0 5.0 10.1 9.7 6.2 6.0 10.5 11.2
5-skill 5.1 7.6 7.6 6.0 6.8 8.9 8.2
6-skill 5.4 7.0 6.2 6.0 7.1 7.3
7-skill 6.7 7.3 7.1 6.3 7.5 7.2
8-skill 5.7 7.4 8.5 6.0 7.0 6.0
9-skill 6.7 9.0 11.0 7.5

(B) Average number of discrete skills per firm
2-skill 1.15 1.12 1.24 1.20 1.17 1.12 1.21 1.31
3-skill 1.22 1.03 1.35 1.42 1.30 1.27 1.38 1.49
4-skill 1.25 1.21 1.40 1.52 1.24 1.29 1.50 1.48
5-skill 1.29 1.57 1.57 1.17 1.35 1.36 1.50
6-skill 1.37 1.56 1.58 1.42 1.46 1.41
7-skill 1.15 1.44 1.51 1.42 1.50 1.53
8-skill 1.53 1.45 1.59 1.33 1.46 1.67
9-skill 1.50 1.67 1.55 2.0

(C) Percentage of discrete skills that are parasites
2-skill 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3-skill 0.00 0.05 0.09 0.06 0.05 0.04 0.07 0.10
4-skill 0.00 0.04 0.07 0.06 0.03 0.05 0.12 0.05
5-skill 0.06 0.16 0.16 0.07 0.08 0.29 0.17
6-skill 0.00 0.22 0.24 0.07 0.33 0.35
7-skill 0.00 0.14 0.18 0.04 0.26 0.29
8-skill 0.00 0.20 0.17 0.00 0.27 0.17
9-skill 0.27 0.06 0.26 0.06

864 J. F. Padgett, D. Lee and N. Collier



logical complexity is packed into increasing spatial concentration, both of firms in

a cluster and of skills in a firm. In our very simple setup, there are limits to how far

this compression can proceed:36 for target reproduction, up to 9-skill hypercycles can

compressed into 7-firm clusters with 1½ skills per firm, on average. Yet the qualitative

trend produced by our model—the more complex the technology, the more dense the

spatial container—has biological verisimilitude.37

5. Summary and discussion
Even within our chemical perspective, this article has not fully addressed the issue of the

co-evolution of technology and industry, because the evolution of products has not

been modeled explicitly. That is the next step.38 What this article has done, however, is

to establish three principles of social organization that provide sufficient foundations

for the unconscious evolution of technological complexity: structured topology,

altruistic learning, and stigmergy.

1. Unstructured interaction topologies are not conducive to the emergence of complex

technologies. Without help through embodiment, long sequences of skills cannot

dynamically regulate their own stable reproduction. ‘Structured topology’ does not

have to mean spatial, as it does here (cf. Cohen et al., 2001). But constraints on

interaction are necessary, firstly, in order to break the symmetry of full mixing and

induce localized heterogeneity, and secondly, in order to allow positive reproductive

feedback to turn that raw heterogeneity into path-dependent memory of past

successes. This is the chemistry answer to why firms exist:39 dynamic barriers of

36With higher initial total-volume density that the parameter setting (200 rules spread over 100 firms)
explored here, these exact numbers probably could be pushed up some.

37It is hard to imagine, for example, low-density creatures such as algae or sponges ever becoming very
complex. The surprise in this model is that spatial compression happens ‘automatically’ (at least up to a
point), without any special mechanism.

38In our HYPERCYCLE Repast code, we have already prepared for this next step by enabling the
specification of an arbitrary set of initial (i→j) rules, not just a cyclic set. This extension, which moves
beyond the hypercycle framework of Eigen and Schuster, will permit exploration of the emergence of
arbitrary networks of skills. More generalized network structures will have to contain cycles within
them in order to reproduce. But apart from this, the broader class of network structures that is
sustainable by our learning dynamics is currently unknown. Our proposed extension bears a family
resemblance to the work of Jain and Krishna (1998).

39Padgett (1997) discusses why the traditional explanations for the firm given  in neo-classical
economics—namely, transaction-cost economics and principal-agent theory—are inadequate from a
biological perspective. ‘Such a transposition of “the firm” down into a series of dyadic negotiations
overlooks the institutionalized autonomy of all stable organizations. In organisms, social or biological,
rules of action and patterns of interaction persist and reproduce even in the face of constant turnover in
component parts, be these cells, molecules, principals, or agents. In the constant flow of people through
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technological complexity can be transcended once global is transformed into the
concatenation of locals.

Classic Marshallian industrial districts receive the benefits of physical space
naturally. In an era of globalization, densely interconnected firms may or may not be so
fortunate. What our model implies is that trading within these new ‘virtual industrial
districts’ will have to become interactionally constrained for technological progress, not
instability, to be the consequence of increased connectivity (cf. May, 1974; Davidow,
2000).

2. The potential benefits of localized embodiment are more easily reaped through
altruistic learning than through selfish learning. When recipients, not initiators, of
transactions receive the reproductive rewards, complex technologies are more
readily nurtured and repaired.40 Free-riding occurs, but that does not threaten
system stability.

This conclusion is consistent with anthropological emphases on gift-giving in
primitive economies (Mauss, 1967; Sahlins, 1972). It is also consistent with sociological
observations about the ‘strange’ persistence of generous behavior in modern economies
(Macauley, 1963; Granovetter, 1985; Uzzi, 1997; Padgett and McLean, 2002). Ours may
not be the only explanation of generosity. But repair is one evolutionary reason for the
natural selection of this behavior in competitive economies of all sorts. Altruistic
learning stabilizes the reproduction of distributed technological skills, on which all
depend.41

3. When altruistic learning is not present for whatever reason, then stigmergy—the
endogenous construction of resource environments—is second best. Entomologists
(e.g. Bonabeau et al., 1999; Camazine et al., 2001) have shown that stigmergy flexibly
can coordinate sophisticated collective behavior among myopic social insects. We
have shown that stigmergy also can regulate the cancerous growth of selfish learners,
keeping even long chains of distributed skills alive.

Adams (1966, 1996) has long argued that cities are crucial to the history of tech-
nology. His exemplar case is Mesopotamia, where spatial feedbacks between settlements
and rivers guided the joint emergence of urban concentration, irrigation technology,

organizations, the collectivity typically is not renegotiated anew. Rather, within constraints, component
parts are transformed and molded into the ongoing flow of action’ (Padgett, 1997: 199–200).

40Sabel (1994) recommends squeezing the temporal distance between the two sides of an iterated
transaction until this distinction is effaced. Such relational constraints are consistent with our first
conclusion. Regarding our second conclusion, however, Padgett (1997) demonstrated that joint
reproduction, the closest analogue in chemistry to this recommendation, does not succeed in breaking
complexity barriers.

41This may be news to some rational choice theorists, but it will not come as a surprise to parents.
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and the shapes of the rivers themselves.42 Of course our model is far too minimalist for
real history, but it may illustrate one reason why the spatial reorganization of land into
cities and the development of complex technologies proceeded hand in hand.
Technology causes cities, as we all know; less obviously, the spatial products of
technology channel and regulate the social forces that produce it. To put it simply: cities
stabilize selfishness.43

In this article, we have developed a few simple tools, imported from chemistry, that
enable us to investigate systematically the co-evolution of distributed technology and
social organization. Extreme assumptions about the absence of consciousness are
implied by our specification. The payoff of such extreme simplification is the discovery
of three social-organizational principles enabling technological evolution. How
robust such principles are to alternate specifications is an important issue to explore
in the future. Regardless of the answer to that question, however, we hope to have
demonstrated at minimum that complex cognition is not necessary for the emergence
and functioning of complex economies. Just as March and Simon (1958) argued long
ago.44
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Appendices: derivation of growth-of-skill equations for
2-element hypercycles within one trading dyad

1. Non-spatial setup: unchained (= one-step) (same as in Hofbauer and
Sigmund, 1988)

Economic production as chemistry 871



2. Spatial topology: fixed-rich environment, selective search, product chained
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3. Spatial topology: fixed-rich environment, random search, product chained
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4. Spatial topology: fixed-poor environment, either search, product chained
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5. Spatial topology: endogenous environment, selective search, product chained
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6. Spatial topology: endogenous environment, random search, product chained
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7. Spatial topology: endogenous environment, either search, product chained
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