
ELLA
(Every-gal-and-guy's Latent Lattice Analyser)

Includes "Super-Closure" by Ed Haertel
and "MLLSA" by Clifford Clogg

ELLA is a program to facilitate the construction of algebraic structures for
dichotomous data and the testing of such structures given a latent class
formalization of the error structure. It is based on a program originally
written by Ed Haertel.

THIS PROGRAM WAS ORIGINALLY WRITTEN FOR a 32-bit extended DOS; it has recently
been recompiled for modern platforms which may lead to sub-optimal interface
features. This compilation is a standard Fortran Graphics program, i.e. a
QuickWin that supports only one window. This allows the graphics used by ELLA,
but may also lead to an automatic change to fullscreen mode which will be sub-
optimal. You may have to get the window operating properly yourself, by
choosing the font as you would for the MS-DOS console. Use ALT-ENTER to switch
from full screen to windowed. For some irritating reason, the Window opened is
larger than a normal DOS window--in fact, it's exactly one line larger on my
screen than the window display, so you often can't see the last line. Hence a
bit of fiddling with the font is necessary. Note that neither the "PAUSE"
command nor the passing-commands-to-DOS operate successfully (they open and
close a window instantaneously). Just open a separate DOS window.

WE ARE PLANNING TO SWITCH OVER TO THIS VERSION AND FORGET ABOUT THE DOS
VERSIONS, and so we encourage users to try this out and tell us what's not
working right.

FOR ALL VERSIONS:
There are significant changes and additions to the IBM version of
this program (compared to "Super-Closure"). This documentation first
covers the major changes, and then discusses each command.

1A. MEMORY USAGE:
ELLA dynamically allocates memory for large arrays as needed. Given
today’s machines, few users will find this a real problem, but in some
cases, your Windows set-up may not have allocated ELLA enough memory to
perform some operation. In that case, ELLA will notify you in what routine
the problem occurred, and warn you if it has been skipped, or if the
results should be suspect. You can use the VERSION command to display a
rough estimate of the amount of memory demanded by the program. If this
amount is clearly less than what your system has made available, fiddle
with the heap space, or eliminate other resident programs. If this
doesn’t work, you can save memory in ELLA by reducing the number of
structures that ELLA can handle at any time. This is done through the
DEfaults SWitch command. Generally, not much memory is saved by this
method unless the reduction is drastic. You can use 'PAuse' and then 'Mem
/c |more' to get an idea of memory usage from within ELLA (ELLA syntax
allows '$Mem /c |More'--see below).

1B. SYNTAX:
To choose a command, one can enter as many letters in a command as one
wishes, or as few as one wishes, so long as that command can be
distinguished from others, since there are commands beginning with the
same letter. For example, now that there is a 'Select' command, 'S' does

not work for 'Save.' You must at least enter 'SA' for save (as opposed to
'SE' for 'Select'). But 'N' still works for 'Next.'

* A convention therefore used in all documentation is to print the
name of each command with upper-case for all necessary input
and lower-case for unnecessary input. When you see 'SElect', you
know that 'S' will not be recognized, though 'SE' will.

The commands are basically not case sensitive, but there is one
exception. If the first letter in the command is lower-case, the
second letter in a command that requires at least two letters must
also be lower-case. So 'SE', 'Se', and 'se' all are read as 'Select',
while 'sE' is not recognized. Note that the computer only looks for
as many letters as it needs to recognize the command--other letters
are ignored, so 'NOTE' is interpreted as 'N'='Next.'

For commands that also have a number, the number follows the command name,
but THERE MUST BE AN INTERVENING SPACE. Thus, 'N 42', 'NE 42'and 'Next-a-
diddly-doo 42' are equivalent, while 'n42' (which would have worked in
Haertel’s Super-Closure) is simply read as 'Next' with no number attached.
Also, if one wants to write comments directly to the log file, any command
in which the first character is '!' is treated as a comment and ignored.
Commands beginning with '$' are interpreted as DOS commands and are passed
on to the operating system (eliminating the need to PAuse, see below).

One command, PRecedence, can take anywhere from 0 to 3 arguments.
If no argument is given, ELLA prints out the relations of precedence
used to form the current structure. If the structure was not formed
using precedence commands, the precedences consistent with the
structure are printed. If one argument is given, ELLA
interprets this as a structure reference, and prints out the precedence
relations in that structure. But PRecedence can also be used to
SET relations of precedence. In this case, two item arguments follow
PRecedence: there must be spaces between all elements, and a comma
separating arguments, as in 'PR 6, 1'. If spaces are forgotten,
ELLA is likely to intepret it simply as 'PR'. One can also add a
structure reference: in this case, it follows the item references,
as in 'PR 6, 1, 3'--make item 6 precede item 1 in structure 3.

Furthermore, there are now commands that take another command as their
argument. In this case, they are the Help, DEfaults and SHow defaults
commands. If Help is given without an object command, a summary of all
commands is printed. If either of the last two is specified without an
argument, a menu appears containing only the "major" defaults; but if an
argument is given, ELLA goes straight to the defaults for that command.
(See below).

Finally, some commands allow the direct input of a pattern as an argument.
If Add has a pattern such as 0011 as an argument, it adds that pattern.
GIve also allows for the use of binary representations.

2a. SETTINGS:
Second, ELLA saves information as to your last work environment in a
file called 'ELLA.STS', so you don't always have to specify the same
changes to the defaults. If it finds this file, it will use the last
defaults for listing, structure building, etc. If it does not, it
will use its master defaults. It also remembers the name of the data

file last used, and will prompt you if you want to use the same data.
If you use this data, ELLA will also ask you if you want to restore
the structures that were last in memory (along with their titles and
precedence information). If those structures were formed when the
data set had been sorted, ELLA will sort the data before loading them.

The settings file is updated when one exits the program through the
'EXit' command, but is not updated when one Quits. SAving data
structures does not affect the settings file. Note that if you want
to save your work from one session without overwriting the settings
file, you can SAve and Quit, then LOad the structures when you want
to re-use them.

2b. DEFAULT STRUCTURE:
ELLA is oriented around a single working default structure at any time, in
contrast to Haertel’s Super-Closure. When you first start, it assumes you
are working on data structure #1, and all commands that refer to a data
structure are interpreted as referring to the current default unless
otherwise specified. When you want to refer to all structures, such as to
SAVE all or ERASE all, enter a '0' as the structure reference.

3. STRUCTURE BUILDING:
A) SELECT

There are four basic ways to put a structure together, the 'Select'
command, and then adding patterns or adding precedence relations. With
the 'Select' command, one enters a whole group of patterns on the basis of
some cut-off criterion, which can either be 'absolute' (i.e. all patterns
greater than some specified frequency) or 'relative' to the average
frequency (i.e. all patterns greater than 3.5 times the average
frequency). Closure will be maintained as if one had entered in the
patterns one at a time. One can suppress the listing of each pattern as
it is added, or view it (see section on defaults).

4. B) NEXT / ADD PATTERNS
The second way is through the 'Next' and 'Add' commands, which allow you
to maintain closure of the resulting structure under union, under
intersection, under both, or under neither. (This last option is useful
for using ELLA to form MLLSA batch jobs. See below.) The closure method is
set under 'Defaults.' The program's start-up default is closure under
intersection. One can also add patterns without Next by entering a binary
representation of the pattern.

5. C) NEXT / ADD PRECEDENCES
The third way also uses the 'Next' and 'Add' commands, but instead
of adding patterns on the basis of frequency, it adds precedence
relations, which RULE OUT patterns. It ranks all the N(N-1)/2
precedence relations just as the patterns can be sorted by frequency.
This ranking is on the basis of the ratio of Martin's I (William, not
me). For more information on this measure, see Appendix 2 to this
document. When ELLA is operating in this mode (again, set under
'Defaults'), it will print out the precedence relation, the value
of the I-ratio, and, if requested under 'Defaults', print out the
two-by-two table for each relation. One can skip around the order
of precedence ratios just as if they were frequencies. Instead of
putting forth a list of generated patterns, it prints the excluded
patterns (if any).

5A. D) PRECEDENCES
The fourth way is the inclusion of precedence relations ala carte
through the PRecedence command (see [1]). In this case, the default
(changeable, see below) is for ELLA to list the transitive precedence
relations as they are created. This can be turned off if one is
sure one is including DIRECT preceders.

5B. It is possible to combine the frequency-based and precedence-based
methods, but makes sense only as follows: given a structure built
through adding patterns, precedence relations can then be imposed,
and the set will remained closed.

WARNING: Occasionally, the combining of methods can lead to errors.
If a structure has been formed by a method that uses precedence relations,
and a pattern is added by frequency, the closure process may add a
pattern already in the list. This error is trapped for in ELLA, which
keeps track of how you have been building structures, but it can still
happen if you try to modify structures LOaded from a disk file under
these conditions.

6. LISTING
One can either LIST out only the patterns in a current data structure,
or list out all patterns in the data with a '*' by patterns included in
the current structure. In this latter mode, one can go backwards and
forwards in the list. Also, LIST can print out rounded frequencies
or not. Finally, LIST can print out a summary of the number of all
patterns and respondents currently included in the structure.

7. SETTING DEFAULTS:
As explained above, the DEfaults and SHow defaults commands refer to
specific 'object' commands. The choice of the method of putting the
structure together (Precedence vs. Frequencies) is found under Next, and
closure rules under Add or Check. Changing to the precedence relation way
of building the structure automatically changes the default listing method
to the full listing of all patterns in the data, though the user can of
course change it back. SHowing the 'SWitch' command produces a list of
the number of patterns in each structure. The various options discussed
above are controlled through the 'Defaults' command. When any type of
'DEfaults' is specified, the computer goes through all the relevant
defaults. If one simply enters <CR> for any question, the default is left
unchanged. If no object command is given, a menu appears which contains
options for the most commonly used defaults. To get the "minor" defaults
from the menu, one would have to use the "All" option.

To examine the defaults, one uses the 'SHow' (defaults) command. This has
the same syntax of taking an object command, or, if no object is
specified, of going to a menu of the major defaults.

8. STRUCTURE HANDLING
In ELLA you can build up more than one algebraic structure at a time--the
default set up is for nine or ten. However, the number of structures
is changeable through the DEfaults SWitch command. Decreasing the number
of structures can be a way to save memory space needed for computations
(though savings will tend to be slight). See section on memory handling.
In all cases, the number of items is limited to 16. (There
may be different limitations for running MLLSA--see below.)

9. DEFAULT FILENAMES
ELLA takes the filename entered for the LOG (if there is one), and uses
it as the basis for forming a number of different files, unless the
user decides otherwise. By default, it will make a <FILENAME>.LOG
log file, a <FILENAME>.SAV save file for completed data structures,
and a <FILENAME><STRUCTURE#>.INP file for MLLSA (see below).

10. MAPPING
MAp will warn if the structure has not been built under intersection-
closure (which is likely to lead to error), but will still attempt an
inversion. If the structure has not been built according to any closure
rules, the 1- and 0-vectors will not be added. MAp now not only gives
the schema for creating the lattice along with the inversion but, given
graphics capability of the computer, graphs it. Press <CR> when done
viewing to continue. The MAp routine is limited to 500 nodes, the
graphic routine in ELLA to 200 nodes. The graphic routine may not
always produce the pretties version of the lattice--the picture can
be changed using a different program. MAp prompts whether to create
a file that can be used in the network-graphics program KRACKPLOT. If
one exports the picture to KRACKPLOT, available from ANALYTIC
TECHNOLOGIES, it can be edited and printed as well. YOU CANNOT PRINT
DIRECTLY FROM ELLA.

11. DATAFILE HANDLING
Data files in a number of different ASCII forms can be read--it is not
necessary that the user know the format, though formatted input is still
possible. The 'standard' type is considered to be sequential format,
where first the pattern vector is stored in 1's and 0's, and then the
frequency follows. It is only important that there be spaces between each
value, including the 1's and 0's in the pattern representation. (A
program to facilitate the data handling, CONCON, is included with ELLA,
and it stores data in such fashion). Data that are produced by the SPSS
CROSSTABS /WRITE=ALL command are directly readable in the form in which
SPSS makes them. This is a convenient way of producing contingency table
data from individual data.

Thus to create the data for ELLA from SPSS for 4 variables, A, B, C and D,
originally scored (1=yes) (2=no), the syntax would be

RECODE A B C D (1=1) (2=0) (ELSE=SYSMIS).
FILE HANDLE OUT /NAME=’C:\ELLA\MYDATA.DAT’
PROCEDURE OUTPUT OUTFILE=OUT.
CROSSTABS VARIABLES=A B C D (1,2).

/TABLES=A by B by C by D
/WRITE=ALL.

Note that in this form, ELLA expects the variables to be scored 1,2 and
not 0,1, so don’t recode; just tell ELLA to read this in as SPSS crosstabs
output. Alternatively, you can convert it to standard form using CONCON.
Standard form looks something like this:
0 0 0 0 34
0 0 0 1 23
0 0 1 0 45
0 0 1 1 88
... etc.

See an SPSS manual for details. If the variables are not in integer form,
be sure to use the file input format that allows for this possibility.

NEW: In some cases (such as using ELLA to produce lattices for other
applications, such as network data), you will not actually wish to analyze
data. In this case, you can simply enter $NONE when asked for the
filename (all caps). A data set with all patterns frequency 2 will be set
up; you can use the add command to create the desired structure.

12. WRITING CDAS MLLSA INPUT FILES:
With the 'Write' command, ELLA uses the current structure to
make an input file for Scott Eliason's CDAS program, with its
version of MLLSA, which it either puts in the root
directory, or in a C:\CDAS directory if you want.
It has a series of defaults which can be changed, and automatically
sets up a CPROB matrix given a generic error term (such as .9--anywhere
in the structure where a 1 is found, it replaces with .9, and anywhere
where a 0 is found, it replaces with .1). Particular values can of
course be changed. Write also computes LCPROB start values with
different possible methods, including the proportion of observed data
in any pattern, and will trap for errors such as probabilties that do
not sum to one or are zero (it will automatically adjust for the
latter case). You may also fix parameters by entering the relative
constraints for each pattern. The executable MLLSA file by default
has the base name of the LOG file and the structure number as its
name, and an INP extension. Value labels and variable names are not
done.

A default option determines whether ELLA makes one long file for your
different models, or separate input files for each model. When you
want to end a long file, use the CLose command. (For CDAS options
syntax, see below.)

At the same time, WRITE will make a version of the data file that
CDAS needs, and save it using the same base name as the original
data file, but with a 'L' after this name, to indicate that the
left-most variable is moving fastest. (If the data was originally
read in this format, it will not make this additional file.)

13. ON-BOARD MLLSA:
ELLA also incorporates a version of MLLSA. Options are specified in
the DEfaults MLlsa command, and use the same code as CDAS, namely:

Option 1 -- do independence model
Option 2 -- assign cells to latent classes

NOT CURRENTLY SUPPORTED
Option 3 -- give details of first and last iterations
Option 4 -- print cell frequencies, expected values, standardized

residuals, and Freeman-Tukey residuals
Option 5 -- use previous final values as new start values:

NOT CURRENTLY SUPPORTED
Option 6 -- Check local identifiablity of parameters
Option 7 -- Print matrix of derivatives

Other options: this version of MLLSA has two additional options which,
for compatibility with the Write routine, are not entered on this
options string, but separately through the DEfaults MLlsa command.
The first is to have option 6 also lead to the computation
of the variance/covariance matrix of parameters. The second is to
"Beep" when the analysis is finished (useful for big data sets).

Results are printed to a special file. You can review the results
with the REview command--output is printed to the screen and, by
default (which can be overriden using DEfaults REview), to the
log file. The temporary results file will then be over-ridden. More
information is available from online help.

14. COMMANDS:
Below is a list of all commands. Each command is written as follows:
the capitalized letters indicate the minimum letters that must be entered
for the command to be recognized. A # indicates a number
referring to a structure, while ## indicates a number referring to an
item, and ### indicates a number referring to a pattern (or, in the
case of Next building through precedences, to a precedence relation).
B indicates the direct binary representation of a pattern (ex: 0110).
[#] indicates that the number is optional. [ob] indicates an optional
"object" command, namely another command as an argument.
[str] indicates an optional string. / indicates a choice of argument.

LIST OF COMMANDS
Add [#/B] : Add current pattern or precedence relation to data structure #.

If B given, add pattern B to default structure.
Check [#] : Check result of adding current pattern (not precedence

relation) to data structure #
DEfaults [ob]: Change default settings for specified command. If no command

specified, go to menu with most likely default groups.
DUplicate [#]: Duplicate structure # to next available position.
ERase [#] : Erase structure #. If [#] is 0,

all data structures are purged.
EXit : Equivalent to SAve followed by Quit, plus settings file updated.
File : Switch to a new data file without quitting the program.
Give ###/B : List which patterns (if any) in the current structure

produce pattern ## under current closure rules.
Trivial intersections/unions such as those that include
the pattern itself are ignored.

GUttman [#] : Produces a Guttman scale for the items based on marginals
and includes the precedence relations.

Help [ob] : Print out information about object command. If no command
is specified, this list is printed.

Index [#] : Lists INDEX NUMBERS of patterns in structure #.
LIst [#] : Lists all patterns in structure # (see section 6).

LOad : Loads previously stored structures from a .SAV file.
MAp [#] : Generates lattice MAP of structure #.
MLlsa [#] : Immediately analyze with Mllsa.
Next [###] : Get Pattern/Precedence #-Next if No Number Specfied.
Open : Open new file for data output.
PAuse : Allows the user to enter in DOS commands, such

as file manipulation, without having to quit ELLA. A single
command is executed and then ELLA resumes; if one wishes to
enter more than one command, type 'COMMAND' first, as
many DOS commands as wanted, and then 'EXIT'
to return to ELLA. **THIS COMMAND MAY BE DEFUNCT ON MODERN OS**

PRecedence [##, ##][,][#]
: Displays relations of precedence among items used to

create structure # if no item references given, otherwise
adds a precedence relation from the first to the second item
specified in the given (or default) structure.

RAnk : Ranks the items by 'hardness' as if they were unidimensional.
REview : Review MLLSA output.
Quit : End immediately without saving.
SAve [#] : Save structure #. If [#] is 0,

all data structures are saved.
SElect : Choose a set of patterns by cut-off criteria
SHow [ob] : Prints current default settings (see 'DEfaults', and

main text).
SOrt : Sort the data by frequency, so that one may begin with

the most common response patterns. This is useful since
ELLA now reads data files in different forms.

SWitch # : Changes the default structure to #.
Title [str] : Gives a structure a mneumonic title, (the specified string)

which is later used when SAving it or Writing.
Undo : Undo last command.
Version : Print version number and memory requirements.
Write [#] : Makes an input batch file for MLLSA (see section 12 for

details).

15. ORGANIZATION OF COMMANDS
The commands may be broken down into the following categories:
A. File handling and Manipulation:

FIle
Open
SAve

B. Default control:
DEfaults
SHow

C. Information about data set:
GIve
RAnk
SOrt

D. Structure building:
Add
Check
GUttman
Index
LIst

MAp
Next
PRecedence
SElect
Undo

E. Structure handling:
DUplicate
ERase
LOad
SWitch
Title

F. Model fitting:
MLlsa
REview
WRite

G. Other ELLA:
EXit
Help
PAuse
Quit
Version

16. A TYPICAL SESSION
An example of a typical session is provided in the run package as
'SAMPLE.LOG', and may be viewed with an editor or printed. Comments
are added using the ! (see paragraph 1).

1. A session begins with the
loading of a datafile, either the last one used (ELLA prompt) or a new
one. Note that the file-type must be correctly specified--ELLA does
not trap incorrectly specified file types. If you see a lot of '1's
and '0's for cell frequencies, there was probably a misspecification
either of file type or number of variables. Also, note that the correct
path must be specified if the file is not in the current (ELLA)
directory.

2. The defaults are set for the type of building that is to be done.
The data may be sorted by frequency. Information about the data set
may be gotten before the structure is built.
Old structures can be loaded in, or only new ones used. NOTE: it does
not matter if structures formed in an unsorted data file are loaded in
after the data is sorted or vice-versa.

3. Structures are produced by
a. Adding patterns through Next and Add;
b. Adding patterns through SElect;
c. Adding precedence relations through Next and Add;
d. Adding precedence relations through PRecedences; or
e. Forming a GUttman scale.

4. A model is fit using MLLSA. After the routine is finished, the
results are REviewed.

5. A descriptive title is given to the structure, possibly including

specifics as to the MLLSA model specifications.

6. One SWitches to another structure slot and produces another
structure, etc.

7. Structures may be saved for later contemplation.

8. The program is exited.

NOTE: The SHow SWitch command, which lists the current structures in
memory, also gives the Raferty's BIC (Bayesian Inference Coefficient)
for models that have been fit with MLLSA, so as facilitate the comparison
of many models. For this reason, if you plan to fit more than one model
of the same structure (such as a "strong" model, or different conditional
probability restrictions), it makes sense to DUplicate the structure to
another slot before running the next model, so as to be able to compare
BICs--and it also helps to Title the structures in a way that the
differences between MLLSA models are clear.

17. MORE HELP AND DEBUGGING.
ELLA has online help for each command, which will tell you in more
detail about command syntax, arguments, and defaults. Other information
is available on-line regarding latent class analysis from within the
Write and MLlsa commands.

Bugs are bound to remain in the program, and when errors do occur, make
sure to save the log file (and other associated files, such as 'SAV' or
'INP' files, or even the 'ELLA.OUT' file if the bug leads to inter-
ruption of the MLLSA routine before the results can be REviewed). There
is also a slim possibility that the program will notify you of some
programming problem which has been corrected, but should still be looked
into. (You will see a message such as '*DEBUG: Routine sort list
exhausted'.) In this case also save the log file.

APPENDIX 1: The original instructions of Ed Haertel's SUPER-CLOSURE

'SUPER'-CLOSURE: PROGRAM FOR INTERACTIVE MODELING OF
'SUPER'-CLOSURE: PROGRAM FOR INTERACTIVE MODELING OF

LATENT RESPONSE PATTERN LATTICE STRUCTURES.

THE BASIC IDEA OF THIS PROGRAM IS THAT A SET OF (TRUE OR
LATENT) PERFORMANCE STATE PATTERNS REPRESENTS THE UNION OF
ONE OR MORE DISTRIBUTIVE LATTICES REPRESENTING UNIQUE ABILITY
CONFIGURATIONS ENABLING EXECUTION OF THE RESPECTIVE ITEMS.
IF EACH ITEM CAN BE SOLVED USING EXACTLY ONE SET OF UNDERLYING
ABILITIES, THEN A SINGLE 'ABILITY STRUCTURE' SHOULD SUFFICE. IF
ONE OR MORE ITEMS CAN BE SOLVED USING ONE OR MORE DISTINCT SKILLS,
THEN TWO OR MORE ABILITY STRUCTURES MAY BE REQUIRED, ACCOUNTING
FOR (OVERLAPPING) SUBSETS OF THE LATENT ABILITY PATTERNS.

THIS INTERACTIVE PROGRAM INCORPORATES CODE FROM THE EARLIER
(NONINTERACTIVE) 'CLOSURE' PROGRAM, HENCE 'SUPER-CLOSURE'.
IT CAN MAINTAIN UP TO 9 DATA STRUCTURES SIMULTANEOUSLY,
AND CAN HANDLE LATENT RESPONSE PATTERNS ON UP TO 30 ITEMS. UP
TO 2050 LATENT RESPONSE PATTERNS (WITH ASSOCIATED FREQUENCIES)
MAY BE INPUT.

INPUT IS A FILE CONTAINING A LIST OF 1-0 VECTORS AND
ASSOCIATED FREQUENCIES. THE LIST IS TREATED AS ORDERED;
USUALLY ORDER WILL BE DESCENDING FREQUENCY. THE LIST
COULD BE EITHER OF MANIFEST RESPONSE PATTERNS OR OF
ESTIMATED FREQUENCIES OF LATENT RESPONSE PATTERNS. LATTER
IS THE USE I HAVE IN MIND AT THE PRESENT. SUCH A LIST IS
GENERATED, FOR EXAMPLE, BY 'DISATT' PROGRAM, WHICH ACCEPTS
VECTORS OF TRUE POSITIVE AND FALSE POSITIVE PROBABILITIES
FOR A SET OF ITEMS, TOGETHER WITH MANIFEST FREQUENCIES, AND
CALCULATES CORRESPONDING LATENT RESPONSE PATTERN FREQUENCIES.

THE USER OF THIS PROGRAM REQUESTS PATTERNS SEQUENTIALLY FROM
THE INPUT LIST, ALTHOUGH THERE IS AN OPTION TO MOVE AROUND
IN THE LIST. PATTERNS ARE REFERRED TO ONLY BY THEIR INPUT
LIST SEQUENCE NUMBERS. IT WILL BE HELPFUL TO HAVE A PRINTOUT
OF THE INPUT LIST AT HAND WHEN RUNNING THIS PROGRAM.

AFTER REQUESTING NUMBER OF ITEMS, INPUT FILE NAME, AND INPUT
FORMAT, PROGRAM READS ENTIRE LIST INTO MEMORY AND REQUESTS A
COMMAND. EACH COMMAND CONSISTS OF A LETTER (UPPER OR LOWER
CASE) READ IN COLUMN 1, USUALLY FOLLOWED BY A NUMBER. ONE OR
MORE SPACES BETWEEN THE LETTER AND THE NUMBER ARE OPTIONAL.
THE MEANING OF THE NUMBER (IF ANY) DEPENDS ON THE PRECEDING
LETTER:

N GET NEXT PATTERN. THIS WILL ALWAYS BE THE FIRST COMMAND,
AND RESULTS IN DISPLAY OF "CURRENT PATTERN IS" LINE.
AN ALTERNATIVE FORM OF THIS COMMAND IS N<#>. THIS GETS
THE PATTERN AT LOCATION <#> IN THE INPUT LIST. SUBSEQUENT
'N' REQUESTS WILL CONTINUE FROM THERE. IT IS PERMISSIBLE
TO GO BACKWARD OR FORWARD.

C<#> CHECK RESULT OF ADDING CURRENT PATTERN TO DATA STRUCTURE
INDEXED BY <#>. ANSWER IS EITHER 'ALREADY IMPLIED' OR ELSE
A LIST OF NEW PATTERNS IMPLIED. FOR EACH OF THESE NEW
PATTERNS, IF IT IS IN THE ORIGINAL INPUT LIST, ITS SEQUENCE
NUMBER AND ASSOCIATED FREQUENCY ARE GIVEN.

A<#> ADD CURRENT PATTERN TO DATA STRUCTURE INDEXED BY <#>.
OUTPUT OF THIS COMMAND IS IDENTICAL TO THAT OF C<#>. IF
IMMEDIATELY PRECEDING COMMAND WAS C<#>, THE COMMAND 'A'
MAY BE GIVEN WITHOUT A NUMBER. IN THIS CASE, THE <#> FROM
THE 'C' COMMAND IS IMPLIED, AND REDUNDANT OUTPUT IS SUPPRESSED.

R<#> ERASES DATA STRUCTURE INDEXED BY <#>. IF <#> IS OMITTED, ALL
DATA STRUCTURES ARE PURGED.

D<#> DUPLICATES DATA STRUCTURE INDEXED BY <#>. THE COPY CREATED
WILL BE ASSIGNED THE FIRST AVAILABLE INDEX NUMBER.

S TRIGGERS REQUEST FOR OUTPUT FILE NAME, THEN UPDATES,
SORTS, AND OUTPUTS ALL CURRENT DATA STRUCTURES. UPDATING
REFERS TO A COMPARISON OF EACH PATTERN LIST TO THE INPUT
DATA LIST FROM THE FIRST THROUGH THE CURRENT PATTERN. FOR
EACH MATCH, THE INTERNAL SEQUENCE NUMBER IS UPDATED SO THAT
WHEN DATA ARE OUTPUT, EXTANT PATTERNS ARE NOT DENOTED AS

GENERATED PATTERNS. NOTE THAT WORK CAN BE SAVED AT WILL,
AT INTERMEDIATE POINTS IN ANALYSIS. S<#> SAVES ONLY DATA
STRUCTURE INDICATED BY <#>. AT TIME OF SAVE, OPTIONAL
COMMENTS MAY BE ENTERED. THESE ARE SAVED WITH THE DATA
STRUCTURE(S). NOTE THAT UPDATING CAN BE SUPPRESSED BY
PRECEDING S COMMAND WITH "N 1"

O OPENS NEW FILE FOR DATA OUTPUT. ONLY ONE FILE CAN BE OPEN
AT A TIME, AND ONCE CLOSED, A FILE CANNOT BE REOPENED.

Q QUITS IMMEDIATELY WITHOUT SAVING

E 'EXIT', EQUIVALENT TO S FOLLOWED BY Q

U UNDO LAST COMMAND (CANNOT UNDO 'S', 'O', 'Q', 'E', OR 'U' ITSELF;
UNDO IS MEANINGLESS FOR 'C'.)

L LISTS ALL PATTERNS INCLUDED IN A GIVEN STRUCTURE

M GENERATES LATTICE MAP OF A GIVEN STRUCTURE

I LISTS INDEX NUMBERS OF ALL PATTERNS IN STRUCTURE

APPENDIX 2: Ranking of precedence relations.

In constructing a measure that would allow one to automate the
search for precedence relations, there are three things one
would want to take into account. The first, obviously, is how
small the (A1=0, A2=1) cell is for the A1->A2 relation. A cell that
approaches zero is compatible with a relation of precedence. But
at the same time, one would also want to take into account the size
of the (A1=1, A2=0) cell, so as not to mistake a symmetrical relationship
of association for a relation of precedence. Finally, one would want
to take into account the over-all N as a way of determining whether
a small count was significantly small or might be due to simply
having very few cases.

In looking for such a measure, I have turned to an asymmetric index
derived by William Martin, that assumes causality that is necessary
but not sufficient (or the other way around). This measure goes
to 1 when the (A=0, B=1) cell is zero, and goes to 0 when the product
of the off-diagonal cells is the same as the produce of the diagonal
cells. The formula is

ad-bc
I = ----------
b (a+b)(b+d)

where a,b,c, and d represent the values in the 2x2 table thusly:

A2
0 | 1
+---+---+

0 | a | b |
A1 --+---+---+

1 | c | d |
+---+---+

One can intuitively see how it controls for the marginals (as opposed
to a just looking at the b cell). At the same time, it does help
indicate when the data are compatible with the relationship of
precedence A1->A2. We can also see that

ad-bc
I = ----------
c (a+c)(c+d)

is the corresponding measure for the relation A2->A1. I therefore
take the ratio of the two measures, I(b)/I(c), which is

(a+c)(c+d)
I = ----------
r (a+b)(b+d)

Now this measure still does not take into account the total N, but
since this is constant over the subtables being compared, it is
irrelevant in this case. We can see that it basically is adjusting
the ratio c/b by amount in the diagonal cells, and seems to be a
fitting way of ranking precendence relations. In ELLA, for any two
items, if I(r) is less than one, the order of the items is reversed
and the inverse of I(r) listed.

