
                Documentation for Beta-Binomial Program 

 

I.  General 

This program allows one to fit a latent trait model with a distribution 

of the latent variable that is two-parameter beta to dichotomous data.  Both 

constrained and unconstrained models are allowed.  Data with separate 

groups may also be analyzed.  Maximum likelihood estimates are produced through 

two different algorithms.  The program is interactive, and results are written 

to a file 'BETA Date Time.LOG' in the current directory.  (For “Date Time,” the 

current date and time are written, so you won’t accidentally overwrite old log 

files.)  In addition to this documentation, a flowchart is provided that will 

aid in navigation through the program. 

 

REQUIREMENTS:  This version is a recent recompilation of a program originally 

designed to run in an extended DOS environment.  The change to Windows NT/98 has 

not affected the numerical results, but may have adversely affected some 

presentation.  Please tell us if anything does not seem as it should be.  When 

you start up BETA, it may begin in full screen mode.  You should probably shift 

to a windowed format (Alt-Enter) and then page so that the bottom of the window 

isn’t cut off by some scroll bar; otherwise the page may blink when you type.  

You may not see a cursor—sorry about that—and so if you ever think the program 

has hung, it may be that BETA is waiting for input from you.  (For some types of 

input, such as a number, if you press <CR> without specifying a number, BETA 

will keep on waiting for that number.) 

 

DATA FILE:  BETA reads in ASCII text file data in a number of forms. Data 

files in a number of different ASCII forms can be read--it is not 

necessary that the user know the format, though formatted input is still 

possible.  The 'standard' type is considered to be sequential format, 

where first the pattern vector is stored in 1's and 0's, and then the 

frequency follows.  It is only important that there be spaces between each 

value, including the 1's and 0's in the pattern representation.  (A 

program to facilitate the data handling, CONCON, is included with BETA, 

and it stores data in such fashion).  Data that are produced by the SPSS 

CROSSTABS /WRITE=ALL command are directly readable in the form in which 

SPSS makes them.  This is a convenient way of producing contingency table 

data from individual data.   

 

Thus to create the data for BETA from SPSS for 4 variables, A, B, C and D, 

originally scored (1=yes) (2=no), the syntax would be 

 

RECODE A B C D (1=1) (2=0) (ELSE=SYSMIS). 

FILE HANDLE OUT /NAME=’C:\BETA\MYDATA.DAT’ 

PROCEDURE OUTPUT  OUTFILE=OUT. 

CROSSTABS VARIABLES=A B C D (1,2). 

  /TABLES=A by B by C by D 

  /WRITE=ALL. 

 

See an SPSS manual for details.   

 

You may use this form to enter grouped data.  In this case, the group must 

be the LAST variable used—it will be furthest right and changing least 

frequently.  Because SPSS will write out a cell for each combination, even 

if it is empty, BETA just takes for granted that the first 2**N lines are 

for group 1, where N is the number of items, the second 2**N for group 2, 

etc.  So it doesn’t care what the group numbers are in this format, it 

just assigns them consecutively as would follow. 



 

Also note that in this form, BETA expects the variables to be scored 1,2 

and not 0,1, so don’t recode; just tell BETA to read this in as SPSS 

crosstabs output.   

 

Alternatively, you can convert it to standard form using CONCON.  Standard 

form looks something like this: 

0 0 0 0 34 

0 0 0 1 23 

0 0 1 0 45 

0 0 1 1 88 

... etc. 

  

NOTE THAT THE VARIABLES USED TO INDICATE THE PATTERN MUST BE INTEGERS;  if 

they have places to the right of the decimal in your SPSS system file, 

they will retain them in the CROSSTABS produced file.  BETA can read in 

these non-integer values, but be sure to specify this file format (option 

6 in the menu).  In the standard form, the group data should be the last 

variable; group numbers must be consecutive integers—if they don’t start 

at 1, BETA will recode them so that they do. 

 

IMPORTANT NOTE:  The data must be coded such that 1 is consistently either a 

positive or a negative response; the covariation between all items must be 

positive.  If you are using data from multiple groups, it may not be possible to 

code the data such that this is true for all groups.  In such cases, the model 

cannot be fit; you must collapse over the offending item(s). 

 

 

II.  Program Structure 

There are four major chunks of the program, accessible from a menu. 

 

i)  CHANGE CERTAIN PARAMETERS 

One chunk is to change certain default values that affect program flow 

or the  iterative procedures used to find MLEs.  Changable parameters 

are the maximum number of iterations, the tolerance for the iterative 

procedure.  One can also choose whether to proceed directly to a set 

of starting values (see below), or go systematically through the data, 

viewing different normalizations through 2 by 2 tables.  One can also 

choose whether the iterative procedure writes additional information to 

the logfile, such as the values of different parameters at each stage 

in the iteration, various warning messages, what subroutine the program is 

in, etc.  These options lead to a huge LOG file and should only be used 

when one suspects a problem with the iterative procedure.  Another default is 

whether to try to have BETA handle overflows (i.e., parameters getting too 

large).  If your model converges instantly with a bad fit and this default is 

ON, try turning it off. 

 

ii) ANALYZE DATA FROM DISK--initial 

The second chunk brings in a datafile and computes preliminary estimates 

from the 2 way tables, fixing one variable for the purpose of estimation.   

One can go through all the variables, fixing each in turn, or do just one. 

If the default is changed from the interactive mode to the direct mode 

(see previous paragraph), this stage is skipped, and the start values are 

loaded into memory.  NOTE:  the current default is to skip the interactive 

mode.  Preliminary fits are obtained, but experience shows that poor preliminary 

fits may be deceiving.  The initial parameter values for each preliminary fit 

are written to the log file; it is possible to produce complete information on 



the preliminary fit (see below).  The preliminary fits are relisted if all 

variables have been tried, to guide the choice of start values for iterative 

estimation. 

 

NOTE:  If you are analyzing data that are from separate groups, we recommend you 

use the default file format—the other file formats should work, but have not 

been tested.  In the default format (or in the user specified format) the 

grouping variable must be in between the indicator variables and the frequency; 

it must go from 1 to G where G is the number of groups (i.e. there can be no 

skipped group numbers).  If your data are not in this form, use CONCON and a 

text editor to get them in shape.  If the proper number of groups are not 

detected, BETA will warn you.  (Don’t try loading grouped data in a different 

form—BETA may not notice and everything will go kerflooey.)  If you use the 

crosstabs write output format, make sure the grouped data is last (see above).  

If you use a frequencies only format, the first 2**NI patterns will be assumed 

to be from the first group, the second 2**NI from the second, etc.  BETA will 

number the groups automatically.  You should have a return between groups. 

 

iii) ANALYZE DATA FROM DISK--MLE 

The third chunk allows one to compute maximum likelihood estimates  

iteratively.  Given the peculiar case of the near-unidentifiability of 

the model, one has a choice whether to place a restriction on the model 

by fixing one parameter (an item parameter), or whether to fit an 

unrestricted model.  An unrestricted model may take a long time to converge, 

and require certain choices of fitting procedure (see below).  More  

important, the standard errors of the parameters will be far larger than 

the values of the parameters themselves (with the possible exception of 

the b distribution parameter).  A restricted model, while having reasonable 

standard errors, is not generally the true Maximum Likelihood estimate for 

the full parameter space, and in some cases (depending on the fixing value 

chosen), this may lead to the error of a model being rejected that actually 

fits. 

 

One way of handling this complication is to fit both restricted and unre- 

stricted models.  An unrestricted model should be fit using the simplex 

method (see below), with a very low tolerance (below 10E-15 for safety). 

This method is less susceptible to local minimums than the conjugate gradient  

method.  Because the log-likelihood function has a very long, almost 

but not completely flat ridge along the "line" of relatively constant 

ratios of item parameters, the algorithm will creep up to the top and stop 

there.  Because of the peculiarities of the difference between the power-of- 

a-beta-function and a proper beta function, this true maximum will probably  

have very low values of the parameters compared to the start values (perhaps 

two orders of magnitude less for the item parameters). 

 

One can also fit restricted models, and compare the difference in fit as 

a one-degree-of-freedom test, and see if a significant loss occurs with 

the restricted case.  Finally, one can first find the global maximum, then 

fit a restricted model where one of the parameters is fixed to the value 

found at this maximum.  One can then derive standard errors for the reduced 

set of parameters and, if feeling guilty, recompute the probability of the 

chi-square as having one less degree of freedom than it seems. 

 

GROUPED DATA 

If your data are grouped, you can fit models that constrain some parameters 

to be the same for all groups, but others may differ (any constrained para- 

meters must be equal for ALL groups, not just some).  You will be presented 



with a list of the parameters in the model, with the distribution parameters 

first.  Put an 'x' under any parameter you wish to be constrained to be the 

same for all groups; leave all other spaces blank.  Remember to take into 

account any previous constraints you may have placed on the parameters. 

 

For examples of grouping hypotheses, and how they tranlate into these 

constraints, we consider a four variable, two group case. 

Hypothesis 1:  items are invariant, but groups have different distributions. 

              (a common null model for item-bias tests).  Whether restricted 

              or unrestricted in terms of setting the metric, you would enter 

              ab1234 

                XXXX (your input) 

 

Hypothesis 2:  distribution of latent trait is same, but item parameters 

             are different (as in an treatment-control experiment).  Again, 

             whether or not the metric was set by a restriction, you would 

             enter 

             ab1234 

             XX 

 

Hypothesis 3:  complete independence--both groups are different in distribut- 

            ion and in item parameters.  While this is the same as adding 

            the likelihood ratio chi-squares for the tests independently, it 

            may be a null model, and one may wish to compute it using the 

            grouped data.  If fitting unconstrained models (i.e. no item 

            parameter is constrained to set the metric), you do not enter 

            any constraints at all under "ab1234."  But if you wish to test 

            independently constrained models, they must have the same variable 

            set to the same value.  For example, if metrics for both groups 

            were identified by setting K1 to 1, you would both give this 

            restriction in response to "Fix one parameter?" AND enter 

            ab1234 

              X 

 

 

SCORES 

Both the intitial and maximum likelihood estimates produce estimated 

frequencies, chi-squares, and residuals.  Optionally, one can get the 

derivatives and standard errors of estimates of parameters, estimated 

average scores on the latent variable for each cell, and plot the  

distribution of the latent variable.  The scores can be written to a  

current file (Name=<filename-base>.SCR) which is saved on exit or when a new 

datafile is loaded.  These scores can then be read in by SPSS and regressions of 

one set of scores on another made.  To read in the data under SPSS, choose  

FILE->READ ASCII DATA and FREEFIELD FORMAT.  The data will be loaded with each 

normalization a case and each cell a variable.  You can save templates for 

frequently used numbers of variables.  Here is the SYNTAX for four variables--

you can paste it from here into a SPSS syntax box: 

 

SET 

  UNDEFINED= WARN. 

DATA LIST 

  FILE='C:\BETA\filename.SCR' FREE /c1 * c2 * c3 * c4 * c5 * c6 * c7 

 * c8 * c9 * c10 * c11 * c12 * c13 * c14 * c15 * c16 * . 

EXECUTE. 

 

Once the Data are read in, Transpose the matrix through DATA->TRANSPOSE. 



This will put them in the form of each cell being a case, and having four 

variables, each variable a normalization.  A new variable will be created 

that is the label for each cell.  You can then SCATTERPLOT and label the 

points by the case label Case_lbl, or do regressions. 

 

iv) GENERATE DATA 

The fourth chunk generates data from a set of parameters.  The program 

will remember the last parameters used, if you want to make variations. 

You can also add a disturbance term which will, proportional to the  

estimated frequency, perturb the final count, for various experiments.  This 

is set under CHANGE CERTAIN PARAMETERS.  If a datafile is in memory, you 

can compare the fit of these entered parameters to the data, or use them 

as start values for iterative fitting.  This is therefore the way to start 

a routine at an arbitrary place.  You can save the generated data as a 

TYPE 4 (default) data file, and re-read it in for analysis. 

 

III.  Routines Used 

A.  Iterative fitting 

Two different procedures are currently implimented, both taken from Numerical  

Recipes in Fortran.  The first is a conjugate gradient method, which uses 

the first derivatives to take successive turns maximizing along one dimension, 

and then along a dimension conjugate to that, etc.  Currently, without being 

adapted to the peculiarities of this model and the bounds of the parameters, 

this method does not seem as efficient as it could be.  It is okay for 

when one parameter is restricted.  This method is the Polak-Ribiere adaptation 

of the Fletcher Reeves algorithm.   

 

The second method--the Downhill simplex Method--involves the creation 

of a N+1 dimensional simplex of parameter points (where N is the number of  

parameters) and the worst point of the simplex is replaced, moving the  

simplex as a whole steadily (but slowly) to the maximum.  Because the simplex 

does not contract until it has to, it retains a wider range of alternative 

points to the maximum that is being zeroed in on by the conjugate gradient 

method, and is less likely to fall into a local maximum.  This method is 

from Nelder, J. A. and Mead, R. COMPUTER JOURNAL v. 7(1976):308-313. 

 

When using this method, restarting the algorithm at the stopping point is 

helpful in avoiding premature maximums.  The routine will select a new  

simplex by perturbing around the current maximum, and will begin searching 

anew.  Such a restart is not helpful with the conjugate gradient technique. 

While the conjugate gradient technique will generally converge in a number 

of iterations on the order of 100, the conjugate gradient will be of an 

order higher, and therefore the number of maximum iterations should be high 

for this method.  The iterations are quite fast.  In both cases, in an un- 

restricted model, the tolerance for the algorithms should be very low, since 

small differences in likelihood are associated with big differences in  

parameter estimates. 

  


