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Original Article

Although field theory has become increasingly popular in 
sociology (e.g., Armstrong 2002; Barman 2007; Berman 
2006; Evans and Kay 2008; Ferguson 1998; Fligstein and 
McAdam 2012; Go 2008; Haveman, Rao and Paruchuri 
2007; Lounsbury, Ventresca, and Hirsch 2003; Quinn 2008; 
Rawlings and Bourgeois 2005; Ray 1999), sociologists con-
tinue to struggle with the problem of how to quantify fields 
and field effects. To be sure, there are quantitative tech-
niques related to the field theoretic project. In large part 
because of the influence of work such as Distinction 
(Bourdieu [1979] 1984), there has traditionally been a close 
association between correspondence analysis (CA) and 
Bourdieuean variants of field theory in particular (see 
Bourdieu and Wacquant 1992:96). Insofar as it taps into the 
notion of field as topology (see Martin 2003:28), the appeal 
of CA is clear. Even more, it embraces description (see 
Benzécri 1991) and the notion of duality (Breiger 2000) that 
have connections to the field theoretic rejection of main-
stream social ontology.

At the same time, the mathematical properties of CA are 
fundamentally at odds with the insights that led to field the-
ory in the first place. In particular, its physical interpretation 
is one in which we have masses somehow “held” apart from 
one another. This vision is somewhat like the “crystalline 
spheres” of pre-Galilean astronomy, as criticized by the piv-
otal field theorist Wolfgang Köhler (1947:131). In contrast, 
the field theoretic approach ala Faraday (also cf. Köhler 
1920; Maxwell [1891] 1954) posits dynamic equilibria 

arising from sets of local nonindependencies that aggregate 
up into a wholistic field effect.

In this article, we turn to the core principles of field theory 
in the social sciences, and to the mathematics of random field 
theory, to derive some extremely simple approaches to mea-
suring the strength and organization of fields in some very 
particular cases. Although this must be understood as the 
merest beginnings, we find that these techniques not only are 
rigorously derivable from the field theoretic perspective but 
that they shed new light on processes long of interest to 
social scientists.

An Approach to Measuring Fields

Overall Logic

In the classical field theoretic tradition, a field must be distin-
guished from space. Whereas space is the necessary back-
drop for all our observations, a field exists only where there 
is evidence of a field effect. The mere fact that social objects 
or practices can be arranged in some sort of space does not 
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imply the presence of a field effect; correlatively, we can 
measure a field effect only if we know “where” objects are in 
space. Hence, we need methods of determining whether 
there even is a field effect, methods that would have the fol-
lowing two characteristics: first, they would be separable 
from methods of positioning objects in a space; second, they 
would be descriptive and independent of the correctness of 
any particular model, in the way that the mean, standard 
deviation, and correlation are model-independent descrip-
tions of univariate and bivariate distributions.

Here, we begin with the work of two of the most impor-
tant of the first generation of field theorists, Kurt Koffka and 
Wolfgang Köhler. They struggled with two questions: how to 
conceptualize the processes that generate a field and where 
to put the field. Regarding the latter, Koffka (1935) argued 
that although we could perhaps understand field theory as 
applying to a purely phenomenological matter of the pushes 
and pulls on each behaving organism (as in Kurt Lewin’s 
[1951] approach), this approach tends to degenerate into 
solipsism. We must therefore also pay attention to what he 
called the “geographic environment,” and only on this basis 
can we derive the “environmental field.” For we do not find 
ourselves (as actors) within our own heads (as Lewin’s draw-
ings actually implied) but rather in the world. Thus it is only 
attention to what is on the other side of our eyeballs that can, 
or so Koffka argued, stabilize a field theoretic approach.

And indeed, this allows us to follow the most daring of the 
field theorists, Wolfgang Köhler, in his formulation of the 
processes that generate fields. Köhler argued that fields were 
one manifestation of a larger class of self-organizing Gestalts 
that could be found not only in animal and human life but in 
physical systems as well. An example he treated at length 
(Köhler 1920) is the spontaneous distribution of charge along 
a conductor. The whole snaps into a particular configuration 
as a result of the compounded local relations of repulsion 
between nearby electrons. Taking this vision seriously, and 
wedding it to Koffka’s emphasis on the external environ-
ment, allows us to begin the process of turning field theory 
from a set of loose metaphors to a generative program of 
research.

To facilitate the development of measures of field effect 
that are separable from spatial position, we begin with the 
special case of data that come from units with a geographic 
basis and thus rely on geographic space to anchor our mea-
sures. For purposes of clarity, we link our approach to exist-
ing work on spatially located data (although we discuss some 
of the complexities of such data after the main exposition of 
the field measures). Only after we have laid out the approach 
for geographic spaces do we demonstrate the application to a 
nongeographic “social space.”

The Sociology of Space
It is because social relations are so frequently and inevitably 
correlated with spatial relations; because physical distances so 

frequently are, or seem to be, the indexes of social distances, that 
statistics have any significance whatever for sociology. (Park 
1926:14)

Despite our talk of “social space,” geographic space itself 
is, as Park reminded us, social; indeed, there has been a 
resurgence of interest in the social dynamics of space in 
recent years, as well as interest in the use of spatial statistics. 
In part, this is because of a growing awareness of the various 
methodological challenges that come with the use of spa-
tially situated data. Careful attention has been paid to two 
classes of problems in particular: spatial dependence and 
spatial heterogeneity. Commonly discussed in terms of the 
idea of spatial autocorrelation, spatial dependence is typi-
cally explained in terms of two underlying processes: first, 
commonalities in measurement or specification error, and 
second, contamination, whereby the value of an outcome in 
any locale is affected by the value of the outcome and/or pre-
dictors in neighboring locales (Anselin 1988).

Whereas spatial dependence refers to the possibility of a 
spatially organized error structure, spatial heterogeneity 
refers to the idea that the parameters of a given model may 
vary predictably from one place to the next. These instabili-
ties can be conceptualized in terms of both differences across 
discretely defined regions, as well as in terms of variation 
across a continuous trend surface. In the discussion below, 
we bring notions of both dependence and heterogeneity to 
bear on the problem of trying to measure field effects. More 
specifically, we go on to suggest that field effects can be 
quantified by measuring the extent to which heterogeneous 
coefficients are spatially dependent.

This is, of course, more than just a technical exercise. The 
importance of the substantive relationship between physical 
space and social organization has long been a central theo-
retical point in a number of sociological traditions. This is 
exemplified not only by the work of old “Chicago school” 
(e.g., Park, Burgess and McKenzie [1925] 1967) and its 
descendants (e.g., Morenoff 2003) but by the “new Irvine 
school” as well (e.g., Butts forthcoming; Hipp, Faris, and 
Boessen 2012). The common intuition behind these varying 
schools of thought is that social life is fundamentally situ-
ated, thus giving rise to aggregated patterns of interpersonal 
organization. This suggests various sorts of heterogeneity 
that are spatially organized. In certain cases, we argue, this 
spatial organization can be understood as resulting from field 
processes and hence should be measurable as such.

In laying out our approach, we use the geospatial location 
of units as a substrate to aid in the conceptualization of the 
degree of a field effect. Drawing on the accumulated 
researches of geographers and spatial statisticians, we may 
expect that even in the absence of a field, we would expect 
some local spatial autocorrelation, with proximate observa-
tions exhibiting at least some degree of statistical depen-
dence. We then go on to make the assumption that, in general, 
a field effect would lead to orderliness at a translocal scale. 
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When we wonder whether there is “a” political field, we are 
asking ourselves whether the field effect is strong enough so 
that politics works the same way in Des Moines, Iowa, as it 
does in Santa Rosa, California. We later discuss how the 
techniques we put forward can be adapted to cases in which 
we imagine a more complex ordering. We thus begin with 
the notion that the field effect can be measured as the range 
of autocorrelation across spatially distributed units; after 
developing our logic for the measure of range, we discuss 
some related rescalings that may have more intuitively 
appealing interpretations.

Fields as Correlation Structures

It may help to illustrate the logic; here we draw on the anal-
ogy to a magnetic field. This analogy has been widely used 
by field theorists, as well as being the subject of critique, and 
a number of theorists have done both (e.g., Bourdieu [1966] 
1969:89; [1984] 1988:149). Consider a piece of nonmagne-
tized iron. The metal may be understood as having a large 
number of magnetic domains: small areas each having a 
polarization, but randomly oriented, as in Figure 1a. When 
placed in a magnetic field, the vectors of polarizations align 
(see Figure 1b). The larger the field effect, the greater the 
alignment. This is the motivation for the current approach. 
What is so useful about this metaphor is that it highlights that 
a field is an ensemble of vectors—combinations of a direc-
tion and a magnitude—that may be felt senses of impulsion, 
or may be action-dispositions, that are organized by posi-
tions. Here we treat each of the vectors as having the poten-
tial to be more or less aligned with others.

The question is how to quantify the degree of alignment. 
One possibility is to attempt to model the dynamics that may 

underlie any observed state. This requires having a defensible 
theory of the nature of the units and their interactive forces. 
Such models have been developed in animals science since 
Breder (1954; see Breder 1951 for an earlier attempt) sug-
gested that the aggregate behavior of fish schools arose from 
simple processes that could be modeled according to physical 
laws of attraction and repulsion (more recently, see Cavagna 
et al. 2013; Ginelli et al. 2015; Parrish and Turchin 1997:136). 
However, even in the absence of such models of dynamics, it 
is possible to quantify the degree of organization (or “polar-
ization,” as it is called in studies of fish schools).

The exploration of such forms of regularity requires that 
we have model-independent quantifications of the degree of 
organization of our data. It is difficult to choose models of 
processes that would explain our data when we are not yet 
sure what aspects of the data we are trying to explain. Yet 
such model-independent measures are not yet on hand for 
field theoretic analyses. In an effort to bridge this gap, we 
draw on random field theory, focusing in particular on 
approaches to quantifying the “range” of order. In the least 
ordered case, in which every domain is independently ori-
ented, we may say that the order is completely local. In the 
most ordered case, in which every domain is oriented identi-
cally, the order is completely global. In between, we may 
expect that weaker fields have a lesser range of order.1

The degree of order at any distance can be understood as 
the average degree of nonindependence or alignment 
between measurements at that distance. For reasons to be 
explicated below, we denote the degree of alignment at any 
distance R as Γ(R). Although this is known in physics as a 
correlation function, given the fact that this term is so 
strongly identified with the Pearson correlation in sociology, 
we here generally refer to it as “alignment”—some quantifi-
cation of the degree of similarity between the vectors at two 
positions. Commensurate with Tobler’s (1970:236) first law 
of geography (i.e., that “everything is related to everything 
else, but near things are more related than distant things”), 
we expect pairs of proximate observations to be more closely 
aligned than their more distant counterparts. That is, we 
expect the relationship between distance and alignment to 
take a form such as that of Figure 2. We see here the degree 
of alignment beginning to drop off as distance increases, 
with the rate of change eventually leveling out at a distance 
of roughly 75 units. In this case, it reaches a floor substan-
tially above zero, because most noncentered distributions of 
observations will have an expectation of a positive associa-
tion—they will be more similar than not—between randomly 
picked realizations.

The graph in Figure 2 is analogous to a correlogram, a 
commonly used tool in geostatistics in which the notion of 
range refers to the distance at which pairs of observations 
begin to exhibit independence.2 From this perspective, range 
refers to the point at which the field effect goes to zero (see, 
e.g., Chaix et al. 2005). Although our conceptual understand-
ing of the relationship between distance and dependence is 

Figure 1. Magnetic field and alignment. (a) No alignment, no 
overall field. (b) Alignment of local domains produces magnetic field.
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consonant with that of geostatistics, a discipline that itself 
builds heavily on random field theory, our formal approach is 
more directly inspired by the application of random field 
theory in materials science.3

We can consider the area under the curve representing 
the relationship between the alignment of domains and the 
distance between them, such as the one shown in Figure 2, 
as the total field mass. We propose that the range of a field 
effect can be measured by standardizing this mass to high-
light its spatial or positional characteristics.4 We then go 
on to consider alternative forms of standardization that 
attempt to neutralize the effects of space, and thus better 
express (1) the overall degree of organization of the field 
as well as (2) the strength of the underlying vectors. The 
use of standardized measures helps facilitate comparison, 
with alternative forms of standardization serving to cap-
ture previously unacknowledged dimensions of difference. 
So although there is a natural tendency to assume that in a 
geographic setting a strong field is a global one, our 
approach allows the possibility of uncovering strong but 
relatively local fields.

Quantifying Field Effects

The Autocorrelation Function and Field Effect

As noted above, we begin by turning to results from materi-
als science. Imagine that we have a three-dimensional vol-
ume of some sort, with a varying value at any point that can 
be treated as a vector, and consider the following measure:

L
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where R indicates a spatial distance between two points and 
Γ an alignment function (i.e., the similarity in values across 
points separated by distance R), and d3R indicates that we are 
integrating over a three-dimensional volume. Note that Γ is 
unspecified; all we now require is that it take on extreme 
values of −1 when the two vectors are opposite and 1 when 
they are perfectly aligned (−1 ≤ Γ ≤ 1). This is a measure of 
the range of order in some material (see Ziman 1979:26; also 
see Köhler 1920:105, 114, 116 for a discussion of related 
integrals as a measure of field or Gestalt).5 Note that the 
denominator is the alignment function at any distance 
summed up over all distances in a three-dimensional space. 
This may be understood as the total amount of similarity in 
the data. The numerator is nearly identical but weights this 
by a function of the distance between points (a simple qua-
dratic for the case of three-dimensional space). The further 
two similar points are, the more the numerator increases. 
Dividing this numerator by the total similarity, then, tells us 
how much of the ordering is “far” as opposed to distant. (A 
somewhat related approach has been used to quantify the 
spatial organization in similarity in bird songs by Laiolo 
2008.) Now consider an analogue for a discrete, two-dimen-
sional case; we accordingly propose
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where gij is the alignment and dij the distance between areas i 
and j, as a potential measure of the range of the field effect.

The alert reader will note that the numerator has a form 
similar to a class of statistics used to quantify the relation 

Figure 2. Expected relation between distance and alignment.
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between two correlation matrices, often assimilated to the 
Mantel (1967) test, in which the product of two correlations 
is investigated. Such a Mantel test entered sociology via net-
work analysis, as one version for the examination of the dis-
tribution of such statistics through the quadratic assignment 
procedure (Baker and Hubert 1981; Hubert 1985; Hubert and 
Schultz 1976) found a use in the determination of the statisti-
cal significance of associations in network data, usually in 
the form of a permutation test (Krackhardt 1987, 1988, 
1992). The most obvious Mantel-type statistic that is rele-
vant for spatial autocorrelation is what is known as Moran’s 
(1950) I statistic, which is used to describe the nonindepen-
dence of a set of cases that are connected to differing degrees 
(called the “weight” of one case on another) and correlated 
to different degrees. This statistic may be written

I g w r w z z w
i j

ij ij

i j

ij ij

i j

i j ij= = =∑ ∑ ∑1 1 1

γ γ γ
, , ,

, (3)

where z is the observation of interest at the ith position, wij is 
the weight linking the ith and jth observations, with the 
matrix W ={wij} row standardized (Σiwij = 1), the z values 
mean standardized, and γ = Σizi

2 (Anselin 1995). In other 
words, we assume that the value in any area is in part a func-
tion of the values in other areas and that the extent of this 
interdependence is contained in a weights matrix; because of 
the mean centering, the alignment function gij is identical to 
the dot-product correlation rij between the two observations.

It will be noted, however, that in the classic Mantel test, 
and in the Moran test, we multiply two similarity matrices; 
our test statistic grows when pairs are similar in both respects. 
In many cases, we assume that the weight between the two 
cases is an inverse function of distance, for example,

I
d
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i j
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≈∑
,
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which differs from the numerator of equation 2 in that this 
measure decreases with the distance whereas equation 2 
increases. We shall demonstrate that the formulation adopted 
in equation 2 makes substantive sense for the analyses pro-
posed. Thus, although L is not a conventional Mantel test, 
many procedures used to determine statistical significance of 
this class of statistics would be adaptable, although there are 
limitations of interpretability.6 Fortunately, we do not believe 
such tests necessary for descriptive purposes.

Measures of Field Organization and Strength

The L statistic, then, fulfills our requirements of a measure of 
the “range” as introduced impressionistically above; the 
numerator of this expression corresponds to the “total field 
mass” (the integral of the curve in Figure 2). However, the 
total mass is difficult to compare across cases, and so it may 
be useful to consider
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as a measure of the overall degree of organization of the 
field. In other words, we again sum up the distance-weighted 
alignments across all pairs of areas. But now we normalize 
this quantity by dividing by the sum of all distances. This 
aids in comparison of data sets that have different arrange-
ments of positions (such that, say, there is a greater average 
distance in one than in the other).7 Note that if gij = 1 for all i 
and j, F = 1, and if gij = 0 for all i and j, F = 0. More impor-
tant, if there is no overall organization such that we are as 
likely to observe values of g that are less than 0 as we are to 
observe values that are greater than 0 (recall that −1 ≤ g ≤ 1), 
and that there is no spatial pattern to the correlations, we 
expect F to be 0.

This measure of organization of the field effect, however, 
is indifferent to the strength of the field effect at any place. 
Imagine that at every position, our vector is exactly zero. The 
alignment between any two positions is 1.0, and so by equa-
tion 5, the field effect is at its maximum. This is as it should 
be, for the measure is one of homogeneous organization. But 
we are also interested in the strength (S) of the field effect 
and propose
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where vi is the vector at position i. Thus we are weighting the 
field effect by the average vector magnitude.8

We have defined a wholly general approach to measur-
ing field effects. Application to any particular case requires 
three specifications: the nature of the vectors, the nature of 
the alignment function, and the nature of the distance func-
tion. These specifications will be determined by the nature 
of the data at hand. Here we illustrate two different ways of 
composing vectors for every position: in one, we use pool 
individuals within any position (used in examples 2, 3, and 
4), and in another, we use ecological relationships across 
position (example 1).9 We also illustrate two different 
alignment functions: in one, we use a single vector to 
determine the degree of similarity between two positions 
(examples 1, 3, and 4), and in another, we use multiple 
vectors (example 2). Finally, we use two forms of distance: 
in one (examples 1, 2, and 3) we use distance in geographic 
space,10 and in the other (example 4) we use distance in a 
social space.
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Geographic Fields with Single Vectors

The Case and Definition of Vectors

The measures above build on the idea that we can quantify 
the degree of alignment between spatially situated vectors. 
Although the vectors in question can be defined in any num-
ber of ways, we begin with a familiar starting point: the slope 
of the regression line. In the simplest case, the estimated 
slope coefficient b expresses a linear relationship between 
the expected value of a single outcome y and a single predic-
tor x. If we interpret b in the usual way, we say that a one-unit 
change in x is associated with a b-unit change in the expected 
value of y. This interpretation naturally implies a two-dimen-
sional vector v = [1, b] representing the magnitude of change 
in the second dimension (y) associated with a unit-change in 
the first (x). Given this definition, we can derive a set of spa-
tially situated vectors by simply allowing the value of b to 
vary across space. This is a familiar problem in the field of 
spatial data analysis, which takes spatially situated observa-
tions as a fundamental point of departure.

We start by considering a simple example (example 1), in 
which our data come from all the counties in Minnesota, 
North Dakota, and South Dakota, from 1890 to 1896. We are 
interested in the degree to which, within any county, agricul-
tural prosperity (measured in terms of bushels of wheat per 
acre of wheat planted) led to a Populist vote in a gubernatorial 
election. For each biennial election, we derive a set of county-
specific slopes using geographically weighted regression 

(GWR; Fotheringham, Brunsdon, and Charlton 2002), a mov-
ing window technique for ecological data that tends to make 
the sort of continuously varying data structures that we began 
with (e.g., Figure 2).11 We choose this as our first example 
because this property allows us to demonstrate the underlying 
approach most simply. In this case, we have one observation 
per position; those interested in the particularities of the eco-
logical technique, and the relation of our approach to well-
known complexities of such methods, may see Appendix A. 
We note that when we use such linear models to estimate the 
vectors that go into our measures, we are necessarily assum-
ing that we have the correct model specification although, as 
with the social use of statistics more generally, we expect that 
results can be enlightening and useful short of perfect specifi-
cation. The results are shown in Figure 3. In every county, we 
present the slope as a vector: an arrow pointing straight up 
indicates a large positive association, while an arrow pointing 
straight down indicates a large negative association. The 
direction and magnitude of the effect is allowed to vary con-
tinuously between these two extremes, with a horizontal 
arrow used to indicate no association.

If the graph for 1890 were a weather map, we might think 
that we were looking at a cyclone, with a strange high-pres-
sure region hovering over St. Paul (or perhaps Coon Rapids), 
Minnesota. Despite the obvious continuity, we do see evi-
dence of change over time; most notably, by 1896, the south-
eastern corner of Minnesota seems to have gone from  
a strongly negative relation between wheat yields and 

Figure 3. Geographic vectors.
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third-party support to a positive relation. Using the measures 
above, can we describe these changes in terms of changes in 
the range, organization, and strength of the political field? To 
do this, we need to measure the alignment and distance for 
each pair of counties.

The Distance Function

In general, the position of any unit i can be described using a 
vector of coordinates pi. In the present case, we focus on 
geographic position measured in terms of latitude and longi-
tude, such that pi = (ai, ci), where ai and ci refer to the coor-
dinates associated with the centroid of county i. For any pair 
of areas, i and j, we then compute the distance dij using the 
following formula:

d a a

a a c

ij i j

i j j

= × ×

+ × × −

  

 

3960 arccos sin sin

cos cos cos

[ ( ) ( )

( ) ( ) ( cci )].
 (7)

This formula refers to the great circle distance, which takes 
into account the curvature of the earth. This approach is con-
sonant with our use of latitude and longitude. It is not uncom-
mon, however, for geographic data to be projected onto a 
two-dimensional space for the purposes of visualization. In 
such cases, one can use Euclidean distance instead, keeping 
in mind, of course, that the accuracy of the resulting distance 
measures depends on both the projection employed, as well 
as the distance between locations.

Alignment Functions for Single Vectors

We now consider how to measure the alignment between 
pairs of observations. At the ith point, we have a the local 
regression coefficient (bi) which implies the vector [1, bi]. 
The degree of alignment between a given pair of coeffi-
cients is measurable as the angle between the correspond-
ing vectors. To illustrate, imagine that in county i the 
observed slope of party identification on wealth is 2.50, 
while in county j it is .75, yielding vectors in the two-
dimensional xy space vi = [1, 2.5] and vj = [1, .75] (see 
Figure 4). If the two slopes were equal, the angle would be 
zero; the greater the angle, the less the alignment. Of course, 
we do not necessarily want the angle itself; we would prefer 
to turn it into something that, say, goes between −1 and 1 in 
an intuitive fashion.

The most widely used transformation of an angle that 
accomplishes this is the cosine. Given the law of cosines for 
vectors,

v v v v1 2 1 2⋅ = cosθ , (8)

where θ is the angle between the two vectors, the double ver-
tical bars indicate the magnitude of the vector, and the dot 
product is the element-wise multiplication of the two vec-
tors, we know that

cosθ =
⋅v v

v v
i j

1 2

. (9)

Thus, for the case at hand with two variables, we may say 
that vi = [1, 2.50] and vj = [1, .75], and hence
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This use of the cosine might seem somewhat arcane, but as is 
well known, it leads to an expression that is equivalent to the 
correlation coefficient.12 In a conventional analysis, we use 
cases to determine the correlation between variables; the 
variables are thus seen as vectors in a space with as many 
dimensions as there are cases. The cosine of the angle 
between the vectors is the correlation. Here, in contrast, we 
are attempting to determine the relation between cases; this 
analogy will be of use later.

This measure is clearly not scale free; in general, when 
the metric of our data is such that the numerical values are 
larger, the vectors are larger. If we imagine a scaling constant 
that is applied to all slopes (such as multiplying by 1,000 to 
turn a slope in an inverse-meters metric into one for inverse 
kilometers), as this constant goes to zero, all the slopes 
increasingly point horizontally and hence the correlations go 
to 1.0. As the scaling constant goes to infinity, the slopes will 

Figure 4. Two slope vectors.
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become vertical (up or down), and hence alignment will go 
to 1 and −1.

This implies that any interpretation based on the align-
ment function must be holding some aspects constant across 
data sets. We would propose that the most useful analyses 
using such single vectors would be comparisons of the same 
set of units (which we shall call a “geography”) across time; 
in such cases, the unstandardized vectors are most useful. If 
one is interested in comparing across geographies, one might 
choose to use a standardized slope (a “beta” coefficient).

In some other cases, we may want a measure that responds 
in a linear fashion as opposed to a trigonometric one. 
Consider the extremely simple function

g
b b

ij
i j=

− −π

π

2 , (11)

where π is some normalizing factor. In particular, if we are 
sticking with slopes as vectors expressed in radians, π = 
3.14159 is the natural choice, for when the two vectors are 
90° apart, gij = 0; when they are at 180°, gij = −1; and when 
they are 0° apart, gij = 1. For our illustration here, however, 
we use

gij = ( )cos θ  (12)

as our measure of the correlation between two positions, 
where this cosine is defined as in equation 9.

Changes in the Field

Using these data, we chart the change in range (equation 2), 
organization (equation 5), and strength (equation 6), as 
shown in Figure 5. Each measure is represented as a separate 
panel. In each case, the horizontal axis represents time, while 
the vertical axis represents the value of the measure in ques-
tion. We find that the field became more globally organized 
over time, with the range of order steadily increasing between 
1890 and 1896. Although the strength of the field also tended 
to increase through 1894, the relationship between wheat 
yields and third-party voting dropped off precipitously in the 
final period, which saw a large number of vectors begin to 
flatten out. Substantively, this story fits with a more detailed 
investigation of the change in electoral politics in these states 
at this time (Slez 2011), although for the sake of simplicity, 
we have ignored the differences among the three states. In 
short, we have good reason to believe that our method is 
indeed capturing meaningful trends in the data.

Indeed, the turbulence visible in the Minneapolis–St. Paul 
area makes sense given the centrality of the Twin Cities in 
the trade network associated with production, exchange, and 
processing of grain, with wheat in particular emerging as the 
region’s most dominant crop. The two cities were also situ-
ated between two very different socioeconomic regions. 
Whereas southeastern Minnesota had a large German-born 
population, the area to the area to the northwest of the city 
featured a sizable Scandinavian population. There was a 

similar division with respect to agriculture. Unlike the case 
of the southeast where farmers had already made the turn 
toward diversified agriculture, farmers in the northwest 
tended to focus on the production of wheat. In light of our 
ability to capture substantively meaningful trends, we believe 
that visual inspection of graphs such as the ones above may 
be of great use in identifying otherwise unknown points of 
abrupt change in field effects.

Figure 5. Changes in field measures for data in Figure 3.
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Two Examples with Multiple Vectors 
and Individual-level Data

We saw earlier encouraging provisional results from a tech-
nique that began by assuming the presence of a particular 
form of spatial autocorrelation—the same form assumed by 
all techniques that attempt to deal with spatially situated 
data—whereby the correlation between two places near is 
greater than that between places far. This is, as noted above, 
is the basic intuition behind Tobler’s first law, which is ubiq-
uitous in the field of geography. We go on to argue that this 
assumption is indeed a reasonable one for most cases but that 
there are times when this assumption breaks down. 
Fortunately, our measures still produce interpretable results 
when other patterns of alignment hold. Furthermore, although 
example 1 used ecological data (and therefore used conve-
nient assumptions for purposes of illustration), our measures 
are in no way restricted to such cases. In the discussion 
below, we show how these same measures can be used to 
analyze data in the form of individuals nested within places. 
We also introduce a somewhat different way of investigating 
the alignment function.

Vectors from Individual-level Data

For example 2, we take data in which multiple individuals 
are nested within a geographic position, allowing us to com-
pute our vectors by carrying out conventional regressions 
within each position. We here derive our measures from a 
large set of data on voting behavior collected by the firm 
Polimetrix (Ansolabehere 2011). We focus in particular on 
voting in the continental United States in 2008. With an over-
all N of 32,800, we have enough cases to run separate models 
for each congressional district, as well as for the District of 
Columbia. More specifically, we use linear regression to esti-
mate the relationship between party identification (a seven-
point scale running from “strong Democrat” [1] to “strong 
Republican” [7]), income, education, and race, with party 
identification serving as the outcome. We therefore have 
three different vectors, one for each independent variable.13

Specification of the Vectors and Alignment 
Function

In this case, we may decide that rather than choose one vec-
tor, we may want to use more than one to determine the gen-
eral alignment between positions so as to better estimate the 
similarity across places.

More generally, for every area i, we estimate a set of M 
multiple regression slope parameters βi = (βi1, βi2, βi3, . . . βiM). 
The usual question of how to compare slopes arises in this 
case; here we will assume that we standardize our slopes so 
that they are in terms of unit variances. We now wish to 
determine the gij between any two areas. We might reason-
ably propose again to use the dot-product-based correlation

gij = =
⋅

cosθ
ββ ββ
ββ ββ
1 2

1 2

, (13)

though one will note that this is actually different in form 
from the earlier equation 12. That is, equation 12 is not a 
special case of equation 13.14 However, equation 13 turns out 
not to be substantively reasonable measure of the alignment. 
Consider two cases with slopes observed on four variables as 
follows: βi = [1, 0, –2, 3] and βj = [.5, 0, –1, 1.5]. The correla-
tion between the two is 1.0, in that βim = 2βjm for all m. Yet we 
should not consider these interchangeable situations. Thus 
instead of standardizing in the usual way—so that we lose all 
difference in absolute scaling in order to concentrate on rela-
tive differences—we are actually interested in the absolute 
difference between any two vectors. Accordingly, consider 
the measure of the distance between the tips of these vectors 
in the multidimensional space of independent variable 
slopes:

gij im jm
m

M
* = −( )

=
∑ β β

2

1

. (14)

Unlike the single-vector measure (equation 12), the measure 
above lacks interpretable bounds.15 As a reasonable ad hoc 
adjustment, we propose

g
g g

gij
ij=

−* *

*
max

max

2
, (15)

where

g g ij* max( * )max = . (16)

This approach seems to be relatively robust and interpreta-
ble, especially for examining a single data set. But because 
the normalizing is specific to each data set, in that the maxi-
mum correlation may differ from one data set to the next, it 
can be difficult to examine change or difference. In such 
cases, it may be preferable to use the maximum across all 
relevant data sets for purposes of comparability. Finally, here 
we use geographic distance between centroids of congres-
sional districts as our distance (equation 7) and, for each dis-
trict, use the set of three slope coefficients as our vector βi, 
and equation 15 to measure the alignment between districts.

Alignment and Space

Figure 6 displays a smoothed moving average of the align-
ment function by distance akin to the hypothetical curve 
graphed in Figure 2. We see that overall, there is indeed evi-
dence that the alignment decreases with distance. From 25 to 
2,500 miles, we see a close approximation to Figure 2. 
However, things change dramatically at the very great and 
the very small distances. Places that are extremely far apart 
turn out to be more likely to be similar, not less likely, than 
average pairs of places.
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This is because as a result of the doctrine of manifest destiny, 
the United States has the enviable position of occupying a nice 
horizontal swath of a continent with two large vertical coasts 
facing different oceans. Although the denizens of these areas are 
not wholly interchangeable, there is (as any midwesterner can 
aver) something decidedly similar about “coasties,” whether 
they hail from the “east” or the “left” coast. Thus although the 
48 contiguous states of the United States look vaguely like a 
rectangle, in social terms it is perhaps more like a cylinder that 
we would form were we to detach the country from the earth 
and join Portland, Maine, to Portland, Oregon, at the top, while 
overlaying Disneyland and Disneyworld at the bottom.

The other reversal comes at very close range—congres-
sional districts very close to one another are surprisingly 
unlike. The reason for this lies, we believe, with the social 
organization of American cities, especially their segregated 
nature. The only places where districts are so close together 
are in metropolitan areas, and metropolitan areas divide peo-
ple up—and even where they do not, congressional districts 
may be deliberately drawn to place “similar” people on simi-
lar sides of the boundary.16

Figure 7 demonstrates this using data from the US Census 
Bureau’s 2008 American Community Survey. For each of 
these graphs, we grouped pairs of districts into bins of 1,000 
(ordered by geographic distance), then plotted the mean abso-
lute value of the difference between the districts on each of a 
set of measures by the mean geographic distance for all pairs 
in that bin. We look at the (absolute value of the) difference 
between districts in terms of four indicators of the “type” of 
place, namely, the percentage of structures for dwelling that 
are one family, the median household income, the poverty 
rate, and the proportion of residents who are high school 
graduates. For two of the indicators (income and education), 
we see a very typical spatial organization in which, if we start 
with the farthest pairs, we find that distant places are very dif-
ferent, and differences decrease as places get closer; though 
as we near the 25- to 50-mile mark, differences increase 

dramatically. For poverty and one-family structures, there is 
hardly any spatial organization except that places become 
very dissimilar as they get extremely close (and for one-fam-
ily structures, extremely far).

It is important to realize that it is entirely possible for 
places to be very different with respect to average income, 
say, while the slope of party identification regressed on 
income is constant. Indeed, that is what we generally assume 
when we use a conventional linear model. But we are finding 
that changes in the distribution of the independent variable 
are associated with changes in the relation between the inde-
pendent and dependent variables and that this is happening in 
a way related to the spatial organization of the United States.

On the whole, the conclusion here is not that Tobler’s law 
is wrong but that we may expect a change in sign in the nature 
of alignment for a number of indicators of social and political 
organization, whereby an increasing similarity with geo-
graphic proximity, past some threshold turns into a decreasing 
similarity with proximity, if we are approaching an urban area. 
If we increase our focus even further, we may again see a 
reversal of sign at the block level, but our data do not permit us 
this exploration. To return to Park (1926) and Koffka (1935), 
we must bear in mind that the effects of geographic space are 
mediated by social organization and perception.

As a result, there is no reason why we cannot begin to gener-
alize our approach to distances, even distances in geographic 
space, that are defined not by crow’s-flight distance, but by 
political interconnection (Beckfield 2010), telecommunication 
patterns (Louch, Hargittai, and Centeno 1999) or transportation 
times. Whatever form of “distance” has social effects is the one 
that is most important for the measurement of field strength.

Change in Field Strength

We have seen evidence that the assumptions underlying the 
measurement strategy here seem reasonably robust, though 
there are likely to be cases in which these assumptions are 
violated, and there is no substitute for substantive knowledge 
of the social processes in question. But it is also worth 
emphasizing that the validity of the measurement strategy 
outlined here is not conditional on the data following the sort 
of pattern seen in Figure 2; the overall range of order, say, 
still can be informative where the pattern is quite different.

And the measurement strategy here may be of great use 
when our interest is in exploring changes in the organization 
of some field over time. In the future, large-scale data sets like 
that used in the previous section will allow a direct extension 
of the methods used here, but for most of the twentieth cen-
tury, our individual-level data sets have smaller totals that 
make such a complete investigation impossible. Yet it may be 
possible, through judicious use of pooling and various benign 
assumptions, to make use of other sets of data.

As an example (example 3), we analyze data from the 
American National Election Studies, which were conducted 
using a national sampling frame from 1956 until the present. 

Figure 6. Autocorrelation pattern for all congressional districts 
in the contiguous 48 states of the United States, 2008.
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Surveys were usually carried out every two years (sometimes 
gaps of four years occurred between studies). We examine vari-
ation in patterns of votes for Congress between 1956 and 2004, 
analyzing congressional districts separately. However, in many 
cases, we do not have sufficient numbers of persons from par-
ticular districts to allow models to be fit in those districts. We 
therefore use an algorithm that pools across close places and 
close times, in order to maximize the number of valid data 
points.17 We fit models that simultaneously control for income, 
education, and race. Using this, we can then create our field 
measures). Here, we are particularly interested in the range of 
the income effect. Thus, as in example 2, our vectors are mul-
tiple regression slopes, but as in example 1, we compute our 
alignment function only using one vector (equation 12). Again, 
we use geographic distance as in the previous examples.

The range of the income effect is displayed in Figure 8, 
running from 1960 to 2000 (because of our moving average, 
we have no data points before or after this period). We see a 
steady creeping upward of the range, such that about 200 
miles have been added by the end of the twentieth century. 
That is, places that were 1,100 miles apart in 2000 were about 
as similar in terms of their income effect as places 900 miles 
apart were 40 years before. Our example is merely illustrative 
of the logic of the technique, and is not intended as a strong 
theoretical statement. But the gradual linear increase, and the 
independence of the results from changes in the sampling 
frame, leads us to believe that this approach can be made 
robust and lend itself to temporal investigations.

One Example of Individuals in a Social 
Space

Vectors and Alignment

In example 1, we began by considering ecological data in 
physical space. This approach is fairly natural in the sense 
that the units of analysis are explicitly defined in spatial 
terms. As we showed in example 2, however, the field theo-
retic measures proposed above can be easily applied to 

Figure 7. The spatial organization of inequality in cities leads to differences among close districts.

Figure 8. Change in range of income over the second half of the 
twentieth century, National Election Studies.
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individual data as well. Although we relaxed the assumption 
that that the original data are composed of ecological enti-
ties, we nonetheless maintained our focus on physical space, 
in that the individuals in question were nested in areal units 
that were then used to geolocate the resulting vectors. Note, 
however, that the measures themselves are in no way limited 
to the case of physical space. As we show here, the methods 
outlined above can be easily extended to accommodate dis-
tance in social space.

This returns us to issues with which we began. As we 
noted, most prior attempts to quantify field effects have 
relied upon CA and the interpretation of its estimates as 
yielding positions in a multidimensional social space. It is 
certainly possible to use these derived positions in conjunc-
tion with the measures proposed here. For those who are 
suspicious of tautological techniques such CA that create a 
“space” for every set of data, we outline an alternative pro-
cedure on the basis of the notion of Blau space, first intro-
duced by McPherson and Ranger-Moore (1991). The basic 
intuition behind this approach is that we can construct a 
multidimensional space by simply cross-classifying vari-
ables, with the dimensionality of the resulting space equal to 
the number of variables considered. In the absence of any 
further data reduction, the dimensions are given rather than 
derived, thus avoiding some of the thornier issues associated 
with CA and related techniques such as factor analysis and 
multidimensional scaling.

To illustrate this approach, we used the General Social 
Survey cumulative data file to construct spaces of likeness 
for 57,000 respondents, with dimensions defined in terms of 
age (with categories 18–29, 30–38, 39–59, 50–62, and 63–89 
years), sex (two categories), and size of community (with 
categories standard metropolitan statistical area, one of the 
12 largest suburbs, other suburbs of large standard metro-
politan statistical area, small cities, and rural). Within each 
area of this 5 × 2 × 5 social space, we separately regress 
presidential vote on occupational prestige. Thus we construct 
vectors just as we did in examples 2 and 3 and use a single-
vector alignment measure (equation 12), just was we did in 
examples 1 and 3.

Distance

In the context of a tautological-space approach such as 
CA, the definition of distance is relatively unproblematic, 
in that the resulting statistic is effectively unitless.18 In the 
case of Blau space, on the other hand, we are faced with 
the problem that our dimensions are in different units by 
virtue of the fact that the variables used to define those 
dimensions are themselves in different units. To deter-
mine distance in this space, we rescale each of the vari-
ables to have a standard deviation of 1, thus assigning an 
equal weight to each. We then calculate the Euclidean dis-
tance between all positions.

Field Effects

In this case, we use the field measures to assess the degree to 
which the same variables, stimuli, or conditions provoke 
similar vectors in different areas of this space, and our mea-
sures are measures of the degree of organization in this social 
space. For the purposes of examining change over time, we 
begin by breaking the data into two periods: 1981 to 2000 
and 2001 to 2012. Running a separate analysis for each 
period, we observe an increase in both the organization and 
strength of the field. More specifically, in the case of organi-
zation (F; equation 5), we observe a rise from 0.628 to 0.706 
(recall that organization is measured on a scale from 0 to 1). 
In the case of strength (S; equation 6), on the other hand, we 
observe a rise from 26.05 to 31.15. Given that the difficulty 
associated with interpreting this particular measure of 
strength (as it is in the metric of “logit per standard deviation 
of prestige”), we might dismiss this as meaningless noise. 
But the same direction is seen when we look more finely.

We repeat the exercise above, this time breaking our data 
up into eight four-year periods (1981–1984; 1985–1988; 
1989–1992; 1993–1996; 1997–2000; 2001–2004; 2005–2008 
and 2009–2012). (We chose this periodization because we 
wanted to make sure we did not pool respondents who would 
be facing different presidential contests.) Figure 9 displays the 
results: we see that there has been a constant increase in the 
organization of the field, with a very large increase in the most 
recent period. This suggests that given the structure of the 
underlying space, there has been a trend toward more organi-
zation and more similarity in how prestige impels voting 
choices. This example, whether or not it is substantively com-
pelling in its own right, demonstrates the possibility of the use 
of these measures to make interpretable claims about fields 
that are organized in social, not geographic, space.

Figure 9. Change in field organization (F) over time, social space.
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Conclusion

To steal Samuel Johnson’s words, the marvel of the field 
analysis, like that of a dog walking on its hind legs, is not that 
it is done particularly well, but just that it can be done at all. 
The methods discussed here are rudimentary. They are 
descriptions that allow limited comparison across different 
questions. However, this is generally true in the social sci-
ences. It is only through habit that we imagine that a correla-
tion of .4 means the same thing in one data set that it does in 
another. Even more, in sociology we usually replace any 
understanding of descriptive accuracy with an altogether dif-
ferent question of statistical significance, which avoids the 
problem of comparison entirely.

Thus the fact that the measures here are limited is not in 
itself a fatal flaw. More important is the fact that they take the 
intuition underlying many field analogies, that of the align-
ment of vectors and demonstrate that this can lead to a set of 
measurement strategies that are not the same as existing 
strategies. These strategies make sense when there is good 
reason to believe that a field of a certain type exists. They 
will not replace other descriptive statistics that do not have 
such substantive requirements. But we do believe that there 
is an important role for model-independent descriptions of 
the various dimensions of a given field effect in our panoply 
of techniques for learning from data.

Furthermore, with such descriptions, the more we know 
about the dynamics of the field in question, the more we may 
adapt the approach here to take into account our substantive 
understanding. Certainly, we can move to spaces of higher 
dimension or with particular types of curvature. We can also 
incorporate directionality, as opposed to considering all dis-
tances symmetric and space isotropic (Oden and Sokal 1986). 
And we can even meld the continuous spaces with discontinu-
ous organizational locations. Simple geographic distances, 
such as arise when we have action located in places like coun-
ties or congressional districts, are indeed a good place to start 
if we wish to develop a measurement approach, but we need 
not stay on the surface of the Earth. If indeed “social space” 
(Sorokin [1927] 1959) deserves to be treated as more than a 
metaphor, we should be able to pursue similar analyses in 
which our vectors are organized by their position in this space.

Appendix A: Details on Geographic 
Data

The Use of Ecological Data

The data used to construct the vector map in Figure 3 come 
from aggregate, or ecological, data. Here one has single 
data values that apply to all of a set of individuals who 
share some sort of location, in our case, geographic (the 
level of the county). (In many but not all cases these values 
are some sort of aggregate of individual measurements.) 
For example, we may have county-level data on votes and 

on agricultural prosperity but be unable to determine how 
any particular individual in the county voted. The difficul-
ties with such ecological analyses are well known (Achen 
and Shively 1995; King 1997; Goodman 1953; Robinson 
1950) and we refer the interested reader to relevant 
discussions.

There is indeed no foolproof way of going from ecologi-
cal data to individual processes (cross-level inference) unless 
one of two things is true. The first is that the structural rela-
tionships (and error variances) are identical in all areas 
(Goodman 1959), in which case a conventional model with 
the aggregates as cases retrieves the correct coefficients. 
(Here we assume that our data are clustered into geographi-
cally organized areas.) That is, if βi denotes the relation 
between some independent and dependent variable at the ith 
place, βi = β for all i. The second is that even if we do not 
have homogeneity across places, we understand and can 
model the dispersion of structural relationships across areas; 
that is, we can say βi = f(x, z) where x is some vector of 
observed variables and z is a vector indicating position 
(Calvo and Escolar 2003; also see Anselin and Cho 2002); 
similarly, we need either homogeneity or an explicit model 
for residual variances.

An intriguing approach to estimating such variable param-
eters is based on the idea of a moving window regression in 
which observations falling within any given window are 
assigned weights according to their distance with respect to 
some focal observation, with distant observations being 
assigned less weight.19 By virtue of the fact that the assigned 
weights necessarily change as one moves from one focal 
observation to the next, the resulting parameter estimates 
change as well. Iterating over a set of N observations results 
in N sets of parameter estimates, thus allowing the structural 
parameters (e.g., βi values) to vary across locales. Insofar as 
proximate observations are allowed to exert greater influ-
ence over the results of any given local regression, the logic 
of the estimation procedure used by this method, GWR, is 
consonant with the intuition underlying the autocorrelation 
process described above (see Brunsdon, Fotheringham, and 
Charlton 1998). The resulting estimates take the form of a 
spatially varying surface in which proximate locales tend to 
share similar structural parameters. We used this procedure 
to generate the data appearing in Figure 3.

Unfortunately, the technique suffers from well-understood 
problems. In particular, Wheeler and Tiefelsdorf (2005) 
showed that when controlling for multiple covariates, the local 
estimates produced by GWR tend to be collinear, even when 
the underlying variables are independent; indeed, the evidence 
is sufficiently damning that with the possible exception of 
bivariate models, we would not consider this technique appro-
priate for anything other than the generation of initial hypoth-
eses or, as in this case, example data. Thus the data in Figure 3 
occupy a position somewhere between simulation and actual 
data; by adjusting the bandwidth in the routine, we should be 
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able to produce explicable changes in our measures, as indeed 
we are, suggesting that they perform as expected.

The Modifiable Areal Unit Problem

Examples 1 to 3 involve data in which a set of individual 
responses have been aggregated by areal unit. There is no 
reason why this is necessarily the case; our measures would 
be just as applicable to individual-level vectors measured 
using psychological inventories and then linked to a particu-
lar position in space. In sociology, however, most of the 
methods we use to produce vectors, such as the regression 
coefficients above, require us to pool data across individuals. 
As a result, we are typically faced with vectors that represent 
sets of individuals. When we use geographic space as a sub-
strate for our field, this, in effect, means assigning persons to 
a position in a partition. Yet the precise nature of the partition 
may affect the values of the measures we have put forward.

In geography, this is generally discussed in terms of the 
“modifiable areal unit problem” (MAUP), namely, the problem 
that the results of statistical analyses that pay attention to spatial 
location may be different depending on the way in which a 
given space is partitioned.20 Although not a traditional example 
of the MAUP, we have seen one way in which our measures 
may be sensitive to the particularities of the underlying geogra-
phy: as gij → 1 for all i, j in equation 2, L → the average distance 
across all pairs of places. In this instance, the effects of partition-
ing are attributable to the relationship between the physical size 
of the units and the way in which our measure of range happens 
to incorporate distance. The problem more generally is that 
results obtained at one level of analysis are not guaranteed to 
have any predictable relation to those obtained at another.

However, calling this a MAUP—a problem—seems a bit 
like considering “unobserved heterogeneity” a “problem” 
with ordinary least squares analyses. Rather, we think that 
this should be called the MAUFOL: the modifiable areal 
unit fact of life. A problem is something for which there can 
be a solution, and there is none here, at least no generic 
mathematical solution, as opposed to substantive ones. That 
acknowledged, there are a few things that can be said in 
advance regarding the effects of variation, often coming 
from simulation studies in which small “true” units are 
aggregated into larger ones. Perhaps the most general find-
ing is that explained variance tends to increase as a result of 
aggregation because much of the residual variance is elimi-
nated through pooling. The effect on the parameter esti-
mates, however, depends on the number of covariates. A 
number of early studies showed that bivariate measures of 
association tend to increase along with the scale of aggrega-
tion, with larger units producing stronger effects (see 
Blalock 1964 ; Gehlke and Biehl 1934; Clark and Avery 
1976). Fotheringham and Wong (1991) later demonstrated 
that these findings do not necessarily extend to models con-
taining multiple predictors. It is not that aggregation has no 
effect on the resulting parameter estimates. The problem is 

that in the case of multiple predictors the effects of aggrega-
tion are no longer predictable as they were in the case of a 
single predictor.

We have conducted simulation studies (available on 
request), using both real data and simulated data, on a simple 
surface to determine the robustness of our measures to 
changes in scale. What is most important is that there is no 
simple tendency of the measure of the range of order to 
increase with aggregation. Of course, aggregating necessar-
ily eliminates otherwise adjacent pairs, thus pushing the total 
field mass toward the higher end of the distance distribution. 
Furthermore, as noted in the discussion of Figure 2, aggrega-
tion may increase the average degree of correlation at close 
distances as well as large ones. Thus the effects of aggrega-
tion on our measures are not necessarily obvious.

There are, however, two ways in which we can minimize 
obstacles to comparability. One is to create constant geogra-
phies (see Slez, O’Connell, and Curtis forthcoming). For the 
example data in Figure 3, problems in comparability arose 
because county boundaries shifted over time. Some counties 
were created, others divided, and a few moved. To ensure 
comparability, when we constructed our measures, we first 
produced a comparable geography for all four years by 
simultaneously overlaying all four sets of county boundaries 
and using linear interpolation to create “fractioned” counties 
where boundaries overlapped.21 Accordingly, we also elimi-
nated any areas not incorporated in a county in all four of our 
years. It is these comparable maps (and not the originals dis-
played in Figure 3) that were used to make the measures in 
Figure 5 (though there is, as visual inspection of Figure 3 
demonstrates, relatively little change to boundaries over 
time).

This approach works well when there are shifts of bound-
aries but the overall level of aggregation remains relatively 
constant; when we are comparing at different scales, we may 
either aggregate up to the coarsest or divide to the finest 
using interpolation (which can be more or less defensible in 
different cases). However, we have also found that the effects 
of collapsing small areas can be attenuated by weighting the 
units proportional to the number of persons in each unit. 
Given that the measure of range is most sensitive to the 
MAUP, we replace equation 2 with

L
d w
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g
i j i ij ij ij

i j i ij
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∑
∑
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with ni representing the number of individuals in the ith unit 
and N the total number of units.
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In sum, our fundamental approach here is to compare the 
correlations between near and far points. The coarseness of 
aggregation must have some sort of effect on our findings. To 
some degree, we can be sure in advance as to what some of 
these effects will be. We cannot find a range of order below 
the size of our aggregates; thus if our units are D × D squares, 
the smallest distance that we have is D. Furthermore, coars-
ening will almost certainly decrease the variance in our vec-
tors, as any unit may be considered an aggregate of smaller 
units (down to some ultimate point, often an individual). But 
comparisons made across substantially different geographies 
are suspect. For this reason, we here concentrate on exam-
ples of change that leave geographies fundamentally stable.
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Notes

 1. For an example of the use of a similar approach to quantifying 
the range of order, but in which a model is specified, see Chaix 
et al. (2005).

 2. In practice, the notion of range used in geostatistics is tied to 
the use of a semivariogram, which, much like the correlogram, 
depicts pairwise dependence as a function of distance. Under a set 
of fairly standard assumptions, the correlogram and the semivar-
iogram provide the same information. The difference is in the way 
in which the information scaled (see Schabenberger and Gotway 
2005:26–28). Related graphs are used, for example, to express the 
organization of genetic similarity over geographic organization 
(see Cavalli-Sforza, Menozzi, and Piazza 1994:123).

 3. A similar problem arises for mathematical models of flocking 
and schooling behavior that posit that each individual is atten-
tive to the directional orientation of others in a neighborhood, 
and one must determine which radius gives the optimal trade-
off between giving relevant information without being too sus-
ceptible to noise (Couzin and Krause 2001:31).

 4. One may compare the method of Reardon and O’Sullivan 
(2004) and Reardon et al. (2009), which has a similar underly-
ing conception of the data.

 5. We were alerted to the relevance of Ziman’s work by White (1992).
 6. The most straightforward approach is an unweighted per-

mutation test, in which units are randomly assigned to posi-
tions in a geography. Such an approach, which is very good at 

quantifying the importance of spatial organization of closeness, 
turns out to be less useful for our approach, which privileges 
distance. It may be that model-free permutations are not as use-
ful here as would be tests based on a plausible null model.

 7. As we note later, this normalization does not make the measure 
immune to changes due to the scale of aggregation. However, 
under a wide range of plausible conditions, the sensitivity of 
the F statistic to scale of collapsing is rather low, thus facilitat-
ing comparisons across data sets.

 8. Finally, we note that we can also do a useful permutation test 
in which we determine to what degree our measures change 
when we permute observations randomly within some specific 
radius; doing this successively across many radii allows us to 
see at what level the order seems to exist.

 9. It would also be possible to have individual-level measure-
ments of vectors if, for example, in surveys, we were to ask 
people, say, to indicate their degree of attraction to some object 
of state, or their favored direction of travel.

10. We have so far assumed that dij is a linear measure of dis-
tance, for example, on a flat surface, Cartesian distance. There 
may be processes in which we think that the decrease in the 
field effect itself decreases with distance, and hence substitute 
the logarithm d*ij = ln(dij) in place of the linear measure dij. 
Although this is a conventional adaptation, we do not think 
that it necessarily follows. As the circumference of a sphere 
scales linearly with the radius, it seems that the field effect 
from any one point should scale inversely to the linear dis-
tance (for if a certain amount of energy proceeds outward 
from a point, it is dissipated over space inversely to the radius 
describing its circle).

11. The use of geographically weighted regression in this context 
is motivated by the fact that we have a simple bivariate model. 
Although there are questions regarding the validity of multiple 
geographically weighted regression (Wheeler and Tiefelsdorf 
2005), we can achieve a similar effect using either spatial filter-
ing (Griffith 2008) or a Bayesian spatially varying coefficient 
model (Wheeler and Waller 2009).

12. If the variables are mean centered (i.e., they sum to zero), the 
correlation is the same as the standardized cross product.

13. It is of course not necessarily the case that a regression equation 
has a field theoretic interpretation, but given a casual discourse 
in sociology that opposes field-type thinking to regression-type 
thinking, it is perhaps worth emphasizing that there are cases in 
which the two converge. As economists emphasize, a multiple 
regression equation is related to sets of independent differential 
equations, equations that are compatible with at least a simple 
form of a field in which motion is one dimensional and facili-
tated by the possession of certain states.

14. Recall that in equation 12, a single slope is a two-dimensional 
vector, where as a special case of equation 13, it would become 
one dimensional.

15. Because such a measure depends on the distribution of slopes 
for each dependent variable, one may choose to standardize all 
of them to have the same overall spread of values.

16. Further exploration focusing only on income shows that these 
very unlike neighbors are concentrated in the New York and 
Los Angeles areas, with some others in Chicago and a bit 
fewer in the San Francisco Bay area. Interestingly, in south-
ern California especially, but also in New York, the income 
slope tends to be higher in the richer of the neighbors; this is a 

https://www.github.com/aslez/femar
https://www.github.com/aslez/femar
https://github.com/aslez/msb_socius_2016
https://github.com/aslez/msb_socius_2016


16 Socius: Sociological Research for a Dynamic World 

different pattern from what analyses based on states as units of 
analysis (Gelman et al. 2007) might suggest.

17. More precisely, we go through the data and attempt to fit our 
model in each district. Every district in which the model could 
not be identified then becomes available for aggregation. To 
do this, we successively look for other unidentified districts 
within either a specific radius or a percentile (here the closest 
25 percent of pairs), agglomerate one of these (if available) 
with our target district, and then refit the model, continuing 
to reaggregate until there are no unidentified districts close to 
other districts. We also combine all observations within a four-
year time horizon.

18. Technically speaking, the space produced by CA is in chi-
square units. Either way, the question of units is ultimately a 
nonquestion insofar as it is naturally enforced by the procedure 
used to produce the space in question.

19. In practice, weighting functions tend to take one of two forms. 
The first follows a Gaussian distribution, f(d) = exp(d/h)2, 
while the second, termed a “bi-square,” follows the function 
f(d) = (1 – d2/h2)2 for d < h and f(d) = 0 otherwise. In both 
cases, d is the distance to the focal observation in question 
(we suppress subscripts for ease of notation), and h is a user-
specified bandwidth. A bandwidth can be either fixed or adap-
tive. In the case of the former, the same bandwidth is used in 
each local regression. In the case of the latter, the bandwidth 
is defined as the distance to the kth nearest neighbor, where 
k is a user-defined value that is held constant across regres-
sion. The advantage of an adaptive bandwidth is that it helps 
to equalize the precision of the estimates across locales, but it 
also has its downsides: first, the implicit understanding of the 
scale of influence changes for data-fitting reasons, and second, 
areas on an “edge” (such that they have only neighbors on one 
side) necessarily have a different scale of influence than those 
closer to the center; in data in which there is a center-periphery 
structure, this may lead to spurious conclusions. Although both 
fixed and adaptive bandwidths can be freely specified, they are 
often optimized to maximize fit.

20. This issue was initially raised by Gehlke and Biehl (1934), who 
noted that their results varied depending on the scale of analysis, 
with the aggregation of contiguous units leading to larger bivariate 
correlations. Subsequent work came to describe the scale problem 
as one of the two subproblems that define the MAUP more gener-
ally (see Openshaw 1983; Openshaw and Taylor 1979). Whereas 
the scale problem refers to variation resulting from combining 
contiguous observations to create larger units, the zoning or aggre-
gation problem refers to variation due to rearranging the boundar-
ies used to define a fixed number of units.

21. The original county-level data were allocated to the new 
fractioned counties using the areal weighting procedure first 
described by Markoff and Shapiro (1973). Although this pro-
cedure is known to be less accurate than more sophisticated 
alternatives, it is adequate for the purposes of this paper. In 
general, the defensibility of interpolation depends not only on 
the method of interpolation, but on the nature of the specific 
problem at hand.
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