Table D-1: Effects of Status and Interpersonal Power on Attributions of Sexiness with Significant Differences Marked

Variable	Model 3a	Model 3b	Model 3c	Model 3d
Ego:	Male	Male	Female	Female
Alter:	Male	Female	Male	Female
ALTER'S STATUS	$\begin{array}{r} .425^{b} \\ {[\mathrm{p}=.276]} \end{array}$	$\begin{gathered} 1.086 * a c \\ {[\mathrm{p}=.017]} \end{gathered}$	$\begin{array}{r} .395^{b} \\ {[\mathrm{p}=.336]} \end{array}$	$\begin{gathered} .093 \\ {[\mathrm{p}=.292]} \end{gathered}$
EGO HAS POWER	$\begin{gathered} -.748 * * B c d \\ {[\mathrm{p}=.003]} \end{gathered}$	$\begin{gathered} .427^{A c d} \\ {[\mathrm{p}=.175]} \end{gathered}$	$\begin{gathered} -.070^{A b} \\ {[\mathrm{p}=.820]} \end{gathered}$	$\begin{gathered} -.197^{a b} \\ {[\mathrm{p}=.141]} \end{gathered}$
ALTER HAS POWER	$\begin{gathered} .803 * * \\ {[\mathrm{p}=.008]} \end{gathered}$	$\begin{array}{r} .484^{c} \\ {[\mathrm{p}=.252]} \end{array}$	$\begin{gathered} 1.046^{* * b d} \\ {[\mathrm{p}=.001]} \end{gathered}$	$\begin{array}{r} .464^{c} \\ {[\mathrm{p}=.301]} \end{array}$
Constant	-3.388	-1.756	-2.484	-1.973
N	1077	811	869	577
-2LL	335.085	725.098	572.520	441.434

$\dagger \mathrm{p}<.1 ; * \mathrm{p}<.05 ;{ }^{* *} \mathrm{p}<.01 ;{ }^{* * *} \mathrm{p}<.001 ; A, B, C, D$ significantly different from coefficient in model 3a, 3b, 3c, 3d respectively at $\mathrm{p}<.05 ; a, b, c, d$ significantly different from coefficient in model 3a, 3b, 3c, 3d respectively at $\mathrm{p}<.1$; p -value from QAP test, one-tailed

Table R-2: Male Dominance, Hierarchy and Reciprocity and Attributions of Sexiness

Variable	Model 4a	Model 4b	Model 4c	Model 4d
Ego:	Male	Male	Female	Female
Alter:	Male	Female	Male	Female
ALTER'S	. $942{ }^{\dagger D}$. $779{ }^{\text {d }}$	-. 252	$-.891^{\dagger 4 b}$
STATUS	[$\mathrm{p}=.054$]	[$\mathrm{p}=.296$]	[$\mathrm{p}=.577]$	[$\mathrm{p}=.092$]
EGO HAS	$-.374 *^{B}$. $433{ }^{\text {AD }}$. 207	$-.406^{\dagger B}$
POWER	[$\mathrm{p}=.034$]	[$\mathrm{p}=.164$]	[$\mathrm{p}=.616$]	[$\mathrm{p}=.055$]
ALTER HAS	.686*	. $383{ }^{\text {c }}$	$1.067 * * b d$. $388{ }^{\text {c }}$
POWER	[$\mathrm{p}=.015$]	[$\mathrm{p}=.355$]	[$\mathrm{p}=.001$]	[$\mathrm{p}=.252$]
MALE	$-1.218 * * B C$	$1.393{ }^{\text {AD }}$	$1.829^{\dagger A D}$	$-1.110^{* * B C}$
DOMINANCE	[$\mathrm{p}=.001$]	[$\mathrm{p}=.177$]	[$\mathrm{p}=.099$]	[$\mathrm{p}=.004$]
STATUS*	$-1.218^{\text {Bd }}$	3.180*Ac	. $429{ }^{\text {B }}$	$1.652^{\dagger a}$
MALEDOM	[$\mathrm{p}=.174$]	[$\mathrm{p}=.020$]	[$\mathrm{p}=.614$]	[$\mathrm{p}=.087$]
RECI-	-207.071**BCD	. $253 *{ }^{A}$.470**A	. $048{ }^{A}$
PROCITY	[$\mathrm{p}=.001$]	[$\mathrm{p}=.012$]	[$\mathrm{p}=.012$]	[$\mathrm{p}=.323$]
SAME-SEX	-. 107	. 080	-.287*	. 638
ATTRCTIVNSS	[$\mathrm{p}=.223$]	[$\mathrm{p}=.552$]	[$\mathrm{p}=.041$]	[$\mathrm{p}=.390$]
OTHER-SEX	1.378^{\dagger}	1.820**	. 660	1.511**
ATTRCTIVNSS	[$\mathrm{p}=.065$]	[$\mathrm{p}=.006$]	[$\mathrm{p}=.408$]	[$\mathrm{p}=.006$]
AGE	. $017{ }^{\text {bc }}$	$-.038 * * a C d$. $062^{\text {aBd }}$	$-.001^{\text {bc }}$
	[$\mathrm{p}=.798$]	[$\mathrm{p}=.008$]	[$\mathrm{p}=.119]$	[$\mathrm{p}=.171$]
Constant	-3.847	-1.351	-4.642	-2.134
N	871	707	696	490
-2LL	259.471	602.233	454.498	372.837

$\dagger \mathrm{p}<.1 ;{ }^{*} \mathrm{p}<.05 ;{ }^{* *} \mathrm{p}<.01 ;{ }^{* * *} \mathrm{p}<.001 ; A, B, C, D$ significantly different from coefficient in model $4 \mathrm{a}, 4 \mathrm{~b}, 4 \mathrm{c}, 4 \mathrm{~d}$ respectively at $\mathrm{p}<.05 ; a, b, c, d$ significantly different from coefficient in model $4 \mathrm{a}, 4 \mathrm{~b}, 4 \mathrm{c}, 4 \mathrm{~d}$ respectively at $\mathrm{p}<.1 ; \mathrm{p}$-value from QAP test, one-tailed

