It has been called to our attention that some of the standard errors in our *Economic Inquiry* study “Economists Behaving Badly…” were computed incorrectly. We thank Andreas Diekmann for pointing this out.

Two types of surveys were conducted: Random response (RR) and direct response (DR). There were three questions reported in table 2 with a binomial outcome-- Diekmann is correct that the standard errors in response to questions 9, 10, and 11 for RR are calculated incorrectly and that they are calculated incorrectly for question 9 for DR.¹

Importantly, even with the correct standard errors the results reported are statistically significant at meaningful levels. But, it should be pointed out that the RR estimate for question 9 alone is no longer significant at the p < .05 level with the updated standard errors.

But, our analysis was never conceived to explore one type of question or the other. The point is about overall misconduct, as is stated in several places in the original manuscript. Digging a little deeper into the results to question 9 shows that there are still a statistically significant number of academics that answered yes to question 9. In particular, if we pool the results from RR and DR² for question 9, the two-sided test is significant at the p < .06 level, but because negative answers are not possible, the one-sided test is enough to reject at the p < .03 level.³ Pooling seems an accurate approach here, as we found no difference between the DR and RR techniques and they were randomly assigned to subjects.

We conclude, as we had previously, that there is a fair amount of this type of misconduct in the economics profession.

We thank Andreas Diekmann for pointing out our original miscalculations.

¹ To be clear, the authors used the following formula to calculate the standard errors for questions 9, 10, and 11 for RR and 9 for DR: \(se = \frac{1}{(n-1)^2} \sqrt{\mu(1-\mu)} \), where \(\mu \) is the reported mean for DR or the adjusted mean for RR. Diekmann is correct that the proper formula is: \(se = \sqrt{\frac{\mu(1-\mu)}{(n-1)^2}} \).

² Mean and standard error for the pool calculation was done with the following formula:

\[
\hat{\mu}_{pooled} = \frac{n_{RR} \hat{\mu}_{RR} + n_{DR} \hat{\mu}_{DR}}{n_{RR} + n_{DR}}, \quad \hat{\sigma}_{pooled} = \sqrt{\frac{(n_{RR} - 1) \hat{\sigma}^2_{RR} + (n_{DR} - 1) \hat{\sigma}^2_{DR}}{n_{RR} + n_{DR} - 2}},
\]

and

\[
se_{pooled} = \frac{1}{\sqrt{n_{RR} + n_{DR} \hat{\sigma}_{pooled}}} .
\]

Degrees of freedom were calculated using Satterthwaite’s formula.

³ Even more conservative specifications of our pooling scheme are significant at the 5% level when the specification is one-sided.