Temporal dynamics of /s/-retraction in American English

Jacob B. Phillips∗

Phonology Laboratory, University of Chicago, USA

Abstract

This study explores the nature of /s/-retraction, a sound change in American English by which /s/ approaches [ʃ] in the context of /r/. Through an examination of phonological, prosodic, and temporal factors this study asks if /s/-retraction is better categorized as an assimilatory or coarticulatory process. Results support a coarticulatory account, as retraction is observed to be highly dependent on the duration of the sibilant and the relative distance from the coarticulatory trigger. While no evidence for prosodic strengthening was observed across the board, its interaction with sibilant duration suggests that retraction is resisted phrase-initially. Additionally, this study provides strong empirical evidence for individual variability in the effects of these predictors, including some individuals for whom prosodic position is more meaningful in conditioning sibilant production than phonological environment.

Keywords: Coarticulation, /s/-retraction, sound change, prosodic strengthening, individual variability

1. Introduction

Coarticulation and assimilation are two distinct processes that yield similar results: one speech sound changes in some form to be more similar to a nearby sound. Assimilation is phonological process by which a speech sound categorically changes in some form of its representation to be more similar to neighboring sounds. In contrast, coarticulation is a phonetic process by which a speech sound exhibits variable, gradient changes in its realization to be more similar to neighboring sounds. Thus, at their simplest, phonology – and thus assimilation – is more categorical, and phonetics – and thus coarticulation – is more gradient (Keating, 1988, 1990; Pierrehumbert, 1990; Zsiga, 1993, 1997).

∗Corresponding author
Email address: jbphillips@uchicago.edu (Jacob B. Phillips)
Both assimilation and coarticulation have been observed robustly cross-linguistically (Farnetani & Recasens, 2010), although coarticulatory patterns have been demonstrated to vary significantly from language to language (Bedford et al., 2002; Manuel, 1999; Öhman, 1966), suggesting it is not a purely mechanical process. In contrast to assimilation, in which the change is feature specification is observed equally across the entire sound, coarticulation is dynamic and highly local, with the degree of coarticulation increasing as it nears the coarticulatory trigger (Keating, 1985, 1988; Whalen, 1990, i.a.)

The present study focuses on /s/-retraction, a sound change in progress in American English that has been characterized as both assimilation and coarticulation in the literature. Observed throughout the continental United States, Canada and abroad, /s/-retraction is the process by which /s/ is produced approaching [ʃ] in the context of /r/, especially in /str/ clusters like street (Archangeli et al., 2011; Baker et al., 2011; Durian, 2007; Gylfadottir, 2015; Lawrence, 2000; Mielke et al., 2010; Rutter, 2011; Shapiro, 1995; Wilbanks, 2017). While there is remarkable variation both within and between speakers in the production of /s/ in all /sCr/ clusters, where ⟨C⟩ is taken to represent a voiceless stop /{p,t,k}/, /s/ is significantly more retracted in /str/ than in /spr/ (spree) or /skr/ (scream) clusters (Baker et al., 2011; Gylfadottir, 2015), to the extent that most existing research has focused exclusively on /s/-retraction in /str/ clusters.

This study seeks to better understand the underlying mechanism of the change through an examination of the temporal dynamics of /s/-retraction. Specifically, this study examines how various factors including sibilant duration and prosodic boundaries – in addition to the identity of the intervening stop – condition the observed retraction over the course of the sibilant in /sCr/ clusters. A dynamic trajectory, in which the degree of retraction increases over the course of the sibilant, and durational conditioning, in which retraction is resisted in sibilants with longer durations, would suggest a coarticulatory account of the sound change. In contrast, categorical and stable trajectories that are not strongly conditioned by duration or speech rate would suggest an assimilatory account of retraction.

1.1. Retraction

Throughout the short history of research on /s/-retraction, there has been much debate as to the causes of the observed retraction and how to best account for it, often focusing on /str/ clusters alone. In the first dedicated account of /s/-retraction, Shapiro (1995) proposes that /s/ exhibits long-distance place of articulation assimilation from /t/ across the intervening /t/. Based on his observation that retraction is not seen in /spr/ and /skr/ clusters, Shapiro explicitly prohibits retraction in those clusters by proposing that /p/ and /k/ as non-coronal segments block the assimilation of place features. Lawrence (2000) agrees that /s/-retraction is an assimilatory process observed only in /str/ (and /stj/) clusters, but counters that /s/-retraction is inherently a local process due to affrication on the /t/. This account necessitates two ordered processes,
where the intervening /t/ is first affricated to /tʃ/ as a result of its adjacency to /r/, following the robust sound change in English in which /t/ and /d/ affricate preceding /r/ as in *truck /trʌk/ or *drink /drʌŋk/ (Read 1975; Smith 2013). Subsequently, /s/ locally assimilates the place features of /tʃ/ to yield a final /ʃtʃr/ cluster. The local assimilatory account also explains the observed asymmetry between /str/ and /s{p,k}r/ clusters, as the intervening /p/ and /k/ do not affricate or bear post-alveolar place features. More recent research by Archangeli, Baker, and Mielke (Archangeli et al. 2011; Baker et al. 2011; Mielke et al. 2010) challenge these cut-and-dry assimilatory accounts, proposing that /s/-retraction is fundamentally a coarticulatory process for most speakers. Baker et al. (2011) observed gradient, intermediate forms between prevocalic /s/ and /ʃ/ in all /sCr/ clusters, both acoustically and articulatorily, although /s/ in /str/ is significantly more /ʃ/-like than in /spr/ or /skr/ clusters. For some speakers, proposed to be phonologized retractors, /s/ in /str/ clusters is perceptually and acoustically more /ʃ/-like; however, it is rarely observed to be fully within the range of canonical /ʃ/ for any speaker (Mielke et al. 2010). Many additional studies have also observed gradient, intermediate forms in /str/ clusters (Durian 2007; Gylfadottir 2015; Wilbanks 2017); however Rutter (2011) observed more categorical /s/ or /ʃ/ productions in /str/ environments.

While many investigations of /s/-retraction have focused on word-initial /str/ clusters, some studies have examined the role of the position of the cluster within the word. In each of these studies, an effect of word position has been replicated, with increased retraction observed in word-medial positions (Durian 2007; Gylfadottir 2015; Wilbanks 2017). Additionally, apparent time trends for the interaction of birth year and word position have been observed, with younger speakers showing even more retraction word-medially than older generations (Gylfadottir 2015; Wilbanks 2017). With these findings in mind, Durian (2007) and Wilbanks (2017) suggest that word-medial positions may be the locus of the actuation of /s/-retraction. Parallel effects of word-position have also been observed for prevocalic instances of /s/ in which retraction is not expected (Phillips et al. 2018), with word-initial prevocalic /s/ produced with a higher centroid frequency than word-medial instances of /s/, suggesting that regardless of phonological environment, sibilants enhance phonological contrast, and thus resist retraction, word-initially. No work to our knowledge has examined the role of phrase positions or sibilant duration in conditioning /s/-retraction.

1.2. Duration & prosodic strengthening

In order to identify the underlying process of /s/-retraction – whether it is better characterized as coarticulation or assimilation – the present study examines the temporal dynamics of /s/, focusing on the influence and interactions of sibilant duration and prosodic position.

Another factor tightly intertwined with coarticulation is duration and speech rate: Segments produced with longer durations have been shown to exhibit less coarticulation than segments in identical phonological environments produced with shorter durations (Fourakis 1991; Fowler 1981; Gay et al. 1974; Gendrot 198...
Adda-Decker, 2005; Iskarous & Kavitskaya, 2010; Lindblom, 1963; Tsao et al., 2006; Whalen, 1990, i.a.). In work on Swedish consonant-vowel coarticulation, Lindblom (1963) found that vowel reduction is a function of segment duration. Lindblom observed that vowels are less likely to reach their acoustic targets, or be produced with canonical on- or off-glide movements, as the duration of the vowel decreases. Lindblom proposes that vowel reduction is primarily an intrinsic result of human physiology and motor planning, by which targets simply cannot be reached in the amount of time provided by the speech rate. Whalen (1990) also found a duration effect, looking at vowel-to-vowel coarticulation in nonce words in English. Crucially, Whalen did not present participants with the entire nonce word until the utterance had begun, which resulted in less anticipatory coarticulation in the unknown condition, suggesting that coarticulation is planned by the speaker. Gendrot & Adda-Decker (2005) examined a corpus of broadcast French and German, finding that vowel space for both languages shrinks concentrically as the duration of the vowels examined decreases, providing strong evidence for the relationship of duration and coarticulation outside of the laboratory. In contrast, Mok (2011) examined vowel-to-vowel coarticulation in Thai, a language with a phonological vowel length distinction, finding that there is no simple one-to-one relationship between duration and coarticulation. Additionally, Mok proposes that a speaker’s effort to maintain clarity can override effects of segment duration. Furthermore, Cho (2004) suggests that duration factors alone cannot account for the degree of coarticulation observed and related factors of prosodic strengthening must be taken into account.

Prosodic position has also robustly been demonstrated to influence speech production, yielding prosodic strengthening. Prosodic strengthening is the process by which sounds at prosodic landmarks, such as phrase boundaries and under prominence, are enhanced temporally or spatially, while the specific nature of the observed strengthening varies depending on the sound or landmark. Prosodic lengthening, has been robustly observed both domain-finally (Byrd, 2000; Byrd et al., 2006; Cho, 2002, 2006; Onaka, 2006, i.a.) and domain-initially (Byrd & Saltzman, 2003; Cho, 2002, 2006; Cho & Keating, 2001, 2009; Cho & Kim, 2014; Fougeron, 2001; Fougeron & Keating, 1997; Keating et al., 2003; Onaka, 2003, i.a.). However, due to the variation between sounds and boundary types, some sounds have been observed not to exhibit lengthening, or to even exhibit shortening at prosodic boundaries (Cho et al., 2017; Cho & Kim, 2014; Cho & McQueen, 2005). Cho & McQueen (2005) found that voice onset time (VOT) in Dutch voiceless stops shortens under prosodic prominence, exhibiting the reverse pattern as English voiceless stops. While both sounds may be described with the same [− voice] feature, the two differ with respect to the [+ / − spread glottis] feature. Thus in Dutch, by shortening VOT, voiceless stops are enhancing the [− spread glottis] feature. Cho & Kim (2014) observed the same pattern for voiceless stops in English /sC/ clusters shortening at prosodic boundaries, where voiceless stops following /s/ contrast with prevocalic voiceless stops by having the phonetic feature [− spread glottis]. Of particular interest to this study is the other side of Cho & Kim (2014), which found that /s/ in /sC/ clusters did exhibit the expected prosodic lengthening at phrase boundaries.
In addition to temporal enhancement, segments exhibit spatial enhancement as a means of maximizing phonological contrasts, a form of highly localized hyperarticulation (Cho 2011, 2016; Fougeron 1999; Kohler 1992). Cho (2005) found that /i/ in English is raised acoustically and articulatorily adjacent to boundaries, but fronted in accented positions, both dimensions that serve to enhance the contrast between /i/ and other vowels in English. While voicing contrasts have been robustly observed to be enhanced at boundaries (Cho & Kim 2014; Cho & McQueen 2005; Clayards & Knowles 2015; Cole et al. 2007), less work has found evidence for place of articulation contrasts in consonants. Looking at /n/ and /t/ in English, Cho & Keating (2009) found prosodic strengthening on a variety of dimensions including peak contact and nasal energy for /n/ and RMS energy and burst centroid frequency for /t/. Keating et al. (1999) found evidence for increased linguopalatal contact in non-sibilant obstruents, but crucially found less evidence for spatial strengthening in the sibilant obstruents examined. This generalization was also replicated by Clayards & Knowles (2015), who found stronger evidence for voicing contrast enhancement than place enhancements at word boundaries for sibilants. These findings contrast with the place enhancement effect of initial positions observed by Phillips et al. (2018), demonstrating that word-initial instances of prevocalic /s/ are characterized by a lower centroid frequency than word-medial prevocalic /s/, effectively maximizing the phonological distance between /s/ and /ʃ/.

Furthermore, prosodic strengthening is manifested by coarticulatory resistance and local hyperarticulation, inherently intertwined with the processes of lengthening and contrast enhancement (Cho & Keating 2009; Fougeron & Keating 1997). Thus, adjacency to prosodic boundaries not only lengthens segments, but it can also serve to resist coarticulation, effectively leading to local hyperarticulation. Similarly, Cho (2004) found that vowels at boundaries of higher prosodic positions (Prosodic Word vs. Intermediate Phrase vs. Intonational Phrase) resist coarticulation with neighboring vowels. Cho suggests that the coarticulatory resistance is not simply a form of prosodic strengthening, but additionally an effort on the speaker’s role to achieve clarity. This view of coarticulation suggests that coarticulated speech is more ambiguous and increases effort for the listener (e.g., Manuel 1990; Lindblom 1990), contrasting with recent research that coarticulation is beneficial to the listener, providing more information about upcoming sounds (Beddor et al. 2013; Pycha 2016; Scarborough 2004, 2013; Wright 2004).

1.3. Hypotheses and predictions

The present study is designed to better understand the nature of /s/-retraction through an examination of the ways in which the following consonants, adjacency to a prosodic boundary, and sibilant duration influence the degree and trajectory of retraction observed. Specifically, this study asks if retraction is best characterized as a coarticulatory or assimilatory process, which can be elucidated through the examination of several concrete factors. In this section, I outline the specific, testable predictions made by the different accounts.
A model of retraction as a coarticulatory process first predicts intermediate forms between prevocalic /s/ and /ʃ/ in all /s{p,t,k}r/ clusters, as observed by Mielke et al. (2010), but with the intermediate forms in /str/ clusters more advanced, i.e. more /ʃ/-like than in /s{p,k}r/ clusters. Additionally, a coarticulatory model of retraction predicts that retraction will be highly localized and dynamic, with the degree of retraction increasing throughout the duration of the sibilant as the distance from /r/ decreases. Furthermore, a coarticulatory model of retraction predicts that retraction should be resisted in segments with longer durations, whether that be a result of adjacency to a prosodic boundary or due to speech rate and gestural timing, following Lindblom (1963). If prosodic lengthening is observed, this would potentially decrease the degree of retraction phrase-initially compared to phrase-medially, parallel to the observed pattern for reduced retraction word-initially vs. word-medially (Durian, 2007; Gylfadottir, 2015; Wilbanks, 2017). Conversely, adjacency to a prosodic boundary may also serve to shorten the duration of the intervening stop to enhance the [− spread glottis] feature, following Cho & Kim (2014), decreasing the temporal gap between /s/ and /r/ and potentially encouraging greater retraction in phrase-initial positions.

A model of retraction as primarily a phonological process proposes that /s/ in /str/ clusters assimilates the [− anterior] feature of /r/ for retractors but retains the [+ anterior] feature for non-retractors. Such an account predicts that speakers produce forms that more categorically fall into the speakers /s/ and /ʃ/ ranges, as observed by Rutter (2011). An assimilatory account would also preclude retraction in /spr/ or /skr/ clusters, as the long distance assimilation is only possible across the under- or unspecified /t/ (Shapiro, 1995). As a phonological process, an assimilatory account of retraction does not predict dynamic trajectories of retraction that vary as a function of the duration of the sibilant or the distance from /r/, as feature-spreading is categorical and would be expected to be observed at similar degrees over the course of the sibilant (Manuel, 1987). Furthermore, in an assimilatory account, prosodic strengthening may occur at phrase boundaries, enhancing place contrast between sibilants. This would predict that retractors would produce a lower centroid frequency phrase-initially to maximally distinguish /str/ from /s/, while non-retractors would produce a higher centroid frequency to distinguish /str/ from /ʃ/.

2. Methods

2.1. Participants

Thirty participants were recruited from the University of Chicago community and received either payment or course credit for their participation. Twenty-one participants identified as male and nine as female. All participants were college-aged (mean age 19) native English speakers, raised across the continental United States, with higher concentrations in the Northeast and Midwest. Most participants reported being raised in suburban areas (n=17), with fewer participants from urban (n=8) or rural (n=5) areas. No participants reported
speech or hearing disorders/abnormalities. One additional participant took part in the study but was not included in the analysis as he was raised outside the U.S.

2.2. Stimuli

Five target sibilant environments were used for the study, with /s/ in pre-vocalic (sage) or preconsonantal environments (sprain, strain scrape) as well as prevocalic /ʃ/ (shade). Additional filler words included word-initial stops, nasals and approximants. A complete list of target and filler words is provided in Table 1.

<table>
<thead>
<tr>
<th>Targets</th>
<th>Fillers</th>
</tr>
</thead>
<tbody>
<tr>
<td>/s/</td>
<td>sage bait, brake, dame,</td>
</tr>
<tr>
<td>/spr/</td>
<td>sprain drake, gaze, grape,</td>
</tr>
<tr>
<td>/str/</td>
<td>strain jade, knave, lace,</td>
</tr>
<tr>
<td>/skr/</td>
<td>scrape mace, rave</td>
</tr>
<tr>
<td>/ʃ/</td>
<td>shade</td>
</tr>
</tbody>
</table>

The target and filler words were placed in carrier phrases designed to contrast adjacency to an intonational phrase (IP) boundary. In the initial condition, the target word was the first word of a second sentence (e.g. I don’t know what he said to me. STRAIN or drake is maybe what he said). In the medial condition, the target word was preceded by a single word in the second phrase (e.g. I don’t know what he said. Maybe STRAIN or drake is what he said to me). It is worth noting that while IP-medial, the second carrier phrase was still intermediate phrase (IntP) initial, making the relative difference in the boundary between the two conditions small but controlled. Both carrier phrases were controlled for syllable count and the sounds preceding and following the target words. Each target word and filler was also included in the second position of the coordinated structure (e.g. strain or drake and drake or strain). This secondary target was included for the naturalness of the carrier phrase but was not analyzed. Secondary targets were randomly paired with the primary targets and not all pairs were included for time considerations. The carrier phrases are reproduced in Table 2.

2.3. Procedure

Participants were seated in an isolated double-walled sound booth and were recorded on a Marantz Solid State PMD661 with a Shure SM10A head-mounted microphone. Participants were instructed to read the stimuli presented on the computer screen aloud at a normal speaking rate with no particular emphasis, stress, or focus. The stimuli were presented using PsychoPy (Peirce, 2008) in four blocks of 32. Each block contained each target word in both carrier phrases (2 × 16 = 32). The order of the stimuli within each block was randomized. The
Table 2: Design of stimulus sentences contrasting initial vs. medial sentence positions, with the target in capital letters, added here for clarity but presented to participants without emphasis.

<table>
<thead>
<tr>
<th>Position</th>
<th>Sentence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>I don’t know what he said to me. STRAIN or drake is maybe what he said.</td>
</tr>
<tr>
<td>Medial</td>
<td>I don’t know what he said. Maybe STRAIN or drake is what he said to me.</td>
</tr>
</tbody>
</table>

pace of the study was determined by the participants who advanced to the next trial by pressing the space key.

Recordings were manually checked for errors or disfluencies and subsequently forced aligned using FAVE (Rosenfelder et al., 2011) which determines phone-level boundaries using the HTK toolkit (Young, 1994) and the CMU American English Pronouncing Dictionary (Weide, 1998) to determine phonemic representations of words. Following forced alignment, phone-level boundaries for the target sibilants and intervening stops were manually corrected by the researcher.

2.4. Measurements

2.4.1. Spectral measurements

To characterize retraction, the centroid frequency (CF) and peak frequency (PF) of the sibilant were examined. Centroid frequency is the first of the four spectral moments (centroid frequency, standard deviation, skewness and kurtosis) and is frequently used to distinguish /s/ from /ʃ/ in English (Jongman et al., 2000; Shadle & Mair, 1996, i.a.) and particularly in work examining English /s/-retraction (Baker et al., 2011; Gylfadottir, 2015; Mielke et al., 2010; Wilbanks, 2017). Peak frequency is another commonly used feature for distinguishing place of articulation in sibilants, but has been less often used in examinations of /s/-retraction (Rutter, 2011). For both measurements, /s/ is typically characterized by higher spectral energy than /ʃ/ due to the shorter oral cavity anterior to the constriction necessary for the production of /s/ relative to /ʃ/. Additionally, both spectral measurements have been shown to be highly variable depending on the speaker (Hughes & Halle, 1956) and their gender (Nittouer, 1995; Stuart-Smith, 2007) and socio-economic class (Stuart-Smith, 2007). As /s/-retraction is a sound change in which /s/ approaches /ʃ/ in acoustic and articulatory realizations, a more retracted /s/ is expected to have a lower spectral energy than a less retracted /s/.

A custom Praat (Boersma & Weenink, 2001) script automatically extracted centroid frequency and peak frequency measurements for all intervals labeled as /s/ or /ʃ/ at eleven equidistant points (at 10% increments of the fricative’s duration from 0% to 100%) using 40 ms Hamming windows with preemphasis at 80 Hz and an examined frequency range from 500 to 12000 Hz. Measurement from the first and last 20% of the fricative were not included in the analysis.
The same script also measured the duration of the sibilant, the duration of the following stop, the word duration, and the labels of the following four segments.

While both spectral measurements were considered, ultimately, centroid frequency was selected as the measurement to best characterize /s/-retraction for this study. In the preliminary statistical analysis, there was no significant difference in model likelihood between the models using centroid frequency or peak frequency as the dependent variable. Due to the equal likelihood of the two models, a quadratic discriminant analysis (QDA) was performed to determine which measurement was a better predictor of the contrast. Using a subset of the data collected in this study, QDA classifiers were fit to the Gaussian distributions of prevocalic /s/ and /ʃ/, first using centroid frequency as the cue of contrast. The remainder of the data was then run through the classifier to determine which distribution (/s/ or /ʃ/) a given measurement most likely belongs to. A second set of classifiers were fit using peak frequency. The QDA classifiers using centroid frequency outperformed those using peak frequency, exhibiting greater accuracy in discriminating prevocalic /s/ and /ʃ/, leading to the selection of centroid frequency as the measurement of analysis in this study.

Prior to modeling, CF values (in Hz) were normalized using z-scoring for all participants to allow for comparison of values between individuals and genders. To obtain the z-scored CF value, the mean and standard deviation for each participant’s /s/ was calculated across conditions (both prosodic and phonological) and timepoints. The formula for z-score normalization is provided in (1).

\[
CF_{\text{z-scored}} = \frac{\text{CF of segment} - \text{speaker mean CF of } /s/}{\text{speaker standard deviation of } /s/}
\]

2.4.2. Duration measurements

The duration of the sibilant was measured to examine whether prosodic lengthening occurs in IP-initial vs. medial positions in /sCr/ clusters. It was also included in the spectral analysis of retraction as an explanatory variable in order to examine the potential role of duration in conditioning spectral variation, as segments with longer duration have been shown to exhibit less coarticulation (Lindblom, 1963). Sibilant duration was taken from the onset and offset of aperiodic frication as evident in the spectrogram.

The duration of the stop was also measured to examine whether prosodic shortening, due to the [− spread glottis] feature of stops following /s/, on the intervening stop can be observed in /sCr/ clusters in phrase initial position, following (Cho & Kim, 2014) for /sC/ clusters. Stop duration was taken from the onset of frication to the onset of formant structures as evident in the spectrogram.

3. Results

3.1. Duration analysis

The model for sibilant duration (ms) included fixed effects for trial order (ORDER, 1–128), the prosodic position of the target word (POSITION, IP-Intial
vs. IP-Medial), and the identity of the following consonant (FOLLSEGMENT, ∅ for prevocalic, and /p/,/t/,/k/). The inclusion of self-reported gender of the speaker and other demographic information, including participant age, ethnicity, sexuality or geographic origin, did not improve model likelihood. ORDER was scaled and centered at 0; POSITION was sum-coded; FOLLSEGMENT was treatment-coded with ∅ as base. The model included by-subject random intercepts to account for interspeaker variability and by-subject random slopes for POSITION*FOLLSEGMENT to allow for individual variation in the effect of this interaction. No by-item random intercepts or slopes were included, as there was only one unique word for each of the target environments (prevocalic (sage), /spr/ (sprain), /str/ (strain), and /skr/ (scrape)).

For the model on stop duration, only words with /sCr/ clusters were included in the analysis as there was no measurement to analysis in words with prevocalic /s/. The model for stop duration (ms) was identical model presented for sibilant duration with the distinction that the following segment (FOLLSEGMENT) was not a relevant measure, so stop identity (STOPIDENT) was selected instead. STOPIDENT was treatment coded with /p/ as base.

However, in neither the sibilant duration model nor the stop duration model was duration significantly modulated by phrase position. These findings suggest that the relatively small difference between intonational phrase-initial and intonational phrase-medial/intermediate phrase-initial is not great enough to manifest itself in prosodic lengthening or, in the case of the post-/s/ stop, possible prosodic shortening. In the following section, we turn to a spectral analysis of /s/ to examine possible prosodic strengthening and possible effects of duration, regardless of the phrase position, on retraction.

3.2. Spectral analysis

The model for centroid frequency (CF, z-scored) of /s/ included fixed effects for trial order (ORDER, 1–128), the prosodic position of the target word (POSITION, IP-Initial vs. IP-Medial), the timepoint over which the measurement was extracted (TIMEPOINT, from 3 (18.18%) to 9 (81.81%) of the total sibilant duration), and the identity of the following consonant (FOLLSEGMENT, ∅ for prevocalic, and /p/,/t/,/k/). Additionally, the duration of sibilant (SDURATION, in ms) was included in the model. Like with the duration models, the inclusion of self-reported gender of the speaker and other demographic information, including participant age, ethnicity, sexuality or geographic origin, did not improve model likelihood.

All continuous variables were scaled and centered at 0, including ORDER, TIMEPOINT, and SDURATION. POSITION was sum-coded; FOLLSEGMENT was treatment-coded with ∅ as base. The model included by-subject random intercepts to account for interspeaker variability and by-subject random slopes for POSITION*FOLLSEGMENT to allow for individual variation in the effect of this interaction. No by-item random intercepts or slopes were included, as there was only one unique word for each of the target environments (prevocalic (sage), /spr/ (sprain), /str/ (strain), and /skr/ (scrape)).
Table 3 provides a summary of significant main effects and interactions in the centroid frequency analysis. Only significant predictors, defined as having a p-value less than 0.05, are reported.

The first step of the analysis is to examine the coarticulatory effects of the consonant cluster, determining if the results confirm the reported asymmetric distribution of /s/-retraction, in which higher degrees of retraction, i.e. lower centroid frequency values, are observed in /str/ clusters than /spr/ or /skr/ clusters. Figure 1 plots the z-scored centroid frequency for each target environment, including prevocalic /s/ and /S/ across all participants. Visual inspection of the data suggests that lowered centroid frequency values occur in all /sCr/ clusters compared to prevocalic /s/, with the lowest values in /str/ clusters. The results of the model support these observations, with a significant lowering effect of the following consonant in all /sCr/ clusters (for /p/: $t = 5.41, p < 0.001$; for /t/: $t = -11.20, p < 0.001$; for /k/: $t = -8.55, p < 0.001$). These findings provide evidence for the coarticulatory influence of /r/ in all clusters, with the highest degree of coarticulatory found in /str/ clusters.

As reported in Table 3, there is a main raising effect of timepoint across all clusters, suggesting that the centroid frequency of /s/ rises throughout the sibilant duration, making it more distinctive from /S/ over the course of its production ($t = 14.08, p < 0.001$). However, of particular interest to this study is how /sCr/ clusters differ from prevocalic /s/ in their temporal dynamics. Figure 2 plots the predicted centroid frequency for each target environment at
seven timepoints over the course of its production. In Figure 2, the relative rising over the course of the sibilant can be observed in all /s/ environments, but /sCr/ clusters appear to taper off or even lower over the final third of their examined production in contrast to prevocalic /s/, which continues its rise. These observations are confirmed in the results of the model, with all three clusters showing a lowering effect of the interaction of timepoint and following consonant cluster (for /p/: $t = -5.79, p < 0.001$; for /t/: $t = -6.74, p < 0.001$; for /k/: $t = -7.19, p < 0.001$). These findings suggest that the lowering effect of the consonant clusters increases throughout the duration of the sibilant further separating preconsonantal /s/ from prevocalic /s/. This provides evidence for the role of locality in retraction, suggesting that as the temporal distance from /r/ decreases, the degree of coarticulation observed increases.

An additional aim of the experiment was to manipulate adjacency to a prosodic boundary to examine if retraction is resisted in phrase-initial positions in the same way it is in word-initial positions (Gylfadottir 2015; Wilbanks 2017). Firstly, as previously mentioned, IP-initial sibilants did not exhibit significantly longer durations, contra Cho & Kim (2014). If segments were to lengthen word-initially, then the hypothesis predicts that they would resist coarticulation and exhibit higher centroid frequency. Regardless of lengthening, segments would also be expected to maximize contrast at prosodic boundaries, further contributing to higher centroid frequency values. However, no main effect of prosodic position was observed, either in lengthening or strengthening (see Section 4 for a discussion as to why). Despite the lack of main effect of phrase position, Figure 3 suggests that initial and medial positions appear to be distinguished over the course of the sibilant production. However, Figure 3 suggests centroid frequency raising, i.e. less retraction, in phrase-medial positions relative to phrase-initial positions rather than the predicted inverse. Furthermore, Figure 5 shows that phrase-medial /s/ production is more dynamic and
parabolic than phrase-initial trajectories and with more variance in the predicted values. This account is confirmed by the model (t = 11.47, p < 0.001), suggesting that the main centroid frequency raising effect of timepoint is further enhanced in phrase-medial positions.

Although duration was not successfully manipulated between phrase-initial and medial instances of /s/, the duration of the sibilant was nonetheless a critical factor in conditioning the observed retraction. Figure 4 plots the predicted centroid frequency values for the target environments for sibilants of differing durations. While the predicted mean of prevocalic /s/ and /ʃ/ are shown to be characterized by a relatively flat slope, suggesting little influence of segment duration, the /sCr/ clusters all exhibit increased centroid frequency values as the duration of the segment increases. This is confirmed by the model, suggesting that in /sCr/ clusters, longer durations encourage higher centroid frequency value, i.e. less retraction (for /p/: t = 3.04, p < 0.01; for /t/: t = 3.75, p < 0.001; for /k/: t = 2.62, p < 0.01). These results are in keeping with predictions for the role of duration, finding that increased duration effectively decreases the coarticulatory power of the adjacent consonants, here the stop-rhotic clusters.

Duration further interacts with phrase position and following segment in conditioning centroid frequency of /s/. In Figure 5, the phrase-initial (left panel) instances of /sCr/ exhibit the same effect of duration as the interaction of duration and target environment pictured in Figure 4 with visibly more positive slopes; that is, sibilants in /sCr/ clusters with a longer duration exhibit higher centroid frequency values than segments with a shorter duration. However, the phrase-medial (right panel) instances of /sCr/ do not appear to exhibit as strong an effect, suggesting that the coarticulatory resistance of increased duration is stronger in initial than medial positions. This observation is supported by the model, with the interaction of sibilant duration, phrase position and following
segment having a dampening effect on centroid frequency in medial positions (for /p/: $t = -2.54, p < 0.05$; for /t/: $t = -3.18, p < 0.01$; for /k/: $t = -1.92, p < 0.05$). These findings suggest that the coarticulatory resistance of increased segment duration is weaker phrase-medially than phrase-initially. Furthermore, while the interaction of phrase position and following consonant cluster was not significant in the pooled model, the inclusion of by-subject random slopes for that interaction, which significantly improved model likelihood, hints to further individual differences in how phrase position affects /s/ production in consonant clusters. This observation is explored further in Section 4.2.

4. Discussion

While the highest degree of retraction was observed in /str/ clusters, this study also provides clear empirical evidence for retraction in /spr/ and /skr/ clusters as well, with /s/ in all clusters exhibiting lower centroid frequency values compared to prevocalic environments. Furthermore, in no cluster could the sibilant be described as canonically /ʃ/; instead, gradient forms intermediate between prevocalic /s/ and /ʃ/ were observed, in line with Baker et al. (2011) for all /sCr/ clusters and numerous findings of intermediate forms in /str/ clusters (Labov 2001; Durian 2007; Mielke et al. 2010; Gylfadóttir 2015), in contrast to the categorical findings of Rutter (2011). These intermediate forms begin to challenge an account of retraction as assimilation, as phonological reanalysis would predict more canonical instances of /ʃ/ in environments conditioning retraction. Further support for a coarticulatory account is proposed in Section 4.1 through a discussion of the temporal dynamics of sibilant production in /sCr/ clusters. And finally, special attention is given to individual variation in /s/ production in Section 4.2.
4.1. Temporal dynamics of retraction

The results of this study provide strong evidence for a coarticulatory model of /s/-retraction in which the extent and degree of retraction are dependent on temporal factors, manifested in the effects of three distinct predictors: the duration of the sibilant, the timepoint over the course of the sibilant production at which measurement was taken, and the prosodic position of the sibilant. Although these factors are distinct on the surface, they all fundamentally speak to the relative strength of the coarticulatory trigger – /r/.

As predicted, sibilants in all /sCr/ clusters with longer durations exhibited higher centroid frequencies, effectively decreasing retraction, with the strongest effect in /str/ clusters. This effect of duration strongly supports a coarticulatory account of retraction, as less coarticulation is expected in segments with longer durations. Similarly, as predicted, the later the timepoint – and thus the closer to /r/ – the lower the centroid frequency for all /sCr/ clusters. This sheds light on the highly local nature of retraction, despite acting across an intervening stop, further supporting a coarticulatory account of retraction.

While a coarticulatory account of retraction predicted increased retraction in phrase-medial positions, both as a result of prosodic lengthening and strengthening in which hyperarticulation is observed at boundaries following (Fougeron & Keating, 1997), there was no interaction of prosodic position and cluster identity. Furthermore, sibilant duration was not successfully conditioned by adjacency to a prosodic boundary, with no difference observed in the length of sibilants between the IP-initial and medial positions. Taken together, these findings may suggest that the contrast between the prosodic positions was not great enough to manifest evidence for prosodic strengthening, since the positions analyzed as IP-medial can also be described as IntP-initial, and thus still
Figure 5: CF values for each phonological environment as a function of sibilant duration (x-axis) and phrase position (panels). All CF values are z-scored. Values for /ʃ/ are shown for comparison but were not included in the model.

adjacent to a relatively structurally high prosodic boundary despite being comparatively lower than IP-initial positions. Nonetheless, prosodic strengthening can be observed in the interaction of prosodic position with duration and target clusters, with the resistance to retraction, as a result of increased sibilant duration, weakened in phase-medial positions. In other words, more retraction is expected phrase-medially regardless of the duration of the sibilant, while retraction in initial positions is more dependent on sibilant duration. Furthermore, the lack of a general effect of prosodic strengthening of retraction may be due to the incredible amount of individual variation observed in this interaction, examined in depth in Section 4.2.

Taken together, these findings illustrate that /s/-retraction is a gradient, dynamic process that is heavily conditioned by factors that influence the relative distance from the sibilant to the rhotic, suggesting that it is best characterized as a coarticulatory rather than assimilatory process. Furthermore, if this account is embraced, this study provides further evidence that coarticulation is a planned, phonologically-constrained, language- and speaker-specific process ([Manuel] 1990) and cannot be viewed through a strictly biomechanical lens.

4.2. Individual Variation

The community level findings of gradient intermediate forms, visualized in Figure [1](#), support a coarticulatory model of retraction, which is further evidenced through an examination of the individual patterns different speakers exhibit in their production of /s/ in these environments. Figure [6](#) plots each individual’s mean retraction ratio, rather than z-scored CF, for each /sCr/ cluster. The retraction ratio (Mielke et al., 2010), provided in [2](#), outputs a number between 1 and 0, where 0 represents that a given value is identical to that individual’s mean prevocalic /s/ and a 1 represents that a given value is identical
Retraction Ratio = \frac{\text{CF of segment} - \text{speaker mean CF of } /s/}{\text{speaker mean CF of } /\mathbf{s}/ - \text{speaker mean CF of } /s/} \quad (2)

As Figure 6 illustrates, most individuals exhibit a retraction ratio between 0 and 0.5 for all clusters, suggesting intermediate forms closer to /s/ than /\mathbf{s}/. For four individuals, the observed retraction ratio for /str/ is greater than 0.75. Additionally, this study replicates the sizable gap between 0.6 and 0.8 observed by Mielke et al. (2010), which correlates with their perceptual categorization of speakers as retractors or non-retractors (in their definition, a retractor is an individual whose /str/ cluster would be perceived as [ftr] by a trained listener). The replication of this gap may be indicative of a naturally occurring distinction between retraction as a result of coarticulation and phonologized sound change. It is also noteworthy that very few participants in the study would be categorized as retractors, especially given the relative youth of the participants recruited.

The results of this study point to a tremendous degree of interspeaker variation that can contribute to better understanding the nature of the actuation and propagation of the sound change. Many models of sound change propose that a sound change begins when a speaker produces extreme coarticulation which is then misinterpreted by the listener as a new speech target (Ohala, 1993, i.a.). Baker et al. (2011) examine /s/-retraction as a key to understanding sound change actuation, as it is naturally biased toward interspeaker variability because English /r/ is articulated with a stable degree of variation due to the lack of a perceptual distinction for listeners between the bunched and retroflex varieties. The present study expands upon the findings of Baker et al. examining individual variation not just in phonological environment but also in prosodic position.

Despite the lack of main effect for phrase position, the interaction of prosodic position and phonological environment shows a high degree of inter-speaker variation. The results of the model presented in Section 3 capture community-level observations, while accounting for individual variation by the inclusion of by-subject random slopes and intercepts. In Figure 7, the random slopes for phrase
Figure 7: Caterpillar plot for the mixed effects model, with by-subject random intercepts and by-subject random slopes for phrase position (POSITION: 2 = phrase-medial), phonological environment (FOLLSEGMENT: 2 = /p/; 3 = /t/; 4 = /k/), and their interaction. Participants are ordered by their conditional mode for by-subject random intercepts.

Position, phonological environment and their interaction are plotted for each individual, providing a visual representation of the reality of individual variation. Participants are sorted by their conditional mode for by-subject random intercept for the centroid frequency of /s/, displayed in the top left panel. The remaining two panels in the top row display the random slopes for trial order or phrase position, with some individuals showing significant deviations from the mean for phrase position in both directions. The middle three panels dis-
play the random slopes for following segment (/p/, /t/ and /k/), showing the
individual variation with respect to the effect of the following consonant. Of
particular note are the random slopes for /t/ (FOLLSEGMENT3), highlighting
the increased inter-speaker variation in the context of /t/ compared against the
other consonant clusters. The visualization of the first six panels suggest that
less variation is observed in the effect of prosodic position than phonological con-
text and almost no visible variation in the effect of trial order. The remaining
three panels on the bottom row illustrate the by-subject random slopes for the
interaction of prosodic position and following segment, which improved model
likelihood despite not reaching significance in the group model. Again, like the
variation observed in the context of /t/, these panels demonstrate the individual
variability that this interaction has on the degree of retraction and captures the
deviations that the group-level analysis cannot. The caterpillar plot illustrates
the nature and magnitude of this variation, with some subjects showing a mild
effect, suggesting smaller deviations from the group norm, and a few individuals
showing a robust effect in contrast to the group norm.

To better understand the nature of individual variation beyond the random
slopes in Figure 7, separate linear regressions were run on each speaker’s produc-
tion data. As running additional linear regressions on each speaker decreases the
power of each model and increases the likelihood of type I errors, these models
were only interpreted to supplement the findings of the pooled model. The linear
regressions were identical in form to the pooled model, but by nature excluded
all random effects. The results of three participants exhibiting distinctive patterns
are visualized in Figure 8. Speaker 9701 (left) exhibits no effect significant
effect of position, target, timepoint or their interaction. Speaker 9604 (center)
exhibits a clear effect of phonological environment in /str/ clusters but not in
/spr/ or /skr/ clusters, but shows no effect of timepoint, position or its inter-
action with phonological environment. Speaker 9603 (right) shows a significant
interaction of timepoint, phonological environment and phrase position.

While Speaker 9603 would not be described as an across-the-board retractor,
as her /str/ production phrase-medially overlaps with her prevocalic /s/ pro-
duction, yielding a mean retraction ratio of 0.08, her /str/ production phrase-
initially is not only significantly different from her prevocalic /s/ and her phrase-
medial /str/ values but is closer to her mean prevocalic /ʃ/, yielding a mean
retraction ratio value of 0.67. Furthermore, lowered centroid frequency val-
ues are observed phrase-initially in /spr/ and /skr/ as well, to the extent that
some of those tokens were perceived by the researcher to be [ʃ]. Only prevocalic
/s/ and /ʃ/ do not vary between phrase-initial and medial positions. In
this way, her /sCr/ production seems to be completely modulated by prosodic
position rather than the place of the following consonant, with canonical /s/
articulations phrase-medially and intermediate articulations between /s/ and
/ʃ/ phrase-initially.

Despite the group level effect that inhibits retraction phrase-initially in sibi-
lants with longer durations, a significant degree of individual variation is shown
in the interactions of phonological environment and phrase position in both di-
rections, indicating increased retraction initially for some speakers and medially
Figure 8: CF for /s/ and /ʃ/ in different phonological environments and phrase positions for three individuals, illustrating the by-subject variation in the interaction of phrase position and following segment. The left and center panels illustrate individuals with no significant effect of the interaction. The right panel shows an individual with a significant effect of the interaction of position, timepoint and following segment in all three clusters.

for others. And it stands to reason that its speakers like 9603 who exhibit increased retraction phrase-initially, despite the trend in the opposite direction and findings of increased retraction word-medially rather than word-initially (Durian 2007; Wilbanks 2017), that may be actuators of sound change. Specifically, these extreme coarticulatory values of /s/ are observed phrase-initially, precisely where they are most prominent and ripe for target reanalysis. The extreme coarticulatory values exhibited by speakers like 9603 in /spr/ and /skr/ clusters suggest that /s/-retraction as a sound change may progress beyond /str/ clusters.
5. Conclusion

The present study demonstrates that /s/-retraction is a dynamic process, changing in response to the strength of coarticulatory triggers. As the relative distance between the examined timepoint and the /r/ decreases, the degree of retraction can be seen to increase. Furthermore, retraction is observed not just in /str/ clusters, but also to a lesser extent in /spr/ and /skr/ clusters, with those environments exhibiting the same temporal dynamics albeit at an overall baseline of less retraction. These temporal factors that condition retraction provide evidence to support a coarticulatory, rather than assimilatory, account of /s/-retraction in contrast to the earliest accounts of the phenomenon.

This study also demonstrates the observed retraction is dependent not just on the phonological context of /s/, but on also on its prosodic position. While no main effect of prosodic position was observed, adjacency to an intonational phrase interacted subtly with the other predictors to suggest that retraction is resisted in phrase-initial positions. This finding, parallel to previous findings for resistance to retraction word-initially, suggests that prosodic strengthening in /sCr/ clusters manifests itself as hyperarticulation toward the canonical prevocalic /s/, enhancing the phonological contrast between /s/ and /ʃ/. Furthermore, a tremendous degree of individual variation was observed between the thirty participants recruited, including participants who not only exhibited increased retraction phrase-initially, but also participants for whom the prosodic position was more meaningful in conditioning the sibilant realization than the phonological environment. Building on proposals that sound change actuation results from the misinterpretation of individual variation and extreme coarticulation, the individual patterns of increased retraction phrase-initially serve not just as the ideal loci for target misinterpretation for /str/ clusters due to their prosodic prominence, but also for potential environments for sound actuation in /spr/ or /skr/ clusters, building off the observed prerequisite coarticulatory variation in the clusters by other participants.

Acknowledgements

I would like to thank Alan C. L. Yu for his guidance, feedback, and encouragement. I am also grateful for the support of Laura Staum Casasanto, Josh Falk, Katie Franich and Susan Lin. Finally, I would also like to thank audiences at LabPhon 16, MidPhon 21, NWAV 45 for their feedback on different stages of this work.

References

Where Do Phonological Features Come From?: Cognitive, physical and developmental bases of distinctive speech categories (pp. 173–196). Amsterdam: John Benjamins. doi:10.1075/lfab.6

