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Summary. Let X(i), i t  [0; 1] be a collection of identically distributed and pairwise 
uncorrelated random variables with common finite mean # and variance a 2. This 
paper  shows the law of large numbers, i.e. the fact that ~ X ( i ) d i  = #. It  does so 
by interpreting the integral as a Pettis-integral. Studying Riemann sums, the paper 
first provides a simple proof  involving no more than the calculation of variances, 
and demonstrates, that the measurability problem pointed out by Judd (1985) is 
avoided by requiring convergence in mean square rather than convergence almost 
everywhere. We raise the issue of when a random continuum economy is a 
good abstraction for a large finite economy and give an example in which it is 
not. 

1. Introduction 

In the analysis of economies with a continuum of agents, the following problem 
often arises. Suppose each agent has to bear a certain risk. The risk of each agent is 
uncorrelated with the identical risk any other agent faces. Does the risk disappear 
upon aggregation? Examples in which such a law of large numbers is implicitely or 
explicitely assumed or used include Bewley (1986), Diamond and Dybvig (1983), 
Green (1987), Lucas (1980) and Prescott and Townsend (1984). 

Formally, the problem can be restated as follows. Let X(i), i ~ [0; 1] be a collec- 
tion of identically distributed and pairwise uncorrelated random variables with 
common finite mean # and variance o -2. One would like to have 

X(i)di  = #. (1) 

The contribution of this paper  is to show how to make this statement precise and to 
prove it, avoiding the measurability problem pointed out by Judd (1985). 

* I am indebted to Hugo Hopenhayn. Furthermore I would like to thank Dilip Abreu, Glenn 
Donaldson, Ed Green, Ramon Marimon, Nabil Al-Najjar, Victor Rios-Rull, Timothy van Zandt and 
the editor for useful comments. The first version of this paper was written in 1987. 
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These measurability problems are discussed first in section 2. Studying Riemann 
sums in section 3, a simple proof of equation (1) involving no more than the 
calculation of variances is given. The measurability problem is avoided because 
convergence in mean square rather than convergence almost everywhere is used. 
Section 4 provides a deeper mathematical foundation by bringing the theory 
of vector valued integration and the Pettis integral to bear on the problem (see 
Diestel and Uhl, 1977), providing a second proof of (1) and demonstrating the 
formal equivalence to the Riemann-sum based approach of section 3. Section 
5 discusses the issue of when a random continuum economy is a good abstraction 
for a large finite economy and gives an example in which it is not. Section 6 
concludes. 

2. The problem with pathwise integration 

Judd (1985) pointed out a severe measurability problem which arises when interpret- 
ing (1) as pathwise integration, i.e. when interpreting (1) to mean 

~X(i)(co)di = # with probability one, (2) 

where the state co is drawn from the underlying probability space. Judd (1985) 
showed that the set of states co, for which the function i~--~X(i)(co) is measurable on 
[0; 1], is not even measurable on the probability space usually used for modelling 
a collection of independent random variables. While it is possible to fix this 
measurability problem in a somewhat "ad hoc" way and essentially assume (2) to 
hold, it is not possible to fix the problem in such a way that equation (2) holds on all 
subintervals of [0; 1] simultaneously: 

Theorem 1. Suppose that for some co, it is true that i~-~ X(i)(co) is Lebesgue measurable 
in i~[0; 1] and that for all a, bE[0; 1], a <_ b 

X ( i)(co)d2( i) = (b - a) #, (3) 
[a,b] 

where Z is the Lebesgue measure. Then X( i ) (co)-  # for almost all i, i.e. for all 
iE [0; 1]/N~ for some Lebesgue null set N o. 

Proof: Define a measure v on the Borel set of  [-0; 1] via 

v(A) = ~ X(i)(co)d2(i). 
A 

Since v coincides with the Lebesgue measure times p on all subintervals of  the unit 
interval, the Radon-Nikodym theorem implies that i~-*X(i)(co), i.e. the Radon- 
Nikodym derivative or density of  v with respect to the Lebesgue measure must equal 
# almost everywhere. [] 

In other words, if the law of large numbers in the sense of (2) is supposed to hold 
on all subintervals, then X(i)(co) must essentially be constant, reducing the validity 
of the law of large numbers to only trivial cases. This is a fundamental dilemma. 
Hence, if one does not wish to abandon the law of large numbers as a useful tool 
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for continuum economies, one needs to abandon the interpretation of pathwise 
integration. 

3. A simple solution 

Throughout,  let (X2, 22, P) denote the underlying probability space. It is 
useful to think about (1) as a problem of integrating a function X, which maps 
is [0; 1] or, more generally, is  [a,b] for aN be  R into the space L2(~2, Z, P) of 
random variables with finite variance on the probability space (X2, 22, P). Consider 
integrating such a function using a Riemann-type approach. A partition 
p = (n, io, . . . ,  i,, ~'1,..., ~',) is a grid a = i o < i 1 < ... < i n = b on the interval [a, b] 
and midpoints ~bis[i j 1, i~],j= 1 . . . . .  n for the grid intervals. The mesh 
((p) =max( i  i - i J _ ~ )  of a partition is the maximal length of a grid interval. 
Define 

S(p)= ~ X(~bj)( i j - i i_l)  
j = l  

to be the Riemann sum for the partition p. Note, that the Riemann sum is itself 
a random variable. Given a convergence criterion for random variables, the 
Riemann integral Y = SbX(i)di can be defined to be a random variable Y such 
that 

lim S(p)= Y, (4) 
~(p) ~ o 

provided the limit exists. There are several convergence criteria to choose from. 
Judds approach outlined in the previous section amounts to using pointwise 
convergence almost everywhere. As has been discussed above, this results in 
a fundamental dilemma. The solution to this dilemma is to use a weaker conver- 
gence criterion, namely norm-convergence in L2(~2, 22, P) or, equivalently, conver- 
gence in mean square, interpreting (4) as 

lim E [ ( S ( p ) -  y)23 =0.  (5) 
~(p)~o 

If a random variable Y satisfying (5) exists, call the function X L2-Riemann 
integrable and Y the Lz-Riemann integral of X. 

One immediately obtains. 

Theorem 2 (the law of large numbers) Let X:[a, b] --*Lz(T2, ~,, P) be a function, 
mapping the interval [a, b], a <_ b into the space of random variables with finite 
variances. Suppose that the random variables X(i), i s [a, b] are pairwise uncorrelated, 
have the same common mean I l and that their variances are bounded above by a z < oo. 
Then X is Lz-Riemann integrable and the L2-Riemann integral Y of X is almost 
everywhere constant, 

b 

X(i)di - (b - a)# with probability one 
a 
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Proofi Calculate 

E[(S(p) -- (b - a)#) 23 = ~ E[((X(~pj) - #)(ij - ij_ 1))23 
j = l  

<-- ~ ( i j - - i j -1 )  2~2 
j = l  

< ((p) ~ (ij - i t_ 1)a 2 
j = t  

= ~(p)(b - a)a 2, 

converging to zero as ~(p)~O. [] 

In analogy to the law of large numbers for sequences, the approach here yields 
a version of Khinchines law of large numbers rather than a strong law of large 
numbers as aimed for in Judd (1985). The measurability problem is avoided and the 
proof of the theorem becomes remarkably simple. The definition of the L2-Riemann 
integral does not require uncorrelatedness of the X(i), of course. For example, if the 
function X:[0; 1 ] ~ L  z is norm-continuous or indeed pathwise integrabte and 
satisfies some weak boundedness condition, the L2-Riemann integral exists and 
coincides with the pathwaise integral, if it exists. An example for this is the Brownian 
motion: the integral is a normally distributed random variable equal to the pathwise 
integral. However, the key advantage of the L2-Riemann integral is its applicability 
to the common situation of mutually uncorrelated random variables as stated in the 
theorem above. 

Interesting variations and applications can be shown in the same manner or 
building on this theorem. For example, suppose that the X(i), i t  [0; 1] are indepen- 
dent and identically distributed. Denote their common distribution function by F. 
Does F also represent the population distribution? To analyze this question, choose 
some x ~ R and consider the indicator functions lx(i ) with lx(i)(r ) = 1, if X(i)(co) <2_ x 
and lx(i)(r ) = 0 otherwise. The theorem above then yields directly 

lx(i)di = Prob(X(i) _< x) = F(x), 

answering the question affirmatively. 

4. Vector-valued integration 

This section embeds the law of large numbers as stated above deeper in the 
mathematical literature. Viewing the law of large numbers for a large economy as 
a problem of integrating a function X from the unit interval into the vector space 
L2(~, Z, P) naturally leads to the theory of vector-valued integration as reviewed in 
Diestel and Uhl (1977). There are two general integration concepts for vector-valued 
functions: the Pettis integral and the Bochner integral. After defining the Pettis 
integral for the sake of completeness, it is shown that the Pettis integral again 
delivers the law of large numbers and is essentially equivalent to the L2-Riemann 
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integral introduced above, whereas the Bochner integral does not exist for the 
continuum of uncorrelated random variables. 

This section requires tools from functional analysis and measure theory. The 
following definitions are taken from Diestel and Uhl (1977). Let V be a Banach 
space, V' its dual and (L, A, 2) a finite measure space without atoms. A function 
f : L ~  V is called weakly 2-measurable, if for each v'~ V' the function v ' f  is 
2-measurable. It is called Pettis integrable, if in addition there is a vector y e V, called 
the Pettis integral and denoted by y = (P) - ~fd2, such that 

v'y = ~v'fd2 for all v'~ V' 

The Pettis integral was introduced by Pettis (1938). 

Theorem 3 (the law of large numbers: The Pettis integral vers ion)Let  
X:L~L2(K2,~,,  P) be a function, so that the random variables X(i) are pairwise 
uncorrelated, have a common finite mean # and so that their variances are bounded 
above by ~2 < oo. Then X is Pettis-integrable with 

(P) - ~ Xd2 - #)c(L) with probability one. 

Proof" The dual space of L2 is (naturally isomorphic to) L z. Let Z ~ L 2 be an element of 
the dual space. Z operates on X e L  z via Z X  = E[ZX].  It needs to be shown that the 
function 9(0 = E[X(i)Z] is measurable with respect to 2 and that 

0 = ~ ~ [ ( x ( i )  - ~)Z]d;~.  

But this is trivial: observe that E[(X(/) -- #)Z] = 0 for almost every i ~ L since 

(E[(X(ij) - /~)Z])  2 < E[ZZ]~ 2 
j=O 

for any countable selection of different iSs by Bessel' s inequality. [] 

It is possible to generalize this result to the case where the random variables X(i) 
themselves take values in some Banach space rather than the real line by reducing 
this more general situation to the simpler situation above again by means of 
functionals in the dual space. Details can be obtained from the author. 

The link between the result above and the result in the previous section is 
established by the following theorem. 

Theorem 4. I f  X:[a, b]--* Lz(g'2 , ~,, P) is L2-Riemann integrabte, then X is Pettis 
integrable and the Lz-Riemann integral equals the Pettis integral. 

Proof: Let Y = ~X(i)di be the Lz-Riemann integral. Take Z ~ L  z and define f z by 
fz(i) = E[ZX(i)  ]. For any partition p, the Cauchy-Schwarz inequality implies that 

-- ~ fz(tpj)(ij - ij_ 1) N E [ z Z ] I / 2 ( E [ ( Y - -  S(p))2]) I/2. E[ZY]  
j = l  

Taking ~(p)~ 0 shows that the real-valued function f z is Riemann integrable and 
therefore Lebesgue integrable with ~fz(i)di = E[ZY].  Since real-valued Riemann 
integrable functions are measurable, this also implies that X is weakly 2-measurable. 
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An application of Lemma II.3.1. in Diestel and Uhl (1977) together with the reflexivity 
o f  L 2 proves the claim about Pettis integrability. The equality of the two integrals is 
now clear. [] 

The Bochner integral is the other general integration concept for vector valued 
functions. It is defined via norm-approximations by simple functions. If such 
a norm-approximation exists, the function is called 2-measurable. This approach is 
similar to the usual way of defining measurability or the Lebesgue integral for 
real-valued functions by in essence replacing absolute values of real numbers with 
norms of vectors. The reader is referred to Diestel and Uht (1977) for the details. The 
Bochner integral has many appealing properties, and it would therefore be nice to 
state a law of large numbers using the Bochner integral rather than "just" the Pettis 
integral. Unfortunately, this is impossible as the next theorem tells us. That  theorem 
also sheds light on a fundamental difficulty of analyzing large random economies: 
the underlying probability space needs to be "very large". 

Theorem 5. Let X: [-0; 1] ~ Lz(g2, Y,, P) be function, mapping the unit interval into the 
space of random variables with finite variance. Assume that the X(i) are pairwise 
uncorrelated with common finite mean and variance ~2, 0 < ~2 < go. Then the function 
X is not 2-measurable, where 2 is the Lebesgue measure, and is not Bochner-integrabIe. 
L2(X2, Y,, P) is not separable. The set ~ is not a separable metric space. 

Proofi The norm distance between X(i) and X(j) for i ~: j is x/-2a. Thus, for any 
uncountable subset A of [0; 1], the set { X(i)l i ~ A} cannot be separable in L2(s Y,, P). 
Pettis' measurability theorem (Theorem II.I.2 in DiesteI and Uhl, 1977) thus implies 
that X cannot be 2-measurable and hence not Bochner-integrable. Furthermore, 
,Q cannot be a separable metric space. [] 

The Bochner integral exists for continuous functions X:[0; 1] ~ L 2 for example. 
In these cases, it equals the Pettis integral and the L2-Riemann integral. An Example 
is the Brownian motion on [0; 1]. 

3 
5. Finite and continuum random economies 

The purpose of this section is to raise a question rather than to answer one: what is 
the nature of the relationship between finite random economies and continuum 
random economies? 

Nonrandom continuum economies are traditionally analyzed as limits of 
sequences of finite economies, see e.g. Hildenbrand (1974) or Mas-Colell (1986). 
For  example, x(i)~ R k might represent the endowment of agent i in some finite- 
dimensional commodity space Nk. The finite economies converge to the continuum, 
if (among other things) the endowment distribution of the finite economy converges 
to that of the continuum. In particular, the closure of the set of endowments of 
all agents of the finite economies contains the support of the endowments of the 
continuum economy, i.e. contains the endowment of any agent drawn randomly 
from the continuum economy with probability one. This necessary condition is 
a useful check when proposing some notion of convergence to the continuum. 
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Consider now random continuum economies. As A1-Najjar (1994) has shown, 
these economies can be "decomposed" into an aggregate risk part, which can be 
treated in a manner similar to nonrandom economies, and a part with idiosynchratic 
risk X(i), where all X(i), i~ [0; 1] are uncorrelated. Assume additionally that their 
variance is bounded below by o -2 > 0. Generalizing the usual approach runs into 
a fundamental difficulty. The appropriate commodity space is now the space 
L2(~2, Z, P) of random variables with finite variance. This space is not only infinite- 
dimensional, but it needs to be nonseparable as well, since the distance between any 
two X(i) in Lz-space is at least x/2~, see theorem 5 above. Since any given sequence 
of finite economies delivers no more than countably many endowment points in L2, 
the norm-closure of the set of endowments of all agents of the finite economies 
cannot contain the set of endowments of a nonzero set of agents in a continuum 
economy. In a deep sense, a sequence of finite economies typically cannot approxi- 
mate a given random continuum economy. One would need to consider generalized 
notions of convergence, using nets rather than sequences, but such an approach risks 
becoming quite arcane quickly. 

One may consider working around this problem by concentrating on finitely 
many characteristics of the economies, mapping the infinite-dimensional richness 
back into finitely many dimensions. Better yet, one might consider the closure of the 
set of endowments in the weak topology rather than the strong topology and use 
some convergence concept based on this idea, see A1-Najjar (1994). This seems 
promising at first: the set of endowments in L z of any finite economy where one 
agent has a nonrandom endowment equal to # contains almost all endowments of 
the continuum economy with idiosynchratic risk in a "weak topology" sense, 
because for any Z ~ L2, E [ ZX( i ) ]  = E [Z#]  for all but co untably many i, see the proof 
for theorem 3. But while the requirement of norm-closure above failed because in 
essence the finite economies were required to deliver too much detail, the require- 
ment here seems too coarse. Using the weak topology view, there is no distinction 
between a continuum economy with idiosynchratic risk and a continuum economy 
without any risk: if a given sequence of finite economies converges to one, it will also 
converge to the other. Perhaps, it is possible to deliver more detail by including 
descriptions of the random distributions as well in a manner similar to the method 
described in the second paragraph following theorem 2. Alternatively, one might 
restrict attention to only the distributional aspects rather than the full description of 
the randomness: this is done for example in Mas-Colell and Vives (1993). In the 
special case of continuum economies, in which the risk is independent and ident- 
ically distributed across agents, a replication argument might yield some insights, 
where the endowments of the replicated agents need to be drawn independently 
from the same distribution rather than being copies of the endowments of the 
"original" agent. Whatever approach is used: for the general case, it should be clear 
that any sequence of finite economies will fail to capture some features of some given 
continuum economy. Whether these features are relevant in any particular econ- 
omic application depends on the particular question being asked, is difficult to pin 
down by a general approach and seems highly judgemental. 

Instead, it seems more fruitful to consider continuum economies as approxi- 
mations to finite economies rather than the other way around. The quality of the 
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approximation will be the better, the larger the finite economy is. Bewley (1986), who 
draws finite economies from the given continuum, can be interpreted in this way. 
Pursuing this line further might be fruitful but is beyond the scope of this paper. 

Given the rather murky relationship between large finite economies and con- 
tinuum economies, how can one judge whether theorem 2 delivers an economically 
meaningful law of large numbers or not? We claim that one can and that the theorem 
indeed does accomplish this objective in the following sense. Assume in some finite 
or continuum economies, that the ex-ante utility functions U(C) are norm-continu- 
ous in random consumption C ~ L 2. Thus, if a finite economy is close to a continuum 
economy in the sense that the consumption allocations are close in L2-norm, then 
ex-ante utilies will be close as well. Since L2-Riemann integration checks for 
closeness in L2-norm of the integral (corresponding to the continuum economy) to 
some Riemann sum (corresponding to the finite economy), it follows that the 
L2-Riemann integral or, equivalently, the Pettis-integral is the right tool to guaran- 
tee closeness in terms of ex-ante welfare. This argument applies more generally than 
just to the case of idiosynchratic risk. As a particular application, it shows that 
mutual insurance against individual income shocks provides agents in large finite 
economies with almost the same ex-ante welfare as the same insurance arrangement 
in a continuum economy where the idiosynchratic risk component averages out: this 
is an economically meaningful result. 

The argument rests on the assumption of the Lz-continuity of the utility function 
U(C). This continuity can be guarnateed for von-Neumann-Morgenstern utility 
functions under some additional assumptions: 

Theorem 6. Let u:R+-~ [R be a utility function u(c) in consumption c > O, which is 
bounded f rom below, monotone increasing, continuous and concave. Then, expected 
utility U ( C) = E[ u( C) ] is uniformly continuous on C E L + ($2, 2 ,  P ). 

Proof: Assume w.l.o.g, u(O)= O. Choose some e >0.  Fix  some x > 0 and let 
M = u(x)/x. F i x  o~ at ~ = e/(2M(x + 1)). No te  that u is equicontinuous on ~ +, so choose 
a (~ to ~/2. Finally note that we can f ind v > O, v < 1 so that C, D ~ L + ($2, X,  P) and 
E [ ( C - -  D) 2] < v implies P r o b ( I C -  D I > (5)< ~). Distinguish the four cases where 
I C(o))--D(co)] < 8  or otherwise [C(co)] < x  or otherwise ID(co)l < x  or otherwise 
I C(o))l > x as well as [D((~) ] >_ x. Use ]u(a) - u(b)l _< M l a  - bl + M x  and the Cauchy- 
Schwartz inequality to f ind immediately 

q U(C) - U(D)I < (1 - cz)e/2 + c~Mx + ~zMv ~n < e 

i f E [ ( C - D )  2 ] <v .  [] 

Finally, it may be useful to point out that one should not apply the law of large 
numbers blindfoldedly. The following illustration should serve as a counterexample 
and warning sign. Suppose that agents want to mutually insure themselves against 
random fluctations in their endowment X(i). We assume that X(i) is privately 

1 
observed, but that the average endowment -Z~= 1X(i) is public information. For  

n 
technical reasons, we also assume that the endowment of agents is always contained 
in some interval X(i)(cn)e[Xmin, Xmax] with 2Xmi . -- Xma x > 2e for some e >  0. 
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Mutual insurance is achieved by agents agreeing to the following contract before 
their random endowment is realized. Each agent announces his or her endowment. 
Should the average of these announcements match the known average endowment, 
then each agent will recieve or will pay the appropriate  difference to the average 
announcement.  If  not, every agent pays Xma x - -Xmi  n -t-• and all payments are 
disposed of. The contract improves welfare ex ante if agents are risk averse. The 
contract is incentive compatible for any finite economy since it is in every agents 
best interest to tell the truth, if everybody else does. However, the contract ceases to 
be incentive compatible in the continuum economy, since an individual announce- 
ment or realization no longer matters for the economy-wide average. Thus, the 
continuum economy behaves very differently from any finite economy, even though 
for some suitable sequence of finite economies, the average endowment converges in 
L2-norm to the average in the continuum economy computed as the L2-Riemann 
integral. 

6. Conclusions 

This paper  has shown how to obtain a law of large numbers for a continuum of 
uncorrelated random variables, avoiding the measurability problems raised by Judd 
(1985). This is accomplished by requiring convergence in mean square rather than 
convergence almost everywhere for the Riemann sums. It  is shown that the 
Lz-Riemann integral introduced this way coincides with the Pettis integral, which is 
one of two standard integration concepts in the theory of vector-valued integration. 
It is shown how the other integration c o n c e p t - t h e  Bochner in tegra l -  is not 
suitable for the case ofidiosynchratic risk and that the underlying probability space 
needs to be very large. The relationship of large finite economies to random 
continuum economies is discussed, pointing out the fundamental difficutly of 
a nonseparable commodi ty  space. It is shown how convergence in mean square of 
the consumption allocations of the finite economies to the consumption allocation 
of the continuum economy suffices to guarantee convergence of ex-ante welfare, 
justifying the use of the L2-Riemann integral to prove the law of large numbers. An 
example illustrating the dangers of "blindfolded" applications of the law of large 
numbers has been provided. 
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