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SV models. We feel that both are important and deserve 
more attention. We hope our comments will encourage 
other researchers to tackle some of the challenging problems 
nonlinear models present in a creative way. There is much 
work to be carried out in this area. 

ADDITIONAL REFERENCES 

Carter, C. K., and Kohn, R. (in press), "On Gibbs Sampling for State Space 
Models," Biometrika, 61. 

De Jong, P., and Shephard, N. (1993), "Efficient Sampling From the Smooth- 
ing Density of Gaussian Time Series Models," working paper, Nuffield 
College, Oxford. 

Engle, R. F. (1982), "Autoregressive Conditional Heteroskedasticity With 
Estimates of the Variance of the United Kingdom Inflation," Economet- 
rica, 50, 987-1007. 

Fruhwirth-Schnatter, S. (1994), "Data Augmentation and Dynamic Linear 
Models," Journal of Time Series Analysis, 14, 15, 183-202. 

Kim, S., and Shephard, N. (1993), "Stochastic Volatility: New Models and 
Optimal Likelihood Inference," working paper, Nuffield College, Oxford. 

Phillips, P. C. B. (1991), "To Criticise the Critics: An Objective Bayesian 
Analysis of Stochastic Trends," Journal ofApplied Econometrics, 6, 333- 
364. 

Schotman, P. C., and Van Dijk, H. K. (1991), "A Bayesian Analysis of the 
Unit Root in Real Exchange Rates;" Journal of Econometrics, 49, 195- 
238. 

Shephard, N. (1994), "Partial Non-Gaussian State Space," Biometrika, 81, 
115-131. 

( 1994 American Statistical Association Journal of Business & Economic Statistics, October 1994, Vol. 12, No. 4 

Comment 

Harald UHLIG 
CentER for Economic Research, Tilburg University, 5000 LE Tilburg, The Netherlands 

Jacquier, Polson, and Rossi (JPR) perform a "Bayesian 
analysis of stochastic volatility models" in their article. They 
accomplish three things. They show how these models can be 
analyzed numerically in an elegant fashion using an extension 
of the Metropolis-chain algorithm. They apply their method 
to a variety of financial data series that have been of interest to 
other researchers working with stochastic volatility models. 
Finally, they demonstrate that their method is superior to esti- 
mation by method of moments (MM) and by quasi-maximum 
likelihood (QML) methods. 

I liked the article very much, and it presents a huge leap 
forward in our ability to conveniently and reliably analyze 
stochastic volatility by introducing Metropolis-chain algo- 
rithms to this literature. I wish the authors had given a 
bit more of a "cooking recipe" on how to do the cyclic 
Metropolis-chain algorithm: It is all in there but not in a 
plug-and-play version ready for the average research assis- 
tant. Moreover, the authors are amazingly muffled concern- 
ing the advantage of a Bayesian over a classical point of 
view: They mainly claim that the Metropolis-chain method 
yields superior estimators as compared to other numerical 
techniques (and another title for the article could have been "A 
Fast, Reliable Technique for Analyzing Stochastic Volatility 
Models"). Undoubtedly this is done to appeal to the ma- 
jority of classical-minded readers-a laudable goal, but it is 
also an opportunity lost for telling these same readers why a 
Bayesian perspective can be so fruitful. 

There are other and potentially better competitors than 
MM and QML, which may prove equally useful or useful 
as a companion device to the techniques developed in this 

article. Nonetheless, the techniques of JPR are here to stay. 
The article thus makes an important contribution, removing a 
major stumbling block in the analysis of stochastic volatility 
models. These techniques should be used by many applied 
researchers interested in analyzing situations with potential 
stochastic volatility. 

1. THE CYCLIC METROPOLIS-CHAIN 
ALGORITHM 

The key contribution of this article is technical- 
introducing a cyclic Metropolis-chain algorithm and bringing 
it to bear on the analysis of stochastic volatility models. This 
algorithm belongs to a series of recent breakthroughs regard- 
ing the numerical analysis of posteriors. 

Bayesian analysis used to be hard. It has become sim- 
ple and, in fact, is now simpler than the classical analy- 
sis of stochastic volatility models. To see why, note that 
a fully specified model will result in a likelihood function 
L(O;y), where 0 E E is the vector of parameters and y is 
the data. Bayesians tend to multiply this likelihood function 
with a prior ir(0), but never mind: With much data and few 
parameters for which one needs to choose a prior, as is the 
case in this article, the choice of a prior is very much a nonis- 
sue and one might as well just work with L(O; y). A classical 
econometrician wants to know the maximum 0 as well as 
some local information around it (like the second derivative 
matrix I at 0) to do inference. A Bayesian wants a sample 
0(1),... , 0(N) in the parameter space E from the probability 
distribution aL(O; y), where a is the appropriate scaling fac- 
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tor, and then base inference on sample averages, where N 
can be chosen large enough to achieve a desired degree of 

accuracy. It used to be the case (and sometimes still is) that 
one needs 0 and I to do that so that one could sample from, 
say, a t distribution with the same first and second moments 
as an approximation, weighing the draws appropriately (see 
Geweke 1989). Now, the algorithms used in this article can 
deliver the sample right away. This is useful for a classical 
econometrician as well because the likelihood function for 
stochastic volatility models is notoriously hard to maximize 
using conventional techniques (and this used to be the stum- 

bling block in using these models): Infer 0 and I from the 

sample 0(1),..., 0(N) (I am sure there are techniques for that) 
and proceed as usual. But why bother? Once the sample is 
obtained, Bayesian inference is simpler. 

How does their cyclic Metropolis-chain algorithm work? 
For the "cyclic" part, take one-dimensional (or low- 
dimensional) slices of the parameter space E and sample 
from each in turn. If 0(n) , (,(n), (n)) was the last draw 
and 9 n) the last updated component, sample a new 0il (or 01, 
if i = k) conditional on the rest of the parameter vector 0(n). 
Then replace (n) with 0i+l to get the next draw (n+ 1). To 
sample this i+1l, use the "Metropolis-chain" part. To simplify 
notation, let x = (n) and X = 0i,+. Suppose that, conditional 
on the rest of x(n), j is to be drawn from a density proportional 
to p(A) = .6 on [0; .5], p(l) = 1.2 on (.5; 1] and 0 everywhere 
else and that one did not already know how to draw from 
that density. But suppose one knows how to draw a can- 
didate y from the uniform density f(y) = 1 on [0; 1] (bad 
notation-y is not the data as in the preceding explanation, 
of course). Should you use = y or = x? For that, calculate 
a(x, y) using the formula in the article. Here, a(x, y) = 1 if 

y < .5 < x and a(x, y) = 1 otherwise. In the latter case, use 
I = y anyway. In the former case, flip a coin, and take ~ = y 
if it lands heads but stay with i = x if it lands tails. It is fun to 
recursively draw an entire sequence of new x's this way (and 
easy to see that one does indeed get the right distribution), 
but this is not done here: Once you have the new X, you move 
on to the next component 0i+2 and so forth. 

This technique is fast, flexible, and not hard to use and thus 
a wonderful addition to the toolkit for analyzing stochastic 
volatility models. 

2. STOCHASTIC VOLATILITY MODELS AND 
THEIR APPLICATIONS 

The new literature on stochastic volatility models, in- 
cluding this article, provides an increasingly popular alter- 
native to the widely used variants of ARCH models (see 
Bollerslev, Chou, and Kroner [1992] for an overview of 
the latter). Both ultimately aim at modeling the conditional 
distribution Yt Iyt-l, Yt-2,..., where yt are, say, stock re- 
turns. ARCH-type models do so by imposing directly a 
particular form for the conditional variance var(yt Y t-1, 

yt-2,.. .), whereas stochastic volatility models proceed in- 
directly, introducing an additional, unobserved state ht with 

var(yt I h,, h,1,., ,Yt-l,Yt-2,. ..) = ht, say, and modeling 

its evolution as a separate stochastic process. The distribu- 
tion Yt I Yt-I, yt-2 . . . can then be found by projecting on the 
coarser information yt- 1, yt-2, .. .- a point forcefully raised 
by Andersen (1992). This projection can be figured out ex- 
actly when assuming a beta distribution for exp(vt), a gamma 
distribution for ht,_, and 6 = 1 (see Shephard 1994; Uhlig 
1993), but not for the model in this article. 

The distinction between ARCH models and stochastic 
volatility models is not a fundamental one but one of parsi- 
mony and of modeling elegance. As for the latter distinction, 
writing down stochastic processes and figuring out condi- 
tional distributions later is what we usually do elsewhere, and 
it has always seemed to me to be the more natural approach 
for modeling volatility. As for the former, there is only one 
"rat race" between these two approaches in the article (Fig- 
ure 1) and I hope that the authors contribute more to that 
debate in future articles, using their techniques. Additional 
interesting comparisons can be found in the work of Kim 
(1993), for example, albeit using different methods. JPR 
chose their stochastic volatility model only for illustrating 
the approach, not as the best model to explain the data. Oth- 
erwise one would want to check for autocorrelations among 
the ut's and v,'s, check their independence, check the normal- 
ity assumption and check how well the stock market crash in 
1987 is explained by the model and how much the subsequent 
high volatility is driving 6 toward unity for the S&P 500 (see 
Nelson 1991). All of these things are not hard to do with 
their algorithm, and it would have been nice had the article 
contained some of that. 

The distribution of yt+j Yt,Yt-,..., j = 1,2...-that 
is, the predictive density-is something else I would have 
liked to see for, say, the end of the sample as well as be- 
fore and after the stock market crash for the S&P 500. How 
much does posterior uncertainty regarding w matter in that re- 
gard? These distributions are relevant in particular for pricing 
options correctly-arguably the most important "real world" 
application of these methods. They are easy to obtain with 
the methods of JPR but hard with classical methods. Let me 
explain. With usual time series models, knowledge of the pa- 
rameters and the data suffices to calculate all of the residuals 
and to do out-of-sample forecasting. But here knowledge 
of w and the data is not sufficient to back out all of the 
residuals, ut's and v,'s and hence the ht's. Thus they are 
insufficient if one wants to do out-of-sample forecasting in 
the obvious way-that is, by simply simulating the model 
forward-because hr is not known. One needs to estimate 

hr as well, but hr will not be known precisely, even asymp- 
totically for large T. The out-of-sample forecast needs to take 
account of that uncertainty in hr without being able to rely 
on large-sample theory-something that should make clas- 
sicists' stomachs turn. The ugly alternative for a classicist 
is to estimate the conditional distribution yt+j I yt, ut-1,... 
directly-but then, why use stochastic volatility models? By 
contrast, it is completely natural for the Bayesian approach 
to take into account all of the uncertainty relevant for fore- 
casting and to treat it on equal footing-that is, the posterior 
uncertainty about w and hr as well as the uncertainty about 
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future ut's and vt's. It requires hardly any extra work and can 
be as exact as one wants it to be with finite data. Further- 
more, the Bayesian approach answers questions like "what 
is the probability that the stock price drops by 10%, given 
the observed data?" rather than "what is the estimator pf for 
the probability p of a 10% drop in stock prices so that, given 
many realizations of the sample path, this estimator would 
be right on average?" Is it not obvious that an investor would 

usually be interested in the answer to the first rather than 
the second question? All of these are powerful arguments to 
switch to a Bayesian point of view, and I am a bit astonished 
that JPR do not say so aloud. 

3. COMPETITORS 

JPR show how their method does better than the MM or 
QML methods. That is good news, but it should not be 
all that surprising, given that MM is usually viewed as a 
more robust but less powerful method and that QML actually 
uses the "wrong" likelihood function by approximating the 

log-chi-squared distribution of e, = log u2 with a normal 
distribution. An interesting question is whether there are 
situations in which the robustness of MM is more valuable- 
for example, if one wants to make weak assumptions about 
the distributions of ut and vt. Note, however, that one needs 
distributional assumptions to even identify ut and vt. The 
comparison between the three techniques is somewhat odd 

anyway because Bayesian estimators are usually not meant 
to be, say, unbiased or have good repeated-sample properties. 
This comes about because with such a large sample there is 
(as usual) little distinction between Bayesian and classical 
inference regarding the parameter vector w. In other words, 
these results show that the cyclic Metropolis-chain algorithm 
works better and not that one should be a Bayesian. There 
are other good reasons for that, and they have been explained 
previously. 

I would like to mention two other competitors. One has 
been developed since JPR wrote their article and is based 
on approximating the distribution of ct not with one normal 
but with a mixture of normal distributions (see Kim 1993; 
Kim and Shephard 1993). This can be done to any desired 
degree of accuracy. Augment the data with random variables 
jt, selecting the normal distribution from which et is drawn. 
Conditional on the j's one can apply fast, standard Kalman- 
filtering techniques to find everything else, and conditional 
on everything else, it is not hard to sample the j,'s. The spirit 
of that approach is very Bayesian, although these authors 
try hard to be classical in the end. The method can be as 
accurate as desired, and it is likely to be fast due to the use 
of the Kalman filter. 

The other approach, due to Shephard (1994) and Uhlig 
(1993), is dismissed perhaps a bit too quickly in JPR's in- 

troduction, but is easy to do even in the multivariate context 

Yt E Rm, provided there are no intercept terms in the equa- 
tion for Yt (as is the case considered by JPR). Suppose that 

Yt = et with et NA(0, H-'7), where the precision matrix 

Ht evolves according to Ht = U(Ht-1)'tU(Ht-1)/A with 
Et ,, 3m(v/2, 1/2) drawn from a multivariate, singular beta 
distribution, defined by Uhlig (1994), and where U(H) de- 
notes the upper Cholesky factor of a positive definite matrix 
H. For the univariate case, take logs of the equation for 

Ht to see that this corresponds to the case of 6 = 1 and 
exp(vt) following a univariate beta distribution in the no- 
tation of JPR. If the prior in v, A, and H1 is proportional 
to 40o(v, A)Kw((vSo)-', v)fw(Hi I (vSo)-', v) for some pos- 
itive function Vbo, then the posterior in v, A, and HT+1 is pro- 
portional to 'PT(V, A)rw((vST)-1, v) Fw(HT+lI (vSr)-1, v), 
where fw(H I , v) denotes a Wishart density with mean vit 
and v degrees of freedom, where nw(Q, v) = 2mv/2 Fm(V/2) 
I 1 v/2 collects all of the constants of that density and where 
one needs to recursively update, for each A and v, the in- 
verse of the mean of the Wishart densities according to St = 

ASt-1 + AYtY'/v and the function Oi according to 4t(v, A) = 

rm((v + 1)/2)/Fr(v/2) Amv/2 VS,/A -1/2 ti-(V, A). The 
posterior in v, A, and HT+1 is all one needs for calculating 
predictive densities. The predictive density for YT+1, for ex- 
ample, is a multivariate t distribution. For inference about v 
and A, simply drop thefw(HT+1 I (vSr)-1, v) piece. This is 
probably the quickest method and needs hardly any numer- 
ical techniques at all. Although the method does not easily 
generalize, whereas the techniques of JPR do, it can provide 
a useful benchmark and a starting point for understanding 
situations with stochastic volatility. 

My guess is that stochastic volatility models and these 
three methods for analyzing them will prove useful in many 
applications to come. The main stumbling blocks for using 
these models have been removed. 
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