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ABSTRACT. We provide a model of a decentralized, dynamic auction market platform (e.g.,
eBay) in which a continuum of buyers and sellers participate in simultaneous, single-unit
auctions each period. Our model accounts for the endogenous entry of agents and the
impact of intertemporal optimization on bids. We estimate the structural primitives of
our model using Kindle sales on eBay. We find that just over one third of Kindle auctions
on eBay result in an inefficient allocation with deadweight loss amounting to 14% of total
possible market surplus. We also find that partial centralization - for example, running
half as many 2-unit, uniform price auctions each day - would eliminate a large fraction
of the inefficiency, but yield slightly lower seller revenues. Our results also highlight
the importance of understanding platform composition effects - selection of agents into
the market - in assessing the implications of market design. We close by proving that
the equilibrium of our model with a continuum of buyers and sellers is an approximate
equilibrium of the analogous model with a finite number of agents.
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1. INTRODUCTION

Online market platforms are increasingly important in today’s economy, and the goal
of these platforms is to provide a venue for buyers and sellers of various goods to trans-
act. For example, in 2014 eBay reported USD$82.95 billion in sales volume and 8.5%
annual growth after nearly two decades in business." StubHub, a platform for selling
tickets to events such as soccer games, and Upwork, a platform for recruiting freelance
workers, each host annual transaction volumes in the hundreds of millions or billions
of dollars. Since a large number of participants are exchanging a broad array of prod-
ucts on these platforms, each platform has sophisticated search tools to help buyers and
sellers find partners to transact with.

Given the power of modern search algorithms and the thickness of the markets, one
might conjecture that these platforms would do an excellent job of matching buyers
and sellers, eliminating market frictions, and generating efficient trade. This conjecture
is particularly compelling in cases where the products on offer are homogenous and
buyer and seller reputation are not significant barriers to trade. Our goal is to test this
conjecture by estimating a novel model of the eBay auction platform using data on sales
of new Amazon Kindle Fire tablets.

On the eBay platform a large number of participants compete in a large number of
auctions each day, and buyers and sellers can participate across successive days. In this
paper we provide a rich model of such an auction platform in which a continuum of
buyers is matched to a continuum of seller auctions each period. After matching has
occurred, each single-unit auction is executed independently, auction winners (and the
associated sellers) exit the market, losing bidders move on to the next period, and new
bidders enter at the end of each period. We include a costly endogenous entry decision
to capture the time and effort costs of participation. We use an extensive dataset on
new Amazon Kindle Fire tablets to estimate the structural model primitives such as the
matching process that allocates potential buyers to auction listings, the monetized cost
of participation, and the steady-state distributions of buyer valuations and seller reserve
prices. While the participation cost we find is low, on the order of $0.10, it turns out to
be an important regulator of the number and types of buyers in the market.

Having estimated the structural model, we move on to investigate the efficiency of
the market. Platform markets like eBay exist for the purpose of reducing frictions that
impede trade, so it is natural to assess how closely eBay approaches the ideal of fully
efficient trade. To fix ideas, suppose there are exactly two listings and four bidders, two
bidders with high valuations and two bidders with low valuations. The social planner’s

'Information downloaded from
https:investors.ebayinc.comsecfiling.cfm?filingID=1065088-15-54&CIK=1065088 on 11/17/2015.
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preferred outcome is one where each auction attracts one high value bidder as this
would guarantee that the high value bidders win in any monotone bidding equilibrium.
However, when there is randomness in the bidder-listing match process, there will be
a positive probability that one auction listing will not have a high-value participant,
meaning a low value bidder wins at a low price and a high-value bidder loses. Another
way of putting it is that the matching frictions mean some auctions have too much
competition and others too little relative to an efficient allocation.

We begin our counterfactual analysis by using two separate methods to measure in-
efficiency under the current market conditions. Our first method relies heavily on the
raw data. Using our estimated buyer-seller ratio we can count the number of times in
our data that a bidder with an inefficiently low value (i.e., low bid) won an auction and
prevented a high value bidder from receiving that item. This method can only give a
lower bound on the prevalence of inefficient allocations because, for example, it cannot
detect scenarios where multiple high-value losers attended the same auction. We find
that within the listings for new Kindles, at least 27.6% of all auctions allocate goods to
buyers with inefficiently low valuations.

In our second method, we use the structural estimates to get a precise value for the
fraction of auction listings that award an object to a buyer whose private value is ineffi-
ciently low. This method also allows us to quantify the deadweight loss, which is defined
as the average difference in value between high-value losers and low-value winners. We
calculate that 36% of used Kindle listings result in inefficient allocations and that the
total deadweight loss amounts to roughly 14% of potential market surplus. In other
words, we estimate that eBay is able to achieve 86% of all possible gains from trade.”

Next, we explore the implications of alternative spot-market mechanisms eBay could
use to improve efficiency. Specifically, we consider the welfare cost of eBay’s choice to
use single-unit auctions, which we refer to as decentralization. We use our estimates to an-
alyze outcomes of alternative markets where, instead of single-unit auctions, eBay runs
K-unit, uniform price auctions, and we use K as a measure of the market’s centralization.
The most extreme version of this counterfactual would be a single multi-unit, uniform-
price auction each day. We find that aggregating auctions together so that eBay runs
half as many auction listings for 2-units each day recovers 35% of the welfare loss by im-
proving the efficiency of the allocation, while running a quarter as many 4-unit auctions
recovers over 57% of the welfare loss. However, centralization reduces the expected sale

2In the main text we also show that using a completely random allocation achieves 47% of the maximum
possible welfare. The status quo outcome achieves only 74% of the gains of trade relative to the random
assignment benchmark.
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price, which in turn reduces eBay’s revenues.® In addition to being a vehicle for analyz-
ing the welfare losses, we believe that centralizing auctions is a practical design strategy
in settings wherein the goods are homogenous (e.g., new Kindles).

While we conduct our estimates within the particular eBay context, we believe that
the degree of welfare losses we find should temper optimistic expectations of the bene-
ticial effects of platform markets more generally. In addition, the market centralization
solution we propose is far more broadly applicable than a single, isolated eBay market,
and we believe it could be worthwhile considering similar centralization-oriented de-
signs in other platform market contexts. For example, centralization may be possible for
standardized back-office tasks that are bought and sold on Upwork.

For our second counterfactual exercise, we use our estimated model to tease apart the
welfare effects of a change in the market design into a component capturing changes in
the dynamic incentives (i.e., changes in the continuation value) and a second component
reflecting changes in the platform composition (i.e., the ratio of buyers to sellers and the
distribution of buyer types). Our empirical approach is necessary because these compo-
nents interact in complex ways in our model. For example, any change in the market
structure that increases the continuation values of the buyers (e.g., making the allocation
more efficient) will increase bid shading. At the same time, increased efficiency may
encourage low value buyers to leave the market as the probability of a low value buyer
winning an auction drops. As low value buyers exit, the typical bidder has a higher
value for the good, meaning that competition from the typical opponent bidder may
become more intense. These countervailing effects make it unclear whether a platform
must necessarily benefit from improvements in market efficiency.

In our counterfactuals we consider an increase of the participation cost for bidders.
An increase in participation costs pushes low value bidders out of the market (i.e., a
platform composition effect), altering the steady state distribution of bidder values and
the ratio of buyers to sellers. The cost increase also has an effect on dynamic incentives
by reducing the continuation values (and hence raising the bids) of the buyers. We find
that the platform composition effects have from two to ten times more effect on market
efficiency than the dynamic incentive effects. Although we consider a particular change
in the market structure, our analysis emphasizes the importance of attending to the
selection of users into the platform when redesigning any platform market.

For our final counterfactual exercise, we use our model to investigate optimal seller
reserve prices. For a seller who values the object at $0, the optimal reserve price for the
seller ought to be no less than the expected revenue from selling the item the following

3Curren’cly eBay charges about 10% of the revenue generated by the Kindle auctions.
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day multiplied by the seller’s discount factor. Given that more than two thirds of ob-
served reserve prices are close to zero, most sellers are not setting the reserve price to
account for the opportunity cost of selling the good today, which creates a puzzle. How-
ever, given the intensity of bidder competition in the market, we show that the benefit

to the seller of setting an optimal dynamic reserve price is on the order of $1, which

suggests that sellers have weak incentives to choose the optimal reserve price.*

On the empirical front, we make several contributions to the literature on identifying
auction models. A key feature of our estimator is that it requires only observables that
are readily available on many platform websites. In particular, we are able to identify
the average number of buyers per auction without assuming that we observe all of the
bidders in each auction. If bid submission times are randomly ordered, then some auc-
tion participants with an intent to bid may be prematurely priced out of the spot market
before they get a chance to submit their bid. Therefore, the total number of unique
bidders within a given eBay auction constitutes a lower bound on the actual number
of competitors. Our nonparametric identification argument for the dynamic structural
model requires only that we observe this lower bound on the number of competitors,
the seller reserve price, and the highest losing bid within each auction.

Our identification strategy also lets us separately identify bid shading (i.e., bidding
strictly below one’s private valuation) due to the use of a nontruthful pricing rule (e.g.,
a first-price auction) and bid shading due to intertemporal incentives. From a buyer’s
perspective, failure to win an auction today is no tragedy since he can return tomorrow
and bid again, which implies there is an opportunity cost to winning today. The oppor-
tunity cost determines the degree of demand shading within the current period. Given
a value for the time discount factor, we show that this demand shading factor is non-
parametrically identified from observables that are readily available on eBay. We also
show that when the spot-market pricing rule is non-second-price—so that the winner’s
bid may directly affect the sale price—then the additional, static demand shading incen-
tive is layered on top of the dynamic demand shading incentive in an intuitive way that
allows for straightforward econometric identification. This is important since many elec-
tronic auction pricing rules (including eBay’s) are known to deviate from the standard
second-price form in empirically relevant ways.

Our empirical analysis reveals that the degree of bid shading incentivized through in-
tertemporal opportunity costs is significantly larger than the demand shading generated
by the choice of a nontruthful spot market auction mechanism. In other words, it is more

4A similar result was found using very different techniques by Einav, Kuchler, Levin, and Sundaresan
[2015].
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FiGure 1. Static Versus Dynamic Demand Shading Incentives

important for bidders to understand intertemporal opportunity costs than how to strate-
gically bid under a nontruthful pricing rule. To make this concrete, Figure 1 plots the
equilibrium bidding strategies under first and second price auction rules in a dynamic
auction market given the economic primitives we estimate. The 45 degree line can be
interpreted as the equilibrium of a static second price auction that omits the dynamic
opportunity cost. The bid shading caused by the intertemporal opportunity cost is rep-
resented by the difference between the bidding strategy under the second price auction
(SPA) mechanism in a dynamic setting and the 45 degree line. The additional demand
shading caused by switching to a nontruthful mechanism such as a first price auction
(FPA) rule is represented by the gap between the strategies for the first and second price
bidding strategies in our dynamic setting. We also include the probability of winning in
the bottom pane for reference.

We chose to plot bidding strategies under first- and second-price spot markets because
they represent the polar extremes of static demand shading incentives among canonical
pricing mechanisms. In that sense, the difference between the dash-dot line and the
dashed line represents the maximal influence of static incentives for shaping behavior,
and the difference between the solid line and the dash-dot line represents the influence
of dynamic incentives. The conclusion we draw from the plot is that dynamic incentives
tied to opportunity costs play a clearly dominant role in shaping behavior: for all bidder
types with non-trivial win probabilities, the demand shading caused by intertemporal
opportunity costs is an order of magnitude larger than the static demand shading.

Finally, our paper also makes a contribution to the theory underlying the large market
models we use. The notion of a large market approximation, sometimes referred to as an
Oblivious Equilibrium, is not novel to this paper. However, proving a formal relationship
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between a model with a continuum of players and the finite markets that exist in reality
is difficult when the market mechanism admits discontinuities, and an auction setting
provides several points where such discontinuities can arise. We prove that despite these
issues, one can view an equilibrium of the model with a continuum of buyers and sellers
as an e-equilibrium of the model with a finite number of buyers and sellers. We view
this result as a justification for our use of the continuum model in our estimation and
counterfactual exercises.

The remainder of this paper has the following structure. In Section 2 we develop a
theory of bidding within a dynamic platform based on a model with a continuum of
buyers and sellers. In Section 3 we use this model to specify a parsimonious struc-
tural model of eBay, which we show is identified from observables. We also propose a
semi-nonparametric estimator based on B-splines. In Section 4 we present our model
estimates. Section 5 presents our counterfactuals on welfare, the relative importance of
platform composition and dynamic incentive effects, and optimal reserve prices. In Sec-
tion 6, we prove that our model with a continuum of agents approximates an analogous
model with a large, but finite, number of participants. Most of the proofs are relegated
to the appendix.

1.1. Related Literature. The most closely related paper to ours is the contemporaneous
Backus and Lewis [2012], which studies a model of eBay where bidders participate in
a sequence of single-unit, second price auctions. Backus and Lewis [2012] focuses on
identifying a model of buyer demand that includes product substitutability and the pos-
sibility that individual bidder demand evolves over time. In contrast, our focus is on
using our model to measure the efficiency of the market platform, compute counter-
factual studies of alternative market designs, and study the selection of buyers into the
market. In addition, we provide a formal proof that the equilibria of our model with a
continuum of the agents yields approximate equilibria of the analogous model with a
finite set of buyers and sellers. Because of the very different focus of each work, we view
our papers as complementary to one another.

Our methodology analyzes approximate equilibria played by a large number of agents,
which has been a prominent theme in the microeconomics and industrial organization
literatures. Due to the broad scope of this literature, we provide only a brief survey
and a sample of the important papers related to the topic. Early papers focused on
conditions under which underlying game-theoretic models could be used as strategic
microfoundations for general equilibrium models (e.g., Hildenbrand [1974], Roberts and
Postlewaite [1976], Otani and Sicilian [1990], Jackson and Manelli [1997]). Other early
papers focused on conditions under which generic games played by a finite number of
agent approach some limit game played by a continuum of agents (e.g., Green [1980],



HOW EFFICIENT ARE DECENTRALIZED AUCTION PLATFORMS? 7

Green [1984], and Sabourian [1990]). A more recent branch of this literature applies these
ideas to simplify the analysis of large markets with an eye to real-world applications (e.g.,
Fudenberg, Levine, and Pesendorfer [1998]; MacLean and Postlewaite [2002]; Budish
[2008]; Kojima and Pathak [2009]; Weintraub, Benkard, and Roy [2008]; Krishnamurthy,
Johari, and Sundararajan [2014]; and Azevedo and Leshno [2016]).

Nekipelov [2007] and Hopenhayn and Saeedi [2016] develop models of intra-auction
price dynamics with repeated bidding in a single auction. Their goal is to rationalize
common empirical patterns concerning the timing of bids. In our model, we abstract
away from intra-auction dynamics, and instead we concentrate on inter-auction dynam-
ics and how future periods shape bidding incentives today. Peters and Severinov [2006]
develop a model of a multi-unit auction environment similar to eBay with the goal of
studying the sorting of buyers into sellers” auctions in a static setting.

Another related paper is Hickman [2010], which shows that the pricing rule on eBay
is actually a hybrid of a first-price and a second-price mechanism due to the role of
minimum bid increments. The sale price of an item on eBay is usually the second-
highest bid plus a fixed increment, but when the top two bids are close enough (i.e.,
closer than the increment), then the sale price is set equal to the winner’s bid. A rational
eBay bidder accounts for the fact that her bid may affect the sale price, and the result
is bids strictly between the first-price and second-price equilibria. Hickman, Hubbard,
and Paarsch [2016] explore the empirical implications of the non-standard pricing rule
on eBay within a static, one-shot auction model and show that estimates may become
biased in an economically significant way if it is ignored. We build on these two papers
in the following ways. First, our model incorporates both dynamic demand shading
incentives (from future option value) and static demand shading incentives. Second, we
extend the estimator of Hickman et al. [2016] to allow for binding reserve prices, which
affects identification of the bidder arrival process and the private value distribution in
complicated ways.

2. A MODEL OF PLATFORM MARKETS

Before describing our formal model of bidder behavior, we would like to informally
describe the behavior our model is intended to capture. Our informal description is not
meant to be universal, but we believe it to be fairly typical of behavior on eBay.

We imagine that before entering the eBay market, the buyer considers her own value
for the good, makes an assessment of the opportunity cost, and formulates her bid.
After entering the market, the bidder considers bidding in an auction that is closing in
the near future. We assume that the time a bidder chooses to enter the market is driven
by factors exogenous to eBay (e.g., the schedule of work breaks), which means means the
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buyer only considers bidding on a small and randomly selected fraction of the auctions
that close during that day. If a buyer wins the spot-market auction, then she does not
participate in future days. All surviving buyers return to eBay the next day to place a
bid. We summarize the timing in the following diagram.

Period t-1 Period t Period t+1
[ | \l \
Entry Entrants Buyers | | Auctions Trade conducted,
decisions matched submit resolved agents exit, and
made to seller bids new agents added
auctions

FIGURE 2. Timing within a period

Let us now address a few potential objections to our informal story. First, is it rea-
sonable to assume that the buyer formulates her bid before entering the market? This
behavior would be fully rational if eBay used a second price auction (SPA) format. How-
ever, since eBay auctions use a non-SPA pricing rule, there are static bid shading in-
centives that push the bidder to adjust her bid based on the competitive environment
(e.g., the current highest bid) she observes upon entering an auction. However, as dis-
cussed in the introduction (see Figure 1) and in Section 4, intertemporal incentives that
are independent of the number or valuations of the other bidders in the auction the
bidder participates in today play a far more important role in determining the optimal
bid than the competitive environment of a particular auction. Therefore the bidder has
relatively weak incentives to update her bid according to the details or history of any
given auction.

Second, by assuming a buyer participates in an auction closing near her time of entry,
we rule out strategic entry into auctions. Strategic entry occurs to some extent - after all,
there are likely to be at least a handful of auctions that close soon after the buyer enters.
One might also worry that buyers select into auctions based on data unobservable to
us that might be proxied for by, for example, the starting price of the auction (Roberts
[2013]). If this were a significant issue, one would expect that there ought to be correla-
tion between the starting price and the closing price of the auction. We find in our data
that the correlation coefficient between the starting and the closing price is -0.015 and
statistically indistinguishable from zero. We discuss this issue in more depth in Section
4.

Third, our informal story assumes the bidder does not repeatedly bid within a partic-
ular auction. As we discuss more thoroughly in Section 3, we only consider bids arriving
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near the end of the auction. One reason we do this is to avoid the question of how to
handle dynamic behavior within a given auction.” As it stands, we see relatively few
instances in the data of a bidder returning to increase her bid if she has already bid
within the narrow window we consider at the close of each auction.

This section focuses on laying out the theoretical primitives of our continuum model,
which is relatively simple to both estimate and solve for counterfactual equilibria. In
Section 6 we prove that our model with a continuum of buyers and sellers is closely
related to the analogous model with a finite number of buyers and sellers in the sense
that a bidder’s dynamic value function under the continuum model approximates the
value function arising from the finite model, and the approximation becomes arbitrarily
accurate as the number of agents in the market increases. This implies that an exact equi-
librium of the continuum model is an e-equilibrium of the model with a finite number
of agents.

Whenever possible, we develop theoretical results in terms that apply for arbitrary,
well-behaved spot-market pricing rules so that our model may serve as a general frame-
work for quantitative analysis of platform markets. Our definition of “well-behaved” is
captured by Assumption 2.3 below.

2.1. Model Primitives. Now that we have described our model informally, we translate
the story into a formal game-theoretic model. We treat sellers as a source of exogenous
supply, and we take their decisions (e.g., entry/exit and starting prices) as exogenous
and fixed within the model. This modeling choice is driven by the fact that sellers face

very weak incentives to set the optimal starting price,® which makes estimates based on
a model of seller behavior less credible. Therefore, we present a theory of the buyer side
of the market.

The market evolves in discrete time with periods indexed t € {0,1,2,...}. In each
period there is a measure 1 of sellers with reserve prices described by cumulative den-

sity function (CDF) Gg with support [0,7].”%° Ggr may have a mass point, but only at
the lowest possible reserve price, r = 0, and has a probability density function (PDF)

5The question of intra-auction dynamics has been treated by Nekipelov [2007] and Hopenhayn and
Saeedi [2016], and involves substantial complications that are beyond the scope of the current exercise.
Other eBay models that view individual auction listings essentially as sealed-bid games include Bajari
and Hortacsu [2003], Hickman et al. [2016], Coey, Larsen, and Platt [2016], and Backus and Lewis [2016].

®As we discuss in greater length in section 5.3, the sellers earn less than $1 in increased revenue by
moving from a starting price of $0 to the revenue maximizing starting price.

7Setting the measure of sellers to 1 is a normalization.

8The lowest starting price on eBay is $0.99, but this does not affect our theoretical results.

9We use the letter G to refer to the CDFs of variables that are observable to the econometrician, and we
reserve F to denote a CDF of an unobservable variable from the econometrician’s perspective.
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gr(R|R > 0) that is strictly bounded away from zero over the rest of its support. We use

the terms starting price and reservation price interchangeably.'

We refer to the set of buyers present at the start of period t as potential entrants; at
the beginning of each period they make decisions based on the observed number and
type distribution of the other potential entrants and their own types. Each period, the
tirst choice each potential entrant must make is whether or not to enter the market and
participate in the platform. We denote the choice to participate as Enter and refer to the
agents that make this choice as entrants. The choice to not participate is denoted Out. If
there is no history in which an agent chooses to Enter, then we assume that agent exits
the game immediately and permanently. Otherwise any agent that chooses Out simply
moves on to the next period.

Throughout we assume that the goods for sale are homogenous and that buyers have

demand for a single unit.!! Each buyer’s value for the good is her private information,
which we denote as v and assume is fixed over time. A buyer that wins a good on the
eBay platform and pays a price of p receives a payoff in that period of

vi—p—kK

where « is a per-period bidding cost paid by entrants regardless of whether they win.
We assume x > 0; this may reflect the opportunity cost of time spent searching for a
listing and participating in the market, or it may reflect an actual monetary participation
fee that the platform designer imposes. Moving forward, we will use the terms “bidding
cost” and “participation cost” interchangeably in reference to the parameter x. If an
entrant does not engage in trade, her payoff is simply —«; a buyer that chooses not to
enter the market earns a payoff of 0.

In period t = 0 there is a measure Cy continuum of potential entrants with a type
distribution equal to Fy o.!? The measure of potential entrants at the beginning of period
t is denoted C;. A measure of potential entrants equal to y is added to the economy at the
end of each period, and the distribution of the values of these new potential entrants has
CDF Ty (-) with PDF ty(-). We assume that ty is strictly positive over the support [0, 1].
Fy; denotes the distribution the buyers’ types in period t —including newly potential
entrants and ones remaining from period (t — 1)—and is an element of the space of
probability measures over [0,1], denoted A([0,1]). Unless stated otherwise, A([0,1]) is

10eBay allows sellers to choose reservation prices that are hidden from buyers, but this is done so
infrequently that we ignore it in our modeling.

Hwe discuss the homogeneity of the goods in our data set in Section 4.

12Gince the letter B is used later on to denote bids, we chose C, for “consumer,” to represent the number
of buyers in the market each period.
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endowed with the weak-* topology. A generic, measure 0 buyer is denoted using the
subscript i.

After choosing Enter, each entrant formulates a strategic bid without knowing either
the number or identity of the other agents participating in the particular auction to
which he or she is matched. The form of the random matching process, the distribution
of entrant types, and the exogenous distribution of reserve prices is known to agents at
the point when they choose their bids. We assume a simultaneous-move spot market;
in other words, bidders maintain their ex-ante planned bid throughout the period and
refrain from updating it during the life of their matched auction listing.

If a measure C; of buyers choose to enter the auction market, the entrants are ran-
domly assigned to auctions with each auction receiving a random number K of bidders
where Pr{K = k} = m(k,A). For now, we impose no functional form on 77, meaning
the parameter vector A = {Ag, A1, Ay, ...} € R® is left unrestricted. We refer to A as
the market tightness parameter since it is determined by the buyer-seller ratio. The key
properties we assume for the bidder arrival process are:

Assumption 2.1. We require that 7t satisfy the following conditions:
(1) E[K] = C;
(2) 7t is continuous in Ct, Fy, and Gg
(3) A local limit theorem applies, meaning that for the sequence (Kq,Kp,...) with Zy =

YN | K; and ¢ denoting the density function of the normal distribution we have:

\/NVar[K|Pr{Zny =k} — ¢ (IC_LHK]) uniformly over k € Z (1)

NVar[K]

The most novel assumption is (3), which requires that a local limit theorem apply. We
use this assumption to approximate the probability mass function of sums of realiza-
tions of K using the probability density function of the normal distribution. Local limit
theorems apply to most distributions of interest to economists including the generalized
Poisson distribution used in our estimator.!® This level of generality will allow for a
flexible empirical model specification later on.

Myerson [1998] showed that in games with stochastic participation, such as the spot
market in our model, beliefs over the total number of competitors from the perspective of
a participant in the auction (i.e., a bidder) are not the same as beliefs from the perspective
of an outside observer (e.g., a seller or the platform designer). In particular, each bidder’s
beliefs about the number of other bidders in the auction to which she is matched are
pinned down by the probabilities 77(-; A) but need not be the same. From the perspective

13g6e McDonald [2005] for more details and examples of local limit theorems.
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of bidder 1, let M denote a random variable representing the number of competitors she

faces, and let 7t (M; A) denote its probability mass function (PMF). As Myerson showed,

7t and 7)1 are the same distribution if and only if K is a Poisson random variable, a

concept he referred to as environmental equivalence. Otherwise, her beliefs over M are

given by

(m+1)
E[K]

Finally, we note at this point that our continuum model is “large” in the sense that

ripm(m; A) = Pr [m opponents|A] = m(m+1;A) (2)

the actions of individual bidders have no effect on the aggregate distribution of auction
outcomes. However, the actions of individual bidders have a large effect on the auction
to which they have been assigned. The tractability of the continuum model derives from
the fact that, given knowledge of the equilibrium strategy, the distribution of types in
the economy evolves deterministically.

2.2. Equilibrium. In this section we discuss the structure of the equilibrium under the
assumption of a second-price auction rule since we can provide closed form solutions
for some equilibrium quantities. As we show in Section 3.1.3 below, our general insights
apply straightforwardly to other pricing mechanisms as well.

Bidding strategies can be written as functions O : [0,1] x R4+ x A([0,1]) x A([0,1]) —
[0,1] (O for “offer”) with a typical bid denoted O(v,Cy, Fy s, Gr). The entry decision
for participating buyers is a function of the form 6 : [0,1] x Ry x A([0,1]) x A(]0,1]) —
{Enter,Out} with a typical realization 6(v, Ct, Fy, Gr). We let ¥ denote the buyers’
strategy space.

We use the notation x(b, Ct, Fy 1, Gr) = 1 (0) to denote the random event that a buyer
wins (loses) an auction with a bid of b, and p(b, C, Fyt, Gg) denotes the random transfer
from the buyer to the seller/eBay conditional on a bid of b.1* To simplify notation we
also define

X(b,Ct,FV,tGR) — Ei’ [x(bICtIFV,l’IGR)]
p(b/CtIFV,l’lGR) - Et [P(bzct/FV,t/GR)]

The expectation operator refers to the agent’s uncertainty regarding the other buyers that
are participating in the auction to which he or she is matched. Note that p represents
expected transfers that are not conditional on sale. That is, each entering bidder has an
ex-ante expectation of paying p(b) in the spot market, although under any winner-pay
pricing rule only one bidder will pay a positive amount ex-post. For compactness we
frequently suppress the notation for the aggregate state. We also often suppress the bid
argument and assume the agent is following the equilibrium strategy.

14For example, p(b, C, Fy 1, Gg) = 0 if the buyer does not win the auction.
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All agents discount future payoffs using a per-period discount factor § € (0,1). The
value function given a (symmetric) equilibrium strategy vector ¢ = (6, O) for a bidder
that chooses Enter is

V(U, Ct, PV,tr GR’(T) =X0—p—K + (1 — X)(SV(U, Ct+1, PV,t—i—lz GR‘O') (3)
For a buyer that chooses Out we have
V(U/ Ct/ PV,t/ GR |0-) = 5]}(0/ Ct+l/ FV,erl/ GR |0') (4)

We use the notation V(v, Cy, Fy 1, Gr|o7, 0_;) when buyer i uses strategy ¢’ and all other
agents follow o.

Equilibrium requires that the actions taken are optimal with respect to the determinis-
tic path of the state variables. We focus on stationary equilibria, which implies that the
state variables are constant across time and the agent actions are optimal with respect to
the state variables’ realizations.

Definition 2.2. The strategy vector ¢ = (6, O) and the states C and Fy € A([0,1]) are a
Stationary Competitive Equilibrium (SCE) if for all bidder values v we have

(1) Forall 0/ € %,
V(v,C, Fy,Ggrlo) > V(v,C,Fy,Ggrlo!,0_;)
(2) 6(v) = Enter if and only if
xv—p—x+(1—x)0V(v,C,Fy,Ggrlo) >0
(3) C = Ct = Cyy1 and Fy = Fy; = Fy ;41 are consistent with the laws of motion of
the game.
In an SCE, the agents bid the same amount in each period, meaning that the bidding
function can be written B : [0,1] — [0, 1]. The entry decision must take the form
(v, C, Fy, Ggr) = Enter if and only if x [v — 0V (v,C, Fy,Grlo)] —p > «

Any buyer that is indifferent between entering and staying out must have a continuation
value of 0 since, due to the stationarity, if she is indifferent today she will be indifferent
in every future period. This implies that new entrants will either exit immediately or
enter the market in every period. Because of this structure, we can describe the entry
strategies through a cutoff function ¢(C, Fy, Gr) = irz}f{v :xv—p >k} and

8(v,C, Fy, Ggr) = Enter if and only if v > ¢(C, Fy, Gr) = v (5)

where v is the lowest value buyer willing to enter the market.
In an SCE under a SPA spot price mechanism, it is an equilibrium in weakly undomi-
nated strategies for a bidder to bid his value for the good minus the opportunity cost of
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winning. In the static, one-shot setting, this opportunity cost is 0 since outside options
are assumed not to exist. In our dynamic model, the opportunity cost of winning today
is the continuation value the bidder receives if she instead returns to the market to bid
again in a future period. Therefore we can write

B(v) =v—96V(v,C, Fy, Grlo) (6)

In a static auction, one’s equilibrium bid is chosen to balance out opposing forces: a
higher bid will increase the chance of winning, but it may also raise the price one pays
as well. Whenever the second force is present, bidders shade their demand. Henceforth,
we refer to these two forces as static incentives. Intertemporal dynamics introduce an
additional incentive for bidders to shade their bids: if the spot-market price is sufficiently
high today, then a bidder would prefer to wait in expectation of lower prices tomorrow.
Therefore, even when the spot-market game follows a second-price rule, rational bidders
in equilibrium engage in demand shading. In what follows, we refer to this source of
demand shading as dynamic incentives. Since a buyer with value v is indifferent between
entering and staying out of the market, we must have V (v, C, Fy, Gr|o) = 0, which in
turn means the lowest value type that enters does not shade her bid (i.e., 5(v) = v).

At this point, let us take a moment to define what it means for the state variables C
and Fy to be consistent with the laws of motion of the game. In other words, what are
the conditions an SCE must satisfy for stationarity to hold? These conditions are used
implicitly in both our estimator and our counterfactual calculations. Before we begin,
note that the structural primitives of our model are y, x, Ty, and Gg, so our stationarity
conditions will be written in terms of these quantities as well as the equilibrium strategy.

For an economy to be stationary, the distribution and measure of buyers that win
auctions and exit the game must be replaced by an identical distribution of new entrants.
For this to be true, we must have:

For all v, uty(v) = x(B(v)) fv(v)C (7)

As before, B(v) is the symmetric equilibrium bidding strategy, x(b) is the probability of
winning a spot-market auction with a bid of f(v), and C is the market-wide buyer-seller
ratio. The left-hand side of Equation 7 is the measure of buyers of type v entering the
market, and the right-hand side is the density of buyers of type v who win an auction
and exit the market. Equation 7 and the fact that F/(1) = 1 pins down fy and C.

This raises the question of how one can compute B and x. For general pricing rules,
B can be formulated as the solution to an ordinary differential equation determined by
the first order conditions of the problem facing a bidder. In an SPA setting, we have
B(v) = v — 8V (v). To compute V, we use Theorem 1 of Pavan, Segal, and Toikka [2014],
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which implies that V' can be described as:

[

V(o) = 6 [T (BT x(Bls)ds ®)

T=t A

and we can write x as
X(6) = Gr(b) 3 ma(m)Fs (B (6))" ©)
m=0

Given Equations 7 - 9 we can pin down all of the endogenous variables from the struc-
tural primitives.

In the interest of generality, we extend our framework to account for a variety of pay-
ment rules. For our large-market approximation results (Section 6) to hold for platforms
with non-second-price spot market mechanisms, we require the following assumption
on the SCE strategy:

Assumption 2.3. The best response bids of the buyers are continuous in the sup-norm with
respect to the parameter C and the distribution of bids of the entrants as long as the distribution
of bids admits a PDF that is bounded from above.

Fix a distribution of bids that admit a PDF gp bounded from above. We assume that we can
choose some ¢ € (0,1) such that for any best response by the buyers, denoted b, to (C, gp, Gr)
and any v > v' we have

v—10

b(v) = b(v') € |p(v—7), p

(10)
For the duration of this paper, we will take Assumption 2.3 as given.'>1®

In summary we can describe any SCE as a vector of strategies, c = (e, ) and aggregate
states (C, Fy, Ggr). Our next result (see online technical appendix for proof) shows that
there exists an SCE of our model.

Proposition 2.4. A stationary competitive equilibrium exists, and a positive mass of buyers
choose to enter the market if x is not too large.

The main difficulties in the proof are (1) arguing we can limit consideration to a com-
pact strategy and state space and (2) ruling out a number of utility discontinuities that
naturally arise in auction markets. Once we handle these issues, our proof uses a tradi-
tional fixed point argument.

15Given Theorem 6.2, we could have equivalently required continuity of the bidding equilibrium of the
static game (6 = 0).

1611 the SPA we have B(v) = v — V. Since the value function must be strictly increasing with a slope
less than 1, we know that B(v) satisfies equation 10. Therefore the SPA satisfies assumption 2.3.
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3. AN EMPIRICAL MODEL OF DYNAMIC PLATFORM MARKET BIDDING

We now shift focus to developing a structural model based on the SCE described
above. Letting L denote sample size (where an auction is the unit of observation), the

observables, {k;, 7;, v}k |, include k; the observed number of bidders within the /'t

auc-
tion; r;, the reserve price; and y;, the highest losing bid. For the purpose of our dis-
cussion on identification, we leave the bidder arrival process 77(-; A) nonparametric, so
that the market tightness parameter vector A is allowed to be infinite-dimensional with
Ay =Pr[K =k, k=0,1,2,.... For convenience we drop the parameter argument in the
PMEF 7(-) unless context requires specificity.

For simplicity of discussion, consider the decision problem of a bidder who has de-
cided to enter and finds herself competing within a spot-market auction; we will re-
fer to her as bidder 1. As before, denote the total number of opponents she faces by
M = K—1 > 0 and recall that from 1’s perspective 7p;(-) may not be the same distri-
bution as 77(-), though A determines both. Prior to bidding, bidder 1 observes her own
private valuation v and she views her opponents’ private values as independent realiza-
tions of a random variable V ~ Fy having strictly positive density fy on support [0, 7]
with © > 0.7 The theory from the previous section depicted a set of potential buyers,
some of whom choose to enter the bidding market and some of whom don’t, with Equa-
tion 5 determining the relevant entry cutoff. Since we are unable to collect real-world
observations on non-entrants, we shift notation slightly from the previous section and
adopt the convention that Fy is the steady-state distribution of buyer types who choose
Enter. This is possible because, in an SCE, whenever it is optimal for a buyer to enter
(stay out) in a given period, it will always be optimal for her to enter (stay out) in every
future period until she wins an auction and exits. Recall that v is the type that is just
indifferent to entering, leading to the following formula that we refer to as the “zero
surplus condition”:

Assumption 3.1. V(v) =0

Bidder 1 wishes to formulate an optimal bid that reflects her static incentives (from
competition in the spot market) and her dynamic incentives (from the option value of re-
entering the market in the future if she loses today). She views the bids of her opponents
as a random variable B = B(V) ~ Gp(B) = Fy [B~1(B)] with support [b,b]. Let By
denote the maximal bid among all of bidder 1’s opponents with a distribution defined

by Gg,,(Bm) = Loy Tt nz) 7G(Bm)™. R is the starting price of the auction, which is

17Nothing in our theory relied on values being drawn from the specific [0, 1] interval, so it is innocuous
to have values drawn from some other compact interval of real numbers.
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randomly drawn from CDF Gg. In order to win, player 1’s bid must exceed the realized
value of the random variable:

_JR ifM=0
max{R, By} otherwise

Note that the distribution of Z is the same as the win probability function:

o0

x(b) = Gr(b) ) mtm(m)Gg(b)" (11)
m=0

3.1. Model Identification. We first establish nonparametric identification results in Sec-
tions 3.1.1-3.1.2 for a baseline case with a second-price spot-market auction. In Section
3.1.3 we extend our identification result to the case where the spot-market game is non-
second price, which creates additional static demand shading incentives. This extension
will be useful in dealing with data from eBay, which employs a hybrid pricing mecha-
nism that exhibits elements of both first-price and second-price rules.

3.1.1. Baseline Model: Second-Price, Sealed-Bid Spot-Market Auctions. A second-price spot-
market mechanism implies a specific form for the expected payment function,

p(b) = E[pp(b)] =7tm(0)Gr(D)E[R|R < D]

- (0)] [ ¢ [8(DGa, (0) + Gr(Dgn, (O] &t (12

Since the market is in steady-state, we can express the Bellman equation and bidding
strategy as

V(o) = max {x(b)o — p(b) =+ [1 = x(0)] 0V (0) (13)

B(v) =v—38V(v) (14)

The demand shading factor given by bidder 1’s continuation value, 6V (v), is uniquely

characterized by four things: the per-period entry cost, x; the distribution of bids, Gg(b);

the distribution of starting prices, Gg; and the market tightness parameters, A, that

determine the overall ratio of buyers and sellers. Thus, mapping bids into private values

requires first identifying these four objects. The model is said to be identified if there

exists a unique set of structural primitives that could rationalize a given realization of

the joint distribution of observables, {lzl,rl,yl}lel. The structural primitives to identify
are u, x, Ty, and Gg. 18

180ur exposition might occasionally appear to treat Fy as a primitive, but in reality it is pinned down

p 8 y app p y p

by Equation 7. As the reader will see, we use a version of Equation 7 to estimate Ty from Fy (and other
variables).
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v—

Note that (14) implies V(v) = %. By substituting this expression into equation
(13) and using the shorthand notation b* = B(v), we can rearrange terms to get

prl= 5(11:§C(b*)) —3 i 5 (P(b*) +K> =p1(b") (15)

0 =

The expression for the inverse bidding function above is crucial to demonstrating iden-
tification of the model, as it shows that the relationship between bids and latent private
values is fully characterized by a small set of parameters and functionals. Specifically, if
the econometrician can identify A, x, Gg, and Gp from the observables, then for a given
discount factor § we can reverse engineer the value v that rationalizes bid b as a best
response to prevailing market conditions.

3.1.2. Identification of the Bid Distribution and Bidder Arrival Process. One challenge to em-
pirical work is that the observed number of bidders in each auction, K, is only a lower
bound on the actual number of bidders matched to the auction, K. Due to random order-
ing of bid submission times across all bidders who watch an item with intent to compete,
some may find that their planned bid was surpassed before they had a chance to submit
it to the online server. These bidders will never be visible to the econometrician, even
though they were matched to and competing to win the auction.

To solve this problem we incorporate an explicit model of the sample selection pro-
cess into our identification strategy. In doing so we adopt an approach similar to that of
Hickman et al. [2016] who proposed a model of a filter process executed by Nature that
randomly withholds some bidders from the econometrician’s view.'” For a given auction
with k total matched bidders, this filter process first randomly assigns each bidder an
index {1,2,...,k}, where one’s position in the list determines the ordering of bid sub-
mission times. Nature then visits each bidder in the order of her index within the list,
keeping a running record of the current lead bidder and current price as she goes. As
Nature visits each bidder in the list, she only records bid tenders that cause her running
record of the price or lead bidder to update (i.e., those that exceed the second highest
from among previous bid tenders). Otherwise, Nature skips bidder i’s submission as
if it never happened and reports to the econometrician only the record of price path
updates, which reveals k < k observed bidder identities. This filter process is meant to
depict the way information is recorded on real-world platform markets like eBay, and
it opens up the possibility that some bidders will not appear to have participated even
though they had an intent to bid. This view of intra-auction dynamics assumes that the
ordering of bidders” submission times is random. Note that we remain agnostic on how

1n a similar setting, Platt [2015] explored parametric inference assuming that K is Poisson distributed.
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agents decide to bid early or late; we merely rule out the possibility of bidder collusion
on the ordering of their submissions.

Since the filter process does not depend on the particular distribution of K, the dis-
tribution of K conditional on a given k can be characterized without knowing A. More-
over, since a bidder’s visibility to the econometrician only depends on whether her bid
exceeds the second-highest preceding bid, the researcher can easily simulate the filter
process based on quantile ranks—without knowing Gp or Fy a priori—to compute con-
ditional probabilities Pr[k|k] for various (k, k) pairs.”® We adopt a special notation for
this object, Py(k,k) = Pr[k|k] and treat it as an observable. Since k is observable, we
can use this information to express its PMF, denoted 7(k), as a function of the market
tightness parameters A: 7t (k) = Y i Py(k, k)t (k; A).

However, this equation will not suffice as a basis for identification and estimation in
our case. Unlike Hickman et al., our empirical application requires us to allow for the
presence of binding reserve prices. These introduce a second layer of selection, driving a
further wedge between actual participation k and observed participation, k. Not only do
some bidders go unobserved because the filter process withholds them from view, but
an additional fraction of bidders, who would have otherwise been reported by Nature,
go unobserved because their bids fall below the reserve price. This second layer of
selection produces substantial complications since Gg now determines how the second
source of selection influences the relation between the distribution of observed K and
the underlying distribution of actual K.

In order to solve this problem we propose an adjusted filter process wherein, for each
auction, Nature randomly draws k from 7t(k), » from Gg, and an ordered list of bidders
with timing index, i € {1,2,...,k}. Each bidder is endowed with an iid private value v;
drawn from Fy. The bidders formulate their strategic bids without knowing the realiza-
tion of k or r, and Nature then compiles a reported list of bidders for the econometrician
in two steps. First, she visits each bidder in the list and dismisses anyone whose strategic
bid does not meet the reserve price r. Second, Nature assigns the remaining set of kK < k
bidders new indices i’ € {1,2,...,k'} in increasing order of their raw indices 7, and then
executes the standard filter process algorithm for computing and reporting k conditional
on . Finally, Nature reports k and r to the econometrician.

In order to characterize the conditional distribution of K given 7, first note that if there
are K = k total bidders, the probability that exactly j of them are screened out by r is

20Hickman et al. [2016] simulated 102 auction filter processes to obtain a lower-diagonal matrix of
conditional probabilities Pr[l~c|k], for each k < k and k < 100. With that many simulations, the element-
wise approximation error is on the order of v10-12 = 107, and their simulated matrix can be re-used for
any setting in which E[K] < 40.



20 HOW EFFICIENT ARE DECENTRALIZED AUCTION PLATFORMS?

(]]f)GB(r)j [1—Gg(r)]*/. Now suppose there are K observed bidders in an auction with

N total bidders. We can combine the two levels of selection in the adjusted filter process
with the following equation:

k—k

PriK =klK=kr] =) (k) Gg(r) [1 — Gg(r)]* ™ Py(k, k — j) (16)
j=0 \J

The sum is to account for the fact that any number of bidders between 0 and k — k
could be screened out by selection on reserve prices. The trailing term on the end is
to account for the standard filter process running its course with the surviving set of
bidders. Equation (16) now allows us to characterize the distribution of observed K
conditional on the observable reserve price r, as

t(klr) =Y Prlk|k, r]7(k; A). (17)
k=k
Estimation of A can no longer be separated from Gp because Equation 17 involves both
of these objects. Fortunately though, this is merely a matter of implementation, as the
following demonstrates that the model is nonparametrically identified from the available
observables.

Proposition 3.2. For a given discount factor 6, the market tightness parameters A, bidding
cost x, and steady-state measures Fy, u, and Ty are nonparametrically identified from the joint
distribution of the observables {k;,r;,y;}F | when the spot market mechanism is a sealed-bid,
second-price auction.

Proof. H(-) denotes the distribution of the highest losing bid from the econometrician’s
perspective, and H(-) takes the form

> rt(k; L)

H(b) = k_zz 1—7(0;A) — (1 A)

(Ga(0)t +kGa(B)* ' 1= Gu(b)]).  (18)

H(b) is a weighted average of the distributions of second order statistics from samples of
varying k, where the weights are the probability that a given k will occur as the number
of bidders matched to a particular listing. If we let ¢ (H(b);A) = Gp(b) denote the
inverse of (18), then it follows that, holding A fixed, ¢ is monotone in H(b) for each
b. Combined with the fact that H(b) and 77(k|r) are known, this implies that A and Gp
are identified from the observables and from equations (17) and (18). Moreover, Gy is
directly observable from data.

Given these three pieces, it also follows that the win probability x(b) and the expected
winner payment p(b) are identified through equations (11) and (12) above. To identify
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the participation cost, combine equation (13) with the zero surplus condition (3.1) to find
the following relation:

x(@)e —p(v) =« (19)
In other words, the marginal market participant reaps just enough benefit in expectation
to offset the cost of participation.

With x(b), p(b), and x known, equation (15) shows that 87! is also identified if the dis-
count factor ¢ is known, and in turn, the private value distribution is identified through
the relationship Fy(v) = Gg[B(v)]. With Fy known, y is identified through either of
the following two equivalent expressions which determine the mass of transactions each
period, and therefore the total mass of buyers exiting the market:

w= [ xB@)fv @)

; ) k (20)
= [1-7(0)] Gr(t) + [ gx(r) | X 7(k) [1 = Ga(n'] | ar
= k=1
Finally, once u is known Ty is identified through equation (7). 0

3.1.3. Model Identification Under Alternative Spot Market Mechanisms. We now extend our
identification result to cover platform markets that use alternative spot-market pricing
mechanisms. Under the second-price platform model above, we saw that market dy-
namics produce an incentive to engage in demand shading due to the option value of
future market participation in the event of a loss. Alternative spot-market mechanisms
in which the winner’s bid directly influences the current-period sale price will produce
further incentives for demand shading. As we show below, this static demand shading
margin is layered on top of the dynamic demand shading from the baseline second-price
model in an intuitive way.

To make these ideas more concrete, we continue to use p(b) to denote the expected
payment under the prevailing spot market mechanism, whatever it may be. Conditional
on choosing to enter the platform market, once a bidder is matched to a seller her
decision problem is:

B(0) = argmax { x(b)o — p(b) —x + [1 - x(1)]V(v) |

We find it useful to refer to a bidder’s private value minus her opportunity cost as her
dynamic value, denoted ¥, = v — §V(v). By rearranging terms we can re-cast the bidder’s
decision problem as choosing a functional 3 : Vi — R to optimize:

B(6,) = argmax {x(b)5, — p(b) + ¢, (21)
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where ¢ = —x + 5V(v) is a constant and B(v) = B(d,). In other words, under alterna-
tive spot-market pricing rules agents shade demand as if they were in a static one-shot
auction, but where shading is relative to their dynamic value ¥, (see Proposition 6.2).
This parsimonious layering of demand shading incentives is useful because it allows us
to show that if the right set of observables are available to identify the mapping B that
would arise in a static, one-shot auction with allocation rule x and pricing rule p, then
the value function V and the private value v from the dynamic auction market is also
identified. To see why, note that by plugging the optimizer B into equation (13) and

rearranging we get:

X [B(@0)] 0 —p [B(30)] —x
1-6(1-x [B(30)])

Using the shorthand b* = B(9,) = B(v) and substituting in the definition of @, we can

V(v) =

rearrange terms further to get:
_ 5 (Lzoll—x (@] _ 9 ' _ gy
o=, (~20=2 (o) +x) =00, 22)

In the case of a SPA spot market, where b* = B(ﬁv) = 7, equation (22) reduces to

equation (15) above.

Proposition 3.3. For a given discount factor J, the market tightness parameters A, bidding cost
k, and steady-state measures Fy, u, and Ty are nonparametrically identified under any spot
market mechanism for which either

(1) the optimizer of (21) is scalar-valued and the allocation rule x(b) and pricing rule p(b)
can be identified from the available observables {Tcl,rl,yl}lL:l; OR

(2) the optimizer of (21) could be identified from the available observables {fq,rl,yl}lL:l if
they were generated from a sample of static, one-shot auction games.

Proof. The argument for identification of A, Gp, and Gg is the same as in Proposition 3.2.
For case (1), assuming that x(b) and p(b) can be expressed as a function of observable
objects (including A, Gg, and Gg), equations (19) and (21) identify «, B(-), and @,. For
case (2), consider a hypothetical alternative world where the same set of observables
were actually generated from a sample of static, one-shot auctions, based on underlying
private valuations 7,. If the observables (including A, Gg, and Gr) are known to identify
the inverse bid mapping in that static world, then once again we can treat «x, ,B(), and 7,
as known.

Finally, equation (22) maps each observed bid b into a private value v that rationalizes
b as a best response to market conditions both within-period and future. This implies
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that Fy is identified, after which equations (7) and (20) identify y and Ty similarly as
before. 0

Proposition 3.3 is useful because it broadens the applicability of our model and method-
ology to allow for empirical work for any spot-market mechanism that admits a mono-
tone equilibrium in the static setting and for which the pricing and allocation rules can
be expressed in terms of A, Gg, and Gp. For example, any platform model where the
spot market uses a first-price rule will still be nonparametrically identified given com-
monly available observables. The structural auctions literature has established a broad
array of nonparametric identification results for settings of static, one-shot auctions, be-
ginning with the work of Guerre, Perrigne, and Vuong [2000] and Athey and Haile
[2002]. The result above allows for the researcher in a dynamic marketplace to use estab-
lished, static-market identification strategies in a variety of settings, provided they can
be adapted to handle stochastic participation with a known matching process 7t(-;A).
The ability to incorporate established identification strategies for static auctions will be
useful as we develop an estimator for eBay data. There, the pricing rule is known to
be a non-standard combination of both first-price and second-price rules, which causes
bidders to engage in additional demand shading from their static, strategic incentives.

3.2. A Two-Stage, Semi-Parametric Estimator. Thus far in our discussion we have left
the bidder arrival process 7t(k; A) unrestricted in order to demonstrate that the theo-
retical model is sufficient on its own (given our observables) to identify the structural
primitives without resorting to parametric assumptions. In this section we develop an
estimator to implement our identification strategy, but for the sake of tractability we now
assume K follows a generalized Poisson distribution (Consul and Jain [1973]) with PMEF:

—(A1+kAz)

(K =kA)=Pr[K=klA] = A (N4 +k/\2)k—1eT

The first two moments of the generalized Poisson distribution are E[K] = A1/(1 — Ay)

, M >0, [A] <1, (23)

and Var[K] = E[K]/ (1 — A;)?. While the generalized Poisson reduces to a regular Poisson
distribution when A, = 0, it exhibits fatter tails when A, > 0 and thinner tails when
Ay < 0. Given the linkage between the traditional and generalized Poisson distributions,
we refer to Ay as the size parameter and A, as the dispersion parameter. Developing an
estimator based on finite-dimensional A avoids significant complications that we discuss
briefly below, but which are beyond the scope of this work.

Recall from the classic Myerson [1998] result that we have environmental equivalence—
that is, a participant’s beliefs over the total number of competitors in an auction corre-
spond to those of an outside observer—only in the special case of Poisson-distributed K.
In general, bidder 1’s beliefs about the number of her opponents, M, follows 7y (m, A) =



24 HOW EFFICIENT ARE DECENTRALIZED AUCTION PLATFORMS?

n(m+1LA)(m+1) % Since the generalized Poisson with A, > 0 (< 0) admits an un-
usually high (low) number of large auctions relative to the standard Poisson distribution,
each bidder believes that, conditional on herself having been matched into an auction, it
is likely that it will be one with many (few) other bidders. It is easy to confirm that by
plugging in A, = 0 participant beliefs 71); become Poisson like outsider beliefs 7.

Following our identification argument, Gg and A must be jointly estimated, which
rules out many common methods such as kernel smoothing. For our purpose, we opt
for the method of sieves approach (see Chen [2007]) where a finite-dimensional, para-
metric form is imposed on Gp in finite samples and made to be ever more flexible as
the sample size increases. We choose to specify Gp as a B-spline, which is a linear com-
bination of globally defined basis functions that mimic the behavior of piecewise, local
splines (the name “B-splines” is short for basis splines). By the Stone-Weierstrass theo-
rem, B-splines can be used to approximate any continuous function to arbitrary precision
given sufficiently many basis functions.! B-splines provide a remarkable combination
of flexibility and numerical convenience that is ideally suited to our application.

Let ny = {ny < nyp < --- < nyp41} be a set of knots on bid domain (b,h] =
[min;{y; }, max;{y, }] that create a partition of I, subintervals. This need not be a uniform

partition, but we do require that n,; = b and ny,1, = b so that the partition spans the
entire domain space. The knot vector, in combination with the Cox-de Boor recursion

formula, uniquely defines a set of I, + 3 cubic B-spline basis functions JFy; : [b, @] —

R, i=1,...,1, + 3 that give us our parameterization of the bid distribution:??

I,+3
B(b;ap) Z ap i Fp,i(b

We also follow this approach for estimating Gg and Fy. Letn, = {n,1 < n,p < --- <
ny 411 and ng = {1y < 1y < -+ < 1y 41} denote knot vectors for the reserve price
distribution and private value distribution, defining I, and I, subintervals, respectively.
The former is chosen to span [r, 7] = [0.99, max;{r;}] and the latter spans [§, 7], with the
bounds to be estimated. These knot vectors determine our other basis functions F,; :
7] >R, i=1,...,L+3and F,; : [0,0] = R, i = 1,..., I, + 3 which in turn render
our parameterizations Gg(7;&,) = 21”53 a,iFi(r) and Fy(v;ap) = levf 0y Fo,i(0).

21Unlike global polynomials (e.g., Chebyshev), B-splines are capable of accommodating an unbounded
degree of curvature at a point with finitely many terms if the researcher has a priori information on

regions of the functional domain where such flexibility is needed.

22 standard text on B-splines is de Boor [2001]. See also [Hickman et al., 2016, Online Appendix]
for a brief but detailed primer on construction of B-spline basis functions, their derivatives, and their
advantages for empirical work in economics.
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Following our identification argument, we separate estimation into two stages. In the
tirst stage we flexibly estimate A, Gp, and Gg, and in the second stage we construct the
remaining objects x(-), o(-), x, B~1(-), B~1(-), V(-), Fv(-), u, and Ty as functions of first-
stage parameter estimates. Note that Stages I and II differ in that Stage I is an estimation
step, but Stage Il is a purely computational step based on the outputs from Stage L.

3.2.1. StageI: A, Gg, and Gg. Recalling that the matrix of conditional probabilities Py(k, k)
is known beforehand, in a slight adjustment of notation we now define the model-

generated conditional PMF of K given r as
- K (kk gy, : A k—j = .
ﬁ'(k|1’,‘ )\,ab) = Z Z (]) GB(T’;lxb)] [1 — GB(r;ab)} P()(k,k —]) 7'((k,' A) (24)
k=k \j=0

where K is an upper bound on the auction sizes we consider. We also adopt the following
as the empirical analog of the conditional PMF:

o KR
A = Y =B @)
=1 thl K (W)
where 1(+) is an indicator function, K is a boundary-corrected kernel function, and hg
is an appropriately chosen bandwidth.?® Finally, we define the model-generated highest
loser bid distribution as
(k; A) (Gp(b; )" + kGp(b; &)1 [1 — Gp(b; )]
1—m(0;A) —t(1;A) ’

HbAm) =Y =
k=2

(26)

and its empirical analog as H(b) = Y- 1(y; < b)/L. Using these separate pieces we

can define a method of moments estimator as
L

(A, &) = argmin )" { [kl A, o) — A (Rilr)]” + [H(yis A, wp) - H(]/l)]z}

(Aap)eRDB TS 1=1
subject to (27)

ab,l - Ol ‘Xb,lb+3 = 1/

api < apivy, i=1,..., I, +2.

In words, the estimate (A, &) is chosen to make the model-generated conditional dis-

tribution of K match its empirical analog as closely possible.** The constraints on the

2The boundary-corrected kernel function we use follows Karunamuni and Zhang [2008]. See Hickman
and Hubbard [2015] for an in-depth discussion of its advantages and uses in structural auctions models.
2An analogous estimator in the absence of the generalized Poisson assumption would be possible,

but with additional complications. In the case where A = {Ag, A1, Ay, ...} and Ay = Pr[K = k]|, the main
challenge is that only finitely many elements of A can be estimated with finite sample size L. Thus, one
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empirical objective function enforce boundary conditions and monotonicity of our pa-
rameterization for Gg.2>
Finally, we separately estimate G by a simpler method of moments procedure as

&, = arg min i { [GR(T’I}M) - GR(”I)]Z}

o, €ERIFA3 =1

subject to (28)

w1 = Gr(r), arp3=1,

< Xy i1, i=1,...,1,+2,
where Gr(r) = Y, 1(r; < r)/L is the empirical CDF of reserve prices.

3.2.2. Stage II:. Having these estimates in hand, we are able to directly re-construct the
remaining structural primitives. Some Stage II objects will depend on the time discount
factor, and where this is the case we so note by including J as a parameter argument for
the relevant functional.

could choose an upper bound K| < oo, restrict Ay = 0 for each k > K}, and define the following:
L
. ~ (7 27 2 A 2
{(Ao, A )omp} = argmin Y { [F(kiln; A ap) = 7kilr)]” + [Hys A ap) — A)] "}
(A,wb)G]RKL+Ib+3 =1

subject to

K
Y A =1,
k=0

apy =0, app3=1,
api S apirr, i=1,00, I, + 2.

The optimal choice of K}, in finite samples involves a bias-variance tradeoff. The larger is K;, the less bias
is introduced from restricting values of high-order elements of A, but on the other hand the variance of the
estimator will eventually increase with the ratio (K, /L) as well. A fully nonparametric estimator must
also specify the rate at which K should grow with the sample size. While interesting, the answers to
these questions are beyond the scope of the current exercise, so we do not address them here. In a simpler
setting than ours—a static bidding model of eBay laptop computer auctions with no binding reserve
prices—Hickman et al. [2016] found strong evidence that the generalized Poisson assumption produced
estimates of the bidder arrival process that could not be improved upon by relaxations of its parametric
form, given their sample size of roughly 750 auctions.

20ne of the numerical benefits of using B-splines is their ease of incorporating shape restrictions,
many of which can be imposed as simple linear constraints on the parameter values themselves. For
example, under the Cox-de Boor recursion formula (with concurrent boundary knots), the only basis
functions to attain a non-zero value at the boundaries are Fy;(-) and fb,Pb+3('), which both equal one at
the upper and lower endpoints, respectively. Therefore, enforcing boundary conditions is equivalent to
setting the first and/or last parameter value equal to the known boundary value(s) of the B-spline function,
which also cuts down on computational cost by reducing the number of free parameters. Monotonicity
is also quite simple: [de Boor, 2001, p.115] showed that a B-spline function Gp(b;a;) will be monotone
increasing (decreasing) if and only if the parameters themselves are ordered monotonically increasing
(decreasing). This avoids the necessity of imposing a set of complicated, nonlinear (and potentially non-
convex) constraints on the objective function values, as would be the case with global polynomials, in
order to enforce appropriate shape restrictions which ensure our solution is a valid CDF.
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Before moving on, a word on spot market mechanisms is in order. Empirical work has
often assumed that eBay employs a standard second-price auction mechanism. Recent
work has shown that non-trivial differences exist due to bid increments, which we denote
by A > 0. As bids are received by the online server, typically the price is set equal to
the second highest bid plus an increment, or Y 4 A, similarly as in a second-price rule.
However, a complication arises when the top two bids are within A of each other: in
this case the second-price rule will not do, since the high bid represents the winner’s
maximal commitment to pay, and Y + A would exceed this amount. In that case, the
price is set equal to the high bidder’s own bid as in a first-price mechanism. Thus,
eBay’s pricing rule follows p(b) = min{Bp; + A, b}.

Hickman [2010] proved existence and uniqueness of a monotone Bayes-Nash bidding
equilibrium under this pricing rule in a static, one-shot auction where the number of
bidders is known. This equilibrium involves demand shading because there is a positive
probability that the winner’s own bid will determine the price she pays. Hickman et al.
[2016] showed, in a static bidding game with stochastic participation and no binding
reserve prices, that a bidder’s private value is identified from the distribution of bids
through the equation:

v=>b+

Gg,, (b) — Gg,, [T(b)], ) = {b ifb<b+A 29)

g8y, (b) b— A otherwise

where (D) is a threshold function determining the point below one’s own bid which, if
the random variable By surpasses it, will trigger a first-price outcome.

Proposition 3.3 enables us to adapt equation (29) above for the static inverse bid func-
tion B~! in our model, but two adjustments are required since bidders in our spot-
market game are best responding to the random variable Z rather than just to By.
First, the boundary condition for a bidder’s static decision problem is now f~1(b) =

GRr(b)—Gg([z(b)]
b_’_ : gR(bR)

letting Gz(z) denote the CDF of Z, our inverse static bid function is given by:

, since the only way for bid b to win is the event where M = 0. Second,

L R Gz(b; A, &y, ) — G [T(b);i,&b,&r]
B~ (b; A, &p,8,) =0 =b+ — — (30)
gZ(b/ A/“b/ “l’)

Using Stage I estimates we can construct the allocation rule and the distribution of Z:

X(b;i,&b,&r) :éR<b}&r) Z NM(m;i)GB<b,‘&b)m
m=0 (31)

A

=Gz (b; A, &y, &), b >0
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Equation (31) is a straightforward adaptation of (11) above, and note that we extend the
domain of the function so that the right-hand side of the first line can also represent
the distribution of the random variable Z. Taking into account the form of the hybrid
pricing rule, we can also construct the payment function:

o(b; A, by, &) = rGRr(r; &) + /T(h) (t4+ NGz (5 A, &y, &, )dt
- (32)
+b (éz [b, i, Qp, &r] — éz [T(b), X, Qyp, &A) .
The first term on the right-hand side is for the event where a second-price rule is trig-
gered, and the second is for the event where a first-price rule is triggered. Recall that we
allow for the possibility that Gg has a mass point at the lower bound of its support.
Using the zero surplus condition, we can recover the per-period entry cost as:

f= X(0y; A, &y, &)y — (235 A, 1y, ) (33)
as well as the dynamic inverse bid function and value function which are:

1-90 [1 —x(B;A, &b,&r)] B ) (p(b; A, &y, &) + 1%3)

1-¢6 1-¢ 34

b — 0y
)

The private value distribution is a best-fit B-spline function. We begin by specifying a

A,

% (v; A&y, &r,(s) -

(35)

grid of | = I, + 1 points spanning the bid support, b; = {b;,...,b;}, and a knot vector
n, that spans [0,7] = [ﬁ_l @, A, &y, &y, 5) ,B1 @, A, &y, &y, 5)] This in turn defines our
basis functions F; : [@, ﬁ] —R,i=1,...,I, + 3, from which we can now compute ay:

] X I,+3 X X 2
&y = argmin Z Gp (b],ftb) — Z Xpi Foi [‘3_1 (b], A&y, By, 5)}]
i=1

a, €ERPF3 j=1

subject to (36)
a1 =0, ayr43 =1,
Ny i < Ky it1, i=1,...,1,+2.

Finally, the steady-state measure and distribution of new agents flowing into the market
each period are:

fl = [1—%(0;/‘)] GRr (Q;&r)—i—/bbglg (r; &) <i7r<k;i) [I—GB (r;&b)k]> dr  (37)

k=1
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X [ﬁ (v; A, by, by, 5) A, ab,&r} fv (0300, 8) 129
Z

ty <v; A, By &y, (5> = (38)

3.2.3. Asymptotics and Standard Errors. In the online supplemental appendix, we argue
that our Stage I estimators )At, &, and &, fall within the class of Generalized Method
of Moments estimators. As such, it follows that they are consistent and asymptotically
jointly normal with known formulae for computing standard errors. Since Stage II em-
pirical objects are all smooth functions of Stage I parameters, it follows that they are also
asymptotically normal, and their standard errors can be computed via the delta method.
See Appendix B for a detailed discussion on computation of standard errors.

4. DATA AND RESULTS

We use a unique dataset on Amazon Kindle Fire tablet devices that we scraped from
eBay during March through July 2013. Our scraping algorithm allowed us to capture all
item listings on eBay during that period, and for each one we downloaded and stored
various .html files including the item listing page and the bid history page. During the
sample period we observed a total of 1,732 Kindle Fires listed as “new” (i.e., unused in
a factory sealed box) or “new other” (i.e., unused in an unsealed box) for an average of
11.25 per day.

Each Kindle tablet had eight gigabytes of internal storage and a seven-inch screen with
standard-definition resolution of 1024x600. The Kindle Fire tablets came pre-loaded with

Amazon’s proprietary version of the Android-based operating system that prevents the

t.26

user from accessing the full Android app market.” This makes the Kindle Fire a poor

substitute for a standard tablet (e.g., Samsung Galaxy or Apple iPad) that can serve
a dual role as a productivity tool or as a highly versatile consumer electronic device.
Rather, the Kindle Fire is specifically designed to be a consumer access point exclusively
to Amazon.com’s electronic media market, which includes e-books, periodicals, audio-

books, music, and movies.”” All transactions during the sample period were covered
by the eBay Money Back Guarantee to insure consumers against potential unscrupulous

sellers.?®

2614 requires specialized knowledge to uninstall the proprietary operating system, and doing so is costly
since it invalidates all product guarantees issued by Amazon.com.

27 Amazon.com also maintains its own limited app market—primarily dedicated to entertainment and
online shopping, but in June 2013 it contained less than one tenth the number of apps available in Apple’s
App Store for iPhones or Google Play for Android devices. See https://en.wikipedia.org/wiki/App_
Store_(i08); https://en.wikipedia.org/wiki/Google_Play; and https://en.wikipedia.org/wiki/
Amazon_Appstore; information retrieved on 7/15/2016.

BAs of 7/15/2016, details on eBay’s consumer protection program were available at
http:/ /pages.ebay.com/ebay-money-back-guarantee /questions.html.
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In order to further probe the homogeneity of our Kindle auctions sample, we manually
examined 132 listings (a 10% sample of our downloaded raw .html files) from our final
dataset. Unlike many other tablet devices, accessories are only rarely coupled with
Kindle Fires: of these listings, only one mentioned an accessory (a Kindle case) that the
seller had bundled into the sale. The vast majority of the listings with a condition of
“New,” which eBay defines as factory-sealed in the box, had been opened. A common
explanation was that the seller was merely checking that all of the parts (e.g., charging
cord) are present. Only five of the surveyed “New” items explicitly mentioned that they
are sealed in the box. We conclude from this that the “New” listings are best interpreted
as items that are like new and essentially unused.

Because those listings with a low closing price are so crucial for identifying the par-
ticipation cost, k¥, we manually scrutinized all of these items. Although we identify
v = $66 as the minimal observed sale price, we examined all listings with a closing price
of less than $80. Of these we removed listings that (for example) were selling Kindle
accessories (e.g., cases) rather than the actual device or were offering a Kindle running
a user-modified version of the Android OS. These atypical listings were largely isolated
to the lower tail of the price distribution and were completely removed from the sample
prior to analysis.

One final concern is that there may be residual auction-specific variation which our
manual survey missed, and which is not included in our econometric model. Unob-
served heterogeneity (UH)—some auction characteristic that bidders see but the econo-
metrician does not—is a common problem, and various approaches have been devel-
oped to deal with it (e.g., see seminal work by Krasnokutskaya [2011]). Each approach
assumes bidder valuations are separable in the UH and the idiosyncratic component,
which makes it possible to deconvolve UH from agent-specific variation in bids. More
recently, Roberts [2013] proposed a method to correct for UH when only one bid is ob-
served per auction. Since we can only be confident that the highest losing bid in each of
our auctions is fully reflective of equilibrium strategies (see discussion below), Roberts
[2013] is the most relevant paper to the current context. Under the assumption that seller
reserve prices are also a separable function of the UH variable, he shows that one can
use joint movement in reserve prices and bids to deconvolve the UH and identify private
valuations.

In our data we observe non-trivial variation in sellers’ reserve prices with roughly one
third of them being binding for a positive fraction of the bidder population. Therefore,
one might reasonably suspect that if UH is present then higher values of the unobserved
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characteristic prompt sellers to increase reserve prices.29 A necessary condition for UH in
the Roberts model is co-movement of bids and reserve prices, which is testable. We find
in our data that the correlation between seller reserve price and the highest losing bid is
very small in a practical sense, at -0.015, and that it is also statistically indistinguishable
from zero. We interpret the combined information above—lack of correlation between
bids and reserve prices, evidence from our manual survey of .html pages, uniform
buyer insurance, proprietary operating system and limited app market, and uniform
characteristics of the Kindle Fire tablets—as evidence consistent with our assumption
of a homogeneous goods market with no close substitutes. These characteristics of the
eBay Kindle data allow us to avoid significant complications covered by other work, such
as identifying UH or complex substitution patterns (see Backus and Lewis [2016]), and
instead focus on questions of bidding behavior, allocative efficiency, and market design.

4.1. Practical Concerns.

4.1.1. Intra-Auction Dynamics. For each auction listing, we observe the timing and amount
of each bid submission as well as the bidder identity that goes with the bid. As previous
empirical work has recognized, one challenge for interpreting eBay data is a large num-
ber of implausibly low bids early on in the typical auction. Many bidders place repeated
bids, often within a few dollars or cents of each other, and then become inactive long
before the posted price approaches a reasonable level. Some bidders may engage in non-
equilibrium cheap-talk before bidding based on best-response calculations or participate
flippantly to pass time while web surfing. Empirically, a significant fraction of observed
bid amounts, especially those submitted early in the life of the auction, fall too far below
realistic transaction prices to be taken seriously. The question of intra-auction dynamics

is broad, complicated, and beyond the scope of this work.®? In our case, inter-auction
dynamics are the primary concern for answering our research questions on allocative
efficiency and market design.

To deal with observed early low bids, we adopt the approach of Bajari and Hortagsu
[2003] by partitioning individual auctions into two stages. During the first phase bidders
may submit cheap-talk bids that are viewed as uninformative of the other bidders’ final
bids and the final sale price. The second stage is treated as a sealed-bid auction as

2Note that the model of Roberts [2013] does not require a specific theory to rationalize sellers’ choice
of reserve prices. Rather, it assumes only that reserves are a monotone separable function of UH. For
example, it doesn’t matter whether reserves are chosen to optimize projected revenues or whether they
are chosen to hedge against the risk of selling at an unacceptably low price, since both scenarios would
satisfy monotonicity. Our structural estimates suggest the latter model as most plausible.

30The leading attempts in the literature to formalize intra-auction dynamics are Nekipelov [2007] and
Hopenhayn and Saeedi [2016].
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FiGure 3. Empirical Distributions: Time Remaining when Bids are Submitted

per our model of Sections 2 and 3.3! Finally, consistent with the previous section, the
ordering of bidders” submission times is assumed to be random rather than coordinated.

This requires us to take a stand on differentiating between bids that are a meaningful
part of competition and those that are superfluous. We define a serious bid as one that
affects the price path within the second stage of an auction. Likewise, a serious bidder is
one who is observed to submit at least one serious bid. Of course, the possibility always
exists that some bidders who are determined to be non-serious by the above criterion
had serious intent to compete for the item, but were priced out before submitting their
planned, serious bid during the terminal stage. This is, however, part of the problem that
our model of the adjusted filter process solves (i.e., observed participation by serious
bidders is a lower bound on actual participation). Finally, note that our definition of
serious bidding will also count the top two submissions from within the first stage of
the auction as these bids fix the price at the start of the second stage of the auction. This
allows us to avoid drawing too sharp a distinction between the cheap-talk stage and the
terminal stage of the auction, since some serious bidders’ submission times may still
occur early in the life of the auction.

We specify the terminal period as the last 60 minutes of an auction, during which
we see an average of 4.01 observed serious bidders per auction. Figure 3 shows the
empirical distribution for time remaining when the winning bid was submitted, which
occurs within the final 60 minutes in over 95% of auctions in the sample. The figure also
shows the empirical distribution for time remaining across all serious bid submissions

in the sample. These figures are not sensitive to alternate specifications of the terminal

31While eBay auctions that run for several days can attract bids prior to the final moments, the vast
majority of eBay auctions are won by bidders who bid in the final moments and the terminal behavior of
the price path is largely independent of overall auction duration. This phenomenon was first documented
empirically by Roth and Ockenfels [2002].
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TaBLE 1. Descriptive Statistics

Variable | Mean Median St. Dev. Min Max # Obs

Time Remaining (minutes)
Winning Bid Submission: 6.69 0.11 38.31 0.00 593.30 1,460
High Loser Bid Submission: | 12.49 0.56 52.85 0.00 60435 1,397

Observed Participation
N (serious bidders only): | 4.01 4 1.82 0 12 1,462

Monetary Outcomes
Sale Price: | $124.96 $125.00 $17.74 $67.00 $190.00 1,460

Highest Losing Bid: | $123.84 $124.50 $17.34 $66.00 $189.50 1,397
Seller Reserve Price: | $33.56  $0.99 $45.27  $0.99 $175.00 1,462

period cutoff. If it is chosen as 80 minutes the mean number of serious bidders becomes
4.25, and if it is chosen as 40 minutes the mean number of serious bidders becomes 3.67.

Given our algorithm for distinguishing between serious and non-serious bid submis-
sions, there remains one final challenge. Bidders may choose to submit their strategic
bid at once to the server and make use of eBay’s automated proxy bidding, or they may
choose to incrementally raise their bid submissions up to the level of their strategic bid
on their own. Roughly one third of serious bidders are observed to engage in incre-
mental bidding. Since it is unclear how to interpret each individual bid submission that
affects the terminal price path, we assume that only the highest losing bid is fully reflec-
tive of equilibrium play. This leaves us with the three data points from each auction that
we need for identification: I%l, the observed number of serious bidders; 7}, the seller’s
reserve price; and y;, the highest loser bid from auctions with at least two bids. After
dropping .html pages for which our software was unable to extract data because of for-
matting problems, we have 1,462 total auctions, 2 of which logged no bids, and 1,397 of
which had 2 or more observed bidders so that we observed a highest losing bid. Table
1 displays descriptive statistics on bid timing, observed participation, sale prices, and
highest losing bids.

4.1.2. Model Tuning Parameters. Before implementing the estimator there remain several
free parameters from the previous section to pin down. The most important of these are
the knot vectors n;, n,, and n,. We adopt the convention that knots will be uniformly
spaced, which then reduces the problem to choosing values for I, I, and I, that dictate
the number of knots to use in the relevant B-spline function. For the first two we first
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choose a grid of uniform points in [0, 1] (quantile rank space), and then we map these
back into R space (or V space) using the empirical quantile functions. This procedure
ensures that the influence of the data is spread evenly among the various basis functions.
For n;, we chose knots that are uniform in bid space. The reason for this is that a; di-
rectly parameterizes the parent distribution G, but in our estimator we are matching the
empirical moments of the order statistic distribution H without knowing the quantiles
of Gg ex ante.

In Stage I we chose [, = 10, and we partitioned the reserve price support by the
quintiles of the empirical conditional distribution Gg(r|R > r), meaning I, = 5.3 This
gives us a total of 13 parameters for Gg and 8 for Gg. We chose I, = 15 knots at the
quantiles of the distribution Gp o B, which is known from Stage I. We chose I, > I,
because Fy must conform to the nuances induced by all first-stage parameters in order

to accurately represent the implied private value distribution. We find that these choices

provide a good fit to the data and that adding more parameters renders little benefit.>?

The interested reader is directed to Figure 9 in the online appendix, which displays the
complete set of knots and B-spline basis functions that make up Gg, Ggr, and Fy. This
tigure is also meant to give the reader a sense for how knot location choice alters the
form of the basis functions.

The final free parameter is the time discount factor, . As in many other empirical con-
texts, this part poses a difficult challenge. Luckily, é does not enter Stage I estimation, so
all of the necessary building blocks to compute the final structural primitives will be un-
affected. Several Stage II objects are also unaffected, including the win probability x(-),
the expected payment function p(-), the per-period bidding cost &, and the exogenous,
per-period measure of new agents flowing into the market ji. However, the remaining
objects depend on é. The objects affected by ¢ include the dynamic bid function B(-),
the value function V(-), and the steady-state private value distributions for market par-
ticipants Fy(-) and new entrants Ty (-). There is an intuitive reason why: these objects
tell us something about the opportunity cost of losing today, and ¢ plays a pivotal role
in shaping this opportunity cost by determining agents” attitude toward present versus
future consumption.

In lieu of taking a stand on the particular value of é applicable to our study, we present
results both here and in our counterfactual setting for a range of values of §. Where
possible, we provide statistics that are stable across choices of §. For example, instead

32The conditioning is due to the mass point at the lower bound.

BA fully semi-nonparametric estimation routine based on B-splines would involve specifying a rule
for optimal choice of I within finite samples and the rate at which I should increase as the sample size

L — co. This is an interesting econometric question, but one which is beyond the scope of this paper.
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FIGURE 4. Stage I Estimates

of providing a dollar value for deadweight loss, which is sensitive to J, we present
deadweight loss as a percentage of the buyer’s value, which is stable across different
choices of 4.

4.2. Estimates. Table 2 displays point estimates and standard errors for readily inter-
pretable parameters, including the market tightness parameters, the per-period bidding
cost, and the per-period measure of new entering agents. Figure 4 depicts point estimates
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for our Stage I distribution estimators (thick, solid lines), point-wise confidence bounds
for a selected grid of domain points (vertical box plots), and empirical distributions be-
ing matched by the model (thick, dashed lines). The first panel shows the empirical CDF
of observed bidders K and the estimated distribution of total auction-level participation
K. As the figure demonstrates, failing to account for unobserved bidders within the spot
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TaBLE 2. Estimation Results

Variable: M Ao K U

Point Estimate: 59100 0.2579 0.0654 0.9649
Standard Error: | (0.384) (0.058)  (0.0174)  (0.0261)

market sample selection process would lead to a very different view of the distribution
of auction participation. This substantial difference shows up in both the mean—4.07 for
observed bidders per auction versus 7.96 for actual bidders per auction—and also in the
variance—3.19 for observed bidders and 14.46 for actual bidders. The lower two panels
provide an idea of the model fit. The middle one depicts model fit for the distribution

of the highest loser bid and includes an extra plot for the model-driven H (y; A, &b) dis-

tribution, which is derived from both the market tightness and parent bid distribution
parameters. The lower panel depicts model fit for the seller reserve price distribution.
Note that in both cases, the B-spline functions provide a very good fit to the underlying
data. The difference between the two cases is that in the latter our B-splines parameter-
ize the distribution Gg, which is directly matched to its empirical quantiles, whereas in
the former, we parameterize G and then indirectly match the moments of the implied
order statistic distribution H.

Figure 5 presents the dynamic inverse bid functions ﬁ_l <b; X, &p, &y, 5) which we es-

timate for a uniform grid of values of the time discount factor § between 0.75 and 0.98.
We also include an additional value at 0.8871 taken from an experimental study by Au-
genblick, Niederle, and Sprenger [2016] where they elicited hyperbolic time discount
parameters at the daily level from college students.>* Recall from Figure 1 that the vast
majority of demand shading is driven by the option value of returning to the market in
future periods if one does not win today. This continuation value is primarily driven
by three things: the equilibrium bid distribution G, the market tightness parameters A,
and the discount factor 4. Figure 5 depicts the important role of this third piece. Since J
determines bidders” attitudes toward trading off today’s consumption for tomorrow’s, a
greater degree of patience requires larger values of v to rationalize observed bids. Recall-
ing that ¢ is a daily discount factor, if we adopt a value of 0.98 then the 95" percentile of
the private value distribution is over $1, 300, which we consider to be implausibly high.

34 Another related study by Burks, Carpenter, Gotte, and Rustichini [2012] elicited daily time discount-
ing preferences from professional truck drivers in a field experiment using real monetary incentives dis-
tributed through their employer. Burks et al.’s data led to an estimated average daily discount factor of
0.8921.
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TABLE 3. Mean Private Values and Information Rents For Various ¢

Discount Factor 6: 0.75 0.81 0.87 0.8871 0.93 0.95 0.98

Mean
Private Value: $48.57 $51.29 $56.32 $59.63 $68.83 $86.15 $153.24

Mean Winner
Private Value: $208.39 $230.98 $269.26 $293.58 $358.55 $474.05 $875.56

Mean Winner
Information Rent: | $54.66 $69.11 $94.08 $111.09 $157.44 $245.84 $583.91

Mean Information
Rent Percentage: | 26.23% 29.92% 34.94% 37.84% 43.91% 51.86% 66.69%

Table 3 displays various descriptive statistics derived from Stage II estimates, including
average private values, average private values of winners, and information rents (i.e., the
difference between the winner’s private value and the spot-market price). The last row of
the table shows information rents as a fraction of the winner’s private value, on average.
Finally, Figure 6 presents other Stage II estimates related to the distribution of buyer
values. The upper pane displays the PDF of the distribution of market participants’
private values in steady state under our preferred specification, fy(v;a,, 6 = 0.8871)
(dash-dot line), as well as the type distribution for new market entrants each period,

ty (v; A, &y By, 0 = O.8871> (solid line), with point-wise confidence bounds (vertical box

plots). The PDFs ty and fy are tied together by the win probability, x, depicted as a
function of v for comparison. Although there are many buyers in the market with low
values in steady state, our model suggests that relatively few of these agents enter the
market each period. However, those low-value buyers that do enter must stay in the
market for a long period of time before winning, as indicated by the function x. The
long delay between entry and purchase means these low value buyers accumulate in
the market out of proportion to their presence in the distribution of new entrants. On a
related note, the delay between entry and trade implies that the lower-value buyers are
the ones most significantly affected by the per-period participation cost, & = $0.065.

In comparing estimates of fy and ty in Figure 6, two important differences should be
noted. First, since fy depicts the type distribution for all market participants—including
players remaining from previous periods after failing to win a spot-market auction—it
represents a measure A1/ (1 — Ap) = 7.96 of agents (recall that sellers are assumed to
have measure 1). On the other hand, ¢ty describes the type distribution of the measure
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p = 0.9649 of new agents that enter the market each period in order to maintain the
steady state. Another way of interpreting u is that each spot-market auction has roughly
3.5% probability of resulting in no sale, either because k = 0 players were matched to it
or (much more likely) because the reserve price was too high.

The second important difference between f and ty has to do with the probability that
each agent type v will transact and exit the market. Under fy there is a relatively large
mass of low-value bidders, who are not very likely to win each period, and so in turn
they tend to pile up in the market and remain for many periods until finally winning
an auction. On the other hand, ty depicts a selected set of buyers who move in and out
of the market at much higher frequency, on average, because they have higher private
values, and are much more likely to win in the spot market in a given period.

5. COUNTERFACTUALS

We now perform three counterfactual analyses to investigate the economic implica-
tions of our structural model. The first explores market efficiency. The second decom-
poses the relative importance of what we refer to as platform composition (PC) effects
(i.e., market entry/exit when market conditions change) and dynamic incentive (DI) ef-
fects (i.e., when bidding behavior changes in response to shifts in opportunity costs).
The third counterfactual exercise investigates optimal starting price choice in order to
assess whether there are significant costs to setting the starting price at the (suboptimal)
minimal value of $0.99. For notational simplicity we omit the parameter arguments of
primitive structural functionals unless needed for clarity.

Before proceeding, we would like to briefly describe the algorithm used to compute
the counterfactuals. For expositional clarity, we focus on the SPA pricing rule. The
structural primitives of our model are y, ty, x, Gg, and A5.%° These structural parameters
remain fixed when performing our counterfactual exercises unless otherwise noted. As
discussed in Section 2.2, the following conditions pin down v and B and aggregate
variables C, A1, and Fy for a SPA spot market mechanism. Letting 7 denote the highest

35We would have liked to allow A, to be endogenized, but we did not see any obvious economic
structure that would naturally pin this variable down endogenously.
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value buyer in the data, we have the system:

uty(v) = x(B(v)) fv(v)C (39)

B(v) =v—38V(v) (40)

V() = 55 [0 - xple) () @

x(B(©))e —p(B(v) =x (42)
Fy(v) =1 (43)

Equation 39 requires that the distribution and measure of buyers exiting after winning
an auction equals the distribution and measure of buyers flowing in. Equations 40 and
41 pin down the bidding strategy and the value function. Equation 40 will take the form
of an ordinary differential equation in non-SPA spot markets, but this is a relatively triv-
ial modification to our structure. Equation 42 requires that the lowest value buyer that
enters be indifferent to entering, and Equation 43 requires that the steady-state distri-
bution of types be properly normalized. The function x(b), which appears in several of
these equations, is defined by the allocation mechanisms. In our single unit auctions we
have:

X(0) = Ga(8) - m)FolB ()"

In practice, our software uses a bisection algorithm to search for the equilibrium value
of v. Given v, we let the auction size parameter, A;, adjust so that Equation 42 holds.

Since C = E[K] = 1?—}\2 by assumption, we immediately have C. Given v, A, and C we can
solve Equations 39 - 41 to obtain candidate values for fy, B, and V. Finally, if Equation

43 fails to hold for the candidate fy (i.e., if the steady-state distribution of types is not

properly normalized), then we adjust our guess for v and repeat the process.

5.1. Welfare Comparisons. Throughout this section we adopt the usual notion of auc-
tion efficiency as the tendency for goods to be allocated to those who value them most
within a given period. Even when the spot-market mechanism is efficient within a given
auction, dynamic auction platforms with search frictions still exhibit two related sources
of inefficiency. First, there is the chance that a high-value buyer that ought to receive
the good in an efficient allocation is competing against another high-value buyer, so one
of them cannot receive the good. Second, an auction may fail to attract any high-value
buyers, which means a low-value buyer will receive the good when she would not under

365ince we do not have any data on the distribution of buyer values below the v observed in the data,
we can only perform counterfactuals that yield a value of v that is weakly larger than that observed in the
data.
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an efficient outcome. The first case is one in which there is “too much” competition in
the auction, while the second case is one in which there is “too little” competition.

5.1.1. “Model Anemic” Inefficiency Calculations. In this section we use only our Stage I es-
timates to bound the percentage of auctions resulting in an inefficient sale. We refer to
these calculations as “model anemic” since they do not rely on our equilibrium bidding
model and thereby employ the fewest possible assumptions. Our model-anemic calcula-
tions rely only on our filter process model to correct for sample selection in the observed
number of bidders in each auction.

To proceed, we must first find the cutoff v,¢s that separates high-value buyers that
ought to receive the good in an efficient allocation from lower-value buyers that ought
not. Since the buyer-seller ratio is A1/ (1 — A;), the efficient allocative cutoff in private

value space is defined by v, = F; ! (1 — 1= | However, since quantile orderings are
p Y Veff 14 e q g

invariant to monotone transformations, we can re-define this cutoff in bid space (where

the raw data live) as b,;r = G (1 — 1=%) . Intuitively, if the highest losing bid in a
f B Y Yy & g

given auction exceeds bfs, then the corresponding bidder would receive the good in
an efficient allocation. We find that 28.47% of the auctions in our sample satisfy this
criterion. For each high-value bidder who loses an auction there is a low-value bidder

in some other auction who inefficiently wins, so high-value buyers losing and low-value
buyers winning are simply two sides of the same coin.*’

This measure is only a lower bound on the frequency of inefficiency because without
observing more bids, we cannot account for auctions where two or more losing bids
surpassed b,rs. Another disadvantage of the model-anemic approach is that it offers no
way of measuring the magnitude of unrealized gains from trade. Such an undertaking

requires one to quantify private values that underpin observed bids.

5.1.2. Structural Welfare Calculations. Our full Stage II structural estimates allow us to
get a more complete idea of the frequency and magnitude of market inefficiency. First,
using Equation 7 we can compute the precise frequency of inefficient allocations as the

fraction of all transactions involving low-value bidders:

Prfovimer < vurs] = C [ X (B6) fu(s)ds.

Note that this measure is invariant to choice of the time discount factor §. Our point
estimates imply that 35.89% of Kindle auctions on eBay end with an inefficient outcome.

37There is also a very small fraction of auctions that result in no sale due to high reserve price or K =0
by random chance, but these scenarios happen too infrequently to be a significant source of welfare loss,
so we ignore them until the next section where our measurements use the full structural model.
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Deadweight loss calculations in levels will be sensitive to the choice of §. In order to
address this problem, we adopt the following measure, which we refer to as the efficiency
ratio:

¢ fjsxﬁ(ﬁu(s))fv,u (s)ds
C fz:ff SfV,u (S)ds

The numerator is the realized gains from trade in our market (within a given period),

gu,é

and the denominator represents gains from trade generated by a fully efficient alloca-
tion. The u subscript denotes number of units involved in each auction listing for our
counterfactual centralization analysis below; for now we fix u = 1. By expressing sur-
plus as a fraction of total possible surplus, the separate influences of ¢ in the numerator
and denominator largely cancel out and we get a measure that is stable across different
assumptions on time discounting (see alternative calculations displayed in the first row
of Table 4). We also compute the efficiency ratio under a hypothetical lottery system,
denoted &y 5, as the minimum efficiency benchmark (see the last row of Table 4).

With these definitions in hand, our point estimates imply that the fraction of total
deadweight loss is 1 — &7 9gg71 = 0.135 under our preferred specification. To put this
number into context, deadweight loss under a lottery system is estimated to be 1 —
Erott08871 = 0.53, meaning that eBay’s auction market platform achieves only 76% of
total gains from trade above the lottery benchmark. Note, however, that this is only
a “partial equilibrium” assessment; were a social planner with complete knowledge of
the bidder values to implement the efficient allocation each period, then the steady-
state distribution of buyers’ values and the buyer-seller ratio would change. However,
we believe our figures have the benefit of giving a sense of the welfare losses while
imposing minimal structural assumptions on the estimates.

5.1.3. Counterfactual Market Centralization. We now consider the extent to which ineffi-
ciencies can be mitigated by changing the market structure to one in which the same
number of Kindles are allocated each period, but using fewer u-unit, uniform-price auc-
tions with u > 2. Since new Kindles are relatively homogenous products, we think
it is reasonable to assume that buyers view them as nearly perfect substitutes for one
another. This suggests that our proposal to take steps toward more efficient market cen-
tralization using multi-unit auctions is feasible. In product categories where the items
are not perfect substitutes (e.g., used cars), the implications of selling disparate products
in a multi-unit auction become much more difficult to formalize. However, our esti-
mates provide a sense of the efficiency loss generated by search frictions when selling
items through decentralized, single-unit auctions as opposed to more centralized market

mechanisms.
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Several aspects of our model need to be slightly adjusted in the multi-unit auction
setting. We subscript the endogenous quantities in our counterfactual equilibrium with
u, 6 to denote the degree of centralization and the choice of time discount factor. First,
each u-unit auction attracts a number of bidders K;, distributed as a generalized Poisson
random variable with expected value

Mu e (44)

E[Kd] = T—Ay

We assume that A;, the dispersion parameter, is fixed at the estimated value and allow
A1,u, the size parameter, to adjust so that (44) is satisfied in our counterfactual equilibria.

In our status quo model, we assume that each seller draws an independent reserve
price from Gg. In the multi-unit context, we assume that a single reserve price is drawn

from Ggr for each u-unit auction, and that reserve price applies to all u units being
allocated in that auction.”® Each bidder submits a bid to the auction to which she is
matched, and the u highest bids that are larger than the auction’s reserve price win an
item. Each winning bidder then pays a sum equal to the largest of the (u + 1) highest
bid and the reserve price. The implied probability of winning in a u-unit auction is:

u—1 00
Ku(0) = Gr(v) | ¥ maa(m) + Y maa(m) ( M ) FB<ﬁ—1<b>>m—“+1] (45)
m=0 m=u
which we use in conjunction with Equations 39 - 43 and Equation 44 to compute the SCE
for a u-unit auction.

One of the general takeaways from our research is that understanding the impact of
platform market design on participation decisions is crucial. The social planner’s welfare
calculus will be strongly influenced by changes in entry behavior (e.g., how many low-
value buyers leave the market?) and the steady state-distribution of private values for
market participants (e.g., how many low-value bidders accumulate in the market when
they are less likely to win an item?) Our model allows us to handle these questions
by computing the counterfactual, steady-state SCE when the platform uses u-unit spot-
market mechanisms. We find that v increases as the market becomes more centralized
(i.e., as u grows) since player types with very low values will see a decrease in their
probability of winning as market allocations become more efficient.

Table 4 provides results for counterfactual efficiency ratio statistics for u € {1,2,4, 8}.
Recall from above that the efficiency ratio compares gains from trade in a single period
of a u-unit model with the welfare generated by the efficient allocation from clearing the
market once per period with a single, large, multi-unit, uniform-price auction.

3BWe include a reserve price to make comparisons between the status quo setting and the uniform price
setting we study here.
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TaBLE 4. Counterfactual Efficiency Ratios &, ;

# Units Discount Factor 6 =
Per Listing | 0.75 0.80 0.86 0.88 0.92 0.95 0.98

0.89 0.88 0.87 0.86 0.85 0.84 0.82
092 092 091 091 091 090 0.89
094 094 094 094 094 093 093

8 095 095 095 095 095 095 0.95
Lottery |0.58 054 049 047 041 0.35 0.26

=N =

We would like to draw attention to two features of our results. First, the efficiency
ratios are remarkably stable across different specifications of the time discount factor 4.
Second, the vast majority of possible gains from centralization can be realized by 2- or
4-unit uniform-price auctions, so there is little need to shift towards a fully centralized
market.

One might naturally expect that if eBay could re-design their platform market to in-
crease allocative efficiency, then it ought to be able to benefit by capturing some of the
increased gains from trade.>® However, a careful examination of the moving parts within
the model indicates that the sign of the effect on revenue is ambiguous. On the one hand,
a given bidder with a value above the new participation cutoff v, faces fewer competitors
in the market. On the other hand, her remaining competitors also value the object more
highly on average. This complex combination of effects make it difficult to derive a pri-
ori predictions on bidding behavior and the resulting effects of revenue. Table 5, which
describes the mean revenues generated per-auction as a function of u, demonstrates that
the average sale price actually falls as u increases.

To help explain why revenue drops as efficiency rises, Figure 7 plots the probability
of winning for each type of agent and the equilibrium bid function for the u = 1 (solid
line) and u = 8 (dashed line) market structures. The win probability plot reveals that for
most agents (especially those most likely to win), increasing market efficiency raises the
probability that they will win a spot-market auction within a given period. This raises
their future continuation values and therefore the opportunity cost of winning an auction
today. This in turn reduces their bids by promoting further demand shading as shown
in the second panel of Figure 7. Reduced bids then translate into decreased revenues
for both sellers and eBay, which currently charges the sellers a percentage commission

3The literature on optimal auctions suggests that efficiency reducing reservation prices can increase
revenue. It is not clear if/how this result applies to our counterfactual other than the general sense that
allocative efficiency and revenue are in tension.
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TaBLE 5. Counterfactual Mean Auction Revenues

# Units Discount Factor 6 =
Per Listing | 0.75 0.80 0.86 0.88 0.92 0.95 0.98

1 $115.05 $114.90 $114.71 $114.59 $114.37 $114.10 $113.65
2 $112.79 $112.33 $112.97 $112.72 $112.26 $111.96 $112.28
4 $111.73 $111.21 $111.09 $110.84 $110.40 $110.31 $111.30
8 $110.05 $109.54 $109.12 $108.94 $108.64 $108.81 $109.75
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Ficure 7. The Efficiency-Revenue Link

on auction revenue. This highlights an interesting point: what is good for bidders and
market welfare is not necessarily good for platform market designers like eBay.

Finally, we would like to highlight the effect of centralization on the average lifetime
participation costs (ALPC) paid by the agents, which are summarized in Table 6. For an
agent of type v, the expected lifetime participation costs paid by the agent is equal to
x/x(B(v)). The ALPC refers to this quantity averaged over the steady-state distribution

of buyers multiplied by the buyer to seller ratio:
K

AﬁPCWg = C/(] mfvlu,(s(v)dv

The ALPC is described in Table 6.
There are two effects at work. First, when markets centralize, the ALPC paid by a
participant before winning an item goes slightly up on average. For example, when

6 = 0.88 and u = 1,% the participants paid on average $8.98 each over their lifetimes in

40gince the estimation of « is independent of J, the figures discussed below are essentially identical for

all choices of 4.
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TaBLE 6. ALPC Effects of Centralization

# Units Discount Factor 6 =
Per Listing | 0.75 0.80 0.86 0.88 0.92 0.95 0.98

$66.57 $67.77 $68.95 $69.58 $71.27 $72.97 $75.92
$47.80 $50.03 $52.33 $54.30 $58.08 $60.26 $61.33
$34.59 $36.09 $37.33 $38.07 $40.14 $44,86 $61.51
$22.55 $23.84 $26.05 $27.73 $32.46 $41.49 $65.59

D =N =

the market. When § = 0.88 and u = 8, the participants paid on average $9.50 over the
course of their participation in the market. The average participation cost per bidder is
pushed up by the fact that lower value agents must wait even longer (on average) before
winning an item and exiting the market.

The larger effect is that fewer buyers participate in the market when u increases. The
buyer to seller ratio is 7.75 when § = 0.88 and u = 1, while the ratio is only 2.92 when
6 = 0.88 and u = 8. The total participation cost incurred by all buyers is the product
of the average per-bidder cost and the ratio of buyers to sellers. As seen in Table 6, the
participation costs drop by roughly 60% as u moves from 1 to 8 for the 6 = 0.88 case.

To place these results in the context of our finite model, one needs to recall that the
limit model normalizes the measure of sellers to 1 and that there are (on average) 11.25
auctions per day in our data. To find the total cost incurred in the finite setting, we
need to “de-normalize” the measure of sellers by multiplying the total participation cost
tigures by 11.25. This implies an ALPC in the finite market when § = 0.88 and u = 1 of
$782.78, which would drop to $311.96 when u = 8.

5.2. Relative Importance of Platform Composition and Dynamic Incentives. Our model
has two novel features relative to most of the empirical auctions literature: platform com-
position effects and dynamic incentive effects. Our goal in this section is to measure the
relative importance of these two. As an illustrative example, we consider changes to
the per-period participation cost x. Aside from illuminating answers to questions of
academic interest, this counterfactual provides practical guidance to eBay and other on-
line market designers regarding what issues are of most importance when considering
changes to a platform.

There are two effects when participation costs increase. First, agents’ continuation
values drop, which in turn reduces demand shading and increases their bids. Holding
the reserve price distribution Gy fixed, these dynamic incentive (DI) effects increase al-
locative efficiency since bids are now more likely to exceed the reserve price R. Second,
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an increase of the participation cost drives low-value buyers out of the market, which re-
duces the buyer-seller ratio and strengthens the steady-state distribution of active bidder
types. The consequences of buyer selection out of the market are referred to as platform
composition (PC) effects.

We consider a range of participation costs from the estimated status-quo value, which
we denote x = $0.0657, through a maximum of $10. Our goal is to separate the DI and
PC effects, which are tied together intricately in equilibrium. For each counterfactual we
consider the status-quo equilibrium with x and replace either the bid and value functions
(which drive the DI effect) or the buyer-seller ratio and bidder value distribution (which
drive the PC effect) of an alternative equilibrium with ¥’ > k. The reader should keep
in mind that neither of these exercises result in equilibrium outcomes; rather, they are
meant to serve as a decomposition of the PC and DI effects.

To formally define the comparative statistics of interest, let V(v) denote the value
function for a bidder with value v in an equilibrium with participation cost x. Let Cy
denote the ratio of (active) buyers to sellers and A, denote the matching parameter in an
equilibrium with participation cost x.*! Let fy, and Fy, denote the analogous steady-
state PDF and CDF of (active) bidder types and note that these live on support [v,, 7],
with v < v, whenever k < «’. Finally, let B«(v) denote the equilibrium bidding strategy
given participation cost x. The probability of a buyer winning is:

o0

XK(U;VK//\K/FVKI,BK) GR ,BK Z FVK( )]m

The first term above captures the probability of an agent’s bid exceeding the reserve
price. The remaining terms are the probability that a buyer beats other competing bids.
If all of the x subscripts take on the same value, then X, is generated by a steady-state
SCE for that particular value of «.

The allocative efficiency, WV, is a function of the endogenous variables considered:

0
W(VK/ Ak, Fyy, ,BK) = CK/ SXK(S; Vi, Ak, Fyx, ,BK)fVK(S)dS

4

where for convenience we simply define Fy (v) = fy «(v) = 0 for each v € [v,v,].
Our metric for the role of DI effects in shaping welfare is the dynamic gap, defined by:

DQ(K/K ) =WV, /\K,FVK,ﬁK/) — WV, Ax, Fyy, Br)-

411ncluding notation for both C, and Ay is not necessary since the former can be computed from the
latter.
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FIGURE 8. Relative Size of Dynamic and Selection Gaps

The dynamic gap is computed by comparing equilibrium allocative efficiency generated
by x to an out-of-equilibrium market that uses the same matching parameter and steady-
state distributions, but the value function (V) and bidding strategy (B,/) from an SCE
with a higher participation cost x’. The idea is to hold fixed the endogenous quantities
that correspond to PC effects (A and Fy) while allowing DI effects (8 and V) to vary with
K.

The platform gap, PG, captures the importance of PC effects in determining welfare:

PG(x, K/) = WV, Av, Fyw, Bx) — W (Vi Ax, Fyy, Bx)

This gap is computed by comparing equilibrium allocative efficiency generated by x to
an out-of-equilibrium market with the same value function (V) and bidding strategy
(Bx) but matching parameters and steady-state distributions of an equilibrium with a
higher cost k. Here we hold DI effects (8 and V) fixed and vary endogenous quantities
that correspond to the PC effects (A and Fy).

In Figure 8 we plot the ratio of the platform gap to the dynamic gap. When participa-
tion costs are low, the platform gap is only twice as large as the dynamic gap. However,
as costs rise, the platform gap becomes as much as ten times larger than the dynamic
gap. In short, it appears that understanding the platform composition effects of market
changes is often many times more important than understanding the dynamic incentive
effects of the changes.

5.3. Optimal Starting Prices. As has been regularly noted about the eBay marketplace,
sellers tend to choose very low starting prices. In our data, almost 60% of the starting
prices are set at the lowest possible value of $0.99. It is easy to see that such a price is
not optimal - a single seller could improve his profits if he set a starting price equal to v,
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the lowest possible bid in the auction.*? From the perspective of a single seller, choosing
the optimal starting price involves the same reasoning as in the classic optimal auctions
literature: a high starting price can increase the final price paid by the winner, but it also
risks that the good will go unsold.

We solve this problem numerically to get a sense of the strength of the incentives of
the sellers to carefully choose a revenue maximizing starting price. For this exercise we
assume that the seller has a supply cost of $0. Since we are considering a deviation by a
single seller in our limit game, the seller’s deviation has no effect on market aggregates.
As a result, we fix A, Fy, and (e, B) at their status quo values. The problem the seller
solves is:

max,>o Pr{BM) > r}E [max{r, Bum}|BY > r} (46)

where B(!) is the highest bid in the auction and By, is the highest competing bid.

Our results are remarkably stable across different choices of 6. The optimal starting
price varies from a low of $84.90 to a high of $85.80. At the optimal starting price, the
revenue generated is either $122.30 or $122.31 across all of the possible é. This represents
an increase in profit of just $0.95 relative to a starting price of $0.99.

The benefits from optimally choosing the starting price are small because each seller
is matched with 7.96 bidders in expectation, which means that the competition between
bidders is intense. Bulow and Klemperer [1996] show that in a static auction setting

choosing the starting price optimally pales in comparison to adding a single extra bidder

to the market.*?

With almost 8 bidders on average already participating, it should not
be surprising that there is little room left for optimizing the starting price to have a

significant effect on auction revenues.

6. APPROXIMATING A FINITE MODEL

We refer to a model with a finite number of buyers and sellers as a finite model. Since
the real world is clearly finite, we ideally would have estimated and computed coun-
terfactuals using a finite model. Moreover, one might be skeptical that our continuum
model bears much relation to the finite model we would have liked to have worked with.
The goal of this section is to both explain why we could not have conducted our analysis
with a finite model and justify our use of the continuum model as an approximation of
the more realistic finite setting. We first lay out the primitives of the finite model analog

“25uch a starting price would insure that if a single buyer was matched to the auction, the seller could
extract some value from that buyer. It would have no effect if two or more buyers were matched to the
auction as one of these buyers would necessarily set the sale price.

#3Since we do not provide a model of seller activity, we view Bulow and Klemperer [1996] as merely
suggestive of what occurs in our setting.
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to the continuum model described in Section 2, and we prove that a Bayesian Nash equi-
librium of the finite model exists. We then prove that an SCE of the continuum model is
an approximate equilibrium of the finite model. This approximation result is our justifi-
cation for the use of a continuum model as a proxy for the intractable, but more realistic,
tinite model.

6.1. Primitives of the Finite Model. We consider a sequence of games indexed by N
where N refers to the number of sellers that list goods for sale in each period. All
variables pertaining to the N-agent game are superscripted with N.** Each seller has
a reserve price R that is drawn randomly from the distribution Gg. The numbers of
potential entrant buyers at ¢t = 0 is denoted CJY. We assume that as N — co

0
— = Cp e R4
N 0 € Ryt

The population of potential entrants in period t is CN. Nature generates [Nu] new
buyers at the end of each period and adds them to the set of potential entrants. Each
time Nature generates a new potential entrant buyer, her private value v is drawn from
Ty. The measure P{}f ; describes the distribution of potential entrant buyer values in
period t of the N-agent game. As in the continuum game, buyers observe their own
value for the good, the bidding cost, and the number and value distribution of the other
potential entrant buyers in the game prior to choosing whether to enter. A bidder makes
her choice of a bid without knowing either the number or identity of the other agents
participating in the particular auction to which she is matched.

We now describe the stochastic matching process that assigns bidders to auctions in
the finite setting. We denote the number of buyers that enter the market in period t
as CN. The buyers and sellers are randomly ordered into queues with the ordering
independent across periods. Nature sequentially matches each seller in the respective
queue with the next k € {0, 1, ...} buyers from the buyer queue where k is a realization
of random variable K that is distributed according to probability mass function 77(K; 7).

Intuitively (see formal proof in the technical appendix), if we consider a limit where
the number of entering buyers and sellers grows without bound, then in the limit all of
the entrants are matched into auctions. In the finite model, if the supply of entrants is
not completely assigned to auctions, the unassigned buyers are referred to as unmatched

41t is not difficult to allow for a random number of sellers in the finite game. If we denote the
(potentially stochastic) number of sellers entering in period t of the N-agent game as SV, we require that:

SN
Wt — 1 almost surely as N — oo

We do not consider this extension due to the considerable number of notational aggravations it causes.
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buyers. Unmatched buyers proceed to the next period without transacting. Conditional
on being matched, a particular bidder wins her auction if her bid is larger than the
maximum of all competing bids and the seller’s reserve price. Ties between highest
bidders are resolved by assigning the item to the tied bidders with equal probability, but
if the highest bid is tied with the reserve price, then we assume the bidder wins the item.

Bidding strategies can be written as functions O : [0,1] x R4 x A([0,1]) x A([0,1]) —
[0, 1] with a typical bid denoted O(v;, CN, F‘I}{ y GZI{ ;)- The entry decision for participating
buyers is a function of the form 6 : [0,1] x Ry x A([0,1]) x A([0,1]) — {Enter, Out} with
a typical realization 0(v;, CY, F‘IX iy Gﬁ]’ ;). We let ¥ denote the buyers’ strategy space.

We use the notation xN(b,CN, F{}{ b GIIQ{ ;) = 1 (0) to denote the random event that
a buyer wins (loses) an auction with a bid of b, and pN (b, CtN , F‘]}{t, GIIQI, ;) denotes the
random transfer from the buyer to the seller/eBay conditional on a bid of b. We also
define:

N, = BN [x(6, Y, G
oN(b,CN R, GR) = EN [p(b,CN, R, G

We superscript the expectation operator to emphasize that we are referring to the N-
seller economy.

All agents discount future payoffs using a per-period discount factor € (0,1). The
value function given a (symmetric) equilibrium strategy vector o = (6, O) for a bidder
that chooses Enter is

VN(o,CN, B, GR o) = Vo — N — e+ (1= 20BN [V (0, Cly, B 41, GRia o)
For a buyer that chooses Out we have
VN (0, CN, By, GRyle) = BN [VN (0, CNyy B 41, GR o)

We use the notation VN (v, CN, FlY,, G¥,|0/,0_;) when buyer i uses strategy ¢’ and all
other agents follow ¢.
We use the following definition of an equilibrium in our finite games.

Definition 6.1. The strategy vector ¢ = (6,0) and the initial state C)Y € Qy and
FYo GRo € An([0,1]) is an e-Bayes-Nash Equilibrium (e-BNE) of the N-agent game if
for all bidder values v we have

For all o] € Z¢, VN (v;, CYY, FYo, GRolo) +& > VN (v, CF, FYy, GRolol, o)

Given the dynamic nature of our game, a solution concept that incorporates some
notion of perfection might be expected. Consider the two ways in which an e-BNE can
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yield an € > 0. First, it may be that the agent does not exactly optimize with respect
to high probability events, which results in a small loss with high probability. Second,
the strategy may not optimize with respect to very rare events. Failing to optimize with
respect to rare events can be approximately optimal but severely violate perfection. A
stationary strategy can be an e-BNE even though perfection may not even be approxi-
mately satisfied at the histories of the finite game in which the market aggregates differ
significantly from the stationary state.

We now prove that there exists an exact BNE for our finite model if there exists an
equilibrium for the static spot market (i.e., when 6 = 0). Our proof is constructive in
the sense that it uses the equilibrium of the static version of the model to solve for an
equilibrium of our dynamic model. For those interested in applying our work in other
settings, this is useful since equilibrium existence in static auctions has been established
for a wide array of pricing rules. From a theoretical perspective, it is interesting to
note that an equilibrium of a static model can be easily mapped into an equilibrium of
our dynamic model. The key insight is that each agent’s effective valuation from the
perspective of today is her private value minus the opportunity cost of winning.

Proposition 6.2. Suppose that if 5 = 0 there exists an equilibrium & = (6, O). Then we can
define the equilibrium o = (6, O) when § > 0 as

0(0,CY, B GR,) = 0(0 = 0EN [ VN (0, CNy, B0, GRoalo) |, €Y YL GR))

O(0,CN, B, GRy) = Oo = SEN [V (0,1, By, GRalo) | N Y, GR)

6.2. Approximating the Large Finite Model. It is not difficult to see why the model
becomes too computationally complex to solve precisely as N — oo. In the N-agent
game, the bidder’s strategy must condition on all possible values of CJ, P{){ ., and Gﬁ’, tr
which means the complexity of the strategies grows exponentially with N. The bidding
strategy in the continuum need only condition on the values of C;, Fy s, and G, which
evolve deterministically in equilibrium.

Moreover, computing the stochastic evolution of the state variables in the N-agent
game is difficult. For example, suppose a bidder knows the type distribution for the
current period, F‘I,\{ ;» an N-dimensional step function. In order to precisely compute the
type distribution for the following period, she must first gather a large amount of in-
formation on agents exiting the market. After conditioning on the set of buyers being
removed from the game, she must also account for the infusion of [Nu| new potential
buyers with private valuations being drawn from Ty. This requires computing proba-
bilities that tomorrow’s CDF of types, usually an object with more than N dimensions
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as there are often many more buyers than sellers, and then condensing this information
into one single distribution, Fy ;.

Our goal is to prove that the limit model approximates the large finite model. The
foundation of our proof is a mean field result that proves that the evolution of the con-
tinuum game and the economy of a finite game with sufficiently many players are ap-
proximately the same over finite horizons. Mean field results usually require strong
continuity conditions on the evolution of the economic primitives and on the strategies
adopted by the agents, conditions that we need to prove hold despite auction models
admitting a wide array of possible discontinuities. In addition, since the within-period
matching process of the finite game samples without replacement from a finite set of
buyers, there is a nonzero correlation between bidder values across auctions that close
within the same period. We prove that as the market grows, the auctions become inde-
pendent of one another. In addition, there is also a positive probability that a positive
mass of buyers is unmatched, and we show that the fraction of unmatched buyers van-
ishes as the size of the market increases.

With our mean field result in hand, we demonstrate that the expected buyer utility
in the large finite game and the limit game are approximately the same. This insight
translates into our approximation result, which proves that any exact SCE strategy of the
limit game is an e—~BNE of the finite game with sufficiently many players.

Proposition 6.3. Consider a SCE (c,C, Fy, Gr) and assume e(C,Fy,Gr) < 1. For any
e > 0 we can choose N* and 1 > 0 such that for all N > N*, ¢ is an ¢ — BNE strategy if

(wé\], F@{O, GIIQI/()) satisfies
HC{,\’—CH+HF{){O—FVH+HG§’IO—GRH <7 47)

Proposition 6.3 may be seen as providing an approximation to the actual equilibrium
being played within the data-generating process, but it admits an alternative interpreta-
tion as a behavioral strategy. If one assumes that agents are subject to small computa-
tional costs, then in large markets it may be that they follow SCE behavioral predictions
in lieu of solving a complex optimization problem for a vanishing benefit. Finally, note
that while our result requires that the aggregate states be close in period 0, if we assume
that seller and bidder types are drawn from Fy and Gr with numbers close to N C and

N, then (Cé\], F%), GIIQII()) — (C, Fy, Gg) almost surely as N — oo. In other words, Equa-

tion 47 above is very likely to hold in large markets, and becomes increasingly so as
N — co.
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7. CONCLUSION

Our goal has been to provide a model of a dynamic auction platform that is both
rich enough to capture the salient features of the market (e.g., the large number of auc-
tions concluding each day, the cost of participation) and yet remain tractable enough to
facilitate empirical analysis. To accomplish this, we have developed a model with a con-
tinuum of buyers and sellers that is easy to estimate and solve, and we have shown that
this model approximates the more realistic setting with a finite number of agents. We
have also demonstrated that the structural components of this model can be identified
from observables that are commonly available from platform markets. In constructing
these identification results we have overcome several important problems including sam-
ple selection in the number of spot-market competitors and allowing for pricing rules
that give rise to static demand shading incentives. Finally, we have also proposed a
simple but flexible GMM estimator for the structural primitives.

Most platform markets exist in order to eliminate barriers to trade and allow for buyers
and sellers to interact in a relatively low-friction environment. However, the sheer size
of the markets may give rise to search frictions which prevent market outcomes from
attaining the social optimum. We have estimated our model within the context of the
market for Kindle Fire tablets, and we use these estimates both to compute the welfare
loss under the present design and to suggest novel designs to mitigate these welfare
losses. We begin by providing a “model-anemic” analysis that relies on the observed
bid distribution. We find that at least 28.47% of the auctions close with a highest losing
bidder that ought to be allocated the good in an efficient within-period allocation.

We then use our structural estimates to put a value on the deadweight loss and to
study alternative spot market mechanisms that might eliminate (some of) the welfare
loss due to search frictions. We find that over 36% of the auctions end with an ineffi-
cient allocation, and a 13.5% welfare loss can be attributed to the decentralized nature of
the mechanism. This outcome implies that the single-unit auction market attains three
quarters of total possible welfare improvement over a pure lottery system. By taking
small steps toward a more centralized market structure— such as running multi-unit,
uniform-price auctions with as few as 4 units each—2/3 of the welfare loss can be re-
covered.

Another conclusion of our analysis relates to the importance of intertemporal incen-
tives. In online auction markets, bid shading is driven by the opportunity cost of winning
today, which depends on three main factors: market tightness (ratio of buyers to sellers),
market composition (ratio of high-value buyers to low-value buyers), and time prefer-
ences. The dynamic incentive to shade one’s bid is much larger in magnitude than the
more commonly studied static bid shading incentives generated by nontruthful pricing
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mechanisms. In other words, it is more important for buyers to understand their oppor-
tunity costs than it is for them to understand how to strategically respond to nontruthful
pricing mechanisms.

We attempt to disentangle the welfare effects of dynamic incentives, which is the
primary source of bid shading, from the platform composition effects governing the
selection of buyer types into the market, which governs the steady-state distribution of
buyer values and the buyer-seller ratio. We consider different participation costs, and we
compute the magnitude of the welfare effects (relative to the status quo) of the dynamic
incentive and the platform effects. We find that the platform composition effects are at
least twice as important as the dynamic incentive effects. Our primary takeaway is that
understanding endogenous selection into the market is critically important for judging
the effects of possible mechanism changes.

In future work we hope to estimate a structural model of the sellers” actions on the
eBay market platform. In a contemporaneous paper, we are estimating the value of
sellers of the Kindle product within the posted price Buy It Now market on eBay. The
posted price framework gives sellers a strong incentive to carefully balance the trade-off
between price and probability of sale, which makes the resulting estimates of seller reser-
vation values plausible. By integrating the estimates of bidder values from the auctions
with seller reservation values from the posted price setting, we hope to be able to derive
the optimal participation fee schedule for a profit-maximizing platform designer like
eBay, and the related welfare implications from the social planner’s perspective. How-
ever, until a credible estimate of seller values is available, these interesting and important
questions remain elusive.
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