Optimizing Resource Sharing Systems

VARUN GUPTA
Carnegie Mellon University

Based on papers co-authored with:

JIM DAI MOR HARCHOL-BALTER KARL SIGMAN, WARD WHITT BERT ZWART
Georgia Tech Carnegie Mellon Columbia University CWI, Netherlands

Resource sharing systems are everywhere...

N
Benefits of 7 | /
& resource sharing? ‘
S 2
|/0+CPU+Bandwidth © CPU cycles by
OS task scheduler
by Web servers °

Wireless channel
by WAPs

Why resource sharing: A queueing theory primer

Processor Sharing First-Come-First-Served
(PS) (FCFS)

arrlvals
arrlvals

n jobs = each job gets 1/n capacity Earliest job to arrive is served until completed

m =

Which has smaller mean response time?
M PS FCFS

Why resource sharing: A queueing theory primer

Processor Sharing First-Come-First-Served
(PS) (FCFS)

arrivals .
— [arrivals
|

n jobs = each job gets 1/n capacity Earliest job to arrive is served until completed

Now which has smaller mean response time?
PS M FCFS

e \

Why resource sharing: A queueing theory primer

Processor Sharing
(PS)

arrivals
n jobs = each job gets 1/n capacity

v Good for high job-size variability

First-Come-First-Served
(FCFS)

=]ﬂﬂi@

Earliest job to arrive is served until completed

v Good for low job-size variability

Why resource sharing: A queueing theory primer

Processor Sharing First-Come-First-Served
(M/G/1/PS) (M/G/1/FCFS)

Poisson arrivals - Poisson arrivals
—_—D —_—
Job sizes i.i.d. X] Job sizesi.i.d. X

n jobs = each job gets 1/n capacity Earliest job to arrive is served until completed

v Good for high job-size variability v Good for low job-size variability
E[TPS] 2l E[TFCFS] — E[TPS] (1 +p- 02_1)
. X
p = arrival rate - F[X] C? = %)(qz)
measure of system utilization measure of job size variability

UNIX process lifetimes: C? > 40

Files transferred over Internet: C2 > 25

} Variability matters! 6

Real world # Ideal theoretical policies

Reality check 1: Context-switch overheads
@ Quantum-based Round-Robin
@ How to choose the optimal quantum size?

Reality check 2: Thrashing

®

@ How to choose the optimal MPL?

Reality check 3: Load balancing in server farms
@ How do load-balancing algorithms interact with servers?
@ What are good load-balancing algorithms?

External

@ o
‘.‘ Quantum-based Round-Robin (RR)

Incomplete

jobs ‘

vV V

arrivals

i

Completed _
I:I jobs ~

Jobs served for g units at a
time

h units of context-switch
overhead after every quantum

External

@ o
“‘ Quantum-based Round-Robin (RR)

Incomplete

jobs ‘

vV V

arrivals

[T

- Completed

E jobs

Jobs served for g units at a
time

h units of context-switch
overhead after every quantum

10

M/G/1/RR

|
50 . E!EQH

h=0 9h

M/G/1/FCFS

— [l —

B[TFOFS) = BITPS] (1+ p<5L)

X Variable job sizes cause long delays

‘ - -
"’\\ A hammer for most occasions,

\\s ..the H* job-size distribution

- EXp(y) = Exponential distribution
- easy to analyze <= Markov chains

- H* captures the key phenomenon of (frequent) small vs. (rare) big jobs

w’ For many systems (all cases in this talk), H* provides a good
\‘E approximation for mean response time.

12

Step 1: M/G/1/RR with no overheads

C?2 _2
i q +C2—|—1

BNl £[775)(1 + pg/E[X])

©O-
For high C?: E[TRR] = E[T™>])(1+ pg/E[X])

14

Step 2: Optimizing g

1. System with context-switch overhead h - a system with no overheads
. New quantum size = g+h
. Stretch job sizes by a factor (1+h/q)

2. OPT quantum ¢* = argmian[TRR] g* is a simple function
of h, E[X] and
utilization

Common case: h << E[X]

q" ~ a(p)\/hE[X]

EXAMPLE: Linux context switch time = 5 microseconds

Assume: mean job size = 5 sec, 80% utilization
g* = 15 msec

. . 15
Actual Linux quantum size = between 10 and 200 msec

Mean response time

30 A

25 -

20 A

155

10 A

h=0

0.5 1 15 2 2.5

service quantum (q)

E[X]=1,C2=19, p=0.8 16

Mean response time

30 -

25 -

20 A

155

10 A

service quantum (q)

E[X] =1, C2=19, p=0.8

Mean response time

30 -

© approximation g*

- B optimum q
20 -
15 A
. 5%
.. —
) 1
_h__
E
0 T T : | | []
0] 0.5 1 e) y

service quantum (q)

E[X]=1, C2= 19, p=0.8 |
1

Mean response time

30 A

25 -
10%
20 - B
15 -
. 5%
10 - -
\ _——
5 1
_h
E
0 : : ; ' X
0 0.5 1 1.5 - 25

service quantum (q)

Real world # Ideal theoretical policies

Reality check 1: Context-switch overheads
@ Quantum-based Round-Robin
@ How to choose the optimal quantum size?

Reality check 2: Thrashing

®

@ How to choose the optimal MPL?

Reality check 3: Load balancing in server farms
@ How do load-balancing algorithms interact with servers?
@ What are good load-balancing algorithms?

20

Real world # Ideal theoretical policies

Reality check 1: Context-switch overheads

®

@ How to choose the optimal quantum size?

Reality check 2: Thrashing
@ Impose a Multi-Programming-Limit (MPL)
@ How to choose the optimal MPL?

Reality check 3: Load balancing in server farms
@ How do load-balancing algorithms interact with servers?
@ What are good load-balancing algorithms?

21

- Tale of a typical server

Efficiency

(useful work
per second)

K*
concurrent threads/txns

Admission
Control

A Queueing-theoretic model

jobs at server (n)

23

A Queueing-theoretic model

FCFS buffer

The M/G/PS-MPL model

e Poisson(A) arrival process
e Jobsizesi.id. ~ X
2 _ wvar(X)
O = B
e Sizes unknown, distribution of X known

PS

EED

' K*
jobs at server (n)

GOAL: Find MPL (i.e. K) to minimize mean response time

24

Optimal MPL= K* ?

speed
u(n)

Example

Poisson(0.8) arrival process

1.25 1

0.75 A

0.5 A

0.25

K*=5

5 10 15 20 25
jobs at server (n)

”
N

Exponential job sizes (C? = 1)

o 325

£

@

2 OPT MPL

S 3

o

s |4

C

]

> 2.75 T T T T T 1
4 I 6 8 10 12 14 16

& MPL
Weibull job sizes (C> = 19)
7 =

()

=

=

2

c oo =m0 ===0-

S 45%

L 41 improvement

§ ——————————————

=

3 1 1 1 1 1 1
4'6 8 10 12114 16

K* MPL OPT MPL

Optimal MPL= K* ? DEPENDS!

speed
u(n)

Exponential job sizes (C? = 1)

Example L 325
=
o
2 OPT MPL
Poisson(0.8) arrival 2]
oisson(0.8) arrival process 2 1
C
o
1.25 - 2 2.75 T T T T T 1
N ' 4'6 8 10 12 14 16
| K* MPL
0.75 A I
0.5 - : K*oE Weibull job sizes (C> = 19)
0.25 \ 7 -
o 5 10 15 20 25 £
- = 6 -
jobs at server (n) @
S 54T T T T T T T T T T
= 45%
4 improvement
§ ——————————————
=

3 1 1 1 1 1 1
4'6 8 10 12114 16

K* MPL OPT MPL

Intuition for the effect of MPL

ECES |I |nclrwe:s£in Processor
Sharing (PS)
High job-size variability X v
(C)
High arrival rate v %
(A) o O
O 0] /:\
0.75 - I
0.5 A :
S

|
0 5 10 15 20 25
jobs at server (n)

27

Intuition for the effect of MPL

=

Increasing Processor
VIS Sharing (PS)

High job-size variability X v
(@)

High arrival rate 4 x
(A)

28

Step 1: M/G/PS-MPL approximation

—
u - W,
E[Tx] = +

Approximation assumption:
Job size distribution ~ H*

29

Step 2: Optimizing MPL

Set MPL = MPL*, where:

2

MPL* = argmin { C’+1p [TQ
K

(K)| + B [T§,,(K)] }

Exp

30

1.25 -
speed
p(n)

0.25 T T T T)
0 5 10 15 20 25

jobs at server (n)

4

0.75 -
0.5 | ‘

Poisson(0.8) arrivals

MPL*

Mean Resp. Time

4K 8 10 12 14 16
MPL

K* gives 45% worse performance than MPL*

18

Weibull (C2=19)

Poisson(0.9) arrivals

Weipull (C2=19)

Mean Resp. Time

MPL
K* gives 25% worse performance than MPL*

31

Going even further...

[| don’t know the arrival rate!!

J\

(< , N
ook | =

[My arrivals are not Poisson!! }/ @ 1@'
N

Y Straw man proposal 1: Choose a “robust” static MPL
— Must choose MPL=K* : but suboptimal in light/moderate traffic

Y Straw man proposal 2: Learn the arrival rate
=
— Can’t adapt to changes on small scale/correlations

We Demonstrate: A Dynamic MPL control policy which is
1. Traffic-oblivious: self-adapts to variations in the arrival process
2. Light-weight: makes decisions based only on current queue length, Q(t),
and current MPL, K(t)

32

Structure of our dynamic policy
25 1

Current MPL 15 -

0 10 20 30 40 50

Current Queue Length

e obtained by combining policy iteration with some new tricks (happy to
discuss offline)
e robust to unknown and non-Poisson arrival processes

— 20% performance loss in the worst case (compared to the optimal traffic-
aware MPL)

— MPL=K* becomes worse under non-Poisson arrivals

M/G/PS-MPL

What we’ve learnt... . '

MPL
large MPL 7 a 5 ‘i small MPL
) L > as J (FCFS)

Job-size Loss in efficiency
variability at high MPL

Running the system at maximum efficiency is not optimal for

mean response time

— At moderate arrival rate: MPL > K* can result in more than 45%
smaller mean response time

If don’t know arrival process: a dynamic policy can self-adapt
while only knowing current queue length and MPL

34

Real world # Ideal theoretical policies

Reality check 1: Context-switch overheads

®

@ How to choose the optimal quantum size?

Reality check 2: Thrashing
@ Impose a Multi-Programming-Limit (MPL)
@ How to choose the optimal MPL?

Reality check 3: Load balancing in server farms
@ How do load-balancing algorithms interact with servers?
@ What are good load-balancing algorithms?

35

Real world # Ideal theoretical policies

Reality check 1: Context-switch overheads

®

@ How to choose the optimal quantum size?

Reality check 2: Thrashing

®

@ How to choose the optimal MPL?

Reality check 3: Load balancing in server farms
@ How do load-balancing algorithms interact with servers?
@ What are good load-balancing algorithms?

36

A typical Web server farm

Timeshare service
among current
requests

Load Balancer
(Immediate Dispatch) N

Commodity servers

37

Model: PS server farm

g

. § Timeshare service

N : > among current
:\

requests

Load Balancer
(Immediate Dispatch) N

Commodity servers

38

Model: PS server farm

PS
PS
(]
(]
(]
Load Balancer
(Immediate Dispatch) PS

e K homogeneous, PS servers

39

Model: PS server farm

PS
:)
Poisson Immediate
> Dispatch
Rate A .
@
)

e K homogeneous, PS servers
e Poisson arrivals
e Job sizesi.i.d. ¥ X

40

Model: PS server farm

PS
.)
Poisson Immediate
> Dispatch
Rate A .
@
)

GOAL
Good Load balancing algorithms for PS server farms

41

arrivals

PS server farms

Load

—
Balancer

.|.%

VS.

arrivals Load
Balancer
] I]

FCFS server farms

no

Which is a good FCFS load balancer?
(Hint: your local supermarket)

[J Random

[0 Round-Robin

[Least-Work-Left

[] Size-based-splitting
[1 Shortest Queue

PS server farms VS. FCFS server farms

%@

arrivals Load arrivals Load D
Balancer p— Balancer
I - I -
]

Which is a good PS load balancer? Which is a good FCFS load balancer?
(Hint: your local supermarket)

[0 Random < [0 Random

[0 Round-Robin same [0 Round-Robin

[Least-Work-Left perf. M Least-Work-Left < greedy!

[] Size-based-splitting «<—— M Size-based-splitting < reduces C?
[Shortest Queue < greedy! [Shortest Queue

Why?

?? <

| | | | |
©C 0O O < «
Q\| i i i i

QW] asuodsay uedl

10

44

Increasing variability

—{Ps
E[T] under SQ/PS is “nearly insensitive” to e <_©
the variability of job size distribution __@

RANDOM/
Q 20 - Size-Based
E
= 18 -
Q
(V)]
S 16 -
Q.
0
e 14 -
{ =
& 12 -
E > — — — - — — — — — - — — = — — @ 5Q
10 1 | | | T T
& Q e A e v
M A
C2=0 > (225

Increasing variability 45

—{Ps
E[T] under SQ/PS is “nearly insensitive” to e <_©
the variability of job size distribution __@

RANDOM/
()] 20 Size-Based
E R-R
= 18 A
Q
()]
S 16 -
Q.
O
>
c
& 12 -
E o — —O— — — — — — - — — = — — -® 5Q
10 1 1 | | | T
e Q N « «V 4
M A
C2=0 > C2=25

Increasing variability 46

)
(Ps)

33

S 2)
8% B g
! \ ?
\ \ |
| 5 |

\

\ . ¢!
\ v
\ v
b y 4
\ o
/ |
\ bd
\ \
\ \1
> 4

N
N |
///=
18

| | | | |
©C 0O O < «
(Q\| i i i i

QW] asuodsay uedl

@)
—

47

What we’ve learnt...

?77?

Good load balancers for FCFS and PS servers are different!
— Least-Work-Left and Size-based-splitting are bad for PS !

Shortest Queue (SQ) load balancing is ‘near-optimal’ for PS /,

servers
— Independent of job size distribution

e

Shortest Queue (SQ) load balancing ‘preserves’ insensitivity of

PS to job-size variability

48

Bridging the gap between practice and theory

1: Quantum-based Round-
Robin

2: Systems with thrashing

3: Load balancing for PS
server farms

- Overheads matter — Ideal PS a bad
model

- Right quantum size is important

- We give expression for OPT quantum

- Running system at max efficiency not
always optimal

- We find OPT MPL

- Dynamic policies can self-adapt to
unknown arrival processes

- Scheduling policy of backend servers
is integral for choosing load balancer

- Shortest Queue (SQ) is near optimal
for PS servers — independent of job size
distribution 49

