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Resource sharing systems are everywhere...

N
Benefits of 7 | /
& resource sharing? ‘
S 2
|/0+CPU+Bandwidth © CPU cycles by
OS task scheduler
by Web servers °

Wireless channel
by WAPs




Why resource sharing: A queueing theory primer

Processor Sharing First-Come-First-Served
(PS) (FCFS)

arrlvals
arrlvals

n jobs = each job gets 1/n capacity Earliest job to arrive is served until completed

m =

Which has smaller mean response time?
M PS FCFS




Why resource sharing: A queueing theory primer

Processor Sharing First-Come-First-Served
(PS) (FCFS)

arrivals .
— [ arrivals
|

n jobs = each job gets 1/n capacity Earliest job to arrive is served until completed

Now which has smaller mean response time?
PS M FCFS
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Why resource sharing: A queueing theory primer

Processor Sharing
(PS)

arrivals
n jobs = each job gets 1/n capacity

v Good for high job-size variability

First-Come-First-Served
(FCFS)

= ]ﬂﬂi@

Earliest job to arrive is served until completed

v Good for low job-size variability



Why resource sharing: A queueing theory primer

Processor Sharing First-Come-First-Served
(M/G/1/PS) (M/G/1/FCFS)

Poisson arrivals - Poisson arrivals
—_—D —_—
Job sizes i.i.d. X ] Job sizesi.i.d. X

n jobs = each job gets 1/n capacity Earliest job to arrive is served until completed

v Good for high job-size variability v Good for low job-size variability
E[TPS] 2l E[TFCFS] — E[TPS] (1 +p- 02_1)
. X
p = arrival rate - F[X] C? = %)(qz)
measure of system utilization measure of job size variability

UNIX process lifetimes: C? > 40

Files transferred over Internet: C2 > 25

} Variability matters! 6



Real world # Ideal theoretical policies

Reality check 1: Context-switch overheads
@ Quantum-based Round-Robin
@ How to choose the optimal quantum size?

Reality check 2: Thrashing

®

@ How to choose the optimal MPL?

Reality check 3: Load balancing in server farms
@ How do load-balancing algorithms interact with servers?
@ What are good load-balancing algorithms?
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M/G/1/RR

|
50 . E!EQH

h=0 9h

M/G/1/FCFS

— [l —

B[TFOFS) = BITPS] (1+ p<5L )

X Variable job sizes cause long delays




‘ - -
"’\\ A hammer for most occasions,

\\s ..the H* job-size distribution

- EXp(y) = Exponential distribution
- easy to analyze <= Markov chains

- H* captures the key phenomenon of (frequent) small vs. (rare) big jobs

w’ For many systems (all cases in this talk), H* provides a good
\‘E approximation for mean response time.
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Step 1: M/G/1/RR with no overheads

C?2 _2
i q +C2—|—1

BNl £[775)(1 + pg/E[X])

©O-
For high C?: E[TRR] = E[T™>])(1+ pg/E[X])
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Step 2: Optimizing g

1.  System with context-switch overhead h - a system with no overheads
. New quantum size = g+h
. Stretch job sizes by a factor (1+h/q)

2. OPT quantum ¢* = argmian[TRR] g* is a simple function
of h, E[X] and
utilization

Common case: h << E[X]

q" ~ a(p)\/hE[X]

EXAMPLE: Linux context switch time = 5 microseconds

Assume: mean job size = 5 sec, 80% utilization
g* = 15 msec

. . 15
Actual Linux quantum size = between 10 and 200 msec




Mean response time
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Mean response time
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Mean response time
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Real world # Ideal theoretical policies

Reality check 1: Context-switch overheads
@ Quantum-based Round-Robin
@ How to choose the optimal quantum size?

Reality check 2: Thrashing

®

@ How to choose the optimal MPL?

Reality check 3: Load balancing in server farms
@ How do load-balancing algorithms interact with servers?
@ What are good load-balancing algorithms?
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Real world # Ideal theoretical policies

Reality check 1: Context-switch overheads

®

@ How to choose the optimal quantum size?

Reality check 2: Thrashing
@ Impose a Multi-Programming-Limit (MPL)
@ How to choose the optimal MPL?

Reality check 3: Load balancing in server farms
@ How do load-balancing algorithms interact with servers?
@ What are good load-balancing algorithms?
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- Tale of a typical server

Efficiency

(useful work
per second)

K*
# concurrent threads/txns

Admission
Control




A Queueing-theoretic model

# jobs at server (n)

23



A Queueing-theoretic model

FCFS buffer

The M/G/PS-MPL model

e Poisson(A) arrival process
e Jobsizesi.id. ~ X
2 _ wvar(X)
O = B
e Sizes unknown, distribution of X known

PS

EED

' K*
# jobs at server (n)

GOAL: Find MPL (i.e. K) to minimize mean response time

24



Optimal MPL= K* ?

speed
u(n)

Example

Poisson(0.8) arrival process
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Optimal MPL= K* ? DEPENDS!

speed
u(n)

Exponential job sizes (C? = 1)

Example L 325
=
o
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Intuition for the effect of MPL

ECES |I |nclrwe:s£in Processor
Sharing (PS)
High job-size variability X v
(C)
High arrival rate v %
(A) o O
O 0 ] /:\
0.75 - I
0.5 A :
S

|
0 5 10 15 20 25
# jobs at server (n)
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Intuition for the effect of MPL

=

Increasing Processor
VIS Sharing (PS)

High job-size variability X v
(@)

High arrival rate 4 x
(A)
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Step 1: M/G/PS-MPL approximation

—
u - W,
E[Tx] = +

Approximation assumption:
Job size distribution ~ H*

29



Step 2: Optimizing MPL

Set MPL = MPL*, where:

2

MPL* = argmin { C’+1p [TQ
K

(K)| + B [T§,,(K)] }

Exp

30
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speed
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MPL

K* gives 45% worse performance than MPL*

18

Weibull (C2=19)

Poisson(0.9) arrivals

Weipull (C2=19)

Mean Resp. Time

MPL
K* gives 25% worse performance than MPL*
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Going even further...

[ | don’t know the arrival rate!!

J\

(< , N
ook | =

[ My arrivals are not Poisson!! }/ @ 1@'
N

Y Straw man proposal 1: Choose a “robust” static MPL
— Must choose MPL=K* : but suboptimal in light/moderate traffic

Y Straw man proposal 2: Learn the arrival rate
=
— Can’t adapt to changes on small scale/correlations

We Demonstrate: A Dynamic MPL control policy which is
1. Traffic-oblivious: self-adapts to variations in the arrival process
2. Light-weight: makes decisions based only on current queue length, Q(t),
and current MPL, K(t)

32



Structure of our dynamic policy
25 1

Current MPL 15 -

0 10 20 30 40 50

Current Queue Length

e obtained by combining policy iteration with some new tricks (happy to
discuss offline)
e robust to unknown and non-Poisson arrival processes

— 20% performance loss in the worst case (compared to the optimal traffic-
aware MPL)

— MPL=K* becomes worse under non-Poisson arrivals



M/G/PS-MPL

What we’ve learnt... . '

MPL
large MPL 7 a 5 ‘i small MPL
) L > as J (FCFS)

Job-size Loss in efficiency
variability at high MPL

Running the system at maximum efficiency is not optimal for

mean response time

— At moderate arrival rate: MPL > K* can result in more than 45%
smaller mean response time

If don’t know arrival process: a dynamic policy can self-adapt
while only knowing current queue length and MPL

34



Real world # Ideal theoretical policies

Reality check 1: Context-switch overheads

®

@ How to choose the optimal quantum size?

Reality check 2: Thrashing
@ Impose a Multi-Programming-Limit (MPL)
@ How to choose the optimal MPL?

Reality check 3: Load balancing in server farms
@ How do load-balancing algorithms interact with servers?
@ What are good load-balancing algorithms?
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Real world # Ideal theoretical policies

Reality check 1: Context-switch overheads

®

@ How to choose the optimal quantum size?

Reality check 2: Thrashing

®

@ How to choose the optimal MPL?

Reality check 3: Load balancing in server farms
@ How do load-balancing algorithms interact with servers?
@ What are good load-balancing algorithms?
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A typical Web server farm

Timeshare service
among current
requests

Load Balancer
(Immediate Dispatch) N

Commodity servers

37



Model: PS server farm

g

. § Timeshare service

N : > among current
:\

requests

Load Balancer
(Immediate Dispatch) N

Commodity servers
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Model: PS server farm

PS
PS
(]
(]
(]
Load Balancer
(Immediate Dispatch) PS

e K homogeneous, PS servers
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Model: PS server farm

PS
: )
Poisson Immediate
> Dispatch
Rate A .
@
)

e K homogeneous, PS servers
e Poisson arrivals
e Job sizesi.i.d. ¥ X
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Model: PS server farm

PS
. )
Poisson Immediate
> Dispatch
Rate A .
@
)

GOAL
Good Load balancing algorithms for PS server farms

41



arrivals

PS server farms

Load

—
Balancer

.|.%

VS.

arrivals Load
Balancer
] I ]

FCFS server farms

no

Which is a good FCFS load balancer?
(Hint: your local supermarket)

[J Random

[0 Round-Robin

[ Least-Work-Left

[] Size-based-splitting
[1 Shortest Queue



PS server farms VS. FCFS server farms

%@

arrivals Load arrivals Load D
Balancer p— Balancer
I - I -
]

Which is a good PS load balancer? Which is a good FCFS load balancer?
(Hint: your local supermarket)

[0 Random < [0 Random

[0 Round-Robin same [0 Round-Robin

[ Least-Work-Left perf. M Least-Work-Left < greedy!

[] Size-based-splitting «<—— M Size-based-splitting < reduces C?
[ Shortest Queue < greedy! [ Shortest Queue

Why?
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Increasing variability



—{Ps
E[T] under SQ/PS is “nearly insensitive” to e <_©
the variability of job size distribution __@
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—{Ps
E[T] under SQ/PS is “nearly insensitive” to e <_©
the variability of job size distribution __@
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What we’ve learnt...

?77?

Good load balancers for FCFS and PS servers are different!
— Least-Work-Left and Size-based-splitting are bad for PS !

Shortest Queue (SQ) load balancing is ‘near-optimal’ for PS /,

servers
— Independent of job size distribution

e

Shortest Queue (SQ) load balancing ‘preserves’ insensitivity of

PS to job-size variability

48




Bridging the gap between practice and theory

1: Quantum-based Round-
Robin

2: Systems with thrashing

3: Load balancing for PS
server farms

- Overheads matter — Ideal PS a bad
model

- Right quantum size is important

- We give expression for OPT quantum

- Running system at max efficiency not
always optimal

- We find OPT MPL

- Dynamic policies can self-adapt to
unknown arrival processes

- Scheduling policy of backend servers
is integral for choosing load balancer

- Shortest Queue (SQ) is near optimal
for PS servers — independent of job size
distribution 49



