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Resource sharing systems are everywhere… 

CPU cycles by 
OS task scheduler 

I/O+CPU+Bandwidth 
by Web servers 

Wireless channel 
by WAPs 

…and you! 

Benefits of 
resource sharing? 
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Why resource sharing: A queueing theory primer 

First-Come-First-Served 
(FCFS) 

Processor Sharing 
(PS) 

arrivals 
arrivals 

Earliest job to arrive is served until completed n jobs  each job gets 1/n capacity 

Which has smaller mean response time? 

 PS  FCFS  

3+3+6=12 4+5+6=15 
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Why resource sharing: A queueing theory primer 

First-Come-First-Served 
(FCFS) 

Processor Sharing 
(PS) 

arrivals 
arrivals 

Earliest job to arrive is served until completed n jobs  each job gets 1/n capacity 

Now which has smaller mean response time? 

 PS  FCFS  

6+6+6=18 2+4+6=12 
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Why resource sharing: A queueing theory primer 

First-Come-First-Served 
(FCFS) 

Processor Sharing 
(PS) 

arrivals 
arrivals 

Earliest job to arrive is served until completed n jobs  each job gets 1/n capacity 

  Good for high job-size variability   Good for low job-size variability 
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Why resource sharing: A queueing theory primer 

First-Come-First-Served 
(M/G/1/FCFS) 

Processor Sharing 
(M/G/1/PS) 

Poisson arrivals 

Earliest job to arrive is served until completed n jobs  each job gets 1/n capacity 

  Good for high job-size variability   Good for low job-size variability 

Job sizes i.i.d. X 

Poisson arrivals 

Job sizes i.i.d. X 

measure of system utilization measure of job size variability 

UNIX process lifetimes: C2 > 40 

Files transferred over Internet: C2 > 25  Variability matters! } 
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Real world ≠ Ideal theoretical policies 

Reality check 1: Context-switch overheads 

        Quantum-based Round-Robin 

        How to choose the optimal quantum size? 

 

Reality check 2: Thrashing 

        Impose a Multi-Programming-Limit (MPL) 

        How to choose the optimal MPL? 

 

Reality check 3: Load balancing in server farms 

        How do load-balancing algorithms interact with servers? 

        What are good load-balancing algorithms? 

! 

? 

! 

? 

? 

? 
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Quantum-based Round-Robin (RR) 

External 
arrivals 

Incomplete 
jobs 

Completed 
jobs 

Jobs served for q units at a 
time 

 
h units of context-switch 

overhead after every quantum 
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Quantum-based Round-Robin (RR) 

External 
arrivals 

Incomplete 
jobs 

Completed 
jobs 

Jobs served for q units at a 
time 

 
h units of context-switch 

overhead after every quantum 
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M/G/1/RR 

M/G/1/PS M/G/1/FCFS 

q,h 
q → 0 
h = 0 

q =  
h = 0 

 Context-switches cause overhead  Variable job sizes cause long delays 

small q large q 
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A hammer for most occasions, 

- Exp(γ)  Exponential distribution 

- easy to analyze  Markov chains 
 

- H* captures the key phenomenon of (frequent) small vs. (rare) big jobs 

...the H* job-size distribution 

- 2 degrees of freedom 

- Can match any E[X] and C2 ≥ 1 

For many systems (all cases in this talk), H* provides a good 
approximation for mean response time.  
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 For high C2:  E[TRR] ≈ E[TPS](1+ ρq/E[X]) 

Step 1: M/G/1/RR with no overheads 

q 

C2 

0 ∞ 

∞ 1 
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Step 2: Optimizing q 

1. System with context-switch overhead h → a system with no overheads 

• New quantum size = q+h 

• Stretch job sizes by a factor (1+h/q)  

 

2. OPT quantum  

Common case: h  E[X] 

q* is a simple function 
of h, E[X] and 

utilization 

EXAMPLE: Linux context switch time ≈ 5 microseconds 
 

Assume: mean job size = 5 sec, 80% utilization 
q* ≈ 15 msec 

 
Actual Linux quantum size = between 10 and 200 msec 
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service quantum (q) 
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E[X] = 1, C2 = 19, = 0.8  

1.  Effect of context-switch overheads can be significant 
-  performance quite far from ideal PS 

2.  Choosing too small a q is very bad, OK to err towards larger q 
3.  Performance of q* close to OPT 
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Real world ≠ Ideal theoretical policies 

Reality check 1: Context-switch overheads 

        Quantum-based Round-Robin 

        How to choose the optimal quantum size? 

 

Reality check 2: Thrashing 

        Impose a Multi-Programming-Limit (MPL) 

        How to choose the optimal MPL? 

 

Reality check 3: Load balancing in server farms 

        How do load-balancing algorithms interact with servers? 

        What are good load-balancing algorithms? 

! 

? 

! 

? 

? 

? 
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Real world ≠ Ideal theoretical policies 

Reality check 1: Context-switch overheads 

        Quantum-based Round-Robin 

        How to choose the optimal quantum size? 

 

Reality check 2: Thrashing 

        Impose a Multi-Programming-Limit (MPL) 

        How to choose the optimal MPL? 

 

Reality check 3: Load balancing in server farms 

        How do load-balancing algorithms interact with servers? 

        What are good load-balancing algorithms? 

! 

? 

! 

? 

? 

? 



Tale of a typical server 

# concurrent threads/txns 

Efficiency 
 

(useful work 
per second) 

thrashing 

Server Active 
tasks 

Tasks not-yet-started 

Q: Max number of tasks allowed to share server? 

Admission 
Control 

K* 

Common solution: K* 
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A Queueing-theoretic model 

PS 
server 

# jobs at server (n) 

Speed 
(n) 

K* 
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A Queueing-theoretic model 

PS 
server 

1 

2 

K 

K = MPL 

# jobs at server (n) 

Speed 
(n) 

K* 

FCFS buffer 

The M/G/PS-MPL model 
 

• Poisson(λ) arrival process 
• Job sizes i.i.d. ~ X 

 
 

• Sizes unknown, distribution of X  known 

GOAL: Find MPL (i.e. K) to minimize mean response time 

: 



Optimal MPL= K* ? 
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Poisson(0.8) arrival process 

45% 
improvement 
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DEPENDS! 

OPT MPL 

45% 
improvement 
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Intuition for the effect of MPL 

server 

FCFS 
Processor 

Sharing (PS) 
Increasing 

MPL 

High job-size variability 
(C2) 

High arrival rate 
() 

  

  
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speed 
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Intuition for the effect of MPL 

server 

FCFS 
Processor 

Sharing (PS) 
Increasing 

MPL 

High job-size variability 
(C2) 

High arrival rate 
() 

Optimal MPL ↑ C2 ↑  

  

  

Arrival rate ↑  Optimal MPL → K* 
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Step 1: M/G/PS-MPL approximation 

Approximation assumption: 

Job size distribution ~ H* 

PS 
(n) 

1 

2 

K 

FCFS buffer 
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Step 2: Optimizing MPL 

Set MPL = MPL*,  where: 
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Our approx. 
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Going even further… 

• Straw man proposal 1: Choose a “robust” static MPL 

– Must choose MPL=K* : but suboptimal in light/moderate traffic 

• Straw man proposal 2: Learn the arrival rate 

– Can’t adapt to changes on small scale/correlations 

 

We Demonstrate: A Dynamic MPL control policy which is 

 1. Traffic-oblivious: self-adapts to variations in the arrival process  

 2. Light-weight: makes decisions based only on current queue length, Q(t), 
and current MPL, K(t) 

I don’t know the arrival rate!! 

My arrivals are not Poisson!! 
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Structure of our dynamic policy      

• obtained by combining policy iteration with some new tricks (happy to 
discuss offline) 

• robust to unknown and non-Poisson arrival processes 
– 20% performance loss in the worst case (compared to the optimal traffic-

aware MPL) 
– MPL=K* becomes worse under non-Poisson arrivals 

0
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0 10 20 30 40 50

Current Queue Length 

Current MPL MPL ↓ 

MPL ↑ K*= 
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What we’ve learnt… 

• Running the system at maximum efficiency is not optimal for 
mean response time 
– At moderate arrival rate: MPL > K* can result in more than 45% 

smaller mean response time 

• If don’t know arrival process: a dynamic policy can self-adapt 
while only knowing current queue length and MPL 

Job-size 
variability 

Loss in efficiency 
at high MPL 

large MPL 
(PS) 

small MPL 
(FCFS) 

PS 

M/G/PS-MPL 

MPL 
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Real world ≠ Ideal theoretical policies 

Reality check 1: Context-switch overheads 

        Quantum-based Round-Robin 

        How to choose the optimal quantum size? 

 

Reality check 2: Thrashing 

        Impose a Multi-Programming-Limit (MPL) 

        How to choose the optimal MPL? 

 

Reality check 3: Load balancing in server farms 

        How do load-balancing algorithms interact with servers? 

        What are good load-balancing algorithms? 

! 

? 

! 

? 

? 

? 
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Real world ≠ Ideal theoretical policies 

Reality check 1: Context-switch overheads 

        Quantum-based Round-Robin 

        How to choose the optimal quantum size? 

 

Reality check 2: Thrashing 

        Impose a Multi-Programming-Limit (MPL) 

        How to choose the optimal MPL? 

 

Reality check 3: Load balancing in server farms 

        How do load-balancing algorithms interact with servers? 

        What are good load-balancing algorithms? 

! 

? 

! 

? 

? 

? 
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A typical Web server farm 

Commodity servers 

Load Balancer 
(Immediate Dispatch) 

Timeshare service 
among current 

requests 
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Model: PS server farm 

Commodity servers 

(Immediate Dispatch) 

Load Balancer 

Timeshare service 
among current 

requests 
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Model: PS server farm 

(Immediate Dispatch) 

PS 

PS 

PS 

• K homogeneous, PS servers 

Load Balancer 
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Model: PS server farm 

PS 

PS 

PS 

Immediate 
Dispatch 

Poisson 
 
Rate   

• K homogeneous, PS servers 
• Poisson arrivals 
• Job sizes i.i.d. ~ X 
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Model: PS server farm 

PS 

PS 

PS 

Immediate 
Dispatch 

Poisson 
 
Rate   

GOAL 
 Good Load balancing algorithms for PS server farms 
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arrivals Load 
Balancer 

arrivals Load 
Balancer 

Which is a good FCFS load balancer? 
(Hint: your local supermarket) 
 
 Random 
 Round-Robin 
 Least-Work-Left 
 Size-based-splitting 
 Shortest Queue 

PS server farms FCFS server farms vs. 



43 

PS server farms 

arrivals Load 
Balancer 

arrivals Load 
Balancer 

Which is a good FCFS load balancer? 
(Hint: your local supermarket) 
 
 Random 
 Round-Robin 
 Least-Work-Left 
 Size-based-splitting 
 Shortest Queue 

 
Why? 

Which is a good PS load balancer? 
  
 
 Random 
 Round-Robin 
 Least-Work-Left 
 Size-based-splitting 
 Shortest Queue 

 reduces C2 

 greedy! 

same 
perf. 

 greedy! 

FCFS server farms vs. 



44 

10

12

14

16

18

20

M
e

an
 R

e
sp

o
n

se
 T

im
e 

SQ 

??? 
PS 

PS 

Increasing variability 

C2=0 C2=25 



45 

10

12

14

16

18

20
RANDOM/ 
Size-Based 

SQ 

??? 
PS 

PS 

Increasing variability 

E[T] under SQ/PS is “nearly insensitive” to 
the variability  of job size distribution  

M
e

an
 R

e
sp

o
n

se
 T

im
e 

C2=0 C2=25 



46 

10

12

14

16

18

20
RANDOM/ 
Size-Based 

R-R 

SQ 

??? 
PS 

PS 

Increasing variability 

E[T] under SQ/PS is “nearly insensitive” to 
the variability  of job size distribution  

M
e

an
 R

e
sp

o
n

se
 T

im
e 

C2=0 C2=25 



47 

10

12

14

16

18

20
RANDOM/ 
Size-Based 

R-R 

LWL 

SQ 

??? 
PS 

PS 

Increasing variability 
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C2=0 C2=25 CONJECTURE: SQ load balancer is “nearly optimal” for PS servers 
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What we’ve learnt… 

• Good load balancers for FCFS and PS servers are different! 
– Least-Work-Left and Size-based-splitting are bad for PS ! 

 

• Shortest Queue (SQ) load balancing is ‘near-optimal’ for PS 
servers 
– Independent of job size distribution 

 

• Shortest Queue (SQ) load balancing ‘preserves’ insensitivity of 
PS to job-size variability 

??? 
PS 

PS 
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Bridging the gap between practice and theory 

1: Quantum-based Round-
Robin 

 

 

 

2: Systems with thrashing 

 

 

 

3: Load balancing for PS 
server farms 

- Overheads matter – Ideal PS a bad 
model 
- Right quantum size is important 
- We give expression for OPT quantum 

- Running system at max efficiency not 
always optimal 
- We find OPT MPL 
- Dynamic policies can self-adapt to 
unknown arrival processes  

- Scheduling policy of backend servers 
is integral for choosing load balancer 

- Shortest Queue (SQ) is near optimal 
for PS servers – independent of job size 
distribution 


