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M/G/1/RR 

• arrival rate =  

• job sizes i.i.d. ~ S 

• load 

•   
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M/G/1/RR 

M/G/1/PS M/G/1/FCFS 

q q → 0 q =  

 Preemptions cause overhead 

  (e.g. OS scheduling) 
 Variable job sizes cause long delays 

small q large q 

preemption 

overheads 
job size 

variability 
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GOAL 

Optimal operating q for M/G/1/RR with overheads and high C2 

SUBGOAL 

Sensitivity Analysis: Effect of q and C2 on M/G/1/RR performance 

(no switching overheads) 

PRIOR WORK 

• Lots of exact analysis: [Wolff70], [Sakata et al.71], 

[Brown78] 

 No closed-form solutions/bounds 

 No simple expressions for interplay of q and C2 

effect of preemption overheads 
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Outline 

 Effect of q and C2 on mean response time 

 Approximate analysis 

 

 Bounds for M/G/1/RR 

 

 Choosing the optimal quantum size 
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Approximate sensitivity analysis of 

M/G/1/RR 

Approximation assumption 1: 

Service quantum ~ Exp(1/q) 

 

Approximation assumption 2: 

 

  Job size distribution  
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Approximate sensitivity analysis of 

M/G/1/RR 

• Monotonic in q 

– Increases from E[TPS] → E[TFCFS] 

• Monotonic in C2 

– Increases from E[TPS] → E[TPS](1+q) 

     For high C2:  E[TRR*] ≈ E[TPS](1+q) 
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Outline 

 Effect of q and C2 on mean response time 
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THEOREM: 

M/G/1/RR bounds 

Assumption: job sizes  {0,q,…,Kq} 

Lower bound is TIGHT: 

E[S] = iq   

Upper bound is TIGHT within (1+/K): 

Job sizes  {0,Kq}   
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Outline 

  Effect of q and C2 on mean response time 

  Approximate analysis 

 

  Bounds for M/G/1/RR 

 

 Choosing the optimal quantum size 
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Optimizing q 

Preemption overhead = h 
 

1.   

 

 

 

 

2. Minimize E[TRR] upper bound from Theorem: 

Common case: 
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Outline 

  Effect of q and C2 on mean response time 

  Approximate analysis 

 

  Bounds for M/G/1/RR 

 

  Choosing the optimal quantum size 



Conclusion/Contributions 

•  Simple approximation and bounds for 

M/G/1/RR 

 

•  Optimal quantum size for handling highly 

variable job sizes under preemption 

overheads 

q 
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Bounds – Proof outline 

• Di = mean delay for ith quantum of service 
 

• D = [D1 D2 ... DK] 
 

• D is the fixed point of a monotone linear system: 

DT = APDT+b 

D1 

D2 

f1=0 

f2=0 

D 

D’ 

D* 

Sufficient condition 

for lower bound: 

 

D’T  APD’T+b 

 

for all P 

Sufficient condition 

for upper bound: 

 

D*T  APD*T+b 

 

for all P 
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Optimizing q 

• Preemption overhead = h 
 

• q’ = q+h, E[S]’ → E[S] (1+h/q), ’ =  E[S]’ 
 

•   

Heavy traffic: Small overhead: 


