FINDING THE OPTIMAL QUANTUM SIZE Revisiting the M/G/1 Round-Robin Queue

VARUN GUPTA Carnegie Mellon University

- arrival rate = λ
- job sizes i.i.d. ~ S
- load $\rho = \lambda E[S]$
- $C^2 = \frac{var(S)}{E[S]^2}$

Squared coefficient of variability (SCV) of job sizes: $C^2 \ge 0$

GOAL

Optimal operating q for M/G/1/RR with overheads and high C²

effect of preemption overheads

SUBGOAL

Sensitivity Analysis: Effect of q and C² on M/G/1/RR performance

(no switching overheads)

PRIOR WORK

 Lots of *exact* analysis: [Wolff70], [Sakata et al.71], [Brown78]

No closed-form solutions/bounds

\Im No simple expressions for interplay of q and C^2

- \Box Effect of q and C^2 on mean response time
 - Approximate analysis
 - □ Bounds for M/G/1/RR

No preemption overheads

Choosing the optimal quantum size

Effect of preemption overheads

Approximate sensitivity analysis of M/G/1/RR

Approximation assumption 1:

Service quantum ~ Exp(1/q)

Job size distribution
$$\sim \begin{cases} 0 & \text{w.p. } p \\ \text{Exp}(\mu) & \text{w.p. } 1-p \end{cases}$$

$$E[T^{RR*}] = E[T^{PS}] \left[1 + \frac{C^2 - 1}{C^2 + 1} \cdot \frac{\lambda}{\frac{1}{q} + \frac{2}{C^2 + 1} \frac{1}{E[S]}} \right]$$

Approximate sensitivity analysis of M/G/1/RR

$$E[T^{RR*}] = E[T^{PS}] \left[1 + \frac{C^2 - 1}{C^2 + 1} \cdot \frac{\lambda}{\frac{1}{q} + \frac{2}{C^2 + 1} \frac{1}{E[S]}} \right]$$

- Monotonic in q
 - Increases from $E[T^{PS}] \rightarrow E[T^{FCFS}]$
- Monotonic in C^2
 - Increases from $E[T^{PS}] \rightarrow E[T^{PS}](1+\lambda q)$

For high *C*²: *E*[*T*^{RR*}] ≈ *E*[*T*^{PS}](1+λ*q*)

- \Box Effect of *q* and *C*² on mean response time
 - ✓ Approximate analysis

Bounds for M/G/1/RR

□ Choosing the optimal quantum size

M/G/1/RR bounds

Assumption: job sizes $\in \{0, q, \dots, Kq\}$

As $K \to \infty$: sup $E[T^{RR}] = E[T^{PS}] \left[1 + \frac{(1+\rho)\lambda q}{2} \right]$

- ✓ Effect of q and C^2 on mean response time
 - ✓ Approximate analysis
 - ✓ Bounds for M/G/1/RR
- □ Choosing the optimal quantum size

Optimizing q

Preemption overhead = h

1.
$$q' = q + h$$
$$E[S]' = E[S]\left(1 + \frac{h}{q}\right)$$
$$\rho' = \lambda E[S]'$$

2. Minimize $E[T^{RR}]$ upper bound from Theorem:

$$q^* = \operatorname{argmin}_q \frac{E[S]'}{1-\rho'} \left[1 + \frac{(1+\rho')\lambda q'}{2} \right]$$

Common case:
$$\frac{h}{E[S]} \ll (1 - \rho)$$

 $q^* \approx \alpha(\rho) \sqrt{hE[S]}$

- ✓ Effect of q and C^2 on mean response time
 - ✓ Approximate analysis
 - ✓ Bounds for M/G/1/RR
- ✓ Choosing the optimal quantum size

Conclusion/Contributions

- Simple approximation and bounds for M/G/1/RR
- Optimal quantum size for handling highly variable job sizes under preemption overheads

Bounds – Proof outline

 $\boldsymbol{D}^{T} = \boldsymbol{A}_{P}\boldsymbol{D}^{T} + \boldsymbol{b}$

- D_i = mean delay for *I*th quantum of service
- $\boldsymbol{D} = [D_1 \ D_2 \ \dots \ D_K]$
- **D** is the fixed point of a monotone linear system:

 $f_1 = 0$ $f_2 = 0$ D_2 Sufficient condition for upper bound: Sufficient condition D' for lower bound: $D^{*T} \geq A_P D^{*T} + b$ **D*** $D^{\prime T} \leq A_P D^{\prime T} + b$ for all P D for all P 22 D_1

Optimizing q

- Preemption overhead = h
- q' = q+h, $E[S]' \rightarrow E[S] (1+h/q)$, $\rho' = \lambda E[S]'$
- $\min_{q} \frac{E[S]'}{1-\rho'} \left[1 + \frac{(1+\rho')\lambda q'}{2} \right]$

Heavy traffic:
$$\frac{1}{1-\rho} \gg \frac{E[S]}{h}$$

 $q^* \approx \frac{2h}{1-\rho}$

Small overhead: $\frac{1}{1-\rho} \ll \frac{E[S]}{h}$ $q^* \approx K(\rho) \sqrt{hE[S]}$