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𝝁 

Processor Sharing 

n jobs at server  service rate μ/n per job 
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𝝁(𝒏) 

Processor Sharing 

n jobs at server  service rate μ(n)/n per job 
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𝝁(𝒏) 

Processor Sharing 
State-dependent 

0.5

0.7

0.9

1.1

1.3

1 3 5 7 9

μ(n) 

FCFS buffer 

Sharing Limit 
Control (L) 

Motivation 
• Congestion based friction – e.g., server thread-pool 

management 
• Service systems with human agents 

 
GOAL: Design of good control policies 
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𝝁(𝒏) 

Processor Sharing 
State-dependent 
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Straw-man: Set to maximum efficiency point (L*) 
 
Depends on arrival rate and variance of job size distribution 
• Low L → FCFS dominates → good for low variance 
• High L → PS dominates →  good for high variance 
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GOAL : Design good control policies 
 
 
Two classes 
1. Static control policy 

• Sub-goal: Approximation for a given control L 
 

2. Dynamic control policy 
• Sub-goal: Numerical algorithm to solve a dynamic 

control problem 
 

Setting: Analysis under diffusion scaling 
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Sharing Limit 
Control (L) 



1. Diffusion Approximation for 
Static policies 
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Approximation for static sharing limit 
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• General i.i.d. interarrivals 
 λ = arrival rate 
 ca = coefficient of variation 
• General i.i.d. service requirements 
 cs = coefficient of variation 
• L = static sharing limit 
 
 
Q: A meaningful asymptotic regime? 
 
That is, construct a sequence of LPS 
systems that faithfully approximates the 
original system 
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Q: A meaningful asymptotic regime? 
 
Proposal #1: Conventional heavy traffic 
 

𝜆(𝑟) ↗ 𝜇 𝐿  
 
 
Does not capture original system! 
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Q: A meaningful asymptotic regime? 
 
Proposal #2: 
• Scale sharing limit 

𝐿(𝑟) = 𝐿𝑟 
 

• “Stretch” service rate curve 

𝜇 𝑟 (𝑟𝑥) → 𝜇 𝑥  
where 𝜇 𝑥  is a continuous extension of 𝜇 𝑛  
 
 
Also not faithful enough! In this example, system gets stuck at 0. 
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An axiomatic approach for state-dependent systems 
 
IDEA: Define what we mean by “faithful” 
And reverse engineer the asymptotic scaling 
 
 
Proposal 
• Feed the original system M/M/ input 
• Let 
 𝐻 𝑛 = 𝑃𝑟𝑜𝑏 𝑁 ≥ 𝑛  
and 𝐻  a continuous differentiable interpolation 
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An axiomatic approach for state-dependent systems 
 
IDEA: Define what we mean by “faithful” 
And reverse engineer the asymptotic scaling 
 
 
Proposal 
• Feed the original system M/M/ input 
• Let 
 𝐻 𝑛 = 𝑃𝑟𝑜𝑏 𝑁 ≥ 𝑛  
and 𝐻  a continuous differentiable interpolation 
 
 
SCALING: In the rth system 

• 𝐿(𝑟) = 𝐿𝑟 

• Under M/M/ input: 𝐻 𝑟 (𝑟𝑥) → 𝐻 𝑥  
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SCALING: In the rth system 

• 𝐿(𝑟) = 𝐿𝑟 

• Under M/M/ input: 𝐻 𝑟 (𝑟𝑥) → 𝐻 𝑥  
 

• We guarantee a limit that depends  
on the entire 𝜇 𝑛   
 
• Reverse engineered service rates: 
 

 lim
𝑟→∞

𝑟 𝜆 − 𝜇 𝑟 𝑟𝑥 =𝜆 
𝑑 log(−ℎ 𝑥 )

𝑑𝑥
 ≐ −𝜃(𝑥)  

 
 

• Entire 𝜇 𝑟 ∙  curve collapses 
   to 𝜆 at rate 1/r 
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Final Approximation for mean number in system: 
 

𝐸 𝑁 ≈
 (𝑛 ∧ 𝐿) 𝜋(𝑛)

𝑐𝑠
2+1

𝑐𝑠
2+𝑐𝑎

2∞
𝑛=0

 𝜋(𝑛)
𝑐𝑠
2+1

𝑐𝑠
2+𝑐𝑎

2∞
𝑛=0

+
𝑐𝑠
2 + 1

2

 (𝑛 − 𝐿)+ 𝜋(𝑛)
𝑐𝑠
2+1

𝑐𝑠
2+𝑐𝑎

2∞
𝑛=0

 𝜋(𝑛)
𝑐𝑠
2+1

𝑐𝑠
2+𝑐𝑎

2∞
𝑛=0

 

 
where 𝜋(𝑛) is probability mass function for the original system under 
M/M/ input 
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2. Diffusion control problem for 
dynamic policies 
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Static policies too sensitive to λ 
 
IDEA: Dynamically adjust L based on congestion 
 
EXAMPLE: 

x = number at server 

Drift function 

Θ(x) 

Policy (𝑐𝑠
2 = 𝑐𝑎

2 = 10) 

n = number in system 

L(n) 

L* 

L* 
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Static policies too sensitive to λ 
 
IDEA: Dynamically adjust L based on congestion 
 
EXAMPLE: 

x = number at server 

Drift function 

Θ(x) 

Policy (𝑐𝑠
2 = 𝑐𝑎

2 = 0.3) 

n = number in system 

L(n) 

L* 
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CRUX: an average cost diffusion control problem 
 
 
 

           ∀𝑤:     𝒗∗ = min
𝑘∈𝐴(𝑤) 

𝑐 𝑤, 𝑘 −  𝜃 𝑘 𝑮 𝒘 + 
𝜎2

2
𝑮′(𝒘)  

 
 
 
 
• Arbitrary 𝜃(𝑘)  Must resort to numerical methods 
• State of the art: discretize into a locally consistent MDP 

(see Kushner, Dupuis) 

workload 
(state space) Action space 

Gradient of relative 
value function 

Avg. cost of 
opt policy cost function 
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Average cost diffusion control problem 
 

∀𝑤:     𝒗∗ = min
𝑘∈𝐴(𝑤) 

𝑐 𝑤, 𝑘 −  𝜃 𝑘 𝑮 𝒘 + 
𝜎2

2
𝑮′(𝒘)  

 
 
Would be done if knew G(0) and 𝒗∗ 
 
FACT: G(0) = 0 since the diffusion reflects at w = 0 
 
What about  𝒗∗?  
 
AVG. COST ITERATION ALGORITHM: 
1. Guess 𝒗  
2. Check if 𝒗 < 𝒗∗ , or 𝒗 > 𝒗∗ 
3. Refine guess and iterate until ε-optimal 
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∀𝑤:     𝒗∗ = min
𝑘∈𝐴(𝑤) 

𝑐 𝑤, 𝑘 −  𝜃 𝑘 𝑮 𝒘 + 
𝜎2

2
𝑮′(𝒘)  

 
AVG. COST ITERATION ALGORITHM:  
1. Guess 𝒗  
2. Check if 𝒗 < 𝒗∗ , or 𝒗 > 𝒗∗ 
3. Refine guess and iterate until ε-optimal 

𝒗 < 𝒗∗ 

G(w) 

w 

! 

THM: Value fn. is non-decreasing 
 G() is non-negative 

𝒗 > 𝒗∗ 

G(w) 

w 

! 

“Continuation 
envelope” 
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∀𝑤:     𝒗∗ = min
𝑘∈𝐴(𝑤) 

𝑐 𝑤, 𝑘 −  𝜃 𝑘 𝑮 𝒘 + 
𝜎2

2
𝑮′(𝒘)  

 
ALGORITHM 1: 
1. Guess 𝒗  

 
2. Check if 𝒗 < 𝒗∗ , or 𝒗 > 𝒗∗ 

- Test events occur for 𝑤 = 𝑂 log
1

|𝑣−𝑣∗|
 

  
3. Refine guess and iterate until ε-optimal 

- 𝑂 log
1

𝜀
 iterations using binary search 

 
ALGORITHM 2: More sophisticated; based on Newton-

Raphson root finding method – needs 𝑂 log log
1

𝜀
 iterations 



SUMMARY 

Two general concepts for control of systems with state-
dependent parameters 

 

1. An axiomatic approach to asymptotic scaling 
 Fix the limit under a tractable arrival process, 

 and reverse engineer the sequence to guarantee the limit 

 

2. A numerical tool 
 Average cost iteration algorithm for 1-dimensional diffusions with  

one known reflection 
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