State-dependent Limited Processor Sharing - Approximations and Optimal Control

Varun Gupta
University of Chicago

Joint work with: Jiheng Zhang (HKUST)

Processor Sharing

n jobs at server \Rightarrow service rate μ/n per job

State-dependent

Processor Sharing

n jobs at server \Rightarrow service rate $\mu(n)/n$ per job

Motivation

- Congestion based friction e.g., server thread-pool management
- Service systems with human agents

GOAL: Design of good control policies

Straw-man: Set to maximum efficiency point (L^*)

Depends on arrival rate and variance of job size distribution

- Low $L \rightarrow FCFS$ dominates \rightarrow good for low variance
- High $L \rightarrow PS$ dominates \rightarrow good for high variance

GOAL: Design good control policies

Two classes

- 1. Static control policy
 - Sub-goal: Approximation for a given control L

2. Dynamic control policy

Sub-goal: Numerical algorithm to solve a dynamic control problem

Setting: Analysis under diffusion scaling

1. Diffusion Approximation for Static policies

Approximation for static sharing limit

- General i.i.d. interarrivals
 - λ = arrival rate
 - c_a = coefficient of variation
- General i.i.d. service requirements
 c_s = coefficient of variation
- L = static sharing limit

Q: A meaningful asymptotic regime?

That is, construct a sequence of LPS systems that faithfully approximates the original system

Q: A meaningful asymptotic regime?

Proposal #1: Conventional heavy traffic

$$\lambda^{(r)} \nearrow \mu(L)$$

Does not capture original system!

Q: A meaningful asymptotic regime?

Proposal #2:

Scale sharing limit

$$L^{(r)} = Lr$$

"Stretch" service rate curve

$$\mu^{(r)}(rx) \to \hat{\mu}(x)$$

where $\hat{\mu}(x)$ is a continuous extension of $\mu(n)$

Also not faithful enough! In this example, system gets stuck at 0.

An axiomatic approach for state-dependent systems

IDEA: Define what we mean by "faithful" And reverse engineer the asymptotic scaling

Proposal

Feed the original system M/M/ input

Let

$$H(n) = Prob(N \ge n)$$

and \widehat{H} a continuous differentiable interpolation

An axiomatic approach for state-dependent systems

IDEA: Define what we mean by "faithful" And reverse engineer the asymptotic scaling

Proposal

- Feed the original system M/M/ input
- Let

$$H(n) = Prob(N \ge n)$$

and \widehat{H} a continuous differentiable interpolation

SCALING: In the *r*th system

- $L^{(r)} = Lr$
- Under M/M/ input: $H^{(r)}(rx) \to \widehat{H}(x)$

SCALING: In the *r*th system

- $L^{(r)} = Lr$
- Under M/M/ input: $H^{(r)}(rx) \to \widehat{H}(x)$
- We guarantee a limit that depends on the entire $\mu(n)$

Reverse engineered service rates:

$$\lim_{r \to \infty} r \left(\lambda - \mu^{(r)}(rx) \right) = \lambda \, \frac{d \, \log(-\widehat{h}(x))}{dx} \, \doteq -\theta(x) \qquad \text{"drift function"}$$

• Entire $\mu^{(r)}(\cdot)$ curve collapses to λ at rate 1/r

Final Approximation for mean number in system:

$$E[N] \approx \frac{\sum_{n=0}^{\infty} (n \wedge L) \pi(n)^{\frac{c_{s}^{2}+1}{c_{s}^{2}+c_{a}^{2}}}}{\sum_{n=0}^{\infty} \pi(n)^{\frac{c_{s}^{2}+1}{c_{s}^{2}+c_{a}^{2}}}} + \left(\frac{c_{s}^{2}+1}{2}\right) \frac{\sum_{n=0}^{\infty} (n-L)^{+} \pi(n)^{\frac{c_{s}^{2}+1}{c_{s}^{2}+c_{a}^{2}}}}{\sum_{n=0}^{\infty} \pi(n)^{\frac{c_{s}^{2}+1}{c_{s}^{2}+c_{a}^{2}}}}$$

where $\pi(n)$ is probability mass function for the original system under M/M/ input

2. Diffusion control problem for dynamic policies

Dynamic policies

Static policies too sensitive to λ

IDEA: Dynamically adjust L based on congestion

EXAMPLE:

Dynamic policies

Static policies too sensitive to λ

IDEA: Dynamically adjust L based on congestion

EXAMPLE:

Dynamic policies

CRUX: an average cost diffusion control problem

- Arbitrary $\theta(k) \Rightarrow$ Must resort to numerical methods
- State of the art: discretize into a locally consistent MDP (see Kushner, Dupuis)

Average cost diffusion control problem

$$\forall w: \quad \mathbf{v}^* = \min_{k \in A(w)} \left(c(w, k) - \theta(k) \mathbf{G}(w) + \frac{\sigma^2}{2} \mathbf{G}'(w) \right)$$

Would be done if knew G(0) and v^*

FACT: G(0) = 0 since the diffusion reflects at w = 0

What about v^* ?

AVG. COST ITERATION ALGORITHM:

- 1. Guess \boldsymbol{v}
- 2. Check if $v < v^*$, or $v > v^*$
- 3. Refine guess and iterate until ε -optimal

$$\forall w: \quad \mathbf{v}^* = \min_{k \in A(w)} \left(c(w, k) - \theta(k) \mathbf{G}(w) + \frac{\sigma^2}{2} \mathbf{G}'(w) \right)$$

AVG. COST ITERATION ALGORITHM:

- 1. Guess \boldsymbol{v}
- 2. Check if $\boldsymbol{v} < \boldsymbol{v}^*$, or $\boldsymbol{v} > \boldsymbol{v}^*$
- 3. Refine guess and iterate until ε -optimal

$$\forall w: \quad \mathbf{v}^* = \min_{k \in A(w)} \left(c(w, k) - \theta(k) \mathbf{G}(w) + \frac{\sigma^2}{2} \mathbf{G}'(w) \right)$$

ALGORITHM 1:

- 1. Guess \boldsymbol{v}
- 2. Check if $v < v^*$, or $v > v^*$
 - Test events occur for $w = O\left(\log \frac{1}{|v v^*|}\right)$
- 3. Refine guess and iterate until ε -optimal
 - $O\left(\log \frac{1}{\varepsilon}\right)$ iterations using binary search

ALGORITHM 2: More sophisticated; based on Newton-Raphson root finding method – needs $O\left(\log\log\frac{1}{\varepsilon}\right)$ iterations

SUMMARY

Two general concepts for control of systems with statedependent parameters

- 1. An axiomatic approach to asymptotic scaling
 - Fix the limit under a tractable arrival process,
 - and reverse engineer the sequence to guarantee the limit

2. A numerical tool

 Average cost iteration algorithm for 1-dimensional diffusions with one known reflection