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State-dependent Limited Processor Sharing

Processor Sharing

)

n jobs at server = service rate u/n per job
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n jobs at server = service rate p(n)/n per job
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State-dependent
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Motivation

* Congestion based friction —e.g., server thread-pool
management
e Service systems with human agents

GOAL: Design of good control policies



State-dependent Limited Processor Sharing

FCFS buffer

State-dependent
Processor Sharing

A

Sharing Limit
Control (L)

Straw-man: Set to maximum efficiency point (L*)
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Depends on arrival rate and variance of job size distribution

* Low L - FCFS dominates - good for low variance

 High L - PS dominates - good for high variance
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FCFS PS
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Sharing Limit
Two classes Control (L)

1. Static control policy
 Sub-goal: Approximation for a given control L

GOAL : Design good control policies

]
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2. Dynamic control policy
* Sub-goal: Numerical algorithm to solve a dynamic
control problem

Setting: Analysis under diffusion scaling



1. Diffusion Approximation for
Static policies



Approximation for static sharing limit

FCFS

e Generali.i.d. interarrivals
A = arrival rate

PS
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c, = coefficient of variation
* Generali.i.d. service requirements
c. = coefficient of variation

e L =static sharing limit 1.3
1.1

K(n) o9

Q: A meaningful asymptotic regime? -
That is, construct a sequence of LPS 0->

systems that faithfully approximates the
original system
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Q: A meaningful asymptotic regime?
Proposal #1: Conventional heavy traffic

A7) 7 (L)

Does not capture original system!
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Q: A meaningful asymptotic regime?

 “Stretch” service rate curve

u (rx) = fi(x)
where [i(x) is a continuous extension of u(n)

1.3 -
Proposal #2: 11 - Tt ‘
* Scale sharing limit uin) og - __ e,
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Also not faithful enough! In this example, system gets stuck at O.
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An axiomatic approach for state-dependent systems

IDEA: Define what we mean by “faithful”
And reverse engineer the asymptotic scaling

1 e

Proposal .

* Feed the original system M/M/ input 0.8 -

¢ Let H(n) °°
H(n) = Prob(N = n) o4

=5 . . . . . 0.2 4
and H a continuous differentiable interpolation .
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An axiomatic approach for state-dependent systems

IDEA: Define what we mean by “faithful”
And reverse engineer the asymptotic scaling

1 -

Proposal
* Feed the original system M/M/ input 08 1 E H(x)
¢ Let H(n) °° :
H(n) = Prob(N =n) 22 E
and H a continuous differentiable interpolation S E o

0123456780910
L

SCALING: In the rth system
e« LD =1Lr
* Under M/M/ input: H™ (rx) - H(x)
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SCALING: In the rth system
e« LD =1Lr

 Under M/M/ input: HM (rx) - H(x)

 We guarantee a limit that depends

on the entire u(n)

* Reverse engineered service rates:

lim r (/1 —u (rx)) =A

T— 00

* Entire ,u(’")(-) curve collapses
to A atrate 1/r

dx

dlog(-h(x)) .
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Final Approximation for mean number in system:

cg+1 c+1
Yo omAL) r(m)sta (2 + 1\ X_o(n — L)t m(n)ss+ea
EINT= cs+1 T 2 cZ+1
S S
n=0 m(n)s*¢a 0 m(n)¢s +<a

where m(n) is probability mass function for the original system under
M/M/ input
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10 - —Weibull

8 - —Pareto (1.1)
E[N] © \ LogNormal
4 - *// —Approx.
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2. Diffusion control problem for
dynamic policies



Static policies too sensitive to A

Dynamic policies

IDEA: Dynamically adjust L based on congestion

EXAMPLE:

Drift function

2 4 - B 8
X = humber at server

L(n)

Policy (c? = cZ = 10)

n = number in system
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Dynamic policies

Static policies too sensitive to A
IDEA: Dynamically adjust L based on congestion

EXAMPLE:
Drift function Policy (c& = ¢ = 0.3)

L(n) )

0 2 4 B 8 0 2 4 6 8 10 12

X = number at server n = number in system
17



Dynamic policies

CRUX: an average cost diffusion control problem

Avg. cost of
opt policy cost function

1 1

vw: v = min (cw,k) = 0()GW) + Z-6'(w))

keA(w)
13 I

workload I Gradient of relative

Action space .
(state space) P value function

* Arbitrary 8(k) = Must resort to numerical methods
e State of the art: discretize into a locally consistent MDP
(see Kushner, Dupuis)
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Average cost diffusion control problem

2
. O- !/
Vw: v* = Rg}ll(rvlv) (C(W, k) — 0(k)G(w) + 76 (w)

Would be done if knew G(0) and v"

FACT: G(0) = 0 since the diffusion reflectsat w=0
What about v*?

AVG. COST ITERATION ALGORITHM:

1. Guessv

2. Checkifv<v,orv>v"
3. Refine guess and iterate until e-optimal

)
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2
. O- !/
Vw: v* = kg}ll(r“l}) (c(w, k) — 0(k)G(w) + 76’ (W))
AVG. COST ITERATION ALGORITHM:

1. Guessv

2. Checkifv<v',orv>v"

3. Refine guess and iterate until e-optimal

V<V v> v
THM: Value fn. is non-decreasing ) ' .
= G() is non-negative Continuation
envelope”

G(w) G(w)




2
Vw: v* = kg}li(r“l}) (c(w, k) — 0(k)G(w) + %G'(W))

ALGORITHM 1:
1. Guessv

2. Checkifv<v*,orv>v"

1
- Test events occur forw = 0 (log |v—v*|)

3. Refine guess and iterate until e-optimal

- 0 (logi) iterations using binary search

ALGORITHM 2: More sophisticated; based on Newton-
Raphson root finding method — needs O (loglogi) iterations
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SUMMARY

Two general concepts for control of systems with state-
dependent parameters

1. An axiomatic approach to asymptotic scaling
. Fix the limit under a tractable arrival process,

= andreverse engineer the sequence to guarantee the limit

2. A numerical tool

=  Average cost iteration algorithm for 1-dimensional diffusions with
one known reflection
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