
State-dependent Limited Processor Sharing
- Approximations and Optimal Control

Varun Gupta

University of Chicago

Joint work with: Jiheng Zhang (HKUST)

State-dependent Limited Processor Sharing

2

𝝁

Processor Sharing

n jobs at server  service rate μ/n per job

State-dependent Limited Processor Sharing

3

𝝁(𝒏)

Processor Sharing

n jobs at server  service rate μ(n)/n per job

State-dependent

0.5

0.7

0.9

1.1

1.3

1 3 5 7 9

μ(n)

State-dependent Limited Processor Sharing

4

𝝁(𝒏)

Processor Sharing
State-dependent

0.5

0.7

0.9

1.1

1.3

1 3 5 7 9

μ(n)

FCFS buffer

Sharing Limit
Control (L)

Motivation
• Congestion based friction – e.g., server thread-pool

management
• Service systems with human agents

GOAL: Design of good control policies

State-dependent Limited Processor Sharing

5

𝝁(𝒏)

Processor Sharing
State-dependent

0.5

0.7

0.9

1.1

1.3

1 3 5 7 9

μ(n)

FCFS buffer

Sharing Limit
Control (L)

Straw-man: Set to maximum efficiency point (L*)

Depends on arrival rate and variance of job size distribution
• Low L → FCFS dominates → good for low variance
• High L → PS dominates → good for high variance

State-dependent Limited Processor Sharing

6

GOAL : Design good control policies

Two classes
1. Static control policy

• Sub-goal: Approximation for a given control L

2. Dynamic control policy
• Sub-goal: Numerical algorithm to solve a dynamic

control problem

Setting: Analysis under diffusion scaling

𝝁(𝒏)

PS FCFS

Sharing Limit
Control (L)

1. Diffusion Approximation for
Static policies

7

Approximation for static sharing limit

8

• General i.i.d. interarrivals
 λ = arrival rate
 ca = coefficient of variation
• General i.i.d. service requirements
 cs = coefficient of variation
• L = static sharing limit

Q: A meaningful asymptotic regime?

That is, construct a sequence of LPS
systems that faithfully approximates the
original system

𝝁(𝒏)

PS FCFS

Sharing Limit
Control (L)

0.5

0.7

0.9

1.1

1.3

1 2 3 4 5 6 7 8 9 10

μ(n)

L

λ

9

Q: A meaningful asymptotic regime?

Proposal #1: Conventional heavy traffic

𝜆(𝑟) ↗ 𝜇 𝐿

Does not capture original system!

0.5

0.7

0.9

1.1

1.3

1 2 3 4 5 6 7 8 9 10

μ(n)

L

λ

10

Q: A meaningful asymptotic regime?

Proposal #2:
• Scale sharing limit

𝐿(𝑟) = 𝐿𝑟

• “Stretch” service rate curve

𝜇 𝑟 (𝑟𝑥) → 𝜇 𝑥
where 𝜇 𝑥 is a continuous extension of 𝜇 𝑛

Also not faithful enough! In this example, system gets stuck at 0.

0.5

0.7

0.9

1.1

1.3

1 2 3 4 5 6 7 8 9 10

μ(n)

L

λ

11

An axiomatic approach for state-dependent systems

IDEA: Define what we mean by “faithful”
And reverse engineer the asymptotic scaling

Proposal
• Feed the original system M/M/ input
• Let
 𝐻 𝑛 = 𝑃𝑟𝑜𝑏 𝑁 ≥ 𝑛
and 𝐻 a continuous differentiable interpolation

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10

H(n)

L

12

An axiomatic approach for state-dependent systems

IDEA: Define what we mean by “faithful”
And reverse engineer the asymptotic scaling

Proposal
• Feed the original system M/M/ input
• Let
 𝐻 𝑛 = 𝑃𝑟𝑜𝑏 𝑁 ≥ 𝑛
and 𝐻 a continuous differentiable interpolation

SCALING: In the rth system

• 𝐿(𝑟) = 𝐿𝑟

• Under M/M/ input: 𝐻 𝑟 (𝑟𝑥) → 𝐻 𝑥

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10

H(n)

L

𝐻 𝑥

SCALING: In the rth system

• 𝐿(𝑟) = 𝐿𝑟

• Under M/M/ input: 𝐻 𝑟 (𝑟𝑥) → 𝐻 𝑥

• We guarantee a limit that depends
on the entire 𝜇 𝑛

• Reverse engineered service rates:

 lim
𝑟→∞

𝑟 𝜆 − 𝜇 𝑟 𝑟𝑥 =𝜆
𝑑 log(−ℎ 𝑥)

𝑑𝑥
 ≐ −𝜃(𝑥)

• Entire 𝜇 𝑟 ∙ curve collapses
 to 𝜆 at rate 1/r

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10

H(n)

L

𝐻 𝑥

“drift function”

0.5

0.7

0.9

1.1

1.3

1 2 3 4 5 6 7 8 9 10

μ(n) λ

14

Final Approximation for mean number in system:

𝐸 𝑁 ≈
 (𝑛 ∧ 𝐿) 𝜋(𝑛)

𝑐𝑠
2+1

𝑐𝑠
2+𝑐𝑎

2∞
𝑛=0

 𝜋(𝑛)
𝑐𝑠
2+1

𝑐𝑠
2+𝑐𝑎

2∞
𝑛=0

+
𝑐𝑠
2 + 1

2

 (𝑛 − 𝐿)+ 𝜋(𝑛)
𝑐𝑠
2+1

𝑐𝑠
2+𝑐𝑎

2∞
𝑛=0

 𝜋(𝑛)
𝑐𝑠
2+1

𝑐𝑠
2+𝑐𝑎

2∞
𝑛=0

where 𝜋(𝑛) is probability mass function for the original system under
M/M/ input

0

2

4

6

8

10

12

1 2 3 4 5 6 7

E[N]

Sharing Limit (L)

Weibull

Pareto (1.1)

LogNormal

Approx.

2. Diffusion control problem for
dynamic policies

15

Dynamic policies

16

Static policies too sensitive to λ

IDEA: Dynamically adjust L based on congestion

EXAMPLE:

x = number at server

Drift function

Θ(x)

Policy (𝑐𝑠
2 = 𝑐𝑎

2 = 10)

n = number in system

L(n)

L*

L*

Dynamic policies

17

Static policies too sensitive to λ

IDEA: Dynamically adjust L based on congestion

EXAMPLE:

x = number at server

Drift function

Θ(x)

Policy (𝑐𝑠
2 = 𝑐𝑎

2 = 0.3)

n = number in system

L(n)

L*

Dynamic policies

18

CRUX: an average cost diffusion control problem

 ∀𝑤: 𝒗∗ = min
𝑘∈𝐴(𝑤)

𝑐 𝑤, 𝑘 − 𝜃 𝑘 𝑮 𝒘 +
𝜎2

2
𝑮′(𝒘)

• Arbitrary 𝜃(𝑘)  Must resort to numerical methods
• State of the art: discretize into a locally consistent MDP

(see Kushner, Dupuis)

workload
(state space) Action space

Gradient of relative
value function

Avg. cost of
opt policy cost function

19

Average cost diffusion control problem

∀𝑤: 𝒗∗ = min
𝑘∈𝐴(𝑤)

𝑐 𝑤, 𝑘 − 𝜃 𝑘 𝑮 𝒘 +
𝜎2

2
𝑮′(𝒘)

Would be done if knew G(0) and 𝒗∗

FACT: G(0) = 0 since the diffusion reflects at w = 0

What about 𝒗∗?

AVG. COST ITERATION ALGORITHM:
1. Guess 𝒗
2. Check if 𝒗 < 𝒗∗ , or 𝒗 > 𝒗∗
3. Refine guess and iterate until ε-optimal

20

∀𝑤: 𝒗∗ = min
𝑘∈𝐴(𝑤)

𝑐 𝑤, 𝑘 − 𝜃 𝑘 𝑮 𝒘 +
𝜎2

2
𝑮′(𝒘)

AVG. COST ITERATION ALGORITHM:
1. Guess 𝒗
2. Check if 𝒗 < 𝒗∗ , or 𝒗 > 𝒗∗
3. Refine guess and iterate until ε-optimal

𝒗 < 𝒗∗

G(w)

w

!

THM: Value fn. is non-decreasing
 G() is non-negative

𝒗 > 𝒗∗

G(w)

w

!

“Continuation
envelope”

21

∀𝑤: 𝒗∗ = min
𝑘∈𝐴(𝑤)

𝑐 𝑤, 𝑘 − 𝜃 𝑘 𝑮 𝒘 +
𝜎2

2
𝑮′(𝒘)

ALGORITHM 1:
1. Guess 𝒗

2. Check if 𝒗 < 𝒗∗ , or 𝒗 > 𝒗∗

- Test events occur for 𝑤 = 𝑂 log
1

|𝑣−𝑣∗|

3. Refine guess and iterate until ε-optimal

- 𝑂 log
1

𝜀
 iterations using binary search

ALGORITHM 2: More sophisticated; based on Newton-

Raphson root finding method – needs 𝑂 log log
1

𝜀
 iterations

SUMMARY

Two general concepts for control of systems with state-
dependent parameters

1. An axiomatic approach to asymptotic scaling
 Fix the limit under a tractable arrival process,

 and reverse engineer the sequence to guarantee the limit

2. A numerical tool
 Average cost iteration algorithm for 1-dimensional diffusions with

one known reflection

22

