Fluid level in tandem queues with an On/Off source

VARUN GUPTA
Carnegie Mellon University

Joint work with
PETER HARRISON
Imperial College
Why fluid queues?

- A simple model for shared resources with high arrival/service rates – e.g. telecommunication networks

- Markov modulated fluid queues can describe correlated input processes – e.g. self-similar traffic

- Often, the only tractable approximation
Tandem fluid queues with On/Off source

PRIOR WORK: Mostly numerical and iterative
• Markov modulated queues – Martingale methods [Kella Whitt 92], Sample path SDEs [Brocket Gong Guo 99]
• General On periods – approximate X by PH distribution and solve for moments of fluid level iteratively [Field Harrison 07]

Q’: How many moments of X do you need? (All? kn? $k+n$?)

OUR CONTRIBUTIONS
1. Non-iterative method for Laplace transform of fluid level at each queue
2. Closed-form exact expressions for moments of fluid level

Q: First k moments of fluid level at queue n?

PRIOR WORK:

Q: First k moments of fluid level at queue n?

PRIOR WORK: Mostly numerical and iterative
• Markov modulated queues – Martingale methods [Kella Whitt 92], Sample path SDEs [Brocket Gong Guo 99]
• General On periods – approximate X by PH distribution and solve for moments of fluid level iteratively [Field Harrison 07]

Q’: How many moments of X do you need? (All? kn? $k+n$?)

OUR CONTRIBUTIONS
1. Non-iterative method for Laplace transform of fluid level at each queue
2. Closed-form exact expressions for moments of fluid level

A': # moments of X needed = ??
Analysis Roadmap

STEP 1: Fluid level at queue 1

STEP 2: Busy period analysis

STEP 3:
Making the method non-iterative
Analysis Roadmap

STEP 1: Fluid level at queue 1

\[
\lambda \quad X \sim G \quad \text{Exp}(\gamma) \quad \mu_1
\]

STEP 2: Busy period analysis

\[
\lambda \quad X \sim G \quad \text{Exp}(\gamma) \quad \mu_1 \quad 0 \quad B \quad \text{Exp}(\gamma)
\]

STEP 3: Making the method non-iterative

\[
\lambda \quad \mu_1 \quad 0 \quad \mu_1 \quad \text{Exp}(\gamma)
\]
Fluid level in a queue with On/Off source

\[L = L_{OFF} 1_{\{\text{source Off}\}} + L_{ON} 1_{\{\text{source On}\}} \]
STEP 1a: Analysis of L_{OFF}

$L_{OFF} \overset{d}{=} \text{stationary } M/G/1 \text{ workload with arrival rate } \gamma \text{ and job sizes } \sim (\lambda-1)X$
STEP 1b: Analysis of L_{ON}

\[
L_{ON} = L_{OFF} + (\lambda - 1)T \\
L_{ON} = L_{OFF} + (\lambda - 1)X_e
\]

(By PASTA) L_{OFF}

stationary excess/age in a renewal process with i.i.d. renewals according to X
Finally…

\[\lambda \xrightarrow{\text{Exp}(\gamma)} X \sim G \]

\[L = L_{\text{OFF}} \mathbf{1}_{\{\text{source Off}\}} + L_{\text{ON}} \mathbf{1}_{\{\text{source On}\}} \]

\[d = L_{\text{OFF}} + (\lambda - 1) X_e \cdot \mathbf{1}_{\{\text{source On}\}} \]

\[d = M(\gamma)/G((\lambda - 1) X)/1 \text{ workload} + (\lambda - 1) X_e \cdot \mathbf{1}_{\{\text{source On}\}} \]

First \(k \) moments of \(L \) completely determined by first \((k+1)\) moments of \(X \)
Analysis Roadmap

STEP 1: Fluid level at queue 1

\[X \sim G \]

\[\lambda \]

\[0 \]

\[\text{Exp}(\gamma) \]

\[(k+1) \text{ moments of } X \Rightarrow k \text{ moments of fluid level} \]

STEP 2: Busy period analysis

\[X \sim G \]

\[\lambda \]

\[0 \]

\[\text{Exp}(\gamma) \]

\[B \]

STEP 3: Making the method non-iterative

\[\mu_1 \]

\[\mu_2 \]

\[\cdots \]

\[\mu_n \]
Analysis Roadmap

STEP 1: Fluid level at queue 1

STEP 2: Busy period analysis

STEP 3:
Making the method non-iterative

\[X \sim G \]

\[\lambda \rightarrow X \rightarrow \mu_1 \rightarrow \mu_2 \rightarrow \cdots \rightarrow \mu_n \]

\[\lambda \rightarrow \mu_1 \rightarrow \mu_1 \rightarrow 0 \]

\[\lambda \rightarrow \mu_1 \rightarrow \mu_1 \rightarrow 0 \]

\[\lambda \rightarrow \mu_1 \rightarrow \mu_1 \rightarrow 0 \]

\[\lambda \rightarrow \mu_1 \rightarrow \mu_1 \rightarrow 0 \]

\[\lambda \rightarrow \mu_1 \rightarrow \mu_1 \rightarrow 0 \]

\[\lambda \rightarrow \mu_1 \rightarrow \mu_1 \rightarrow 0 \]

\[\lambda \rightarrow \mu_1 \rightarrow \mu_1 \rightarrow 0 \]

\[\lambda \rightarrow \mu_1 \rightarrow \mu_1 \rightarrow 0 \]

\[\lambda \rightarrow \mu_1 \rightarrow \mu_1 \rightarrow 0 \]

\[\lambda \rightarrow \mu_1 \rightarrow \mu_1 \rightarrow 0 \]

\[\lambda \rightarrow \mu_1 \rightarrow \mu_1 \rightarrow 0 \]
Busy period analysis [Boxma,Dumas 98]

Fluid level

\[B = (U_1 + U_2 + \ldots + U_n) + (V_1 + V_2 + \ldots + V_n) \]
\[= \left[\frac{1}{(\lambda - 1)} + 1 \right] (V_1 + V_2 + \ldots + V_n) \]
\[= \left[\frac{1}{(\lambda - 1)} + 1 \right] M(\gamma)/G((\lambda - 1)X)/1 \text{ busy period} \]

First \(k \) moments of \(B \) completely determined by first \(k \) moments of \(X \)
Analysis Roadmap

STEP 1: Fluid level at queue 1

STEP 2: Busy period analysis

STEP 3:
Making the method non-iterative
Analysis Roadmap

STEP 1: Fluid level at queue 1

\[\lambda \text{ Exp}(\gamma) \]

\[X \sim G \]

\[\rightarrow \mu_1 \]

\[\lambda \text{ Exp}(\gamma) \]

\[0 \]

(k+1) moments of \(X \) \(\Rightarrow \) \(k \) moments of fluid level

STEP 2: Busy period analysis

\[\lambda \text{ Exp}(\gamma) \]

\[X \sim G \]

\[\rightarrow \mu_1 \]

\[\mu_1 \text{ Exp}(\gamma) \]

\[0 \]

(k+1) moments of \(X \) \(\Rightarrow \) (k+1) moments of busy period

STEP 3:
Making the method non-iterative
Putting it together

\[\lambda \xrightarrow{\text{Exp}(\gamma)} X \sim G \]

First \((k+1)\) moments of \(X\) completely determine first \(k\) moments of fluid level at each queue.
Analysis Roadmap

STEP 1: Fluid level at queue 1

\(\lambda \)

\(0 \)

\(\text{Exp}(\gamma) \)

\(X \sim G \)

\(\mu_1 \)

(k+1) moments of \(X \) \(\Rightarrow \) k moments of fluid level

STEP 2: Busy period analysis

\(\lambda \)

\(0 \)

\(\text{Exp}(\gamma) \)

\(X \sim G \)

\(\mu_1 \)

\(\mu_1 \)

\(B \)

\(\text{Exp}(\gamma) \)

(k+1) moments of \(X \) \(\Rightarrow \) (k+1) moments of busy period

STEP 3:
Making the method non-iterative
Analysis Roadmap

STEP 1: Fluid level at queue 1

\[X \sim G \]

\[\lambda \]

\[0 \]

\[\text{Exp}(\gamma) \]

\[(k+1) \text{ moments of } X \Rightarrow k \text{ moments of fluid level} \]

STEP 2: Busy period analysis

\[X \sim G \]

\[\lambda \]

\[0 \]

\[\text{Exp}(\gamma) \]

\[(k+1) \text{ moments of } X \Rightarrow (k+1) \text{ moments of busy period} \]

STEP 3:

Making the method non-iterative
Getting rid of busy period iteration

\[\lambda \xrightarrow{\text{Exp}(\gamma)} X \sim G \xrightarrow{} \mu_1 \xrightarrow{} \cdots \xrightarrow{} \mu_{n-1} \xrightarrow{\text{Exp}(\gamma)} \mu_n \]

\[B_{n-1} = \text{function of } B_{n-2} = \ldots \]

\[\mu_1 > \mu_2 > \ldots > \mu_{n-1} \Rightarrow B_{n-1} \text{ is identical to:} \]

\[\lambda \xrightarrow{\text{Exp}(\gamma)} X \sim G \xrightarrow{} \mu_{n-1} \xrightarrow{\text{Exp}(\gamma)} \mu_n \]

Can obtain \(B_{n-1} \) in one step (no need to iterate)
Analysis Roadmap

STEP 1: Fluid level at queue 1

STEP 2: Busy period analysis

STEP 3:
Making the method non-iterative
Contributions/Conclusion

• Non-iterative method to obtain fluid level transform and moments in a tandem network

• Show that first $(k+1)$ moments of On period determine first k moments of fluid level at each queue

• Method generalizes to a wider class of input processes