Tight Moments-based Bounds for
Queueing Systems

VARUN GUPTA

Carnegie Mellon —> Google Research —=3> University of Chicago
Booth School of Business

With:

Takayuki Osogami
(IBM Research-Tokyo)

v




The M/G/k/FCFS model



he M/G/kIFCFS model
o
K
‘ >. Homogeneous
@




he M/G/kKIFCFS model

\

First-Come-First-Serve
Buffer

@

Kk
>. Homogeneous
servers




he M/G/kIFCEFS model

'\

First-Come-First-Serve
Buffer

Poisson(\) A
] -@

Kk
>. Homogeneous
servers

e A = arrival rate



he M/G/k/IFCFS model

'\

First-Come-First-Serve
Buffer

Si+2 Si+1 Si

Poisson(\)
Il Il

K
>. Homogeneous
Servers

‘

e A = arrival rate

* job sizes (S4, S,, ...) I.l.d. samples from S
* “load” p = A E[S]



he M/G/kIFCFS model

'\

First-Come-First-Serve
Buffer

Si+2 Si+1 Si

Poisson(\)
Il Il

4

Waiting time (W)

K
>. Homogeneous
Servers

« A = arrival rate
* job sizes (S4, S,, ...) I.l.d. samples from S
* “load” p = A E[S]

GOAL : E[WMGK]
,




Case : S ~ Exponential (M/M/1)
Analyze E[WMM1] via Markov
chain (easy)

Case: S ~ General (M/G/1)
E[WM/G/I] _ 022+1 E[WM/M/l]

E[S]2

Sq. Coeft. of Variation (SCV)
\> 20 for computing workloads )

C? =

Case : S ~ Exponential (M/M/k)
E[WMMK] via Markov chain

Case: S ~ General (M/G/k)
No exact analysis known
The Gold-standard approximation:

Lee, Longton (1959)
E[WM/G/k] » %E[WM/M/IC]




Lee, Longton approximation:
E[WM/G/k] ~ %E[WM/M/»%]

é, .
s Simple Can not provision using this
Exact for k=1 approximation!

& Asymptotically tight as p —k ( zntral Limit Thm.)
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(k=10, p=6, C2=19)
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Lee, Longton approximation:
E[WM/G/k] ~ %E[WM/M/»%]

GOAL: Bounds on approximation ratio

{G | 2 moments}

Lee-Longton Approximation

THEOREM:

C?+1

5 X

Increasing 3" moment —
(C2 =19, k=10)

[Dai, G., Harchol-Balter, Zwart] 11



{G | 2 moments}

THEOREM: If p<k-1,
Gap >= (C?+1) X

I

E[WM/G/lI(]

COR.: No approx. for E[WMGK] based on first two moments of job
sizes can be accurate for all distributions when C? is large

PROOF: Analyze limit distributions in D, = mixture of 2 points

Min 39 moment 3" moment —

t ? I

0 C2+1 1

Approximations using higher moments?

[Dai, G., Harchol-Balter, Zwart]
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Exploiting higher A T Tsls
moments 4::»
W

I tight bounds | n moments

{G | n moments}

GOAL: ldentify the “extremal” distributions with given moments

RELAXED GOAL: Extremal distributions in some “non-trivial”
asymptotic regime
IDEA: Light-traffic asymptotics (A—0)




RELAXATION: Identify the “extremal” distributions in light traffic

Light traffic theorem for M/G/k [Burman Smith]:
k .
E[WM/G/k] = L-Emin{Se,, Seys - - -5 Se, t + 0(p")

I.i.d. copies of S, = equilibrium excess
of S

pdfof St fg (z) = Proé’[[g]?x]

SUBGOAL: Extremal distributions for E[mIn{S,,,...,Sq.}]
s.t. E[S'] = m; fori=1,..,n




VWhere we are...

GOAL: Tight bounds on E[WMG/K] given n moments of S
IDEA: ldentify extremal distributions

RELAXATION (Light Traffic): Extremal distributions for

E[min{S,,,...,Sg}] s.t. E[ST=m, fori=1,..,n
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Principal Representations and Extremal Problems

GIVEN: Moment conditions E[X%=m,
on random variable X with E[XY=m,

support [0,B] E[X.”.]-—m

Principal Representations (p.r.) on [0,B] are distributions satisfying the
moment conditions, and the following constraints on the support

Lower p.r. Upper p.r.

1 + n/2 point masses 1 + n/2 point masses




Principal Representations and Extremal Problems

GIVEN: Moment conditions E[X%]=mj
on random variable X with E[X!]=m,

support [0,B]
E[X"]=m,
Want to bound: E[g(X)]
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Principal Representations and Extremal Problems

GIVEN: Moment conditions E[X%]=m,
on random variable X with E[X!]=m,

support [0,B]
E[X"]=m,
Want to bound: E[g(X)]

THEOREM [Markov-Krein]:

If {x9,...,x",g(X)} is a Tchebycheff-system on [0,B], then E[g(X)]

IS extremized by the unique lower and upper principal
representations of the moment sequence {m,,...,m_}.
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Where we are... L%
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GOAL: Tight bounds on E[WMG/K] given n moments of S
IDEA: ldentify extremal distributions

RELAXATION (Light Traffic): Extremal distributions for THEOREM:

Forn=2o0r3

E[min{S,,,...,Ss}] s.t. E[ST=m, fori=1,..,n

RELAXATION 2: Restrict to Completely Monotone

distributions (mixtures of Exponentials) THEOREM:
For all n.

(contains Welbull, Pareto, Gamma)




CONJECTURE: P.R.s are extremal for E[WMGK] for all p,
for all n, if moment constraints are integral.

Given at least E[S], E[S?] Not given E[S?], even # of
moment constraints in (0,2)




Simulation Results (k=4,
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1.2 -
E[WM/GK]

Weibull
0.8 -

Bounds via p.r.

Bounds via
p.r.in CM class

3 4
Number of moments

Approximation Schema:
Refine lower bound via an additional odd moment,
Upper bound via even moment until gap is acceptable
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2 moments not enough for E[WWG/K]

Many other "hard” queueing systems fit the
approximation schema
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Other queuing systems exhibiting
Markov-Krein characterization

Example 1: M/G/1 Round-robin queue

Incomplete
jobs ‘

Poisson()) ;
arrivals ! E

Jobs served for
g units at a time

Need analysis to find g that balance overheads/performance

THEOREM: Upper and lower p.r. extremize mean response

time under »—0, when S Is a mixture of Exponentials.




Other queuing systems exhibiting
Markov-Krein characterization

Example 2: Systems with fluctuating load

High Low High Low
Load Load Load Load
>
€ = € =
a Ty, aTl,

Beneficiary Donor

. . server server
Need analysis to tune sharing parameters

THEOREM: Upper and lower p.r. extremize mean waiting time

under o—0, when T,,, T, are mixtures of Exponentials.




Open problem: Markov-Krein characterization of
Stochastic Recursive Sequences

Example: Single server system ST Si
W.,, = waiting time of S, ; l I >
= > time
Ai+1

Wi = oW, S;, Aiyg)
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Open problem: Markov-Krein characterization of
Stochastic Recursive Sequences

Example: Single server system ST Si
W.,, = waiting time of S, ; l I >
= > time
Ai+1

Wi, = (W + S - Ai+1)+

29



Open problem: Markov-Krein characterization of
Stochastic Recursive Sequences

Example: Single server system ST Si
W.,, = waiting time of S, ; l I >
< > time
Ai+1

W < W+S-A)

Stationary behavior ofa _ Fixed point of a stochastic

gueueing system recursive sequence of the form
d
W = &(W,S)

Q: Given moments of S, under what conditions on f, @, Is
E[f(W)] extremized by p.r.s?
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All existing analytical approx for
performance based on 2 moments, but 2
moments inadequate

Provide evidence for tight n-moments
based bounds via asymptotics for M/G/k
and other queuing systems

A new problem in analysis: Markov-Krein
characterization of stochastic fixed point
equations
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