Tight Moments-based Bounds for Queueing Systems

VARUN GUPTA

Carnegie Mellon -> Google Research --> University of Chicago
Booth School of Business

With:

Takayuki Osogami (IBM Research-Tokyo)

• λ = arrival rate

- λ = arrival rate
- job sizes $(S_1, S_2, ...)$ i.i.d. samples from S
- "load" $\rho \equiv \lambda E[S]$

- λ = arrival rate
- job sizes $(S_1, S_2, ...)$ i.i.d. samples from S
- "load" $\rho \equiv \lambda E[S]$

 $GOAL : E[W^{M/G/k}]$

$$\rho \equiv \lambda E[S]$$

k=1

Case: S ~ Exponential (M/M/1)

Analyze E[W^{M/M/1}] via Markov chain (easy)

Case: $S \sim General (M/G/1)$

$$E[W^{M/G/1}] = \frac{C^2+1}{2}E[W^{M/M/1}]$$

$$C^2 = \frac{var(S)}{E[S]^2}$$

Sq. Coeff. of Variation (SCV) > 20 for computing workloads

k>1

Case: S ~ Exponential (M/M/k)

E[WM/M/k] via Markov chain

Case: S ~ General (M/G/k)

No exact analysis known

The Gold-standard approximation:

Lee, Longton (1959)

$$\mathrm{E}[W^{M/G/k}] pprox \frac{C^2+1}{2} \mathrm{E}[W^{M/M/k}]$$

Lee, Longton approximation:

$$\mathrm{E}[W^{M/G/k}] pprox \frac{C^2+1}{2} \mathrm{E}[W^{M/M/k}]$$

- Simple
- Exact for *k*=1

 \clubsuit Asymptotically tight as $\rho \to K$

Can not provision using this approximation!

entral Limit Ihm.)

Outline

2 moments not enough for E[WM/G/k]

Tighter bounds via higher moments of job size distribution

Lee, Longton approximation:

$$\mathrm{E}[W^{M/G/k}] pprox rac{C^2+1}{2} \mathrm{E}[W^{M/M/k}]$$

GOAL: Bounds on approximation ratio

11

COR.: No approx. for $E[W^{M/G/k}]$ based on first two moments of job sizes can be accurate for all distributions when C^2 is large

PROOF: Analyze limit distributions in $D_2 \equiv$ mixture of 2 points

Approximations using higher moments?

Outline

2 moments not enough for E[WM/G/k]

Tighter bounds via higher moments of job size distribution

Exploiting higher moments

GOAL: Identify the "extremal" distributions with given moments

RELAXED GOAL: Extremal distributions in some "non-trivial" asymptotic regime

IDEA: Light-traffic asymptotics $(\lambda \rightarrow 0)$

RELAXATION: Identify the "extremal" distributions in light traffic

Light traffic theorem for *M/G/k* [Burman Smith]:

$$E[W^{M/G/k}] = \frac{\rho^k}{k!} E[\min\{S_{e_1}, S_{e_2}, \dots, S_{e_k}\}] + o(\rho^k)$$

Probability of finding all servers busy

i.i.d. copies of $S_e \equiv equilibrium\ excess$ of S

pdf of
$$S_e$$
: $f_{S_e}(x) = \frac{\operatorname{Prob}[S \geq x]}{\operatorname{E}[S]}$

SUBGOAL: Extremal distributions for E[min{ $S_{e1},...,S_{ek}$ }] s.t. E[S^i] = m_i for i=1,...,n

Where we are...

GOAL: Tight bounds on $E[W^{M/G/k}]$ given n moments of S **IDEA:** Identify extremal distributions

RELAXATION (Light Traffic): Extremal distributions for

$$E[\min\{S_{e1},...,S_{ek}\}]$$
 s.t. $E[S'] = m_i$ for $i=1,...,n$

Principal Representations and Extremal Problems

GIVEN: Moment conditions on random variable *X* with support [0,B]

$$E[X^{0}]=m_{0}$$

$$E[X^{1}]=m_{1}$$
...
$$E[X^{n}]=m_{n}$$

Principal Representations (p.r.) on [0,B] are distributions satisfying the moment conditions, and the following constraints on the support

Principal Representations and Extremal Problems

GIVEN: Moment conditions on random variable *X* with support [0,B]

Want to bound: E[g(X)]

$$E[X^{0}]=m_{0}$$

$$E[X^{1}]=m_{1}$$
...
$$E[X^{n}]=m_{n}$$

Principal Representations and Extremal Problems

GIVEN: Moment conditions on random variable *X* with support [0,B]

 $E[X^{0}]=m_{0}$ $E[X^{1}]=m_{1}$... $E[X^{n}]=m_{n}$

Want to bound: E[g(X)]

THEOREM [Markov-Krein]:

If $\{x^0,...,x^n,g(x)\}$ is a Tchebycheff-system on [0,B], then E[g(X)] is extremized by the unique lower and upper principal representations of the moment sequence $\{m_0,...,m_n\}$.

Where we are...

GOAL: Tight bounds on $E[W^{M/G/k}]$ given n moments of S **IDEA:** Identify extremal distributions

RELAXATION (Light Traffic): Extremal distributions for

 $E[\min\{S_{e1},...,S_{ek}\}]$ s.t. $E[S'] = m_i$ for i=1,...,n

THEOREM:

For *n*= 2 or 3

RELAXATION 2: Restrict to Completely Monotone distributions (mixtures of Exponentials)

(contains Weibull, Pareto, Gamma)

THEOREM: For all *n*.

20

CONJECTURE: P.R.s are extremal for $E[W^{M/G/k}]$ for all ρ , for all n, if moment constraints are integral.

Given at least E[S], $E[S^2]$

Not given E[S²], even # of moment constraints in (0,2)

Simulation Results (k=4, ρ =2.4,)

Simulation Results (k=4, ρ =2.4,)

Simulation Results (k=4, ρ =2.4,)

Approximation Schema:

Refine lower bound via an additional odd moment, Upper bound via even moment until gap is acceptable

Outline

2 moments not enough for E[WM/G/k]

Tighter bounds via higher moments of job size distribution

Many other "hard" queueing systems fit the approximation schema

Other queuing systems exhibiting Markov-Krein characterization

Example 1: M/G/1 Round-robin queue

Need analysis to find q that balance overheads/performance

THEOREM: Upper and lower p.r. extremize mean response time under $\lambda \rightarrow 0$, when S is a mixture of Exponentials.

Other queuing systems exhibiting Markov-Krein characterization

Example 2: Systems with fluctuating load

THEOREM: Upper and lower p.r. extremize mean waiting time under $\alpha \rightarrow 0$, when T_H , T_L are mixtures of Exponentials.

Open problem: Markov-Krein characterization of Stochastic Recursive Sequences

Example: Single server system

$$W_{i+1}$$
 = waiting time of S_{i+1}

$$W_{i+1} = \Phi(W_i, S_i, A_{i+1})$$

Open problem: Markov-Krein characterization of Stochastic Recursive Sequences

Example: Single server system

$$W_{i+1}$$
 = waiting time of S_{i+1}

$$W_{i+1} = (W_i + S_i - A_{i+1})^+$$

Open problem: Markov-Krein characterization of Stochastic Recursive Sequences

Example: Single server system

$$W_{i+1}$$
 = waiting time of S_{i+1}

$$S_{i+1} \qquad S_{i}$$

$$\longleftrightarrow \qquad A_{i+1}$$
time

$$W \stackrel{d}{=} (W + S - A)^{+}$$

Stationary behavior of a = Fixed point of a stochastic queueing system = recursive sequence of the form $W = \Phi(W,S)$

Q: Given moments of S, under what conditions on f, Φ , is E[f(W)] extremized by p.r.s?

Conclusions

 All existing analytical approx for performance based on 2 moments, but 2 moments inadequate

 Provide evidence for tight n-moments based bounds via asymptotics for M/G/k and other queuing systems

 A new problem in analysis: Markov-Krein characterization of stochastic fixed point equations