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Abstract

We consider a multi-class multi-server queueing system, in which customers of different types

have heterogeneous preferences over the many servers available. The goal of the service provider

is to design a menu of service classes that balances two competing objectives: (1) maximize cus-

tomers’ average matching reward and (2) minimize customers’ average waiting time. A service class

corresponds to a single queue served by a subset of servers under a FCFS-ALIS service discipline.

Customers act as rational self-interested utility maximizing agents when choosing which service

class to join. In particular, they join the class that maximizes their expected ex-ante net utility,

which is given by the difference between the server-dependent service reward they receive minus a

disutility based on the mean steady-state waiting time of the service class they join. We study the

problem under (conventional) heavy traffic conditions, that is, in the limit as the traffic intensity

of the system approaches one from below. For the case of two servers, we provide a complete and

insightful characterization of the possible menus and their delay-reward tradeoffs. For general num-

ber of servers, we prove that if the service provider only cares about minimizing average delay or

maximizing total matching reward then very simple menus are optimal. Finally, we provide Mixed

Integer Linear Programming (MILP) formulations for optimizing the delay-reward trade-off within

a fairly rich and practically relevant families of menus, which we term Partitioned and Tailored.

Keywords: Multi-class queueing system; first-come-first-served; bipartite matching; steady-state

analysis.

1 Introduction

This paper is concerned with the problem of designing a queueing matching system in a multi-class and

multi-server service environment, in which customers of different types arrive to the system seeking

service by one of many available servers. Servers are heterogeneous in terms of the amount of time it

takes them to serve a customer as well as on other attributes that affect the reward that customers

receive for the service. The goal of the service provider is to design a service mechanism that will match

customers to servers and will balance two (usually) competing objectives: (1) maximize customers’

average service reward and (2) minimize customers’ average waiting time. We will restrict ourselves

to a special class of mechanisms in which the service provider offers a static menu of service classes

and customers choose which one of them to join upon arrival. A service class is defined by a single

queue served by a specific subset of servers under a FCFS-ALIS service discipline†. We will assume

†Booth School of Business, The University of Chicago. Email: {rene.caldentey,varun.gupta,lhillas}@chicagobooth.edu
†The acronym FCFS-ALIS stands for “first come first served - assign longest idle server”. This means that when a

server becomes idle it selects the customer who has been waiting the longest among those that it can serve. Similarly,

a customer that can be served by multiple idle servers selects the server that has been idle the longest.
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that customers act as rational self-interested utility maximizers when choosing which service class to

join. In particular, they join the class that maximizes their expected net utility, which is given by

the difference between the server-dependent service reward they receive minus a disutility waiting cost

based on the mean steady-state waiting time of the service class they join.

To illustrate some of the features of the problem at hand, let us consider a concrete example with

two servers. In this setting, the service provider can offer one of the five different service menus in

Figure 1. For example, she can offer a Dedicated menu (far-most left panel) consisting of two service
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Figure 1: Possible service menus in a system with two servers.

classes (queues) each served exclusively by one of the two servers. Alternatively, the service provider

can offer a Full menu (middle panel) in which customers have three options; they can choose between

two dedicated service classes each served exclusively by one of the two servers or they can join a third

class served by both servers. A customer who chooses this third class does not know with certainty

which one of the two servers will be the one providing the service.

Figure 2 depicts an example of the equilibrium performance of the five menus in Figure 1 in the average

reward vs. average delay quadrant for different values of the system utilization ρ. A complete analysis

of the two-server case is presented in Section 4.
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Figure 2: Equilibrium performance of the five menus (Dedicated (D), Single Line (SL), Full (F), N1 and N2) in the average

reward vs. average delay quadrant for different values of the system utilization ρ.

For example, we will show that if the service provider only cares about minimizing customers’ average

waiting times, then the Single-Line menu is an optimal menu (see Theorem 3), which is something to

be expected since a single line guarantees complete resource pooling. On the flip side, if the service

provider is exclusively interested in maximizing average matching rewards and pays no attention to

waiting times, then the Dedicated menu is an optimal menu (see Theorem 4) under heavy traffic

conditions.
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It is worth noticing that in this example, menu N2 dominates the other four menus when the system

operates in heavy traffic ρ ↑ 1 (right-most panel). Thus, in this case it is possible to select a menu

that achieves first best performance simultaneously on both measures (see Remark 4 for details).

Interestingly, since the N2 menu is a restricted version of the Full menu in which service class 1 is not

offered, this example shows that reducing customers’ choices can lead to more efficient outcomes (a

form of Braess’s paradox).

Related Literature. The specific class of queueing systems that we consider roots back to the early

work of Kaplan (1984, 1988) who proposed a multi-class multi-server queueuing system operating

under a FCFS service discipline to model public housing waiting lists and to determine steady-state

matching assignments, i.e., the probability that an applicant (families and individuals) of a certain

type ends up receiving a particular class of public housing. (See also the early studies by Schwartz

(2004), Green (1985) and the recent paper by Castro et al. (2020) on the 2-server N model under a

FCFS discipline, and the paper by Talreja and Whitt (2008) for more general matching topologies.)

The queueing formulation in Kaplan (1988) was later adapted by Caldentey and Kaplan (2002) who

introduced an infinite bipartite matching model to investigate the problem of determining matching

probabilities under a FCFS service discipline. The infinite matching model was further developed in

Caldentey et al. (2009), Bušić et al. (2013), Adan and Weiss (2012), Adan et al. (2018a) and Fazel-

Zarandi and Kaplan (2018). The connection between the steady-state solution of the queueing model

and the infinite bipartite matching model was formalized by Adan and Weiss (2014) under the FCFS-

ALIS service discipline (see also Adan et al., 2018b, 2019 and the survey by Gardner and Righter,

2020).

For the most part, the aforementioned stream of literature has assumed that the matching topology

connecting services classes to servers is exogenously given and has focused on the performance analysis

of the queueing system; i.e., identifying conditions that ensure stability or characterizing steady-state

matching rates. The problem of designing optimal matching topologies is studied in Afèche et al.

(2021) under the assumption that consumers are passive agents who do not choose which service

class to join. In this setting, they can restrict themselves to topologies in which there is a one-to-

one correspondence between customer types and service classes and so the design problem reduces to

deciding the subset of servers that should serve each customer class. To deal with the combinatorial

complexity of the problem identified by Adan and Weiss (2014), Afèche et al. (2021) rely on a heavy

traffic analysis that unveils a surprisingly simple structure. Namely, under heavy-traffic conditions,

they show that any bipartite matching system can be partitioned into a collection of complete resource

pooling (CRP) subsystems, which are interconnected by means of a direct acyclic graph (DAG). The

significance of these results is that they allow to replace the combinatorial structure of the original

queueing system (expressed in terms of permutations of servers) by a more aggregate representation

defined by the collection of topological orders of the CRP components. As result, they show that the

DAG together with the aggregate service capacity on each CRP component fully determine the vector

of steady-state waiting times. Combining this insight together with a Quadratic Program approach to

approximate matching flows, Afèche et al. (2021) propose a mixed-integer linear program formulation

that can be used to characterize the set of matching topologies that optimize the tradeoff between

matching rewards and waiting times in a Pareto efficiency sense.

Our paper builds on and extends Afèche et al. (2021) by allowing consumers to choose the service

class they want to join. As we will show in the following sections, this generalization is not trivial.
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For one, the number of service classes can no longer be reduced to the number of customer types

as the service provider can in principle offer a full service menu with as many service classes as the

number of possible subsets of the servers. Also, by allowing customers to self-select the service class

they want to join, the service provider has less control over the final matching. In other words, while

in Afèche et al. (2021) the service provider acts as a central planner that has full control on how to

route customers to service classes, in our case the central planner acts as a principal that can only

induce agents (customers) to join a particular service class by designing an incentive compatible menu.

The Principal-Agent nature of our problem implies that waiting times and matching flows must be

computed imposing equilibrium conditions, which brings an extra layer of complexity to the problem.

Finally, another subtle but important difference between Afèche et al. (2021) and our paper relates to

how a heavy traffic analysis can be conducted. Specifically, in Afèche et al. (2021) the heavy traffic

limit was essentially exogenously defined by letting the vector of customers’ arrival rates converge

(from below) along a pre-specified direction to a limiting vector of arrival rates. In contrast, in our

case in which customers self-select the service class they want to join, the direction of convergence to

heavy traffic is endogenously determined in equilibrium.

A distinctive feature of the papers that we have discussed so far, and which is also central to our work,

is the FCFS-ALIS service discipline that is used in the matching of customers and servers. This type

of service discipline is appropriate in settings (such as public housing allocations, adoption agencies

or state-run nursing homes, to name a few) in which fairness considerations and/or legal regulations

prevent the service provider from implementing other type of priority-based policies that could be (or

could be perceived to be) discriminatory. If we relax this requirement, there exists a vast queueuing

literature on skill-based routing devoted to the problem of characterizing dynamic scheduling policies

to control and optimize the flow of customers in a multi-server setting. Some representative examples

of this stream of work include Harrison (1998), Harrison and Lopez (1999), Mandelbaum and Stolyar

(2004), Atar (2005), Bell and Williams (2005), Wallace and Whitt (2005), Dai and Tezcan (2005),

Gurvich and Whitt (2009, 2010), and Ward and Armony (2013).

Another stream of papers that is relevant to our work is concerned with the design of differentiated

service menus. Some representative papers in this area include Van Mieghem (2000), Plambeck (2004),

Maglaras and Zeevi (2005), Afèche (2013), Afèche and Pavlin (2016), Nazerzadeh and Randhawa

(2018), Afèche et al. (2021), Ashlagi et al. (2021) and Ashlagi et al. (2022). The typical setting in

these paper is one in which customers are heterogeneous in terms of their valuation or willingness-to-

pay for service and their sensitivity to delay, while servers are homogeneous (in many cases a single

server is considered). Under these conditions, a service class consists of two components: (1) the price

that the service provider charges for the service and (2) the expected waiting time. Operationally, the

service provider controls the service discipline which allows her to offer differentiated waiting times

to the different service classes. The goal of the service provider is to design a menu of service classes

that maximizes her profit or in some cases a social welfare objective.

In terms of applications, stochastic matching systems have been extensively used in the healthcare

literature to study organ transplantation (e.g., Zenios et al. 2000, Akan et al. 2012, Bertsimas et al.

2013 and Ding et al. 2018) and kidney exchanges (e.g., Unver (2010), Anderson et al. 2017, Ashlagi

et al. 2019 and Akbarpour et al. 2018). Other applications include public housing (e.g., Bloch and

Cantala 2017, Leshno 2017, and Arnosti and Shi 2018), adoptions (e.g., Baccara et al. 2014 and Slaugh

et al. 2016), labor markets (e.g., Rogerson et al. 2005, Arnosti et al. 2018 and Baccara et al. 2020),

assemble-to-order manufacturing (e.g., Gurvich and Ward, 2014 and Nazari and Stolyar, 2019) and
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process flexibility (e.g., Jordan and Graves, 1995, Bassamboo et al., 2012, Tsitsiklis and Xu, 2012,

2017 and Shi et al., 2019).

2 Model Description

In this section we provide a detailed mathematical description of the model and basic definitions.

Figure 3 provides a schematic illustration of the queueing system and the main notation.
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Figure 3: A multi-class multi-server matching queueing system.

A collection Θ of customer types arrives to the system over time according to independent Poisson

processes with rates α = {αθ}θ∈[Θ]. (For a positive integer k, we let [k] := {1, 2, . . . , k}). The

service system is composed of m parallel servers with exponentially distributed service times with

rate µ = {µj}j∈[m]. Customers have heterogeneous preferences over the servers and we denote by

Vθ = {Vθj}j∈[m] the vector of rewards for a type-θ customer, where Vθj is the reward that a customer

θ gets when served by server j.

In an effort to maximize the quality of the matching between customers and servers, the service

provider offers n service classes, where each service class i ∈ [n] is defined by a subset Si ⊆ [m] of

servers that can serve those customers joining class i. Such a collection can be expressed by a binary

compatibility matrix M ∈ {0, 1}n×m where the entries of M specify which service classes can be

served by which servers. That is, server class i can be served by server j if and only if mij = 1 for

i ∈ [n] and j ∈ [m]. We assume that upon arrival and before observing the queue lengths, customers

select one service class and join the queue of this class and wait to be served according to a FIFO

queueing discipline. This decision is irreversible, that is, after joining a queue, the customer stays

in it until the service is completed. Servers, on the other hand, serve the different classes using a

FCFS service discipline. We also assume that an arriving customer who finds an empty queue will be

routed to the compatible server that has been idle the longest. Under these conditions, we say that

the queueing system operates under a FCFS-ALIS (first come first served - assign longest idle server)

service discipline.

A strategy for an arriving customer type θ is a probability distribution qθ = {qθi}i∈[n] over the set of

service classes, where qθi is the probability that a type-θ customer selects to join class i ∈ [n]. We

let q = {qθ}θ∈Θ denote the strategy profile of all customer types and let Q be the set of all feasible
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strategy profiles, that is,

Q :=
{
q ∈ RΘ×n

+ :
∑
i∈[n]

qθi = 1 for all θ ∈ [Θ]
}
.

A strategy profile q ∈ Q induces a vector of arrival rates λ(q) = {λi(q)}i∈[n] to each service class,

where

λi(q) =
∑
θ∈[Θ]

αθ qθi i = 1, . . . , n.

Indirectly, through the vector of arrival rates λ(q), the strategy profile q also determines the vector

W (q) = {Wi(q)}i∈[n] of steady-state waiting times for each class as well as the matrix of matching

probabilities p(q) = (pij(q) : i ∈ [n], j ∈ [m]) between service classes and servers, where pij(q) denotes

the steady-state probability that a customer joining class i will be served by server j under the strategy

profile q. We will restrict our attention to menus M and strategies q that are stable in the sense that

they jointly admit a well-defined steady state for the service system.

Proposition 1. (Adan and Weiss, 2014, Theorem 2.1) The menu M and strategy q admit a steady

state under a FCFS-ALIS service discipline if and only if the following condition is satisfied:∑
j∈S

µj >
∑

i∈US (M)

λi(q) for all S ⊆ [m],

where US (M) is the subset of service classes that can only be served by servers in S .

We will further restrict attention to admissible menus M for which the stability condition above is

satisfied for some feasible strategy profile q.

Definition 1. (Admissible Menus and Strategies) A menu M is admissible if there exists a strategy

profile q = {qθ}θ∈Θ for which the service system is stable, that is, the inequalities in Proposition 1 are

satisfied. We let M denote the set of admissible menus.

For an admissible menu M ∈ M, we denote by Q(M) ⊆ Q the set of all feasible strategy profiles for

which the service system is stable.

A necessary and sufficient condition forM to be non-empty is that the cumulative arrival rate is strictly

less than the cumulative service capacity, |α| < |µ|. (For a vector x = (xi)
k
i=1, we let |x| := ∑k

i=1 xi).

Indeed, under this condition it is not hard to see that any menu M in which every server is connected

to at least one service class is admissible. In particular, the single-line menu (i.e., n = 1 and m1j = 1

for all j ∈ [m]) is admissible.

We assume that the expected utility that a type-θ customer gets from joining class i is equal to

Uθi(W,p) :=
∑
j∈Si

pij Vθj − δWi,

where δ is a scalar parameter capturing customers’ sensitivity to delays. Given a pair (W,p) of steady-

steady waiting times and matching probabilities, a rational utility-maximizing type-θ customer joins

the service class i that maximizes Uθi(W,p) in equilibrium.
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Definition 2. (ε-Equilibrium and Equilibrium Profiles) Let M ∈ M and let q∗ = {q∗θ}θ∈[Θ] ∈ Q be a

strategy profile with corresponding vector of waiting times W ∗ = {Wi(q
∗)}i∈[n] and matrix of matching

probabilities p∗ = [pij(q
∗)]i∈[n],j∈[m].

–) ε-Equilibrium Profile: For a given ε ≥ 0, we say that (q∗,W ∗, p∗) is an ε-equilibrium profile if for all

θ ∈ [Θ] and for all i, k ∈ [n]

q∗θi
(
Uθi(W

∗, p∗)− Uθk(W ∗, p∗)
)

+ ε ≥ 0.

We let Qε(M) be the set of strategies q∗ for which an ε-equilibrium profile (q∗,W ∗, p∗) exists.

–) Equilibrium Profile: We say that (q∗,W ∗, p∗) is an equilibrium profile if it is a 0-equilibrium profile.

We let Q∗(M) be the set of strategies q∗ for which an equilibrium profile (q∗,W ∗, p∗) exists.

Trivially, every equilibrium profile is an ε-equilibrium profile for all ε > 0. The following theorem

guarantees the existence of equilibrium profiles when the system has sufficient service capacity to

serve all of the customers.

Theorem 1. Suppose that |α| < |µ|, and M ∈ M is an admissible service menu. Then there exists

an equilibrium strategy profile q∗ ∈ Q(M).

The proof of this and other results can be found in Appendix A.

The final component of the model corresponds to the objective that the service provider uses to select

an optimal menu M∗. Similar to the preferences of individual customers, we assume that the service

provider is interested in maximizing the value generated by the matching between customers and

servers while minimizing the waiting time experienced by these customers. Specifically, for a given

admissible menu M and consumers’ strategy q, we assume that the service provider collects a payoff

equal to

Π(M, q) := V (M, q)− ζ W (M, q), (1)

where ζ is a positive scalar that captures the service provider’s sensitivity to customers’ delays and

V (M, q) :=
∑
θ∈[Θ]

∑
i∈[n]

∑
j∈[m]

αθ qθi pij(q)Vθj and W (M, q) :=
∑
i∈[n]

λi(q)Wi(q)

correspond to the cumulative steady state matching reward and waiting time, respectively, experienced

by all consumers.

It is worth noticing that while the service provider is able to select the service menu M , it is the

consumers who decide which service classes they want to join by selecting an equilibrium strategy

q∗ ∈ Q∗(M). Hence, the service provider’s optimization problem can be formulated as follows:

sup
M∈M

sup
q∗∈Q∗(M)

Π(M, q∗). (2)

Remark 1. Formulation (2) assumes that the service provider is able to select which equilibrium strategy

q∗ ∈ Q∗(M) consumers’ will end up playing. This is, of course, without loss of generality for those

admissible menus M for which Q∗(M) is a singleton. However, when M induces multiple equilibria

formulation (2) models the problem of an ‘optimistic’ service provider. Alternatively, we could have adopted

a pessimistic view by formulating the service provider’s problem as follows:

sup
M∈M

inf
q∗∈Q∗(M)

Π(M, q∗). �
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Remark 2. (Social Planner) If ζ = δ then Π(M, q) =
∑

θ∈[Θ] αθ U θ(q), that is, service provider acts as

a social planner who is interested in maximizing the cumulative utility of all consumers. �

2.1 Roadmap of Analysis and Results

Before moving into the analysis of the service provider’s problem, let us provide a summary of the

methodology that we have used to tackle the problem of designing an optimal menu of service classes

and the type of results that we have been able to obtain.

One of the major challenges in solving the optimization problem in (2) is the underlying combinatorial

structure of the steady-state distribution of the system, which makes it difficult to calculate waiting

times and matching rates beyond relatively small instances with max{n,m} ≤ 12 (see Adan and

Weiss, 2014 and Afèche et al., 2021 for further discussion). To circumvent this challenge we will

study the problem under (conventional) heavy traffic conditions, that is, in the limit as the traffic

intensity of the system approaches one from below. In Section 3, we lay out the details of this heavy

traffic regime and show how to compute mean waiting times and matching probabilities. A distinctive

operating characteristic of the queueing system under heavy traffic conditions is that servers and service

classes are partitioned into complete resource pooling components (CRP), which are interconnected by

means of a directed acyclic graph (DAG). Furthermore, we show in Section 3.2 that under some mild

conditions any limiting vector of waiting times can be implemented using a chained DAG configuration.

This observation has important implications as it drastically simplifies the problem of characterizing

an optimal service menu.

In Section 4, we illustrate the use of heavy traffic analysis to design an optimal service menu for a

system with only two servers (m = 2). The purpose of this section is to highlight some key features of

the problem in a setting in which we can provide a complete characterization of an optimal menu as a

function of the model’s parameters. In particular, the solution to the two-server case reveals that the

different possible service menus can be partitioned into two main groups: (a) menus that achieve the

minimum possible average waiting time and (b) menus that achieve the maximum possible average

matching reward. Intuitively, delay-minimizing menus are those that are able to induce complete

capacity pooling while reward-maximizing menus are those able to implement the matching that a

central planner would select if she had complete control over the assignment of customers to servers.

Interestingly, with two servers, every admissible service menu falls in one of these two categories. The

solution also shows that out of the set of delay-minimizing menus the single-line produces the lowest

possible average matching reward while out of the reward-maximizing menus the dedicated menu

(i.e., one service class per server) generates the longest waiting-time delays. In other words, these

two simple and commonly used menus are complete opposite designs when it comes to balancing the

trade-off between average matching reward and mean customers’ delays. Further, both of these menus

are Pareto dominated by other service menus with more complex matching topologies. The single-line

menu is dominated by a menu that achieves strictly higher average reward while preserving complete

capacity pooling. On the other hand, the dedicated menu is dominated by another menu that results

from chaining the dedicated service classes.

In Section 5, we investigate conditions under which a first best menu exists in a system with an arbitrary

number of servers. We show that in the extreme cases in which the service provider’s sensitivity to delay

ζ is either zero or infinity an optimal menu is given by a Single-Line or Dedicated menu, respectively.

8



For an arbitrary value of ζ, we derive necessary (Theorem 6) and sufficient (Theorem 7) conditions

for a first best outcome to be achieved, which are based on the solution to a max-flow problem.

In Section 6, we study a special class of Partition menus in which the set of servers are partitioned

into pools of servers, each acting as a ‘super-server’ that serves a single service class. One of the key

advantages of partition menus is that they are very simple to explain and implement in practice. Fur-

thermore, despite their limitations, partition menus have a number of desirable theoretical properties

(e.g., they include delay-minimizing or reward-maximizing menus) that the service provider can use to

balance the trade-off between waiting times and matching values. Furthermore, they are also tractable

from a computational standpoint and we exploit this in Section 6.3 to propose a mixed-integer linear

program (MILP) that finds an optimal partition menu.

In Section 7 we adopt a mechanism design approach to tackle the problem of finding optimal service

menus. Specifically, we interpret the service provider’s problem as one in which she wants to design a

different service class for each customer type, i.e., a menu with n = |Θ| in which every customer type

joins a different (and unique) service class in equilibrium. We call this class of menus Tailored menu as

every service class is tailored to a specific customer type. In Section 7.1 we develop a MILP formulation

that finds a value-maximize menu among the class of tailored menus that support complete resource

pooling and have minimum waiting times. In Section 7.2 we take the opposite point of view and

formulate a MILP that finds a delay-minimizing tailored menu among those that generate maximum

matching value.

Finally, in Section 8 we conduct a set of numerical experiments to compare the performance of Partition

and Tailored menus as a function of different parameters of the model including the matrix of matching

rewards V and the service provider’s sensitivity to delay ζ.

3 Heavy Traffic Regime

In this section, we present the model that we will use to formally study the question of menu design

through heavy-traffic asymptotics. First, in Section 3.1, we present the specific heavy traffic scaling

of the system primitives. Then, in Section 3.2, we discuss how to calculate steady-state waiting times

in heavy traffic and also recap a number of formulas derived in Afèche et al. (2021) and Caldentey

et al. (2022) for this purpose. In Section 3.3 we present a quadratic programming (QP) formulation

that we will use to approximate the matching probabilities under the FCFS-ALIS service requirement.

Finally, in Section 3.4, we introduce the notion of a heavy traffic equilibria, which we use to extend

Definition 2 to our heavy traffic regime.

3.1 Scaling

We construct a sequence of matching queueing systems parameterized by ε and use the superscript (ε)

to emphasize the dependence of various quantities on ε. For example, αθ
(ε) and qθ

(ε) = (qθ1
(ε), . . . , qθn

(ε))

are the arrival rate and strategy profile of type-θ customers in system ε.

We assume that the bipartite matching system approaches heavy traffic as ε ↓ 0. Specifically, we

assume that there are two vectors A, a ∈ RΘ
+ (independent of ε) with |A| = |µ| so that the sequence of
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arrival rates α(ε) = {αθ(ε)}θ∈Θ satisfies (for ε small enough):

αθ
(ε) = Aθ − aθε ≥ 0 for all θ ∈ [Θ]. (3)

Intuitively, in the heavy-traffic regime, the arrival rates α(ε) approach the limiting rates A along the

direction specified by a. It follows that the traffic intensity of the εth system equals

ρ(ε) :=

∑
θ αθ

(ε)

µ1 + · · ·+ µm
=
|A| − |a| ε
|µ| = 1− |a||µ| ε

and approaches one (i.e., 100% system utilization) as ε ↓ 0.

We let M(ε) denote the class of menus M that are admissible in the sense of Definition 1. It is not

hard to see that the sets M(ε) are monotonic in ε and so the limit M̂ := limε↓0M(ε) exists. We will

refer to M̂ as the set of admissible menus in heavy traffic.

Under the heavy traffic condition in (3), the waiting time Wi
(ε)(q(ε)) will grow out of bound as ε ↓ 0.

For this reason, we assume that δ(ε) goes to 0 as ε ↓ 0 in such a way that the product δ(ε)Wi
(ε)(q(ε))

converges to a well-defined non-trivial limit. In particular, we will assume that δ(ε) = δ ε for some

fixed constant δ > 0 independent of ε†. Given this scaling, we find convenient to define the scaled

mean waiting time

Ŵi
(ε)

(q(ε)) := ε ·Wi
(ε)(q(ε)), (4)

which remains bounded in heavy traffic. Finally, the expected utility of a customer type θ under

strategy q
(ε)
θ is given by

U
(ε)
θi (q(ε)) =

∑
j∈Si

p
(ε)
ij (q(ε))Vθj − δ Ŵi

(ε)
(q(ε)).

Note that the valuations V = [Vθj ] and service rates µ = (µj) remain constant independent of ε.

3.2 Mean Waiting Time in Heavy Traffic

To study equilibria under heavy traffic conditions, we need to be able to compute limiting scaled mean

waiting times limε↓0 Ŵ (ε)(q(ε)) for a given sequence pre-limit strategy profiles {q(ε)}ε>0. In this section

we present a high level summary of the results in Caldentey et al. (2022), who provide a detailed study

on how to derive steady-state waiting times under heavy traffic conditions.

Let us fix an admissible menu M ∈ M̂ in heavy traffic and let us consider a sequence of feasible strategy

profiles q(ε) ∈ Q(M) for all ε > 0. Motivated by our characterization of heavy traffic equilibria in

Section 3.4, we consider strategy profiles that converge along a specific direction. Specifically, we

assume that there exists q̂ ∈ Q and φ̂ ∈ R|Θ|×n such that q(ε) = q̂ + ε φ̂ ∈ Q for all ε ≥ 0. These

strategy profiles induce a vector λ(ε) of pre-limit arrival rates into service classes given by

λi
(ε) =

∑
θ∈Θ

αθ
(ε)qθi

(ε) =
∑
θ∈Θ

Aθ q̂θi − ε
∑
θ∈Θ

(aθ q̂θi −Aθφ̂θi) + o(ε) =: Λi − εγi + o(ε). (5)

In an effort to simplify the exposition, in what follows we assume that the limiting strategy profile q̂

is such that Λi > 0 for all i ∈ [n]. The general case is discussed in Caldentey et al. (2022).

†Alternatively, we could consider a slightly more general scaling of δ(ε) that only requires limε↓0
δ(ε)

ε
= δ.
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Given the menu M and the vectors of service rates µ = {µj}j∈[m] and arrival rates Λ = (Λi : i ∈ [n]),

we define the corresponding residual matching M̆ = [m̆ij ] ∈ {0, 1}n×m by removing those edges in M

that must have zero flow in the limit as ε ↓ 0. To be precise, m̆`k = 1 if and only if m`k = 1 and there

exists a non-negative flow f = [fij ] such that∑
i∈[n]

mij fij = µj , ∀j ∈ [m];
∑
j∈[m]

mij fij = Λi, ∀i ∈ [n]; and f`k > 0.

Recall that the heavy traffic scaling in (3) implies that |Λ| = |µ|.
Intuitively, for a service class ` and a server k with m`k = 1 but m̆`k = 0, the flow of customers

from ` to k must vanish in the heavy-traffic limit. The significance of the residual matching M̆ is

that its connected components induce a partition of the service classes and servers into a collection of

complete resource pooling (CRP) components that establish a hierarchy of how congestion and delays

build among the different service classes in the system.

Definition 3. (CRP Component) Given the tuple (n,m,Λ, µ,M) and the induced residual matching

M̆ , we say that the subset C = (C,S) ∈ 2[n]×2[m] of service classes and servers forms a CRP component

if for any pair of nodes k1, k2 ∈ C ∪ S there exists a path between k1 and k2 in M̆ , and C is maximal

in the sense that the condition is violated for any strict superset of C.

Intuitively, the “well-connectedness” within a CRP component allows the shifting of load from one

service class to another on short time scales, and in particular under FCFS-ALIS policy to balance

the waiting times in such a way that service classes that belong to the same CRP component have the

same limiting scaled mean waiting time in heavy traffic (see Theorem 2).

We let {C1,C2, . . . ,CK} denote the collection of CRP components induced by the residual matching

M̆ , where K is the number of components and each Ck = (Ck,Sk) is defined by the subset Ck of service

classes and the subset Sk of servers that belong to Ck. Also, for each CRP component Ck, we must

have
∑

j∈Sk µj =
∑

i∈Ck Λi, and we let γ̃k :=
∑

i∈Ck γi denote its scaled capacity slack. From (3) we

have that |γ̃| = |a|.
The matching M induces a unique directed acyclic graph (DAG) on the CRP components of M in

the following manner: The DAG includes an arc from CRP component Ck1 to CRP component Ck2

if, and only if, there exists a service class i ∈ Ck1 and a server j ∈ Sk2 such that mij = 1. Each arc

in this DAG‡ indicates that the destination CRP can absorb some of the load of, and must be more

congested than, the origin CRP. The DAG therefore reflects the partial order on the congestion of the

CRP components that emerges in heavy traffic.

In order to formally establish the connection between the DAG on the CRP components and the mean

waiting times of the different service classes we need to introduce one additional element, namely, the

collection of topological orders that the DAG induces over the CRP components. The importance

of these topological orders comes from the fact that the state-space representation for the FCFS-

ALIS matching model involves ranking the busy servers based on the order of the waiting time of the

customers they are serving (see Adan and Weiss 2014 for details). As was proved in Afèche et al. (2021),

in heavy-traffic this entails restricting attention to only certain permutations of the CRP components

which have asymptotically non-zero steady-state probability. These permutations are precisely the

topological orders of the DAG.

‡The claim that the resulting direct graph defined in this manner is in fact acyclic is formally proven in (Afèche et al.,

2021, Lemma 2).
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Definition 4. (Topological Orders of CRP Components) Consider a matching M ∈ M̂ and let

{C1,C2, . . . ,CK} be the collection of all CRP components of M . We say that a permutation σ =

(σ(1), σ(2), . . . , σ(K)) of [K] induces a topological order (Cσ(1),Cσ(2), . . . ,Cσ(K)) of the CRP com-

ponents of M if for every directed arc (Ci,Cj) from component Ci to component Cj in the DAG

associated to M , we have σ−1(j) < σ−1(i). We denote by T (M) the set of all permutations σ that

induce a topological order and by T (M) the cardinality of T (M).

Following Afèche et al. (2021), for a given topological order σ ∈ T (M), let us define the unnormalized

probability Q(σ) and the conditional waiting time wσ,k of CRP component Ck as follows:

Q(σ) :=
K∏
κ=1

1∑κ
`=1 γ̃σ(`)

and wσ,k :=

K∑
κ=σ−1(k)

1∑κ
`=1 γ̃σ(`)

. (6)

The following theorem is proven in Caldentey et al. (2022), which expresses the limiting scaled mean

waiting times, Ŵ ∗i in Definition 7 in terms of the values of Q(σ) and wσ,k.

Theorem 2. (Caldentey et al., 2022) For a given admissible service menu M ∈ M̂ and a strategy

profile q̂ + εφ̂ such that Λ > 0 in (5), let M̆ be the residual matching and {C1,C2, . . . ,CK} be the

collection of CRP components induced by M̆ . Then, service classes that belong to the same CRP

component experience the same scaled steady-state mean waiting time in heavy traffic. Furthermore,

the scaled steady-state mean waiting time of CRP component Ck is equal to

ŴCk =

T (M)∑
t=1

(
Q(σt)

Q(σ1) + Q(σ2) + · · ·+ Q(σT (M))

)
wσt,k. (7)

The following is an immediate corollary of Theorem 2, which provide conditions under which complete

resource pooling is possible.

Corollary 1. Under the same conditions as in Theorem 2, ŴCk ≥ 1/|a| for all k ∈ [K]. Furthermore,

ŴCκ̂ = 1/|a| for some κ̂ ∈ [K] if and only if there exists a directed path from Cκ̂ to any other CRP

component Ck with k ∈ [K] \ {κ̂}. This condition is trivially satisfied if the system has a single CRP

component (i.e., K = 1).

It is worth noticing that according to Theorem 2 the only information that is needed to compute the

scaled steady-state mean waiting times in heavy traffic is the aggregated structure of the matching M

in terms of CRP components and its DAG and topological orders together with the vector of scaled

capacity slack γ̃ = (γ̃1, γ̃2, . . . , γ̃K). The more granular information about the specific compatibility

structure between service classes and servers or the average arrival rates Λ and service capacities µ do

not affect the computations of the waiting times. This is a key observation for the purpose of deriving

optimal service menus as it simplifies the representation of the vector of limiting scaled waiting times

that can be implemented. This motivates the following definition.

Definition 5. (Implementable Waiting Times) Given a collection C = {C1,C2, . . . ,CK} of CRP

components and a cumulative capacity slack |a| > 0, we say that a vector of limiting scaled waiting

times W = (W1,W2, . . . ,WK) is implementable if there exist a DAG in C and a vector of scaled

capacity slacks γ̃ = (γ̃1, γ̃2, . . . , γ̃K) with |γ̃| = |a| such that Wk is equal to ŴCk in (7) for all k ∈ [K].
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In general, characterizing the set of implementable waiting times is challenging given the underlying

combinatorial structure in (7). Proposition 2 below characterizes a special class which will prove useful

later in our derivation of optimal service menus. The distinguishing feature of this class of waiting

times is that they can be implemented using a chained DAG.

Definition 6. (Chained DAGs) A DAG on C = {C1,C2, . . . ,CK} is chained if there exists a partition

{C1,C1, . . . ,CL} of C such that the permutation σ = (σ(1), σ(2), . . . , σ(K)) induced by any of its

topological orders satisfies: σ−1(j) < σ−1(i) if and only if there exist `1, `2 ∈ [L] with `1 ≤ `2 such that

Ci ∈ C`1 and Cj ∈ C`2.

Figure 4 illustrates two examples of a chained DAG over a collection of nine CRP components. For

panel (a) on the left panel, L = 6 and C1 = {C2}, C2 = {C4}, C3 = {C1,C6,C7}, C4 = {C5,C8},
C5 = {C9} and C6 = {C3}.
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Figure 4: Two examples of chained DAGs over nine CRP components.

In the statement of the proposition, we donate by (W(1),W(2), . . . ,W(K)) the vector of order statistics

of (W1,W2, . . . ,WK).

Proposition 2. Suppose W = (W1,W2, . . . ,WK) satisfies 1/|a| = W(1) < W(2). Then, W is imple-

mentable by a chained DAG.

From Corollary 1, we can interpret the condition in Proposition 2 as requiring W to be the limiting

scaled waiting times of a DAG containing a CRP component that achieves complete resource pooling.

3.3 Matching Probabilities under Heavy Traffic Equilibrium

While the problem of computing waiting times under a FCFS-ALIS service discipline simplifies signifi-

cantly under heavy traffic conditions, computing the matching probabilities pij remains computational

challenging due to the underlying combinatorial structure of the state-space of the system (see Adan

and Weiss, 2014). Caldentey et al. (2009) and Afèche et al. (2021) identify a special class of topolo-

gies (including spanning forests and complete and quasi-complete graphs) under which the matching

probabilities can be computed efficiently. Specifically, for a given menu M = [mij ] in this class of
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topologies, the matching probabilities pij can be computed solving the following quadratic program:

min
p

∑
i∈[n]

∑
j∈[m]

λi
µj
mij p

2
ij (QP)

subject to
∑
i∈[n]

λimij pij = µj ∀j ∈ [m],

∑
j∈Si

mij pij = 1 ∀i ∈ [m],

pij ≥ 0 ∀(i, j) ∈ [n]× [m].

In general, however, the QP formulation only provides an approximation to the actual FCFS-ALIS

matching probabilities (see Afèche et al., 2021 and Fazel-Zarandi and Kaplan, 2018 for detailed nu-

merical experiments) and, to the best of our knowledge, it is still unknown whether there exists

a computationally efficient method to determine the exact matching probabilities for an arbitrary

matching topology.

In what follows, we will proceed with our analysis using the QP formulation to compute the matching

flows. The following facts about an optimal solution to (QP) are proven in Afèche et al. (2021).

Proposition 3. Let M be an admissible menu in heavy traffic, i.e., M ∈ M̂. Then,

1. The quadratic program in (QP) is feasible and admits a unique optimal solution p∗(M).

2. A feasible matrix of matching probabilities p(M) = [pij(M)] is the optimal solution to (QP) if

and only if there exist multipliers (ωj , j ∈ [m]) for the first set of constraints and (ηi, i ∈ [n])

for the second set of constraints satisfying the KKT first order stationarity conditions:

p∗ij(M) = max{µj (ηi + ωj) , 0}, ∀(i, j) : mij = 1.

The second property is particularly useful because it allows for a simple encoding of the constraints

imposed by the QP formulation§ on the matching probabilities.

3.4 Heavy-Traffic Equilibrium

For a given admissible menu in heavy traffic M ∈ M̂, we are interested in identifying a limiting

equilibrium, as ε ↓ 0. To this end, we introduce the notion of a heavy-traffic equilibrium.

Definition 7. (Heavy Traffic Equilibrium) For a given admissible menu in heavy traffic M ∈ M̂,

we say that (q̂∗, Ŵ ∗, p̂∗) is a heavy traffic equilibrium if there exists a vector φ̂∗ ∈ R|Θ|×n such that

q̂∗ + ε φ̂∗ ∈ Q for all ε ≥ 0 and the following two conditions are satisfied:

(a) Heavy Traffic Limit: Ŵ ∗ = limε↓0 Ŵ (ε)(q̂∗ + ε φ̂∗) and p̂∗ = limε↓0 p(ε)(q̂∗ + ε φ̂∗).

(b) Best-Response: For all θ ∈ Θ and for all i, k ∈ [n]

q̂∗θi
(
Uθi(Ŵ

∗, p̂∗)− Uθk(Ŵ ∗, p̂∗)
)
≥ 0.

§Which is an approximation for the FCFS-ALIS requirements that we need to impose on p = [pij ].
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We let Q̂∗(M) be the set of all strategy profiles q̂∗ for which there exists a heavy traffic equilibrium

(q̂∗, Ŵ ∗, p̂∗).

For the notion of a heavy-traffic equilibrium to be of any practical interest, we would like to be able to

map it back to some concrete equilibrium in the pre-limit. The following proposition formalizes this

requirement by showing that we can always view a heavy-traffic equilibrium as the limit of a sequence

of ε-equilibria in the pre-limit, as ε ↓ 0.

Proposition 4. Let q̂∗ ∈ Q̂∗(M) for some admissible menu M ∈ M̂ in heavy traffic. Then, there

exists a sequence of strategy profiles (q(ε))ε>0 with corresponding steady-state waiting times W (ε) =

{W (ε)
i (q(ε))}i∈[n] and matching probabilities p(ε) = [p

(ε)
ij (q(ε))]i∈[n],j∈[m] such that (q(ε),W (ε), p(ε)) is a

∆(ε)-equilibrium profile for a sequence (∆(ε))ε>0 that satisfies limε↓0 ∆(ε) = 0.

Remark 3. A possible shortcoming of the definition of a heavy traffic equilibrium in Definition 7 is that

the sequence of strategy profiles {q(ε)}ε>0 that defines a heavy traffic equilibrium is not required to be a

sequence of pre-limit equilibria. Thus, it is possible that a heavy traffic equilibrium is not the limit of any

sequence of pre-limit equilibria. Proposition 4, however, guarantees that the strategy profiles {q(ε)}ε>0 are

ε-equilibria in the pre-limit and so the incentives that customers have to deviate from the strategy q(ε)

become negligible as ε ↓ 0. �

The definition of a heavy-traffic equilibrium highlights an important feature of our asymptotic analysis

of an equilibrium. Namely, to characterize a heavy traffic equilibrium it is not enough to identify the

limiting strategy q̂∗ but we must also specify the direction φ̂∗ of convergence. The reason is that the

limiting vector of steady-state waiting times Ŵ ∗ is not just a function of q̂∗but also of φ̂∗. We illustrate

this point with the following example.

Example. Consider the system in Figure 5 with two customer types (|Θ| = 2), two servers (m = 2)

and two service classes (n = 2) each served exclusively by one of the servers. The arrival and service

rates in the εth system are given by α(ε) = A − a ε = (2, 1) − (1, 0) ε and µ = (µ1, µ2) = (1, 2),

respectively. Customers of type 1 prefer server 1 over server 2 (i.e., V11 > V12) while the opposite is

true for customers type 2 (i.e., V21 < V22).

. . . 

. . . 

1	

2	

Class 1 

Class 2 

Choice 

Choice 

↵
(✏)
1 = 2 � ✏

↵
(✏)
2 = 1

µ1 = 1

µ2 = 2

q (✏)12 =
0.5 +

� ✏+
o(✏)

q
(✏)
11 = 0.5 � � ✏ + o(✏)

q
(✏)
22 = 1

�
(✏)
1 = 1 � (2� + 0.5) ✏ + o(✏)

�
(✏)
2 = 2 + (2�� 0.5) ✏ + o(✏)

Figure 5: Example with two customer types, two service classes and two servers.

For the given values of the arrival and service rates as well as the preferences of the customers, it should

be intuitively clear that an equilibrium strategy q(ε) for the εth system takes the form q
(ε)
22 = 1− q(ε)

21 = 1

and q
(ε)
12 = 1− q(ε)

11 = 0.5 +φ ε+ o(ε) for some scalar φ such that |φ| < 1/4 (this condition ensures that

the queueing system is stable for ε > small enough). The strategy profile q(ε) converges, as ε ↓ 0, to q̂∗

given by q̂∗11 = q̂∗12 = 1/2 and q̂∗22 = 1− q̂∗21 = 1. Thus, in the limit, half of type 1 customers are served

by server 1 and all type 2 customers are served by server 2.
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Since each service class behaves as an M/M/1 queue, the scaled steady-state waiting times in the εth

system are given by

Ŵ1
(ε)

(q(ε)) =
1

0.5 + 2φ+O(ε)
and Ŵ2

(ε)
(q(ε)) =

1

0.5− 2φ+O(ε)
.

It follows from the above that to characterize the limiting value of the waiting times the limiting strategy

q̂∗ is not enough, and the direction φ of convergence of the strategy profile q(ε) is necessary. To pinpoint

the precise value of φ that will ensure that q̂∗ is a heavy traffic equilibrium we must impose the best-

response condition in Definition 7. In this example, customers type 1 randomize between service classes

1 and 2 and so they must be indifferent between them. It follows that

lim
ε↓0

(
Ŵ1

(ε)
(q(ε))− Ŵ2

(ε)
(q(ε))

)
=
V11 − V12

δ
.

Letting β := (V11 − V12)/δ, we get that choosing

φ∗ =
2−

√
4 + β2

4β

ensures that q̂∗ is indeed a heavy traffic equilibrium in the sense of Definition 7. �

3.5 Pareto Improvement and Chained DAGs

Consider an admissible menu in heavy traffic M ∈ M̂ with a heavy traffic equilibrium (q̂∗, Ŵ ∗, p̂∗)
and let C = {C1, , . . . ,CK} be its corresponding collection of CRP components. Our next result shows

that under fairly general conditions we can always find another menu with a heavy traffic equilibrium

with the same collection of CRP components that (weakly) Pareto dominates (q̂∗, Ŵ ∗, p̂∗).

Proposition 5. Consider an admissible menu M ∈ M̂ with a heavy traffic equilibrium (q̂∗, Ŵ ∗, p̂∗)
and CRP components C = {C1, . . . ,CK}. Denote by ŴCk the limiting scaled waiting time of component

Ck for k ∈ [K] and assume (after relabeling if necessary) that ŴC1 ≤ ŴC2 ≤ · · · ≤ ŴCK . Suppose that

1/|a| ≤ ŴC1 < ŴC2, then there exists a menu M ′ ∈ M̂ with a heavy traffic equilibrium (q̂∗, Ŵ ′, p̂∗)
with the same set of CRP components C and such that Ŵ ′ ≤ Ŵ ∗. Furthermore, in this new equilibrium

the CRP components in C are connected through a chained DAG (see Definition 6).

Proposition 5 is significant as it reveals that for the purpose of finding an optimal service menu we

can essentially restrict ourself to menus that induce a heavy traffic equilibrium with CRP components

connected by a chained DAG. We will take full advantage of this property in Section 6, where we study

the class of Partition service menus. We also note that we can extend the result in the proposition to

include the degenerate case 1/|a| < ŴC1 = ŴC2
¶. In this case, however, we can only show that for

any ε > 0 (small) there exists a ε-heavy-traffic equilibria with the same CRP components connected

by a chained DAG that (weakly) Pareto dominates (q̂∗, Ŵ ∗, p̂∗).

¶Recall that by Corollary 1 the case 1/|a| = ŴC1 = ŴC2 is not possible.
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4 Service Menus with Two Servers

In this section we illustrate the heavy traffic analysis in the context of a system with two servers (i.e.,

m = 2). In this setting, we are able to obtain a complete solution and derive a number of insights

that we will use later to analyze the general case with an arbitrary number of servers. The two-server

model is also worth studying in its own right as it provides a parsimonious framework that allows

for a non-trivial segmentation of service (e.g., high vs. low quality). We note that it is possible to

analyze the two-server model under non heavy traffic conditions with a fair amount of detail, however,

the analysis does not extend in any useful way to the general case with m > 2. For completeness,

in Appendix B we characterize consumers’ equilibrium strategy profiles for the two-server case under

general traffic conditions.

Before we begin studying the possible menus and their equilibria, it helps to establish some benchmarks

for what performance one might aim for along the dimensions of average waiting time and matching

reward, respectively. Looking first at average waiting time, it is quite straightforward to see that one

can not expect an average delay smaller than that of a single server queue with service rate equal

to the total service rates of the m servers, and the arrival rate equal to the total arrival rate of the

customer types. Under heavy-traffic, we denote this ideal scaled delay as Wmin:

Wmin =
1

|a| . (8)

(Recall that |a| = ∑
θ∈Θ aθ is the aggregated capacity slack.) Next, turning to matching reward, the

following max-flow linear program solves the matching that a central planner would like to implement

if she had complete control over the assignment of customers to servers and were only concerned with

maximizing matching rewards.

V max := max
fθj≥0

∑
θ,j

fθj Vθj subject to
∑
j

fθj = Aθ, ∀θ ∈ Θ and
∑
θ

fθj = µj , j = 1, 2. (9)

It thus follows that V max is an upper bound on the cumulative matching value that can be achieved

by any menu in equilibrium.

We now consider the space of admissible menus. With two servers, there are three possible service

classes, namely, Class 1 served only by server 1, Class 2 served only by server 2, and Class 3 served

by both servers. With these three classes available, the service provider can offer one of the following

five admissible service menus (see Figure 1):

• Dedicated menu (D), in which Classes 1 and 2 are offered,

• Single-line menu (SL), in which only service Class 3 is offered,

• Full menu (F), in which all three classes are offered,

• Ni menu, in which Classes i and 3 are both offered, for i = 1, 2.

When there are only two servers, we can index the customer types according to their relative preferences

over the two servers. Specifically, we order the customer types {θ1, θ2, . . . , θ|Θ|} such that ∆Vθi ≤ ∆Vθj
for all 1 ≤ i < j ≤ |Θ|, where ∆Vθi = Vθ2 − Vθ1 . Let us define the subsets Θ0 := {θ ∈ [Θ] : ∆Vθ = 0},
Θ1 := {θ ∈ [Θ] : ∆Vθ < 0}, Θ2 := {θ ∈ [Θ] : ∆Vθ > 0} so that customers in Θ0 are indifferent between
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the two servers while customers in Θi strictly prefer server i = 1, 2. We also define Ai :=
∑

θ∈Θi
Aθ to

be the limiting arrival rate of customers in Θi, for i = 0, 1, 2.

To fix ideas and notation, let us assume that the capacity of server 1 is insufficient to serve all customers

who strictly prefer server 1 over server 2, i.e., A1 > µ1. The case A2 > µ2 is of course equivalent after

relabeling the servers. The case Ai < µi for i = 1, 2 is discussed at the end of this section in Remark 4.

Finally, the boundary case Ai = µi for i = 1, 2 can be analyzed using similar ideas and, for brevity, is

omitted.

Under the assumption A1 > µ1, Figure 6 depicts an example of the performance of the heavy traffic

equilibrium of the five menus in the delay vs. reward quadrant. As we can see from the figure, we can
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Figure 6: Performance of the heavy traffic equilibrium for Dedicated, Single Line, Full, N1 and N2 menus. Data: |Θ| = 5,

A = (1, 1, 3, 3, 2), a = (2, 2, 2, 2, 2), V·1 = (10, 10, 5.1, 9, 2), δ = 1, V·2 = (2, 8, 5, 10, 4) and µ1 = 3, µ2 = 7.

split the five menus into two groups:

1. Delay Minimizing Menus: The Single Line and N2 menus achieve the minimum possible

average scaled waiting time, Wmin.

2. Reward Maximizing Menus: The Dedicated, Full and N1 menus all lead to equilibria that

attain maximum possible matching reward, V max. Furthermore, the equilibrium of the Full and

N1 turn out to be equivalent in heavy traffic.

To get some intuition about this segmentation of the menus, consider Figure 7 that summarizes the

heavy traffic equilibrium outcome for the five menus in terms of matching flows and corresponding

DAG of CRP components. Note that both the Single Line and the N2 menu induce a single CRP

component in equilibrium. For the Single Line this is trivially the case and for the N2 menu this

follows from the fact that A1 > µ1 and so there are enough customers who want to join class 3 to

ensure a positive flow from class 3 to server 2 in equilibrium. Thus, with a single CRP component,

Corollary 1 implies that customers’ average waiting time is minimized and equals Wmin. In terms of

matching rewards, however, the Single Line and N2 menus have different performance. On one hand,
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Figure 7: Summary of the heavy traffic equilibrium outcome for the five menus in terms of matching flows and DAG of CRP

components.

Top Panel depicts the matching flows between the customer types and service classes indicate equilibrium strategies. Solid

(dashed) arrows between the service classes and servers indicate asymptotically non-negligible (negligible) flows.

Bottom Panel depicts the DAG that emerges in the heavy traffic equilibrium, where CSC denotes a CRP that includes

customer classes in C and servers in S.

the Single Line produces the lowest average reward (V min in Figure 6) among all five menus, while

the N2 menu generates an intermediate reward value V med in Figure 6. To compute the value of V min

note that in the Single Line menu all customers –irrespective of their type– are matched to servers in

proportion to their service rate, that is,

V min =
∑
θ∈Θ

Aθ
|A|

(
µ1

µ1 + µ2
Vθ1 +

µ2

µ1 + µ2
Vθ2

)
. (10)

On the other hand, to compute V med, we note that since the N2 menu induces a single CRP component,

the two service classes offered inN2 (namely, classes 2 and 3) have the same waiting time in equilibrium.

As a result, all customer types that strictly prefer server 1 join class 3 and all customer types that

strictly prefer server 2 join class 2. Customers who are indifferent between the two servers are also

indifferent between the two service classes since they have the same waiting time. However, the

assumption A1 > µ1 together with our ‘optimistic’ formulation (see Remark 1) imply that all these

indifferent customers join class 2 in equilibrium. It follows that

V med =
∑
θ∈Θ1

Aθ
|A|

(
µ1

A1
Vθ1 +

A1 − µ1

A1
Vθ2

)
+

∑
θ∈Θ0∪Θ2

Aθ
|A| Vθ2. (11)

Let us turn to the three reward maximizing menus: Dedicated, Full and N1. The common feature of

these three menus is that they all include service Class 1 and since A1 > µ1: (i) server 1 exclusively

serves customer types that prefer it the most, leading to reward maximization, and (ii) there is at

least one customer type in Θ1 that must be indifferent between joining Class 1 and some other class.

It is precisely this indifference condition that pinpoints the heavy traffic equilibrium for these three

menus. In terms of the average delay experienced by customers in equilibrium, the Full and N1 menus

produce the same average delay Wmed, while the Dedicated produces an average delay Wmax, with

Wmed ≤ Wmax. This is an example of the Pareto improvement described in Proposition 5, since the

DAGs of Full and N1 menu can be seen as chaining the CRP components of the Dedicated menu.

The following proposition summarizes the performance of the heavy traffic equilibrium for each of the

five menus.
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Proposition 6. Suppose that A1 ≥ µ1. Then, the performance of the heavy traffic equilibrium, in

terms of average waiting times and matching rewards, for each of the five menus is given by:

Dedicated N1 Full N2 Single-line

Avg. Waiting Times Wmax Wmed Wmed Wmin Wmin

Avg. Matching Rewards V max V max V max V med V min

such that Wmin ≤ Wmed ≤ Wmax and V min ≤ V med ≤ V max. The values of Wmin, V min, V med and

V max are derived in equations (8)-(9) and the values of Wmed and Wmax are derived in the proof of the

proposition in equations (A5) and (A4), respectively.

Let us conclude this section with the following two remarks.

Remark 4. (First Best Menu). There are two cases in which the service provider can achieve a first

outcome, namely, Wmin delays and V max rewards:

(i) Suppose Ai = µi for either i = 1 or i = 2. Then, offering the N3−i menu achieves first best.

To see this, take for example the case A1 = µ1, then we get from (11) that V med = V max and

from Proposition 6 we conclude that the N2 menu Pareto dominates the other four menus as it

achieves the best performance in both dimensions (waiting times and rewards).

(ii) Consider the case Ai < µi for i = 1, 2, that is, when both servers have excess capacity to serve

the customer types that strictly preferred them. In this case, the Full menu is optimal as it

Pareto dominates the other four menus. To see this, note that the condition Ai < µi implies

that a stable strategy is to have customers in Θi joining class i (for i = 1, 2) and the indifferent

customers in Θ0 joining class 3. This strategy will naturally maximize average matching rewards.

Furthermore, in the heavy traffic regime, this strategy will induce a single CRP component and

so the average waiting time of each service class is the same. Thus, no customer class has

an incentive to switch to another class. As a result, a Full menu achieves simultaneously the

minimum average waiting time and the maximum matching reward and it is therefore optimal.

We also note that the equivalence between the Full and N1 menus does not hold anymore when Ai < µi
for i = 1, 2. In this case, the N1 menu does not produce maximum matching rewards since some

customers in Θ2 will have to be served by server 1 in equilibrium. �
Remark 5. (Trivial CRP Components) In Figure 7, the DAG induced by the Full menu has a CRP

component C∅2 which includes class 2 and no server. This anomaly happens because even though class

2 is offered there is no customers joining this class in the heavy traffic equilibrium. Note that despite

the fact that there is no flow of customers joining class 2, we still need to assign a waiting time to this

class to enforce equilibrium conditions. Caldentey et al., 2022 provide a detailed discussion of how to

compute the waiting time of these trivial CRP components in heavy traffic. �

5 First Best Menus

We saw in our discussion of the two-server case that it is sometimes possible to offer a service menu

that achieves a first best outcome, that is, maximum possible matching values and minimum possible
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average waiting times simultaneously (see Remark 4). In this section, we investigate conditions under

which a first best menu exists in a system with an arbitrary number of servers. To this end, we find it

convenient to first discuss two special menus, namely the Single Line (SL) and Dedicated (D) menus,

which exhibit extreme and contrasting performance in terms of matching rewards and waiting times.

While a Single Line menu minimizes waiting times at the expense of matching values the opposite is

true for the Dedicated menu. This is illustrated in Figure 6 for the two-server case.

5.1 Single Line Menu

In the Single Line menu the service provider offers a single service class which is served by all servers.

This is the simplest and most common service configuration used in practice in which all m servers

serve a single service class. By Corollary 1, the Single Line exhibits complete resource pooling and

therefore minimizes average waiting times in heavy traffic, Ŵ SL = 1/|a|. Thus, it is an optimal menu

when the service provider is interested in minimizing customers’ average waiting times exclusively (i.e.,

ζ = ∞). However, as we saw in the two-server model, the Single-Line menu is not Pareto optimal in

general. Actually, our next result reveals that while the Single-Line menu minimizes waiting times, it

also minimizes average matching rewards.

Theorem 3. For any an admissible menu in heavy traffic M ∈ M̂ and any heavy traffic equilibrium

strategy profile q̂∗ ∈ Q̂∗(M) under M , let V (M, q̂∗) be the average matching rewards under the pair

(M, q̂∗). Let also V
SL

be the average matching reward under the Single Line menu. Then,

V
SL ≤ V (M, q̂∗).

The key limitation of the Single Line menu is its inability to customize the matching between customers

and servers since all customers are essentially treated equally. This raises the question of how to design

a menu that maximizes customer’s rewards among all menus that have an equilibrium with a single

CRP component. We will return to this question in Section 7.2.

5.2 Dedicated Menu

In the Dedicated menu each server operates independently serving its own service class. In other words,

the matching topology MD = [mD
ij ] ∈ {0, 1}m×m of the Dedicated menu satisfies mD

ij = 11(i = j). In

contrast to the Single Line menu, the Dedicated menu has no resource pooling but offers full flexibility

to match customers to servers, and in Theorem 4 below we show that this matching flexibility is

actually maximal. To this end, let us consider the following max-flow problem for system ε, which is

central to our characterization of first best menus:

V(ε)
:= max

f
(ε)
θj ≥0

∑
θ,j

f
(ε)
θj Vθj (Max-flow)

subject to
∑
j

f
(ε)
θj = α

(ε)
θ ∀θ ∈ [Θ], (flow balance)

∑
θ

f
(ε)
θj ≤ µj ∀j ∈ [m], (capacity)
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where f
(ε)
θj represents the flow of customers type θ served by server j. We note that the value of V(ε)

corresponds to the maximum average matching reward that a central planner can achieve if she has

full control on how to match customers to servers. It follows that V(ε)
provides an upper bound on the

maximum matching reward that the service provide can get from any equilibrium. Interestingly, our

next result shows the Dedicated menu achieves this upper bound asymptotically. In other words, the

Dedicate menu is an optimal menu if the service provider is completely insensitive to waiting times

(i.e., ζ = 0). This is interesting because customers’ equilibrium strategies still depend on the waiting

times of each service class, and so even if ζ = 0 the service provider cannot simply disregard the effect

of waiting times on the overall performance.

Theorem 4. Let V (ε) be the matching value of an equilibrium for the Dedicated menu for system ε.

Then, V(ε) − V (ε) = O(ε), i.e., the Dedicated menu asymptotically maximizes average matching value

in heavy traffic.

Proof Sketch: Since some elements of the proof are quite insightful and useful for the discussion that

follows, we provide a quick proof sketch here and defer a full version to the Appendix. First, let us introduce

the dual variables η
(ε)
θ for the flow balance for customer type θ, and ω

(ε)
j for the capacity constraint for

server j. The dual problem to (Max-flow) is

min
ω

(ε)
j ≥0,η

(ε)
θ

∑
θ

α
(ε)
θ η

(ε)
θ +

∑
j

µj ω
(ε)
j subject to η

(ε)
θ + ω

(ε)
j ≥ Vθj ∀θ, j. (Dual-Max-flow)

The main idea is to show that any equilibrium strategy q(ε) ∈ Q∗(MD) for the Dedicated menu (which

exists due to Theorem 1) induces a vector of flow rates from customers to servers, f
(ε)
θj (q(ε)), that can

be used to construct a feasible dual solution such that approximate complementary slackness holds in the

following sense: (
µj −

∑
θ

f
(ε)
θj

)
ω

(ε)
j = O(ε), and

(
η

(ε)
θ + ω

(ε)
j − Vθj

)
f

(ε)
θj = 0,

for all θ and j, which then guarantees that f
(ε)
θj is approximately optimal for (Max-flow) with an O(ε)

additive suboptimality, which vanishes as ε ↓ 0.

In particular, given that the expected waiting time at queue j under f
(ε)
θj equals Ŵ

(ε)
j = 1/(µj −

∑
θ f

(ε)
θj ),

we define for all j ∈ [m] and θ ∈ Θ,

ωj
(ε) = δ Ŵ

(ε)
j and ηθ

(ε) = max
j

{
Vθj − ωj(ε)

}
(12)

as a feasible dual solution. By the definition above, η
(ε)
θ is in fact the utility of type θ customers. To

see the intuition behind why complementary slackness holds, the first set of conditions follow from the

definition of ω
(ε)
j . For the second set, since under any equilibrium, f

(ε)
θj > 0 only if Vθj − ω(ε)

j ≥ η
(ε)
θ , exact

complementary slackness holds for the second set of conditions. �

Remark 6. As we alluded to in the proof sketch, the optimal dual variables of (Max-flow) (for

the limiting case ε = 0) have the following interpretation: ωj denotes the limiting scaled mean delay

disutility for server j under the Dedicated menu, and ηθ denotes the average utility of customer type

θ under delay disutilities {ωj}. However, the dual solution is only determined up to a translation; for

any τ , (ηθ + τ) and (ωj − τ) are also an optimal dual solution. Therefore without loss of generality,

we can assume minj ωj = 0, so that the true scaled delay disutility for server j is δŴj = ωj + ω0 for

some ω0.
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Our next somewhat surprising result generalizes Theorem 4 in the sense that any menu M which

includes the Dedicated menu as a sub-menu also maximizes the average matching value.

Theorem 5. Let M be any service menu which includes the Dedicated menu as a submenu. That

is, for every server j, there exists a service class i(j) such that mi(j),j = 1, and mi(j),j′ = 0 for any

j′ 6= j. Then the menu M attains the maximum matching reward under any heavy-traffic equilibrium.

5.3 Necessary and Sufficient Conditions for First Best Outcomes

From the performance of the Single Line and Dedicated menus we have that for a menu to achieve first

best it must simultaneously induce an equilibrium with (i) a single CRP component and (ii) matching

flows that coincide with the solution of the (Max-flow) problem. In this section, we use this insight

to identify necessary and sufficient conditions for a first best outcome to be achievable.

Theorem 6. (Necessary Conditions) If the service provider is able to achieve a first best outcome,

then there exists a solution to (Max-flow) with ε = 0 such that the following two conditions hold:

1. The arcs associated with strictly positive flows form a connected graph.

2. Every customer type weakly prefers their matching outcome to that of any other customer type.

A proof of this theorem can be found in an appendix, we will briefly provide some intuition here. If

a first best outcome can be achieved, then the flows between service classes and servers must form a

connected graph to support a single CRP component. This implies that the flows between customer

types and servers must also form a connected graph. Similarly, since a first best outcome necessarily

achieves the maximum possible matching values, we know that the flows between customer types and

servers (via the service classes offered) must also be a solution to (Max-flow). Since the flows form

an equilibrium, we know that no customer type prefers the matching outcome of any other customer

type.

One circumstance in which it is not possible to satisfy these conditions is if the solution to (Max-flow)

is such that every server j has some customer type θ that is only being served by server j, and there

are no indifferent customers. This might occur if there is an agreed upon ranking over servers between

customer types, and the arrival rate of each customer type is less than the service capacity of each

server. In this case, the only way to achieve a maximum reward outcome is to offer the dedicated menu

as a sub-menu. However, if the dedicated menu is being offered as a sub-menu, if service times are

equal across service classes, all customer types will want to join the service class being served by their

most preferred server. So there is no equilibrium in which the (Max-flow) rewards and minimum

average delays are achieved simultaneously.

Next, we provide sufficient conditions for a first best outcome to be achievable.

Theorem 7. (Sufficient Conditions) The service provider is always able to achieve a first best outcome

if there exists a solution to (Max-flow) with ε = 0 such that the following to conditions hold:

1. The basic feasible activities induce a connected tree

2. Every customer type weakly prefers their matching outcome to that of any other customer type.
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The menu that achieves the first best outcome is the menu in which there is a single service class for

each customer type, and that service class consists of all of the servers that they are connected to in

the Max Flow solution.

As the proof of this theorem is straightforward and intuitive, we include it here.

Proof. To see that these conditions are sufficient, we can consider what would happen if the proposed

menu were offered. Since the flows form a connected tree, we know that these flows are those that

would be achieved if this menu were to be offered, and each customer class were to join their assigned

service class. As the resulting graph is connected, we know that a single CRP component is achieved,

and hence minimum possible expected waiting times occur. Because each customer type weakly prefers

their own matching outcomes to that of any other customer type, and waiting times across service

classes are equal, it is an equilibrium for each customer type to join their assigned service class.

This also provides some intuition as to why the conditions stated in Theorem 6 are not sufficient.

Should the flows associated with the feasible activities form a graph with cycles, we cannot guarantee

that the flows can be achieved by any particular menu as we can should the flows form a tree.

One way that these sufficient conditions can be satisfied is to have ‘enough’ indifferent customers in

the system. By this we mean that there is some mass of customer types who have strict preferences

between servers, and some mass of customers who are indifferent between pairs of servers. If there is

enough service capacity so that all customer types with strict preferences can be served by their most

preferred servers, and an ordering of servers so that for every pair of servers (j, j+1) for j = 1, ...,m−1

there is a customer type who is indifferent between servers j and j + 1, then the sufficient conditions

will be satisfied.

6 Partition Menus

In the previous section we identified conditions under which there exists a menu that achieves first best

outcome. In general, however, first best cannot be achieved and an optimal menu must appropriately

balance the trade-off between waiting times and matching rewards. In this section, we investigate this

trade-off by restricting ourselves to the study of a special class of Partition menus in which the set of

servers is partitioned into K pools S = {S1, . . . ,SK} for some K ∈ [m]. We will consider two classes

of partition menus.

• Pure Partition Menus: These are menus in which each partition of servers Sk is dedicated to

serving exclusively a single service class, say Ck. The left panel in Figure 8 depicts an example of

a pure partition menu with four customers classes and five servers. In this example, servers are

partitioned into two sets S1 = {1, 2, 3} and S2 = {4, 5} with all servers in partition Si serving

exclusively service class i, for i = 1, 2.

It is worth noticing that in heavy traffic, a partition menu consists of K disconnected CRP

components C = {C1,C2, . . . ,CK}, with Ck = (Ck,Sk).

• Chained Partition Menus: These are modified pure partition menus with some additional

connectivity among the CRP components C = {C1,C2, . . . ,CK} so that the underlying DAG
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has a chained structure (see Definition 6). Thus, every chained partition menu has associated an

underlying pure partition menu that defines it. For example, the right panel in Figure 8 depicts

a chained partition menu associated to the pure partition in the right panel that includes a link

(dashed arc) connecting C1 to C2.
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C2

C1

Pure Partition Chained Partition

Figure 8: Example of pure partition and chained partition menus with two partitions of servers S1 = {1, 2, 3} and S2 = {4, 5}.

While restrictive, partition menus have a number of desirable properties from a practical standpoint as

they are easy to explain to customers and require limited scheduling coordination among the servers.

For instance, in a pure partition menu each server can manage FCFS requirements by tracking a single

service class and customers only need to know their queueing position in a single line to assess their

service status. In addition, by varying the numbers of partitions and their composition, partition

menus offer a fair amount of flexibility that the service provider can use to trade-off matching rewards

and waiting times. For instance, two notable examples of partition menus are the Single Line and the

Dedicated menu discussed in Sections 5.1 and 5.2, respectively.

6.1 Pure Partition Menus

Let us fix a partition S = {S1, . . . ,SK}, with all the servers in partition Sk serving a unique service

class Ck. It is easy to see that each pair Ck = (Ck,Sk) corresponds to a different CRP component

in any heavy traffic equilibrium. In this setting, a strategy profile can be represented by a matrix

q = [qθk], where qθk is the probability that a type θ customer joins Ck. Moreover, since each service

class Ck is served exclusively by the servers in Sk, the limiting matching probabilities p̂ of any heavy

traffic equilibrium must trivially satisfy p̂kj = 11(j ∈ Sk)µj/µSk , where µSk :=
∑

j∈Sk µj . It follows

that the average limiting reward that a type θ customer gets from joining service class Ck equals

V θk :=
∑
j∈Sk

µj Vθj
µSk

.

It is not hard to see that a pure partition menu with servers’ partition S = {S1, . . . ,SK} behaves, in

the heavy traffic limit, as the Dedicated menu in which each partition of servers Sk acts as a ‘super-

server’ with capacity µSk and with a matrix of matching rewards V = [V θk] between customers types

and super-servers. With this interpretation, on can show that Theorem 4 extends to this case in a

relatively straightforward fashion. Specifically, consider the following modified version of the max-flow
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problem parameterized by the partition S:

V(ε)
S := max

f
(ε)
θk ≥0

∑
θ,k

f
(ε)
θk V θk subject to

∑
k

f
(ε)
θk = α

(ε)
θ and

∑
θ

f
(ε)
θk ≤ µSk , (13)

where f
(ε)
θk represents the flow of customers type θ joining service class Ck. As in the case of the

Dedicated menu, V(ε)
S provides an upper bound on the maximum matching reward that the service

provide can get from any equilibrium under the pure partition menu S.

Corollary 2. The average matching value V
(ε)
S of any equilibrium for the pure partition menu with

server partition S satisfies V(ε)
S − V (ε)

S = O(ε).

According to the previous result, all equilibria associated to the pure partition menu with partition

S generate the same matching value VS := minε↓0 V(ε)
S , in the heavy traffic limit. Under the following

assumption on the max-flow problem (13), the limiting scaled waiting time of the pure partition menu

is also uniquely determined.

Assumption 1. The solution to (13) with ε = 0 is unique, and the basic feasible activities (that is,

the edges (θ, k) with fθk > 0) induce a connected tree.

Assumption 1 is quite mild. For example if one were to generate a random instance of the service

system by sampling the valuations Vθj from non-atomic distributions then the maximum flow is unique

with probability 1. Similarly, if either the arrival rates Aθ or the service rates µj are randomly sampled

from non-atomic distributions then the maximum flow forest is a connected tree with probability 1.

Under Assumption 1, the limiting mean scaled waiting times of all service classes in the pure partition

menu are determined up to an additive constant. This is because a customer type θ randomizing

between service classes Ck and Ck′ must be indifferent between them, and hence it must be true that

V θk−δŴk = V θk′−δŴk′ . The connectivity assumption then implies that knowing Ŵk for some service

class yields the waiting time for all service classes. Recall from Remark 6 that we can express the

limiting scaled waiting times Ŵk in terms of the dual variables ωk for the service capacity constraints

in (13). Specifically, there exist a vector of dual variables {ωk} with mink ωk = 0 and a scalar ω0 such

that δ Ŵk = ωk + ω0. We use this representation in the next proposition to derive the precise waiting

times under a partition menu.

Proposition 7. Suppose Assumption 1 holds and let {ωk} be a vector of dual variables for the service

capacity constraints in (13) such that mink ωk = 0. Then, the limiting scaled mean waiting times for

the pure partition menu are given by Ŵ PB
k = (ωk + ω0)/δ where ω0 ≥ δ/|a| solves:

K∑
k=1

δ

ωk + ω0
= |a|.

We omit a formal proof as the intuition is simple: Under the pure partition menu, each service class

Ck behaves asymptotically in the heavy traffic limit as an independent M/M/1 queue with service

capacity µSk . Thus a limiting scaled mean waiting time of Ŵk implies limε↓0(µSk − λ
(ε)
k )/ε = 1/Ŵk,

where λ
(ε)
k =

∑
θ f

(ε)
θk is total arrival rate at service class Ck. Further, limε↓0

∑
j(µSk − λ

(ε)
k )/ε = |a| by

the heavy-traffic scaling in (3), which provides the necessary condition to pin down ω0.
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6.2 Chained Partition Menus

Corollary 2 shows that pure partition menus maximize matching values for a given partition of servers.

At the same time, they do not allow any form of capacity sharing between partitions, and this can lead

to poor performance in terms of waiting times. To partially correct for this deficiency, we exploit the

result Proposition 5 and consider a modified class of pure partition menus by “chaining” the service

classes in increasing order of their waiting time. We refer to this class of menus as chained partitions.

Intuitively, while a pure partition menu results in a DAG with K disconnected CRP components

(where each partition of servers along with their service class are in a CRP component of their own), a

chained partition leads to a DAG which is a directed path (i.e., a single topological order), and allows

for capacity pooling across CRP components. A special case of this construction is the N1 menu in

Section 4, where the chaining is apparent in Figure 7 (see also the right panel in Figure 8).

Recall that Proposition 2 provides a characterization of a class of scaled limiting waiting times that

can be implemented in heavy traffic using a chained DAG. We take advantage of this result to derive

the waiting times of a chained partition menu under the following additional assumption.

Assumption 2. There exists an optimal vector {ωk} of dual variables for the service capacity con-

straints in (13) such that 0 = ω̂(1) < ω̂(2).

In the statement of the following proposition, we let S = {S1, . . . ,SK} be a fixed partition of servers

and Ck the service class connected to all servers in Sk. We let MPB
S denote the pure partition menu

defined by {(Ck,Sk) : k ∈ [K]}.

Proposition 8. Let Assumptions 1 and 2 hold and let {ωk} be the optimal vector of dual variables

satisfying the conditions in Assumption 2. Without loss of generality, let us relabel the K service

partitions in such a way that 0 = ω1 < ω2 ≤ ω3 ≤ · · · ≤ ωK . Define a chained partition menu MCB
S by

extending the pure partition menu MPB
S as follows: add a link connecting service class Ck to any server

in partition Sk+1 for k = 1, . . . ,K − 1. The resulting chained partition menu generates maximum

matching value V̄ and has limiting scaled waiting times given by

ŴCB
1 =

1

|a| and ŴCB
k =

ωk
δ

+
1

|a| , k = 2, . . . ,K.

It follows from Proposition 7 that ŴCB
k = Ŵ PB

k − Ŵ PB
1 + 1

|a| ≤ Ŵ PB
k . Thus, from the prespective of the

service provider, the chained menu MCB
S (weakly) Pareto dominates the pure partition menu MPB

S .

We note that under the chained partition menu ŴCB
1 = 1/|a|, which by Corollary 1 is the delay under

a completely pooled system and the lowest delay possible for a service class under any menu.

6.3 Optimal Partitions

We conclude this section by developing a mixed-integer linear program (MILP) to find an optimal

chained partition menu. As these menus are constructed from partitions of servers, the number of

possible menus grows rapidly with the number of servers. However, many of these menus will be Pareto

dominated by others. The MILP formulation in Figure 9 assumes a fixed number K of partitions and

finds the optimal partition of servers S = {S1, . . . ,SK}. By varying the value of K from 1 to m we
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can find the optimal chained partition menu. We will also describe a process that uses the MILP to

identify the set of Pareto efficient chained menus.

The following are the main decision variables used in the MILP formulation:

-) mkj : 1 if server j belongs to partition Sk and 0 otherwise.

-) fθkj : flow of type-θ customers joining Ck and served by server j.

-) fθk: flow of type-θ customers joining Ck.
-) Vθkj : value that a type-θ customer gets from joining class Ck and service from server j.

-) Vθk: average value that a type-θ customer gets from joining class Ck.
-) ωkj : waiting time experienced by a customer who joins Ck and get served by server j.

-) ωk: waiting time experienced by a customer who joins Ck.

Objective:

VPB
K := max

∑
θkj

fθkj · Vθj − ζ
∑
kj

µjωkj (14)

Constraints:

Server assignment:
∑
k

mkj = 1,
∑
j

mkj ≥ 1. (15)

Enforcing max matching value: ηθ + δ ωk ≥ V θk,
∑
θkj

fθkj · Vθj =
∑
θ

Aθηθ + δ
∑
kj

µjωkj . (16)

Waiting time within partitions: ωk + (mkj − 1)M ≤ ωkj ≤ ωk, ωkj ≤ mkjM. (17)

Customers’ valuation for partitions: V θk + (mkj − 1)M ≤ Vθkj ≤ V θk, Vθkj ≤ mkjM, (18a)∑
j

µjVθkj =
∑
j

mkjµjVθj . (18b)

Flow balance:
∑
k

fθk = αθ,
∑
θk

fθkj ≤ µj . (19)

Auxiliary flow constraints: fθkj + (mkl − 1)M ≤ gθkjl ≤ fθkj , gθkjl ≤ mklM, (20a)

fθk + (mkj − 1)M ≤ gθkj ≤ fθk, gθkj ≤ mkjM, (20b)∑
l

gθkjl · µl = gθkj · µj . (20c)

Non-negativity of decision variables

{fθk}, {fθkj}, {gθkj}, {gθkjl}, {Vθk}, {Vθkj}, {ωk}, {ωkj} ≥ 0 and {mkj} ∈ {0, 1}. (21)

Figure 9: MILP for finding the optimal partition menu with K partitions.

The key idea in this MILP is that since a chained partition menu acts like a chained-dedicated menu

on super-servers, we can use simultaneously the primal and dual constraints corresponding to max-

flow problem in (13) to ensure that customer arrival rates are consistent with an equilibrium strategy

profile. As mentioned in Remark 6, the dual variables ωk can be interpreted as waiting times for the

service classes. This means that by incorporating the dual constraints and dual variables into the

MILP, we are able to include both the matching values and the waiting times of the service classes

into the objective function. This is captured in the set of constraints (16).
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For a given value of ζ, we can solve the MILP to find the optimal maximizing chained partition menu.

In addition, we can use the MILP to generate a Pareto frontier within the class of partition menus

using standard multi-objective optimisation techniques for two objectives. We refer interested readers

to Marler and Arora (2004) for a review of such methods.

7 Tailored Menus

In the previous section, we approached the problem of menu design by optimizing over the class of

partitioned service menus in which each service classes has associated a unique and disjoint set of

servers. In this section, we take an alternative perspective and use a mechanism design approach to

tackle the problem of finding efficient menus. Specifically, we consider the class of Tailored menus

for which n = |Θ| and every customer type is assigned† a single service class in equilibrium. A key

advantage of tailored menus over bundle menus is that they provide more flexibility to customize the

matching between customer types and servers. On the flip side, tailored menus are more complex to

design and possibly less practical from an implementation standpoint.

For brevity of exposition, we will focus on two special type of tailored menus: (i) those that maximize

value matching rewards and (ii) those that minimize waiting times.

7.1 Value Maximizing Tailored Menus

The results in Sections 5.2 and 6.2 establish that a chained Dedicated menu maximizes the service

provider’s matching value. However, this is menu has limited capacity pooling and therefore offers no

guarantee of providing a good performance in terms of waiting times. To address this limitation we

will formulate a MILP that minimizes waiting times over the class of tailored menus that produces

maximum matching value.

Formally, we begin by solving (Max-flow) (under ε = 0) to obtain the flow [fθj ], which we will assume

is unique and induces a connected tree by Assumption 1. Let Sθ := {j : fθj > 0} denote the set of

servers with non-zero flow from customer type θ in the maximum value flow. The menu design task

then is to partition Sθ for each customer type θ into service bundles specifically intended for θ.

We will use the following notation:

• Bθ = 2Sθ \ ∅ denotes all the non-empty subsets of Sθ.

• For type θ, we call a set b ∈ Bθ a service bundle intended for type θ, and also use it to denote

the vector b = (b1, . . . , bm) where bj = 1 if j ∈ B and bj = 0 otherwise. Note that although

we associate bundle b with a subset of servers, each such bundle is also implicitly associated

with a customer type. Thus we can have one subset of servers S offered as two bundles, one for

customer type θ and for customer type θ′.

• Aθb =
∑

j fθjbj denotes the total arrival rate into bundle b (if offered) from customer type θ.

†The notion of assigning a service class to each customer type should be understood in a implementation theory sense.

The idea is that by appropriately designing the service menu, the service provider can guarantee that self-interested

customers will end-up joining the service class that they are supposed to join.
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• For b ∈ Bθ, for any θ′:

V θ′b =

∑
j fθjbjVθ′j

Aθb

denotes the average value type θ′ obtains from type θ’s bundle b. Note that here we are assuming

that the flow from bundle b to the servers is consistent with the maximum flow f .

Note that given the maximum flow {fθj}, the above are constants which we will use in our MILP

formulation. We explain the decision variables and the constraints of the MILP briefly next:

Decision Variable:

-) yb, b ∈ ∪θBθ: These binary decision variables correspond to the possible service bundles for all

customer types. A value of 1 indicates the bundle is offered and 0 indicates it is not offered.

-) Wb, b ∈ ∪θBθ: These continuous non-negative decision variables correspond to the delay of

bundles measure in units of (dis)utility up to a translation so that minbWb = 0.

-) Uθ, θ ∈ Θ: These continuous non-negative decision variables correspond to the utility of a type

θ customer (up to a translation).

-) W ′j , j ∈ [m]: These decision variables correspond to the delay of server j (and thus of all offered

bundles containing server j), measured in units of (dis)utility and determined up to a translation.

Objective:

W∗ := min
∑
θ

∑
b∈Bθ

Aθ,b ·Wθ,b

Constraints:

Feasibility of menu:
∑
b∈Bθ

bjyb = 1. (22)

Consistency of waiting times: W ′j − (1− yb)M ≤Wb ≤W ′j + (1− yb)M, Wb ≤ ybM. (23)

Utility for each type: V θ,b −Wb − (1− yb)M ≤ Uθ ≤ V θ,b −Wb + (1− yb)M. (24)

Incentive compatibility: Uθ′ ≥ V θ′,b −Wb − (1− yb)M. (25)

Non-negativity of decision variables: {Wb}, {W ′j},≥ 0 and {yb} ∈ {0, 1}.

Figure 10: MILP for finding tailored menu with minimum average delay under maximum total value constraint.

Constraint (22) ensures that for each customer type θ, a server j with fθj > 0 in the max value flow

solution is offered in exactly one bundle intended for θ. Constraint (23) ensures that (i) the delay

disutility Wb of any bundle b that is offered and contains server j equals the delay disutility W ′j for

server j and (ii) the delay disutility for any bundle b that is not offered is forced to 0 (so it contributes

0 to the objective). Constraint (24) ensures that the utility of a customer type θ equals the utility

of any offered bundle b intended for θ. Finally, (25) ensures that the utility of type θ′ is at least the

utility she derives from all offered bundles (which may or may not be intended for θ′).
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The objective minimizes the total delay disutility. Let {b1, . . . , bs} be the bundles selected by the

MILP, so that without loss of generality we can assume that 0 = Wb1 ≤ Wb2 ≤ · · · ≤ Wbs . Making a

similar assumption as used for Proposition 8, we can show the existence of a menu and an equilibrium

where the limiting scaled mean delay of bundle b is Ŵb = Wb
δ + ω∗0. In other words, the objective of

the MILP measures precisely the additional delay disutility compared to the minimum delay disutility

experienced under a single CRP matching system.

Note that for every customer type θ, we need to enumerate all 2Sθ bundles. Computationally this is

not prohibitive if in the maximum value tree, the degree of each customer type is small. In Section 8

we present results from numerical experiments based on the MILP in Figure 10.

7.2 Delay Minimizing Tailored Menus

According to Corollary 1, any menu that induces a heavy traffic equilibrium with a single CRP

component —such as the Single Line menu— minimizes customers’ limiting waiting times. In this

section, we discuss how to find a menu that maximizes matching values over the class of tailored menus

that support a heavy traffic equilibrium with a single CRP component.

Just like in the previous section, we will formulate this problem as a mixed-integer linear program.

Consider a menu M with |Θ| = n and let V θi denote the average reward that a customer type θ is

expected to receive by joining service class i. Since, |Θ| = n, in what follows we will abuse notation

and refer to service class i ∈ [n] as the one targeted to customers of type i ∈ Θ. Similarly, we will

denote by Ai the limiting arrival rate at class i ∈ [n].

To ensure the incentive compatibility of the proposed menu, the service provider would like to design

the menu in such a way that (i) it induces a single CRP component and (ii) the following IC condition

is satisfied.

V ii ≥ V ik, for all k ∈ [n]. (IC)

To formulate the service provider problem, we will rely on the quadratic program (QP) to approxi-

mate the steady-state matching probabilities for a given matching topology. Specifically, we propose

the mixed integer linear program (MILP)‡ presented in Figure 11 to identify the matching probabil-

ities that maximizes the approximated average reward under the (IC) condition and the single CR

requirement.

We explain the decision variables and the constraints of the MILP in brief next.

Decision Variables:

• mij , (i, j) ∈ [n]× [m]: These binary decision variables correspond to the matching topology.

• pij , (i, j) ∈ [n]× [m] : These decision variables approximate the matching probabilities on edge

(i, j) under the matching topology {mij} and FCFS-ALIS matching.

• ηi, (i ∈ [n]);ωj , (j ∈ [m]); νij , ((i, j) ∈ [n]× [m]) : These decision variables correspond to the dual

variables for flow balance constraints (26a), and non-negativity constraint for pij , respectively,

and are used to enforce the KKT conditions for the quadratic program (QP). Recall that

the QP dictates that for some constants {ηi}i∈[n], {γj}j∈[m], and {νij}(i,j)∈[n]×[m] ≥ 0, we have

p∗ij = µj(θi + γj + νij) and fij · νij = 0 if mij = 1, and f∗ij = 0 otherwise.

‡This MILP is an extension of the one studied in Afèche et al. (2021).
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Objective:

V∗ := max
∑
ij

Ai · pij · Vij

Constraints:

Approximate FCFS matching rates: KKT conditions of the (QP)∑
j∈[m]

pij = 1,
∑
i∈[n]

fij = µj , pij ≤ Zmij , pij ≤ Zzij , νij ≤ (n+m+ 1)Y · (1− zij), (26a)

µj(θi + γj + νij)− Z(1−mij) ≤ pij ≤ µj(θi + γj + νij) + Z(1−mij), (26b)

where Y :=
1

2
max

{
1

Amin

,
1

µmin

}
and Z := Amax · µmax ·

(
n

Amin

+
m

µmin

+ (n+m+ 1)2Y

)
Amax = max

i∈[n]
{Ai}, Amin = min

i∈[n]
{Ai}, µmax = max

j∈[m]
{µj}, µmin = min

j∈[m]
{µj}.

Enforcing incentive compatibility condition (IC):
∑
j∈[m]

Vij (pkj − pij) ≤ 0. (27)

Enforcing a single CRP component: n sets of constraints (indexed by k ∈ C)∑
i∈C

g
(k)
ij = µj ,

∑
j∈S

g
(k)
ij = Ai −

ε

n− 1
, g

(k)
kj = Ak + ε g

(k)
ij ≤ Zmi,j , (28)

where ε :=

∏
i∈[n]

qi
∏
j∈[m]

qj

−1

and pi
qi

= Ãi,
pj
qj

= µj are the rational number representations.

Non-negativity of decision variables: {pij}, {νij}, {g(k)
ij } ≥ 0 and {mij}, {zij} ∈ {0, 1}.

Figure 11: MILP for finding a tailored menu with maximum reward rate under minimum average delay constraint.

• zij , (i, j) ∈ [n] × [m]: The binary variable zi,j is used to enforce complementary slackness for

the non-negativity constraint pij ≥ 0: zi,j = 0 enforces pij = 0 and zi,j = 1 enforces νi,j = 0.

• g(k)
ij , (i, j, k) ∈ [n] × [m] × [n] : These n sets of flow variables (where the set is indexed by the

superscript k ∈ [n]) are used to enforce the single CRP (equivalently minimum average delay)

requirement. In words, the kth set of variables corresponds to the adjusted flows when we increase

Ak by a small ε, and reduce each Ai for i 6= k by ε
n−1 .

Constraints (26a)-(26b) are the flow balance constraints. The constants Y,Z ensure that the con-

straints impose the KKT conditions of (QP) for any matching topology M . These constraints and

the non-negativity of pij imply:

pij =

{
µj(θi + γj + νij), mij = 1,

0, mij = 0.

Constraints (26a) and non-negativity of pij and νij imply the complementary slackness constraint

fij · νij = 0. Constraints (27) ensures the IC condition V ii ≥ V ik for all i, k ∈ [n]. Finally, the proof

that the constraints (28) are necessary and sufficient to ensure that the matching topology M = [mij ]

induces a single CRP component can be found in Afèche et al. (2021).
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8 Numerical Experiments

In Sections 6 and 7, we presented two classes of service menus that the service provider can use to

design the service system, partition menus and tailored menus. In this section, we perform some

preliminary numerical experiments to explore for which preference structures the different approaches

perform better or worse.

We begin by showing plots of the performance of Pareto efficient partition menus and tailored menus

in the reward-delay quadrant for three particular instances of parameters. The customer valuations

for servers were generated using the distribution Vij = θ ∗ j + N(0, σ), where θ and j take values

in [5]. Valuations are then translated so that minij Vij = 0, and scaled so that maxij Vij = 10. We

show results for σ = 0, 2, and 5, Γ = [1, 1, 1, 1, 1], A = 5/18[2, 5, 1, 6, 4], and a = 1/5[1, 1, 1, 1, 1].

For comparison, we also show a bound on the performance of any menu using a linear programming

relaxation of the problem that assumes that the service provider is able to decide the delays and

matching rates for each customer type separately, and only the incentive compatibility constraints

need to be satisfied. Details of the LP bound can be found in Appendix C. These plots provide some

intuition about the relative performance of each menu. We will later show that this intuition applies

quite generally, and does not depend on the particular valuations used to generate these plots.

18 19 20 21 22 23 24 25

total value

1

2

3

4

5

6

av
er

ag
e 

de
la

y 
co

st

 = 0

18 19 20 21 22 23 24 25

total value

1

2

3

4

5

6

av
er

ag
e 

de
la

y 
co

st

 = 2

18 19 20 21 22 23 24 25

total value

1

2

3

4

5

6

av
er

ag
e 

de
la

y 
co

st

 = 5

Dedicated & Single Line
Min Wait Tailor
Value Max Tailor
Partition
LP Bound

Figure 12: Performance of different menus when Vθj = θ · j + N(0, σ) for σ = 0, 1, 5 in the average reward vs. average

delay quadrant.

As we can see, the partition menus perform better relative to the tailored menus when there is

less noise. The delay minimising tailored menu performs better as the noise increases. The value

maximising tailored menu only performs better than some partition menus when noise is large.

Next, we compare the performance of the different mathematical programming approaches for different

values of ζ. Using the same valuation distributions and the same values of Γ, A, and a as we used

to generate Figure 12, we compare the performance of the chained partition menus and the tailored

menus. For σ = 1 and σ = 5, we randomly generate 100 different instances of valuations, and report

the average performance across all the instances. For σ = 0, since there is no randomness, we only

have one instance, and so we report the performance of that instance directly. For each value of ζ
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and each valuation instance, we find the optimal partition menu. The tailored menus do not change

depending on ζ, only the objective function values do.

For each menu, we report the ratio

V̂ ∗ − ζŴ ∗
V̂LP − ζŴLP

.

That is, we are comparing the performance of each menu with that of the LP bound.

σ 0 2 5

ζ 0 0.05 0.25 0.5 0 0.05 0.25 0.5 0 0.05 0.25 0.5

CP 1.000 0.972 0.864 0.806 1.000 0.986 0.938 0.911 1.000 0.986 0.939 0.904

VM 1.000 0.972 0.851 0.683 1.000 0.986 0.909 0.773 1.000 0.987 0.919 0.812

DM 0.828 0.826 0.818 0.806 0.909 0.919 0.947 0.964 0.957 0.963 0.976 0.982

Table 1: Average performance of different menus when Vθj = θ · j +N(0, σ) for σ = 0, 1, 5 relative to the LP bound.

These results show that the intuitions from Figure 12 hold true across many instances, as well as

providing some new intuition. For low values of ζ, the optimal partition menu performs at least as

well the tailored menus, and when there is no noise, the partition menu performs at least as well as the

tailored menus for all values of ζ. For high values of ζ, the delay minimizing tailored menu performs

at least as well as the partition menus and the value maximising tailored menus, regardless of how

much noise there is. The performance of the delay minimising tailored menu also improves relative

to the LP bound as the noise increases. The value maximising tailored menu only outperforms the

partition menus when noise is large, and ζ is small.

9 Future Directions and Open Questions

In this work, we have taken the first steps towards studying the design of service systems with con-

gestion in the presence of strategic customers. A key message of our results is that more is not always

better – restricting customer choice is as important as offering richer service classes. On the construc-

tive side, we presented a mathematical programming approach to menu design. Our experimental

results demonstrate that menus with one service class per type is sufficient to find good menus. In

particular, there exist menus which achieve minimum average delay, and at the same time achieve

matching value quite close to the optimal. Such menus are appealing for two reasons (i) their simplic-

ity, and (ii) the ability to search within this space through a math programming approach.

Several challenging problems remain towards building a full theory of service menu design; we men-

tion a few. First, we saw empirical evidence that menus with one service class per customer type

are sufficient to approximate the Pareto frontier (for two very different reward structures) but lack

theoretical bounds. Second, we need a better characterization of the effect of reward structure on

the trade-off between matching value and delay on the Pareto frontier. An even simpler question is

the following: Given a reward matrix, what is the minimum loss in matching value necessary under a

single CRP constraint? This question is quite similar in spirit to the notion of price of envy-freeness

in the literature on envy-free cake cutting. Again, our experiments indicates this to be small, but it
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is possible to construct extreme examples where the matching value under a single CRP constraint

can be an arbitrarily small fraction of the optimal which makes our experimental results even more

intriguing. A third question is on non-uniqueness of equilibrium. We avoided equilibrium selection

problem via the notion of provider-preferred equilibrium, but menus with unique equilibria may offer

practical advantages such as robustness. Fourth, our results rely on the quasilinear structure of the

utility function and homogeneous delay costs. With heterogeneous delay costs, the value optimality

of the dedicated menu also breaks down. Extension to more general reward structures, or better yet,

menus which are robust to misspecification of utility functions is also an important and challenging

direction. Finally, the vast literature on design of price/lead-time menus relies on the achievable

region method queueing systems where the service provider has full flexibility to dynamically route

customers. A similar tool for FCFS-ALIS queueing systems could further expand the menu design

settings to which we can apply a mathematical programming approach.
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Appendix A: Proofs

Proof of Theorem 1: We will use Kakutani’s Fixed Point Theorem to show that a ∆-equilibrium

exists for ∆ = 0 when |α| < |µ|.
Theorem 8 (Kakutani’s Fixed Point Theorem). Let Q be a non-empty, compact and convex subset of

some Euclidean space Rn. Let F : Q→ 2Q be a set-valued funtcion on X with the following properties:

• F has a closed graph;

• F (q) is non-empty and convex for all q ∈ Q.

Then F has a fixed point.

We will apply Kakutani’s Fixed Point Theorem to a best response function F : Q→ 2Q, which we will

now construct. In constructing the best response function F , it will be useful to extend our definitions

of Wi(q), pij(q), and Uθi(q) to strategy profiles q for which the system does not admit a steady state

under a FCFS-ALIS service discipline.

To do this, we introduce the concept of a reduced service system. Fix a strategy profile q, and let λI(q)

denote the arrival rate into the set I of service classes under q. The strategy profile q need not admit

a steady state distribution. Thus, we define I ⊆ [n] as the minimal set of unstable service classes

and let J = S(I ) be the servers compatible with I under menu M . That is, I is the minimal set

satisfying ∀I ′ ∩I = ∅:
λI ′(q) < µS(I ′)∩J ,

where J := [m] \J , and I := [n] \ I . The set I is unique, and a non-constructive method of

identification is as follows: Let f∗ denote the optimal value of the maximum flow in the network with

nodes [m] ∪ [n], maximum inflow into service node i of λi(q) and maximum capacity of server node j

of µj . If for a service class i, there exists some εi > 0, such that the new maximum flow obtained by

increasing the inflow into service class i by εi is f∗ + εi then i ∈ I , otherwise i ∈ I .

The reduced service system is given by only keeping the service classes I and servers J . The menu

MI is the submatrix of M with rows corresponding to service classes in I , and columns corresponding

to J . We use λI (q) to denote the vector of arrival rates for service classes I , and ΓJ as the service

rate vector for the servers in J . Note that the sets I and J are a function of the strategy profile

q. We will denote them by I (q) and J (q) when this dependence is not clear from the context.

We now use this reduced system to define pij(q) and Wi(q) for arbitrary strategy profiles q (potentially

for which the system is unstable), and the best response map. By definition, the reduced service

system (λI (q),ΓJ ,MI ) is stable, and hence admits steady state mean waiting times which we

denote by WI
i (q) for i ∈ I , and matching probabilities, defined to be pI

ij (q) for i ∈ I , j ∈J . For

i ∈ I , j ∈J , we set pij(q) = pI
ij (q). For all other combinations of (i, j) ∈ [n]× [m], we set pij(q) = 0.

Similarly for i ∈ I we set Wi(q) = WI
i (q), and for all i /∈ I we set Wi(q) =∞.

With these extended definitions of pij(q) and Wi(q), we can also extend the definition of Uθi(q) which

allows us to define the best response set of each customer type for any strategy profile q. Let Bθ(q) be

the set of all service classes which maximize the utility of customers in class θ given strategy profile

q, that is,

Bθ(q) =

{
i ∈ [n]

∣∣∣∣ i ∈ argmax
i′

Uθi′(q)

}
.
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For any customer type θ and any strategy profile q, let

Fθ(q) = conv({ei|i ∈ Bθ(q)}).

We then define the best response function F (q) as

F (q) = ×
θ∈Θ

Fθ(q). (A1)

It is clear from the definition of F that F (q) is non-empty and convex for all q. All that remains to be

shown in order to use Kakutani’s Fixed Point Theorem is that the graph of F is closed. To do this,

we will show that the graph of F contains all of its limit points.

Let {qk}k∈N and {q∗k}k∈N be a sequences of strategy profiles such that qk → q and q∗k → q∗, where q

and q∗ are strategy profiles, and q∗k ∈ F (qk) for all k ∈ N. To show that the graph of F contains all of

its limits points, we need to show that q∗ ∈ F (q). To do this, we need to show that for all θ ∈ Θ and

i ∈ [n] such that q∗θi > 0, q∗θi ∈ Bθ(q).
Consider any pair (θ, i) such that q∗θi > 0. Then there must exist some K ∈ N such that for all k > K,

q∗kθi > 0. This implies that i ∈ Bθ(qk) for all k > K, or, Uθi(qk) ≥ Uθi′(qk) for all i′ ∈ [n]. To show

that Uθi(q) ≥ Uθi′(q) for all i′ ∈ [n], it suffices to show that Uθi(qk)→ Uθi(q) for all θ, i as k →∞.

Let I (q) denote the set of stable service classes under limiting strategy profile q. Since qk → q

implies λI(qk) → λI(q) for all subsets I ⊆ [n], it is true that I (q) = lim infk→∞I (qk). Further, for

all i /∈ I (q) (the unstable service classes), Wi(qk) → ∞ and hence limk→∞ Uθi(qk) = −∞ = Uθi(q)

for i /∈ I . For the remaining classes, i ∈ I (q), there exists some K, such that for all k ≥ K,

i ∈ I (qk). Thus by continuity of the steady-state distribution for FCFS-ALIS model (for stable

matching topologies), for i ∈ I (q), pij(qk)→ pij(q) and Wi(qk)→Wi(q), and hence Uθi(qk)→ Uθi(q).

This completes the proof that the graph of F is closed. So Kakutani’s Fixed Point Theorem applies,

and we know that there exists some strategy profile q satisfying q ∈ F (q). �

Proof of Corollary 1: Note from (6) that

wσ,k :=
K∑

κ=σ−1(k)

1∑κ
`=1 γ̃σ(`)

=
1

|a| +
K−1∑

κ=σ−1(k)

1∑κ
`=1 γ̃σ(`)

.

Let us prove that wσ,k ≥ 1/|a|. From the previous equation, this would follow if the last summation

is nonnegative. Suppose, by contradiction that this is not the case. Then, there exists a κ such

that σ−1(k) ≤ κ ≤ K − 1 such that
∑κ

`=1 γ̃σ(`) < 0. In other words, the cumulative capacity

slack of the CRP components {Cσ(1),Cσ(2), . . . ,Cσ(κ)} is negative. However, this would imply that

the cumulative arrival rate to these components exceeds the total service capacity of all the servers

in these components. This, together with the DAG structure connecting all the CRP components

imply that the stability condition in Proposition 1 is violated, which holds by assumption. From this

contradiction we conclude that wσ,k ≥ 1/|a| and then from (7) we also get that WCk ≥ 1/|a|.
Let us now prove the second part of the corollary, namely, there can be at most one CRP component

κ̂ ∈ [K] such that ŴCκ̂ = 1/|a|. From the previous discussion, it follows that the requirement

ŴCκ̂ = 1/|a| can only be satisfied if wσ,κ̂ = 1/|a| for all permutations σ associated a topological order.
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But this can only happen if σ−1(κ̂) = K for all permutation σ. Evidently, this condition can only be

satisfied by at most one CRP component and holds trivially if K = 1. �

Proof of Proposition 2: Without loss of generality let us index the CRP components in such a

way that Wk = W(k) for all k ∈ [K]. We partition the set [K] into equivalence classes {C1, . . . ,CL}
such that i, k ∈ C` if and only if Wi = Wk. We denote by W` the waiting time of class C` and by

n` := |C`| its cardinality. We also order these equivalence classes in such that W1 < W2 < · · · < WL.

Note that by assumption W is such that n1 = 1.

Next, we show how to implement W using a chained DAG. Define this chained DAG using the

partition {C1, . . . ,CL}. This is a DAG in which there is a directed arc between Ci and Ck if and only

if i ∈ C` and k ∈ C`+1. Fix a vector of capacity slacks γ̃ = (γ̃1, . . . , γ̃K) that satisfies γ̃ = |a| and

γ̃k = γ̂` for all k ∈ C`. It follows from this construction of the DAG and γ̃ that for any permutation

σ = (σ(1), σ(2), . . . , σ(K)) induced by some topological order the vector (γ̃σ−1(1), γ̃σ−1(2), . . . , γ̃σ−1(K))

is constant. This observation together with Theorem 2 imply that Q(σ) in (6) is also constant,

independent of σ. Furthermore, by symmetry it is not hard to see that two CRP components that

belong to the same partition C` have the same limiting scaled waiting times, which we denote by Ŵ`.

One can show from Theorem 2 that

Ŵ` = Ŵ`−1 +
1

n`

n∑̀
s=1

1∑L
j=`+1 nj γ̂j + s γ̂`

, ` = 1, 2 . . . , L (A2)

with Ŵ0 = 0. We use this condition to find the values of {γ̂`} that implement {W`}, that is, Ŵ` = W`

for all ` ∈ [L]. To this end, we use backward induction on `. For ` = L we have that

ŴL = ŴL−1 +
1

nL

nL∑
s=1

1

s γ̂L
.

Thus, γ̂L must satisfy

γ̂L =
1

(WL −WL−1)

1

nL

nL∑
s=1

1

s
.

Now suppose that we have determined the values of γ̂L, γ̂L−1, . . . , γ̂`+1 and define Γ̂` :=
∑L

j=`+1 nj γ̂j .

We find the value γ̂` by solving (A2)

W` = W`−1 +
1

n`

n∑̀
s=1

1

Γ̂` + s γ̂`
.

We note that there exists a unique γ̂` that solves this equation in the region γ̂` > −Γ̂`/n`. This follows

from the fact that the summation above is monotonically decreasing in γ̂` in this region and diverges

to +∞ as γ̂` approaches Γ̂`/n` from above and converges to zero as γ̂` approaches ∞.

It only remains to show that the vector {γ̂`} that we have constructed satisfies the cumulative capacity

slack constraint |γ̂| = |a|. Since n1 = 1 by assumption, (A2) reduces to

W1 =
1

Γ̂1 + γ̂1

,

where the denominator Γ̂1 + γ̂1 equals |γ̂|. The proof is completed by noticing that, by assumption,

W1 = W(1) = 1/|a|. �
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Proof of Proposition 4: Since q̂∗ is a heavy traffic equilibrium, there exists a direction φ̂∗ ∈ R|Θ|

satisfying the conditions in Definition 7. For ε > 0, let us define the strategy q(ε) = q̂∗ + φ̂∗ ε. To

prove the result, we will show that q(ε) satisfies condition (a) in the proposition for an appropriate

sequence (∆ε)ε>0 that converges to 0 as ε ↓ 0. Specifically, we need to show that for all θ ∈ Θ and for

all i, k ∈ [n]

q
(ε)
θi

(
Uθi
(
W (ε)(ε)

(q(ε)), p(ε)(q(ε))
)
− Uθk

(
W (ε)(ε)

(q(ε)), p(ε)(q(ε))
))
≥ −∆(ε). (A3)

Since q̂∗ is a heavy traffic equilibrium converging along the direction φ̂∗, conditions (a) and (b) in

Definition 7 imply that the left-hand side of this inequality converges to a non-negative limit as ε ↓ 0.

It follows then that for all ∆ > 0 there exists an ε(∆) > 0 such that for all ε ∈ (0, ε(∆)) we have

q
(ε)
θi

(
Uθi
(
Ŵ (ε)(q(ε)), p(ε)(q(ε))

)
− Uθk

(
Ŵ (ε)(q(ε)), p(ε)(q(ε))

))
≥ −∆.

Furthermore, we can always select the mapping ε(∆) > 0 to be continuous and monotonically increas-

ing in a neighborhood (0, ∆̄), for some ∆̄ > 0, and such that lim∆↓0 ε(∆) = 0. Then, for ε small

enough we can define ∆(ε) := ε−1(ε/2). It follows that limε↓0 ∆(ε) = 0 and that the inequality in (A3)

is satisfied. �

Proof of Proposition 5: Let us use a slight abuse of notation and denote by Ŵ ∗k the limiting

scaled waiting times of all service classes that belong to Ck for k ∈ [K]. Define the vector Ŵ ′ such

that Ŵ ′k = Ŵ ∗k −Ŵ ∗1 + 1/|a|. We next show that (q̂∗, Ŵ ′, p̂∗) is a heavy traffic equilibrium that weakly

Pareto dominates (q̂∗, Ŵ ∗, p̂∗) since Ŵ ′ ≤ Ŵ ∗. To this end, we note that by Proposition 2 Ŵ ′ is

implementable by a chained DAG on C. Let γ̃′ = (γ̃′1, . . . , γ̃
′
K) be the vector of cumulative capacity

slacks that implement Ŵ ′(see Definition 5) and define the direction of convergence to heavy traffic φ′

as a solution to system of linear equations γ̃′ = a q̂∗ − Aφ′. By this construction, one case see that

(q̂∗, Ŵ ′, p̂∗) satisfies conditions (a) and (b) in Definition 7. Indeed, (a) holds since the sequence of

pre-limit strategy profiles q′(ε) = q̂∗ + ε φ′ satisfies Ŵ ′ = limε↓0 Ŵ (ε)(q′(ε)) and p̂∗ = limε↓0 p(ε)(q′(ε)).
On the other hand, (b) holds trivially since Ŵ ′k is a translation of Ŵ ∗. �

Proof of Proposition 6 : To compute the average scaled waiting time Wmax under the Dedicated

menu we need to impose the equilibrium conditions. First, we need to ensure that the limiting arrival

rate to class i converges (from below) to µi for i = 1, 2. Thus, under the assumption A1 > µ1, we must

have some customer type θ̄ ∈ Θ1 that is randomizing between joining the dedicated queue for server 1

and the dedicated queue for server 2. In equilibrium, this randomization strategy should be such that

this customer type is indeed indifferent between joining these two service classes. To identify the type

θ̄ we need to rank the customers’ types in Θ1 according to the value of ∆Vθ. For this, let K1 = |Θ1|
denote the cardinality of |Θ1| and let us index its elements Θ1 = {θ1, θ2, . . . , θK1} in such a way that

∆Vθ1 ≥ ∆Vθ2 ≥ · · · ≥ ∆VθK1
. In case of ties, i.e., if ∆Vθi = ∆Vθi+1

, then we require Vθi1 ≥ Vθi+11.

Let us denote by κ̄ the index that defines θ̄, that is, θ̄ = θκ̄. Now, if type-θκ̄ customers are indifferent

between the two service classes then we must have that customers’ type θk (with k < κ̄) prefer class

1 over class 2. Hence, to ensure that the arrival rate to class i converges to µi from below the value

of κ̄ must be equal to

κ̄ := min

{
κ ∈ [K1] :

κ∑
k=1

Aθk > µ(1)

}
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and a fraction

q̂κ̄ :=
µ1 −

∑κ̄−1
k=1 Aθk∑κ̄

k=1Aθk

of the type-θκ̄ customers must select class 1.

Also, a type-θκ̄ is indifferent between the two dedicated queues if ∆Vθκ̄ = δ (ŴD
1 − ŴD

2 ), where ŴD
i is

the scaled steady-state mean waiting time of class i = 1, 2 under the Dedicated menu. Furthermore,

from Theorem 2, we know that ŴD
i = 1/γ̃i, where γ̃i is the scaled capacity slack of class i. But the

sum of the slacks of the two classes is equal to the aggregated system lack, that is, γ̃1 + γ̃2 = |a|. Using

this identity, the indifference condition ∆Vθκ̄ = δ (ŴD
1 − ŴD

2 ) leads to the following equation on γ̃1:

∆Vθκ̄ = δ

(
1

γ̃1
− 1

|a| − γ̃1

)
.

Solving for γ̃1 and plugging back the solution in the values for ŴD
1 and ŴD

2 we get

ŴD
1 =

2 ∆Vθκ̄

2 δ + |a|∆Vθκ̄ −
√

4 δ2 +
(
|a|∆Vθκ̄

)2 and ŴD
2 =

2 ∆Vθκ̄

|a|∆Vθκ̄ − 2 δ +
√

4 δ2 +
(
|a|∆Vθκ̄

)2 .
Finally, to obtain the value of Wmax we note that in a Dedicated menu a flow of µi customers join

class i in the heavy traffic limit, i = 1, 2. It follows that

Wmax =

(
µ1

µ1 + µ2

)
ŴD

1 +

(
µ2

µ1 + µ2

)
ŴD

2 . (A4)

Let us turn to the derivation of Wmed, the average customers’ delay performance achieved by the Full

and N1 menus. We can compute this value using a similar line arguments as the one we just used

to compute Wmax. Again the equilibrium conditions imply that customers type-θκ̄ (same as above)

must randomize between joining class 1 or class 3 and the randomization probability must equal q̂θκ̄ to

ensure that the arrival rate to class i converges to µi from below in the heavy traffic limit for i = 1, 3.

The main difference with the Dedicated menu is than under the N1 menu the two CRP components

are not longer disconnected but rather chained. Thus, Theorem 2 implies that the scaled waiting time

of class 3 is equal to ŴN1

3 = 1/|a|. In addition, a type-θκ̄ is indifferent between the two classes if

∆Vθκ̄ = δ (ŴN1

1 − ŴN1

3 ) and so ŴN1

1 = 1/|a| + ∆Vθκ̄/δ. Combining these values with the fact that a

flow of µ1 customers join class 1 in equilibrium we get that

Wmed =
1

|a| +

(
µ1

µ1 + µ2

)
∆Vθκ̄
δ

. (A5)

�

Proof of Theorem 3: First, under a Single Line menu every customer –irrespective of its type– is

served by server j with probability µj/|µ|. It follows that,

V
SL

=
∑
θ∈Θ

Aθ
|A|

∑
j∈[m]

µj
|µ| Vθj .
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On the other hand, let Ŵ ∗ = (Ŵ ∗i )i∈[n] and p̂∗ = [p̂∗ij ]i∈[n],j∈[m] be the limiting steady-state waiting

times and matching probabilities under the pair (M, q̂∗). It follows that

V (M, q̂∗) =
∑
θ∈Θ

Aθ
|A|

∑
i∈[n]

q̂∗θi
∑
j∈[m]

p̂∗ij Vθj .

Now, let λ̂∗i be the equilibrium arrival rate to class i ∈ [n] under (M, q̂∗), that is,

λ̂∗i =
∑
θ∈Θ

Aθ q̂
∗
θi.

and let us define the strategy q = [qθi]θ∈Θ,i∈[n] by

qθi =
λ̂∗i
|µ| .

Note that q is feasible strategy (i.e., q ∈ Q) since |λ̂∗| = |A| = |µ|.
By the equilibrium condition that q̂∗ satisfies, there is no customer type θ that would strictly prefer

to use strategy (qθi)i∈[n] instead of (q̂∗θi)i∈[n]. It follows that∑
i∈[n]

q̂∗θi
( ∑
j∈[m]

p̂∗ij Vθj − δ Ŵi

)
≥

∑
i∈[n]

qθi

( ∑
j∈[m]

p̂∗ij Vθj − δ Ŵi

)
(equilibrium condition)

=
∑
i∈[n]

λ̂∗i
|A|
( ∑
j∈[m]

p̂∗ij Vθj − δ Ŵi

)
(definition of λ̂∗i )

=
∑
j∈[m]

Vθj
|µ|

∑
i∈[n]

λ̂∗i p̂
∗
ij − δ

∑
i∈[n]

λ̂∗i
|µ| Ŵi

=
∑
j∈[m]

µj
|µ| Vθj − δ

∑
i∈[n]

λ̂∗i
|µ| Ŵi. (since

∑
i∈[n] λ̂

∗
i p̂
∗
ij = µj)

Let multiply both sides of the inequality by Aθ/|A| and sum over θ ∈ Θ to get

V (M, q̂∗)− δ
∑
θ∈Θ

Aθ
|A|

∑
i∈[n]

q̂∗θi Ŵi ≥ V SL − δ
∑
θ∈Θ

Aθ
|A|

∑
i∈[n]

λ̂∗i
|µ| Ŵi.

But∑
θ∈Θ

Aθ
|A|

∑
i∈[n]

q̂∗θi Ŵi =
∑
i∈[n]

Ŵi

|A|
∑
θ∈Θ

Aθ q̂
∗
θi =

∑
i∈[n]

λ̂∗i
|µ| Ŵi =

∑
θ∈Θ

Aθ
|A|

∑
i∈[n]

λ̂∗i
|µ| Ŵi (recall that |A| = |µ|)

and so we conclude that V (M, q̂∗) ≥ V SL
. �

Proof of Theorem 4: We will now use approximate complementary slackness to show that any

equilibrium set of flows under the partition menu gives an approximately optimal solution to the max

flow problem (Max-flow), and that the optimality gap goes to 0 as ε ↓ 0.

Recall that f
(ε)
θj is the flow of customers type θ served by server j in the max flow formulation

(Max-flow). Similarly, η
(ε)
θ and ω

(ε)
j are the dual variables for the flow balance constraint for customer
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type θ and the capacity constraint of server j, respectively, in the dual problem (??). For a feasi-

ble primal solution f
(ε)
θj and a feasible dual solution (η

(ε)
θ , ω

(ε)
j ) to satisfy approximate complementary

slackness, it is sufficient that

0 ≤
(
µj −

∑
θ f

(ε)
θj

)
ω

(ε)
j ≤ εj

0 ≤
(
η

(ε)
θ + ω

(ε)
j − Vθj

)
f

(ε)
θj ≤ εθj (A6)

for all θ and j, and εj , εθj � 1. With these we can show approximate optimality of f
(ε)
θj , namely, show

that
∑

θ,j Vθj f
(ε)
θj ≈ V̄(ε). Formally, weak duality gives:∑

θ,j

f
(ε)
θj Vθj ≤ V̄(ε) ≤

∑
θ

α
(ε)
θ η

(ε)
θ +

∑
j

µj ω
(ε)
j .

Weak complementary slackness and primal/dual feasibility imply:

∑
θ

α
(ε)
θ η

(ε)
θ +

∑
j

µj ω
(ε)
j ≤

∑
θ,j

f
(ε)
θj η

(ε)
θ +

∑
j

(
ω

(ε)
j

∑
θ

f
(ε)
θj + εj

)

=
∑
θ,j

f
(ε)
θj

(
η

(ε)
θ + ω

(ε)
j

)
+
∑
j

εj

≤
∑
θ,j

f
(ε)
θj Vθj +

∑
θ,j

εθj +
∑
j

εj .

Combining, we get

V̄(ε) −

∑
θ,j

εθj +
∑
j

εj

 ≤∑
θ,j

f
(ε)
θj Vθj ≤ V̄(ε). (A7)

Let us now show that for any equilibrium arrival rates fθj
(ε)§ for the εth system, we can construct

a dual solution such that approximate complementary slackness holds. To this end, let Ŵ
(ε)
j be the

equilibrium limited scaled waiting time for the service class served by server j. For all j ∈ [m] and

θ ∈ Θ, we let

ωj
(ε) = δ Ŵ

(ε)
j and ηθ

(ε) = max
j

{
Vθj − ωj(ε)

}
(A8)

denote a feasible dual solution. We know that under any equilibrium, f
(ε)
θk > 0 only ifj

j ∈ arg max
j′

{
V θj − δ Ŵ (ε)

j

}
, that is, j ∈ arg max

j′

{
V θj − ω(ε)

j

}
.

Therefore f
(ε)
θj > 0 only if ηθ

(ε) + ωj
(ε) − Vθj = 0. So exact complementary slackness holds for the first

set of dual constraints: εθj = 0 for all θ, j. Furthermore, for the primal constraints, we use the fact

that under the Dedicated menu service class j operates as a single M/M/1 queue with arrival rate∑
θ fθj

(ε) and service capacity j. It follows that the (non-scaled) waiting time in service class j equals

W
(ε)
j = 1/(µj−

∑
θ fθj

(ε)). Thus, since the scaled waiting time in service class j satisfies Ŵ
(ε)
j = εW

(ε)
j ,

which implies

0 ≤
(
µj −

∑
θ

fθj
(ε)

)
ωj

(ε) = δ ε. (A9)

§We know that an equilibrium exists from Theorem 1.
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Or, approximate complementary slackness holds with εj = δ ε. Then (A7) implies

V̄(ε) −
∑
θ,j

fθj
(ε)Vθj ≤ δ εm.

So as ε ↓ 0, the difference between the value V (ε) :=
∑

θ,j fθj
(ε)Vθj achieved in equilibrium under the

Dedicated menu and the upper bound V̄(ε) converges to zero.

�

Proof of Theorem 5: To get the main idea across, we first assume that for all customer types θ,

the rewards Vθj are distinct. Later in the proof we remove this assumption.

Let the service classes be labeled so that service class j is the dedicated service class for server j. We

begin by claiming that in any heavy traffic equilibrium, with limiting probabilities p̂∗, for any service

class i there can be at most one server j with p̂∗ij > 0. Suppose not, and assume that there are p̂∗ij > 0

and p̂∗ij′ > 0 (for simplicity assume there are only two such servers, the proof generalizes easily). Then

servers j and j′ must be in the same CRP component. Further service classes j and j′ must also be in

the same CRP component and hence the limiting scaled mean delay of service classes j and j′ equal

the limiting scaled mean waiting time for service class i. It can happen that the arrival rate into the

dedicated service classes j or j′ could be zero, however we can still talk about the virtual waiting time

of a customer joining these service classes, and the statement would hold for the limiting scaled virtual

waiting time.

Now by assumption, at least one of the dedicated service classes j or j′ give strictly higher matching

value and no higher delay to any customer type joining class i, and therefore this can not be an

equilibrium.

The equilibrium matching system therefore looks as follows: the service classes are partitioned into

m + 1 sets C0, C1, . . . , Cm, such that the classes in C0 have asymptotically negligible demand: C0 =

{i ∈ [n]|Λi = 0}. For j ≥ 1, the service classes in Cj have asymptotically non-negligible flow to only

server j: p̂∗ij = 1 for i ∈ Cj . Again, for this outcome to be an equilibrium, we must have the limiting

scaled mean waiting for all service classes within each Cj (j ≥ 1) to be equal, and therefore in heavy-

traffic limit any customer type will be indifferent between any service class within Cj . We will denote

by Ŵ ∗j the limiting scaled mean waiting time for service classes in Cj for j ≥ 2. To summarize, for

any service class i ∈ Cj , the limiting utility obtained by a customer type θ is Uθi = Vθj − δŴj .

Define:

fθj =
∑
i∈Cj

Aθ q̂
∗
θi. (A10)

as the total flow from customer type θ to server j (through service classes in Cj). Denoting the utility

of type θ as

Uθ = max
i
Uθi = max

j
Vθj − δŴj ,

best response condition gives fθj > 0 only if j ∈ argmaxj′
{
Vθj′ − δŴj′

}
or equivalently,

fθj ·
(
Uθ − Vθj + δŴj

)
= 0.
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But these are precisely the complementary slackness conditions for the maximum value flow linear

program (Max-flow) in the proof of Theorem 4. Since [fθj ] is a feasible primal solution, the comple-

mentary slackness conditions imply that it is also an optimal, and hence value maximizing, flow.

Removing assumption on rewards: To summarize what we have done so far, we showed that we

can use the equilibrium to define the flow matrix [fθj ], customer utilities Uθ, and server delays δŴj

so that they are feasible primal dual solutions to the maximum value flow problem (Max-flow) and

satisfy complementary slackness conditions. We now show we can do so without the restriction on

rewards.

Fix a heavy-traffic equilibrium q̂∗, and the resulting limiting probabilities p̂∗. Define Ŵi as the limiting

mean scaled waiting time of the CRP component that service class j belongs to. Recall the definitions:

Uθi =
∑
j

p̂∗ij − δŴi,

and by the best response condition, the customer utility is defined by

Uθ = max
i
Uθi.

Define S∗(i) = {j : p̂∗ij > 0} as the “effective”set of servers for service class i. Let customer type θ

join a service class i (that is, q̂∗θi > 0) so that Uθ = Uθi. Suppose |S∗(i)| ≥ 2 (the case |S∗(i) = 1| is

vacuously true for the argument). Then we must have that for j, j′ ∈ S∗(i), Ŵj = Ŵj′ since j, j′ are

in the same CRP component. It must also be the case that for all j ∈ S∗(i), Vθj are equal. If not,

then type θ can deviate to the dedicated service class for the server j ∈ S∗(i) with highest reward

– this strictly improves the reward and does not incur any further delay disutility. Therefore, for all

j ∈ S∗(i)
Vθj − δŴj = Uθi = Uθ.

Define the total flow from customer type θ to server j, fθj , as:

fθj = Aθ
∑
i

q̂∗θip̂
∗
ij .

The preceding arguments imply fθj > 0 only if Uθ = Vθj − δŴj . We thus again find that [fθj ], Uθ, Ŵj

define feasible primal-dual solution to (Max-flow) satisfying complementary slackness, and hence the

flow [fθj ] maximizes the matching reward. �

Proof of Theorem 6: Suppose the service provider is able to achieve a first best outcome by offering

the menu M∗. As there may be multiple equilibria, throughout this proof we will use equilibrium to

mean the first best outcome achieving equilibrium. Let q∗θi be the equilibrium strategies, and let p∗ij
be the equilibrium matching rates. We will also let f∗θj be the equilibrium flows between customer

types and servers.

Since a first best outcome is achieved, we know that f∗ij constitute an optimal solution to Max-flow

with ε = 0. We will begin by showing that the positive flows from this solution form a connected

graph.
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Since a first best outcome is achieved, we know that in equilibirum there is a single CRP component,

and hence there is a connected graph between service classes and servers. Since every customer type

is joining at least one service class, this implies that there is a path between every customer type and

every server, which in turn implies that there is a path between every pair of customer types. Hence

the flows between customer types and servers also form a connected graph.

Next we will show that no customer type prefers the Max-flow matching outcome of any other

customer type. Take any two customer types θ̂ and θ̃. We will show that θ̂ does not prefer that

matching outcome of θ̃. We will let V̂ be the matching value that θ̂ achieves from their equilibrium

strategy. Since there is a single CRP component, we know that V̂ is the value that θ̂ gains from every

service class they are joining in equilibrium, and that V̂ is at least as large as the value θ̂ would achieve

from joining any other service class.

The value θ̂ gains from θ̃’s Max-flow matching outcome is

V (θ̂, θ̃) =
∑
i

q∗
θ̃i

∑
j

pijVθ̂,j

≤
∑
i

q∗
θ̃i
V̂

= V̂ .

Thus θ̂ prefers their own matching outcome to that of any other customer type. This completes the

proof. �

Proof of Corollary 2: The proof of this corollary follows the proof of Theorem 4 for the Dedicated

menu essentially verbatim by reinterpreting an individual server in the Dedicated menu by a super-

server for each of the partitions with a service capacity equals to the sum of the capacities of the

servers in the partition. The only small difference in the proof relates to equation (A9). Specifically,

since super-server k does not operates exactly as an M/M/1, it is not longer true that the (non-scaled)

waiting time W
(ε)
k for service class Ck is equal to 1/(µSk −

∑
θ f̂θk). However, we next show that for

all ε ≤ minj{µj}/((m+ 1) |a|), we have(
µSk −

∑
θ

f̂θk

)
W

(ε)
k ≤ 2,

which suffices to complete the rest of the steps in the proof of Theorem 4.

To this end, we use the fact that service class Ck is a single-line multi-server queue with arrival rate∑
θ f

(ε)
θk and system utilization ρ

(ε)
k :=

∑
θ f

(ε)
θk /µSk . Let us denote by mk the number of servers in Sk

and by {π(ε)
k (s)} the stationary distribution of the number of customers in service class k (including

those in service). The average number of customers in this class satisfies

L
(ε)
k =

∞∑
s=0

s π
(ε)
k (s) ≤

mk−1∑
s=0

mk π
(ε)
k (s) +

∞∑
s=mk

s π
(ε)
k (s) = mk +

∞∑
s=mk

(s−mk)π
(ε)
k (s)

= mk +
∞∑
s=0

s π
(ε)
k (mk + s) = mk +

∞∑
s=0

s (ρ
(ε)
k )s π

(ε)
k (mk) = mk +

ρ
(ε)
k

(1− ρ(ε)
k )2

π
(ε)
k (mk).
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In the second-to-last equality we have used the brith-death property structure of the system, which

implies πk(s) = (ρ
(ε)
k )s−mk π(ε)

k (mk) for all s ≥ mk. We also use this fact to get an upper bound on the

value of π
(ε)
k (mk) as follows:

1 =
∞∑
s=0

π
(ε)
k (s) ≥

∞∑
s=mk

π
(ε)
k (s) =

∞∑
s=mk

(ρ
(ε)
k )s−mk π(ε)

k (mk) =
π

(ε)
k (mk)

1− ρ(ε)
k

=⇒ π
(ε)
k (mk) ≤ 1− ρ(ε)

k .

Combining this inequality, the inequality for L
(ε)
k above and the fact that W

(ε)
k = L

(ε)
k /

∑
θ f

(ε)
θk (by

Little’s law) we get (
µSk −

∑
θ

f
(ε)
θk

)
W

(ε)
k ≤

(
µSk −

∑
θ

f
(ε)
θk

) mk∑
θ f̂θk

+ 1.

By stability we must have
∑

θ fθk
(ε) ≥ |α(ε)|− (|µ|−µSk) = µSk−|a| ε. We use this inequality to upper

bound the right-hand side above to get(
µSk −

∑
θ

f
(ε)
θk

)
W

(ε)
k ≤ |a|mk ε

µSk − |a| ε
+ 1.

Finally, it is not hard to check that for ε ≤ minj{µj}/((m+ 1) |a|) the upper bound above is less than

or equal to 2. �

Proof of Proposition 8: Let (q̂∗, Ŵ PB, p̂∗) be the heavy traffic equilibrium under the pure partition

menu. From Proposition 7 and the assumption ω1 < ω2 we have that 1/|a| < Ŵ PB
1 < Ŵ PB

2 . Thus,

(q̂∗, Ŵ PB, p̂∗) satisfies the conditions in Proposition 5. It follows that we can construct another heavy

traffic equilibrium (q̂∗, ŴCB, p̂∗) that (weakly) Pareto dominates (q̂∗, Ŵ PB, p̂∗) by chaining the CRP

components in the pure partition menu. Furthermore, from the proof of Proposition 5 we have that

ŴCB
1 = 1/|a| and ŴCB

k = Ŵ PB
k − Ŵ PB

1 + 1/|a| as required. Finally, it follows trivially that the two

heavy traffic equilibria (q̂∗, Ŵ PB, p̂∗) and (q̂∗, ŴCB, p̂∗) produce the same matching value V̄ since they

have the same limiting strategy profile q̂∗ and matching probabilities p̂∗. �
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Appendix B: Service Menus with Two Servers

In this section we illustrate the model and solution to the service provider’s problem in (1) by charac-

terizing optimal service menus for the special case in which the system has two servers (i.e., m = 2).

In this setting, we are able to obtain a complete solution as a function of the model’s parameters,

which provides a number of insights that we will use later to analyze the general case with an arbitrary

number of severs. The two-server model is also worth studying in its own right as it provides a parsi-

monious framework that allows for a non-trivial segmentation of service (e.g., high vs. low quality or

fast vs. slow service).

With two servers, there are three possible service classes, namely, Class 1 served only by server 1,

Class 2 served only by server 2, and Class 3 served by both servers. With these three classes available,

the service provider can offer one of the following five admissible service menus (see Figure 1):†

• Dedicated menu (D), in which Classes 1 and 2 are offered,

• Single-line menu (SL), in which only service Class 3 is offered,

• Full menu (F), in which all three classes are offered,

• Ni menu, in which Classes i and 3 are both offered, for i = 1, 2.

Performance Analysis in Steady State

In order to derive the equilibrium strategies of these menus we first need to characterize their steady-

state performance in terms of waiting times and matching probabilities. To this end, let us fix the

service menu M . Since the steady-state analysis of the Dedicated and Single Line menus reduce to

those of two M/M/1 and one M/M/2 systems, respectively, we will only discuss the cases in which

M ∈ {F, N1, N2}.
We derive the steady-state performance of an arbitrary strategy profile q ∈ Q(M) using the Markov

chain representation of the system proposed by Adan and Weiss (2014) and its corresponding station-

ary distribution. The following result summarizes this derivation, whose statement make use of the

following notation Λ := |λ|, Γ := |µ|, ∆i := µi − λi, for i = 1, 2, ∆ := Γ− Λ and

B :=

[
∆ + λ3

∆ ∆1 ∆2
+

1

∆1 (Λ− λ1)
+

1

∆2 (Λ− λ2)
+

Λ + λ3

Λ (Λ− λ1) (Λ− λ2)

]−1

.

Proposition 9. (Steady-State Performance) Suppose M ∈ {F, N1, N2}. Let q ∈ Q(M) be a fixed

customers’ strategy profile, which induces a vector of arrival rates {λi}i∈[n] to the service classes.

Then, the steady-state probability that a customer joining Class 3 is served by server 1 and server 2

are equal to

p31 = B
[

1

Λ (Λ− λ2)
+

1

∆2 (Λ− λ2)
+

1

∆ (Γ− λ2)

(
1 +

µ1

∆2

)]
and p32 = 1− p31, (B1)

†We note that it is possible to offer two additional menus each consisting exclusively of service Class i with i = 1, 2.

However, the menu that offers only Class i is dominated by menu Ni.
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respectively. The steady-state waiting times for the three services classes are given by

W1 = W3 +
B

∆2
1

[
1

Λ− λ1
+

1

∆

]
, W2 = W3 +

B
∆2

2

[
1

Λ− λ2
+

1

∆

]
and W3 =

B (∆ + λ3)

∆2 ∆1 ∆2
. (B2)

Proof of Proposition 9: Let X denote set of states of the Markov chain proposed by Adan and

Weiss (2014) with x ∈ X a generic state of this Markov chain and π(x) its steady state probability

distribution. The set X is partitioned into the following subsets:

(a) x = (si, ni, sj , nj3): Both servers are busy with server i serving the oldest arrival, with i = 1, 2

and j = 3− i. There are ni ≥ 0 customers waiting in the queue of Class i and nj3 ≥ 0 customers

waiting in the queues of Classes j and 3 combined. The steady-state probability of x is given by

π(x) = B λ
ni
i (λ1 + λ2 + λ3)nj3

µni+1
i (µ1 + µ2)nj3+1

,

for some appropriate normalizing constant B.

(b) x = (si, ni, sj): Server i is busy and server j is idle. There are ni ≥ 0 customers waiting in the

queue of Class i and the queues of Classes 1 and 3 are necessarily empty. In this case,

π(x) = B λnii
µni+1
i (λj + λ3)

.

(c) x = (si, sj): Both servers are idle with server i being idle the longest. In this case,

π(x) =
B

(λ1 + λ2 + λ3)(λi + λ3)
.

The value of B is obtained by imposing ∑
x∈X

π(x) = 1.

To alleviate the notation, let us define Λ := λ1 + λ2 + λ3, Γ := µ1 + µ2, ∆1 := µ1 − λ1, ∆2 := µ2 − λ2

and ∆ := Γ− Λ. It follows that

B =

[
∆ + λ3

∆ ∆1 ∆2
+

1

∆1 (Λ− λ1)
+

1

∆2 (Λ− λ2)
+

Λ + λ3

Λ (Λ− λ1) (Λ− λ2)

]−1

. (B3)

To calculate the matching probabilities, we first calculate the rate of transitions in the Markov chain

associated with a customer from service class 3 beginning service with each server. As the problem is

symmetric in the servers, we will only go through the calculations to identify the rate of transitions

associated with a class 3 customer beginning service with server 1, which we shall label f31.

The FCFS-ALIS service discipline lets us immediately conclude that there are no transitions from states

(s2, s1) or (s1, n1, s2) that involve a class 3 customer beginning service with server 1. Any arriving class

3 customer will immediately begin service with the server who has been idle longest, which is server 2

in both cases. In the (s1, n1, s2), we can also see that server 1 completing service will not trigger a class

3 customer beginning service with server 1, as the only waiting customers for server 1 to serve are those
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that are incompatible with server 2 (i.e., class 1 customers). Similar reasoning tells us that the transi-

tions from state (s1, s2) and (s2, n2, s1) associated with a class 3 customer beginning service with server

1 are all of those transitions resulting from a class 3 customer arriving, and hence f31 includes the terms

λ3π(s1, s2) and λ3π(s2, n2, s1). For n1 > 0, there are no transitions from (s1, n1, s2, n2) that result in

a class 3 customer beginning service with server 1, since as soon as a server 1 finishes serving the cus-

tomer they are currently serving, they will begin serving another waiting class 1 customer. However,

for n1 = 0 and n2 > 0, when server 1 finished serving their current customer, they will begin service

with a class 3 customer if a class 3 has been waiting the longest out of those compatible with server

1. This will happen if n2 consists of x class 2 customers, followed by a class 3 customer. Thus f31 will

include the term µ1
∑∞

n2=1

∑n2−1
x=0

λx2λ3

(λ1+λ2+λ3)x+1π(s1, 0, s2, n2). We can use similar reasoning to include

that the transition rate also includes the term µ1
∑∞

n1=1

∑∞
n2=0

∑n1−1
x=0

λx1λ3

(λ1+λ2+λ3)x+1π(s2, n2, s1, n1).

Thus the total rate of transitions involving a class 3 customer beginning service with server 1 is

f31 = Bλ3

[
1

Λ (Λ− λ2)
+

1

∆2 (Λ− λ2)
+

1

∆ (Γ− λ2)

(
1 +

µ1

∆2

)]
. (B4)

The probability that a class 3 customer is server by server 1 is p31 = f31/λ3.

To conclude the proof, we note that the expected waiting times for the different service class can be

calculated using Little’s Law. �

Equilibrium Strategies

The key feature of the two-server model that we exploit to derive customers’ equilibrium strategies is

the fact that we can rank the customer types based on their relative preferences over the two servers.

To this end, define ∆Vθ := Vθ2 − Vθ1 for each customer type θ ∈ [Θ] and label the elements in [Θ] by

θ1, θ2, . . . , θΘ such that ∆Vθi ≤ ∆Vθj for all 1 ≤ i < j ≤ Θ. In case of a tie, the class that values server

2 more gets assigned a higher index.

Under this indexing, it is not hard to see that we can restrict ourselves to cut-off (threshold-type)

equilibria. For example, if the service provider offers a Dedicated menu then a type θ customer

(weakly) prefers Class 1 over Class 2 if ∆Vθ ≤ δ (W2 −W1). Thus, there exists a customer type θτ
with τ ∈ [Θ] such that all customer types θk with k ≤ τ − 1 select Class 1, all customer types θk
with k ≥ τ + 1 select Class 2 and customers of type θτ are indifferent and randomize between the

two service classes. Similarly, if the service provider offers the Full menu then a type θ customer

weakly prefers Class 1 to Class 3 if p32 ∆Vθ ≤ δ (W3 −W1) and weakly prefers Class 2 to Class 3 if

p31 ∆Vθ ≥ δ (W2−W3). In this case, an equilibrium involves two thresholds, τ1, τ2 ∈ [Θ] with τ1 ≤ τ2.

All customer types θk with k ≤ τ1−1 select Class 1, all customer types θk with k ≥ τ2 + 1 select Class

2, all customer types θk with τ1 + 1 ≤ k ≤ τ2 − 1 select Class 3, customers type θτi are indifferent

between Class i and Class 3 for i = 1, 2.

Proposition 10 below exploits this threshold structure to characterize equilibrium strategies for the

D, N1 and F menus‡. The statement of this proposition make use of some additional notation. For

0 ≤ x1 ≤ x2 ≤ Θ, we define

λ1(x) :=

bxc∑
k=1

αθk + (x− bxc)αθdxe ,

‡The equilibrium strategy for the Single Line is trivial and for the N2 menu it can be derived from the one for the N1

menu by interchanging the labels of the two servers.
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λ2(x2) = |α| − λ1(x2) and λ3(x1, x2) = |α| − λ1(x1) − λ2(x2). These are the arrival rates to service

classes 1, 2 and 3, respectively, if all customers type {1, 2, . . . , bx1c} plus a fraction (x1 − bx1c) of

customers type dx1e join Class 1, all customers type {dx2e + 1, . . . ,Θ} plus a fraction (dx2e − x2) of

customers type dx2e join Class 2, and all remaining customers join Class 3. To ensure stability, we

will need to bound the values of x1 and x2 such that 0 ≤ x1 ≤ x̄1 and x2 ≤ x2 ≤ Θ with

x̄1 := max
{

0 ≤ x ≤ Θ: λ1(x) ≤ µ1

}
and x2 := min

{
0 ≤ x ≤ Θ: λ2(x) ≤ µ2

}
.

Note that under the global stability condition |α| < |µ| we must have x2 < x̄1. For a pair (x1, x2) ∈
[0, x̄1)×(x2, |Θ|]∩{x1 ≤ x2}, we define the steady-state matching probabilities p3j(x1, x2) and waiting

times Wi(x1, x2) for i = 1, 2, 3 and j = 1, 2 by replacing the values λ1(x1), λ2(x2) and λ3(x1, x2) in

equations (B1) and (B2), respectively.

Proposition 10. Suppose the service provider offers menus M ∈ {D,N1, F}. There exists two thresh-

olds 0 ≤ x∗1 ≤ x∗2 ≤ ϑ such that an equilibrium profile (q∗θk1, q
∗
θk2, q

∗
θk3) for a type-θk customer satisfies

q∗θk1 =


1 if k ≤ dx∗1e − 1

x∗1 − bx∗1c if k = dx∗1e
0 if k ≥ dx∗1e+ 1

q∗θk2 =


0 if k ≤ dx∗2e − 1

dx∗2e − x∗2 if k = dx∗2e
1 if k ≥ dx∗2e+ 1

and q∗θk3 = 1− q∗θk1 − q∗θk2. The values of x∗1 and x∗2 depends on the specific menu M as follows:

–) Dedicated Menu: Let x∗ = sup
{
x ∈ (x2, x̄1) : ∆Vθdxe ≤ δ

(
W2(x, x) −W1(x, x)

)}
. If x∗ /∈ N then

x∗1 = x∗2 = x∗. Otherwise, x∗1 = x∗ + 1 and x∗2 = x∗.

–) N1 Menu: x∗1 = sup
{
x ∈ [0, x2 ∧ x̄1) : p32(x, x∗2) ∆Vθdxe ≤ δ

(
W3(x, x∗2)−W1(x, x∗2)

)}
and x∗2 = Θ.

–) Full Menu: The values of x∗1 and x∗2 solves the system of equations

x∗1 = sup
{
x ∈ [0, x∗2 ∧ x̄1) : p32(x, x∗2) ∆Vθdxe ≤ δ

(
W3(x, x∗2)−W1(x, x∗2)

)}
x∗2 = sup

{
x ∈ (x2 ∨ x∗1, |Θ|] : p31(x∗1, x) ∆Vθdxe ≤ δ

(
W2(x∗1, x)−W3(x∗1, x)

)}
.

An example of the equilibrium strategies derived in Proposition 10 is depicted in Figure 2. While

Proposition 10 provides a complete characterization of customers’ equilibrium strategies for the Dedi-

cated, N1 (N2), and Full menus we can only derive these equilibria computationally for any particular

set of parameters. Furthermore, as we try to move to more complex systems with an arbitrary number

of servers, we are no longer able to rank customer types based on their preferences over just two servers

and use the simple cut-off analysis that we have used above to derive their equilibrium strategies. For

this reason, and to say something more concrete about equilibrium outcomes for general systems, we

will investigate their performance under heavy traffic conditions.

Proof of Proposition 10: The proof of the proposition follows from noticing that in the equilibrium

of each of the three menus some customer type(s) needs to randomize between two service classes to

ensure that the equilibrium condition are satisfied. It is easy to see that the values of x∗i , i = 1, 2

specify precisely the customer types that need to randomized. �
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Appendix C: Numerics

Here we include the LP used to find an upper bound under FCFS-ALIS scheduling on the performance

of any menu used in section Section 8.

The following are the decision variables used in the LP. formulation:

-) pθj : probability that customer type θ is served by server j.

-) fθj : flow of type-θ customers to server j.

-) Wθ: waiting time for type θ customers.

Objective: ∑
θ∈Θ

Aθ
∑
j∈[m]

pθjVθj − ζ
∑
θ∈Θ

AθWθ (B5)

Constraints:

Flow balance:
∑
j

pθj = 1,
∑
θ

Aθpθj = µ, fθj = Aθpθj . (B6)

Waiting time constraint: Wθ ≥
1∑
θ aθ

(B7)

Incentive compatibility:
∑
j

(pθj − pθ′j)Vθj +Wθ′ −Wθ ≥ 0. (B8)

Non-negativity of decision variables: {pθj}, {fθj}{Wθ} ≥ 0. (B9)

Figure 13: LP for finding an upperbound on the performance of any menu.
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