Abstract—We investigate the potential of digitally sampling scintillation pulses techniques for positron emission tomography (PET), in this paper focusing on the determination of the event time. We have built, and continue building, a digital library of PET event waveforms generated with various combinations of photo-detectors and scintillator materials, with various crystal sizes. Events in this digital library are obtained at a high sampling of 20 GSPs (Giga-samples per second) so that their waveforms are recorded with high accuracy. We employ a dataset in this library to evaluate two methods for digitizing the event pulses and various digital signal processing (DSP) techniques to analyze the resulting digital samples. Our results show that the two digitization methods that we studied can yield a coincidence timing resolution of about 300 ps FWHM when applied to events generated by a pair of LSO+PMT detector units. This timing resolution is comparable with that is achieved for the same detector pair with a constant fraction discriminator. Our results have therefore demonstrated the promising potential of digitally sampling scintillation pulses techniques in PET imaging.

Index Terms—Positron Emission Tomography (PET), Digital Signal Processing (DSP), Scintillation Pulse

I. INTRODUCTION

The electronics technology is undergoing digital revolution and the strengths of digital signal processing (DSP) in consumer electronics are well established. In biomedical imaging, the advantages of using DSP technologies have been demonstrated in ultrasound imaging and magnetic resonance imaging (MRI) [1], [2]. DSP approaches have also been successfully used to improve the energy resolution and reduce the dead time in γ-ray and X-ray detectors [3]. In modern positron emission tomography (PET), some forms of digital data-acquisition (DAQ) have been implemented. Generally, for LSO crystals the event pulses are shaped and then digitized by use of ~20-200 MSps (Mega-samples per second) analog-to-digital converters (ADCs) to obtain only ~40 samples per event [4]–[6]. The small number of digital samples obtained for an event is primarily used for improving the energy resolution, handling event pileup and baseline shifting, and reducing the dead time [6]. For determining the event time, digital constant fraction discriminator (CFD) and leading-edge triggering have been considered [7], [8], but the use of analog CFDs is still common. The typical coincidence timing resolution of modern PET systems is in the range of ~1 ns to ~4 ns. For time-of-flight (TOF) PET systems, ~570 picosecond (ps) coincidence timing resolutions are reported [9], [10]. Therefore, PET event processing still follows the general principle that is developed decades ago with analog devices [11], [12]. Also, analog circuit blocks, such as shaper amplifier or CFDs, are still involved in PET event processing as key components.

We are interested in developing DAQ technologies for PET in that we will digitize PET event pulses to capture their waveforms and apply digital-signal analysis to the resulting samples for generating relevant event information. When doing so, we also wish to eliminate analog circuit blocks as much as possible. The development of such DAQ schemes for PET has both theoretical interest and practical significance. Successful development of PET digital DAQ by minimizing analog circuit blocks will enable PET scientists to tap into the large collection of inexpensive, general-purpose digital electronics components available in the market and the large amount of resources existing to support these components. It also allows one to reap the benefits of the continuous and aggressive technological inventions and upgrades that are driven by the vast interest in the DSP technology from almost every areas of consumer electronics. As a result, the development of digitally sampling scintillation pulses technology can bring about faster upgrade and lower cost [13], [14]. Another benefit is related to the capability to easily test and implement various event-processing algorithms for generating more accurate energy, timing and position information about an PET event. Digital electronics is also less sensitive to noise and fluctuations in temperature and voltage [3]. In combination with its ready upgradability, the resulting instruments are likely to be more robust and easier to calibrate. PET DAQs with digital pulse processing by use of shapers and moderate sampling rate ADCs have been proposed and demonstrated [5], [7], [15]. We develop PET DAQ techniques to sample scintillation pulses directly with multiple-threshold discriminators or high speed ADCs for achieving reasonable timing resolution for TOF-PET.
In this paper, we investigate the development of digitally sampling scintillation pulses technologies for PET. We focus on the task of event-time determination, with an interest in examining the possibility of achieving reasonable timing resolution for TOF-PET imaging. We examine two schemes for digitizing the event pulses, including one method that generates multiple samples at pre-defined voltage thresholds and another method that generates samples at regular time intervals. Digital samples generated by both methods for an event are fitted with a straight line to determine the event time.

The remaining of this paper is organized as follows. In Sect. II, we describe our digital library and specifically the detectors and dataset employed in our investigation. In Sect. III, we present the coincidence timing resolution obtained by measurement with a fast analog CFD, along with that generated by simulation with a software CFD implemented in SPICE (Simulation Program with Integrated Circuit Emphasis). In Sect. IV, we discuss the two digitizing schemes for generating digital samples of an event pulse, describe the linear regression method for determining event time from the digital samples, and present the results obtained. Finally, concluding remarks are given in Sect. V.

II. DIGITAL LIBRARY OF PET EVENT PULSES

Figure 1 illustrates the experimental setup for producing the digitized event waveforms for evaluating various digitization schemes and DSP methods. The LSO crystals, of 6.25×6.25×25 mm3 in size, are optically coupled to the Hamamatsu R9800 photomultiplier tubes (PMTs) via one of their 6.25×25 mm2 surfaces, with the other five surfaces wrapped in Teflon tape. The PMTs are operated at −1300 Volt and their outputs are directly connected to a Tektronics TDS6154C digital storage oscilloscope with a 50 Ω termination. This scope has a 15 GHz bandwidth and provides a sampling rate up to 40 GSps. When performing simultaneous sampling on two channels, its sampling rate becomes 20 GSps per channel (i.e., a 50 ps sampling interval). A weak F-18 source is placed at a location close to one of the LSO/PMT unit. The scope is then triggered by an event generated at the far-side LSO/PMT unit, thereby ensuring that the majority of the recorded event pairs are coincidence events. For each recorded event pair, 4000 samples each channel are generated. Therefore, the pulses are recorded for a duration of 200 ns, which is adequate with respect to the ∼40 ns scintillation decay of the LSO.

Figure 2 shows a sample pair of digitized event pulses. Event energy is estimated by summing up all the digitized samples of a pulse. Figure 3 shows the resulting pulse-height spectrum, calibrated to 511 keV, derived from a dataset containing a total of 9000 event pairs. Only the histogram obtained for events acquired at the channel 1 of the digital scope is shown. A Gaussian fit to the photopeak (thick black curves) indicates an energy resolution of about 16%.

In addition to the LSO/PMT detectors described above, our pulse library also contain digitized events generated by other scintillators and photo-detectors (PDs). In particular, it contains coincidence events generated by LYSO/MPPC detectors.
The LYSO crystal is either $1 \times 1 \times 10$ mm3 or $2 \times 2 \times 10$ mm3 in size. The MPPC, stands for multi-pixel photon counter, is a silicon photomultiplier (SiPM) technology offered by Hamamatsu [17]. SiPM is a novel solid-state PD that consists of hundreds or thousands of Giger-mode photodiodes to provide a gain comparable with the PMT while requiring an operating voltage of only 40-70 Volts. It is found quite promising for PET application and several research groups are actively evaluating its potentials and limitations [17]–[19]. In addition, our library also contains events generated by the HRRT (High Resolution Research Tomograph) detector modules [20]. The HRRT detector modules contain an 8×8 array of double-layered LSO/LYSO crystals, coupled to a 2×2 PMT array in a quadrant-sharing configuration. Individual crystal segment of the detector module is $2.1 \times 2.1 \times 10$ mm3 in size. The LSO and LYSO are different in their scintillation light decay time constants. Therefore, the DAQ electronics can determine inside which crystal a detected event is generated based on the scintillator decay. This library is very valuable for testing different pulse digitization schemes and DSP methods, and comparing their performance in terms of various event information of interest such as event time, event energy, crystal identification in a block detector, and depth-of-interaction resolution. We are extending this library to contain more scintillators and PDs.

III. COINCIDENCE TIMING RESOLUTION WITH CFD

The conventional analog CFD is a well-established and widely-used technique for PET event-time determination. Figure 5 shows the coincidence timing histograms of the LSO/PMT modules measured by use of the Canberra 454 fast CFD (attenuation=0.2, delay=1.6ns). We obtain a coincidence timing resolution of 297 ps, 313 ps, and 314 ps full-width-at-the-half-maximum (FWHM) when using 350, 175, and 85 keV thresholds for the CFD, respectively.

We also implemented a SPICE model for the CFD (see Fig. 6) and applied it to the LSO/PMT dataset containing 9000 event pairs as described above in Sect. II. Figure 7 shows the coincidence time histograms obtained by using a 0.2 attenuation and 1.6 ns delay in the CFD model. These histograms show a coincidence timing resolution of 314 ± 12 ps, 356 ± 8 ps, and 403 ± 13 ps FWHM when using 350, 175, and 85 keV thresholds for the software CFD. Other attenuation and delay settings are also examined. Table I summarizes the coincidence timing resolution obtained with a 350 keV threshold. We observe a coincidence timing resolution of ~ 300 ps. This agreement with the Canberra 454 CFD results indicates that we can use the 300 ps timing resolution obtained by use of the fast analog CFD as a benchmark for evaluating the digital event-time determination methods that we will describe below.
Fig. 7. Coincidence timing histograms by use of the SPICE CFD model (0.2 attenuation and 1.6 ns delay), with three energy thresholds. Their FWHMs range from 314 ps to 430 ps, which is similar to but worse than those obtained by actual measurements shown in Fig. 5 by using a Canberra 454 CFD.

TABLE I

COINCIDENCE TIMING RESOLUTIONS BY USE OF A SPICE CFD MODEL AND AN LSO/PMT DATASET IN OUR DIGITAL PULSE LIBRARY.

<table>
<thead>
<tr>
<th>atten</th>
<th>delay (ns)</th>
<th>FWHM (ps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.15</td>
<td>1.0</td>
<td>523 ± 11</td>
</tr>
<tr>
<td>0.20</td>
<td>1.0</td>
<td>406 ± 6</td>
</tr>
<tr>
<td>0.30</td>
<td>1.0</td>
<td>314 ± 9</td>
</tr>
<tr>
<td>0.15</td>
<td>1.6</td>
<td>302 ± 10</td>
</tr>
<tr>
<td>0.20</td>
<td>1.6</td>
<td>314 ± 12</td>
</tr>
<tr>
<td>0.30</td>
<td>1.6</td>
<td>344 ± 8</td>
</tr>
<tr>
<td>0.15</td>
<td>2.0</td>
<td>302 ± 10</td>
</tr>
<tr>
<td>0.20</td>
<td>2.0</td>
<td>310 ± 11</td>
</tr>
<tr>
<td>0.30</td>
<td>2.0</td>
<td>352 ± 15</td>
</tr>
</tbody>
</table>

IV. DIGITAL METHODS FOR EVENT-TIME DETERMINATION

We study two digital techniques for determining the event time. For testing these methods, we only select the events in our dataset having energies above 350 keV. We obtain a total of 3579 event pairs when applying this selection. The two techniques of interest differ in their schemes for digitizing the event waveforms. The development of adequate DSP methods for generating the most accurate event-time estimate may require carefully statistical characterizations of the noise properties of the pulse and employ them in statistics-based estimation approaches [4]. In this paper, we examine the use of linear regressions to the samples obtained on the leading edges of the event pulses for generating estimates for the event time.

A. Multi-voltage threshold (MVT) method

This method is a modification of the technique that we previously reported in [13]. In this method, samples of an event pulse with respect to a number of pre-defined voltage references are obtained (see Fig. 8). In practice, this digitizing scheme can be implemented by use of a number of discriminators having programmable thresholds. The LSO/PMT output feeds directly to these discriminators and the time when the leading edge of the discriminator output occurs can be determined by use of a time-to-digital converter (TDC). With this method, the resulting digital samples are generated at irregular time intervals depending on the characteristic shape of the event waveform. As long as the thresholds are properly defined with respect to the energy values of the events of concern, a fixed number of digital samples can be generated for the leading edge of the event pulse, regardless how short the event rising time is. This is in contrast to the conventional ADC scheme to be discussed below in Sect. IV.B.

The event waveforms in our dataset are sampled at a 50 ps interval. This fine sampling allows us to accurately reproduce the waveforms by linearly interpolating the samples and emulate the MVT digitizing scheme by mathematically determining the time points when a waveform cross the pre-defined voltages. After obtaining the digital samples, we fit them with a regression line and estimate the event time by the intercept of this line with the zero-voltage baseline. Figure 8(b) illustrates the use of four thresholds on an event pulse, along with the linear-regression line to the resulting samples. Here, the reference voltages are defined by

\[V_n = g(V_{ST} + 150n/N) \text{ mV}, \quad n = 0, \cdots, N - 1 \] \hspace{1cm} (1)

where \(N \) is the number of thresholds, \(V_{ST} = 40 \) is the lowest threshold, and \(g \) is a positive number. The value of \(g \) is used to account for the difference in the gains of the two acquisition channels. We use \(g = 0.81 \) and 1 for channels 1 and 2, respectively, Figure 9 shows the coincidence timing histogram obtained by use of these four voltage thresholds and the LSO/PMT events having energies above 350 keV in our dataset. By fitting the histograms with Gaussian functions, we obtain coincidence timing resolutions of 353 ± 11 ps, 330 ± 10 ps, and 318 ± 10 ps FWHM when using 4, 6, and 8 voltage thresholds, respectively. The coincidence timing resolution obtained with the use of 8 thresholds corresponds to a standard deviation of about 95 ps for single channel.

We also study the use of the following reference voltages:

\[V_n = V_{ST} + n \times V_{TS} \text{ mV}, \quad n = 0, 1, \cdots, N - 1 \] \hspace{1cm} (2)

where \(N \) is the number of thresholds, \(V_{ST} \) is the lowest threshold and \(V_{TS} \) is the voltage step. We allow \(N \), \(V_{ST} \) and \(V_{TS} \) to be variable and investigate how the coincidence timing resolution varies with these parameters. Figure 10 shows the timing resolution obtained with four thresholds, three settings for \(V_{ST} \), and various \(V_{TS} \) ranging from 10 mV to 55 mV. It is observed that the timing resolution improves to reach a FWHM of ~350 ps as the \(V_{TS} \) increases. It also shows that the best timing resolution is obtained by using \(V_{ST} \) approximately equal to 40 mV. Figure 11, on the other hand, shows the variation of the timing resolution with the number of thresholds, with the reference voltages defined by Eq. (1) and \(V_{ST} = 40 \) mV. It is observed that the resolution improves considerably as the number of threshold increases.

\footnotetext[1]{We note that the average peak amplitude of the pulses having energies in the range of 350 ± 17.5 keV is 244 mV.}
from 2 to about 8. Adding more thresholds after that yields only marginal improvements and therefore may not be cost effective. The coincidence timing resolutions obtained are 370 ps, 350 ps and 320 ps FWHM when using 2, 4, and 8 thresholds. The best timing resolution achievable for this LSO/PMT dataset is about 302 ± 8 ps FWHM by use of 16 thresholds, which is consistent with the result obtained by use of the SPICE CFD.

We note that the timing resolution reported above contain the timing uncertainties of the scope and that are due to the use of the 50 ps sampling interval. In addition, we have somewhat arbitrarily considered the use of regularly spaced thresholds. To achieve the best timing resolution, the thresholds need to be selected according to the temporal characteristics of the event pulse and also the statistical properties of the noise. Our results have nevertheless demonstrated the capability of the MVT method to generate a good coincidence timing resolution for TOF-PET imaging.

B. Regular-time sampling (RTS) method

The RTS method adopts the conventional ADC scheme for digitization, i.e., it generates digital samples of event pulses at regular time intervals. ADC is the core component of digital electronics. It is readily available; significant improvements to its sampling rate are being continually made; and its cost rapidly decreases. This digitizing scheme, therefore, has the advantages of receiving the widest community support. One important consideration of using RTS is the sampling rate. With a low sampling rate, the leading edge of the event pulse will not be properly sampled (or missed entirely), hence inaccurate event time will be generated. On the other hand, cost becomes a concern if a high sampling rate is required to accurately catch the transient behavior of the event pulse.
We study the timing accuracy that can be achieve by use of the RTS method at various sampling rates that are emulated by properly sub-sampling the event waveforms obtained at 20 GSps. In sub-sampling, the data points inside a sub-sample interval are averages for implementing the 'S/H' operation in ADC. As a result, we note that the signal-to-noise ratio (SNR) of the sampled event pulse increases as the sampling rate decreases. Again, the development of DSP methods for optimally analyzing the resulting samples is an open research area. In this paper, we will consider the use of the linear regression method as described above for the MVT method. Figure 12 illustrates the application of the RTS sampling scheme, at 6.67 GSps, to an event pulse and the linear regression fitting to the resulting samples above a 40 mV threshold. Figure 13 shows the resulting coincidence timing histogram at this sampling rate, which indicates a coincidence timing resolution of 299 ± 8 ps FWHM. Similarly, we obtain a coincidence timing resolution of 335 ± 10 ps, 322 ± 11 ps, 298 ± 8 ps and 294 ± 8 ps when using the a sampling rate of 2.85 GSps, 3.33 GSps, 10.0 GSps and 20.0 GSps, respectively (see Fig. 14). The RTS method breaks at a lower sampling rate than 2.5 GSps. The event time of only $\sim 55\%$ and $\sim 10\%$ pulses can be extracted at 2.5 GSps and 2.0 GSps sampling rate, respectively. Therefore, to provide a 320 ps coincidence timing resolution, a sampling rate above 3.33 GSps is needed. We note that we obtained about 3 samples on the leading edge of the LSO/PMT pulses at a 3.33 GSps sampling rate.

V. CONCLUSION

We have built a substantial library of digitized waveforms obtained at a high sampling rate of 20 GSps, of event pairs generated in PET imaging. The library currently contains events generated by a pair of LSO/PMT detectors, a pair of LYSO/MPPC detectors, and a pair of the HRRT detector modules. We are extending our library to include more combinations of photo-detectors and scintillators, as well as different readout electronics. We have employed a dataset in this library that contains 9000 pairs of events generated by the LSO/PMT detectors to study two digital methods for determining the event time in PET. We show that these methods can all achieve a coincidence timing resolution of ~ 300 ps FWHM, which is comparable with that obtained by use of a fast analog CFD and is adequate for TOF-PET imaging. Our encouraging results are obtained by using methods that do not model noise properties and assume a simple linear leading-edge for the event pulse. We believe that better results can be obtained when the characteristics of the pulse and noise are modeled and employed in the event time determination. In this paper, we have focused on determining the event time. Once digital samples of the pulses are available, other event information, such as the energy and decay constant, can also be derived by analyzing these samples with proper algorithms. With modern technology, sophisticated DSP techniques can be
readily implemented by using high-density FPGAs. We notice that results reported in this paper are obtained by directly sampling the LSO/PMT output, without using pre-amplifiers and shapers. Therefore, the resulting digital DAQ architecture can be quite simple and is entirely free of analog electronics components.

ACKNOWLEDGMENT

The authors thank Gary Drake and John Anderson for making the digital scope available to this research and assisting in the experimental setup. We also thank Qian Zhang, Shujin Su, and Zheng Tian for their excellent technical help and discussion. We appreciate Patrick LeDu, Christophe Royon, Na Li, and Zheng Tian for their excellent technical help and discussing the digital scope available to this research and assisting in.

REFERENCES