Chapter 3

Properties of Relations

3.1 Reflexivity, symmetry, transitivity, and con-
nectedness

Certain properties of binary relations are so frequently encountered that
it is useful to have names for them. The properties we shall consider are
reflezivity, symmetry, transitivity, and connectedness. All these apply only
to relations in a set, i.e., in A X A for example, not to relations from A to
B, where B # A.

Reflexivity

Given a set A and a relation R in A, R is reflezive if and only if all the
ordered pairs of the form (z,z) are in R for every z in A.

As an example, take the set A = {1,2,3} and the relation R; = {(1,1),
(2,2),(3,3),(3,1)} in A. Ry is reflexive because it contains the ordered pairs
(1,1),(2,2), and (3,3). The relation R; = {(1,1),(2,2)} is nonreflexive
since it lacks the ordered pair (3,3) and thus fails to meet the definitional
requirement that it contains the ordered pair (z,z) for every z in A. Another
way to state the definition of reflexivity is to say that a relation R in A is
reflexive if and only if ¢d4, the identity relation in A, is a subset of B. The

relation ‘has the same birthday as’ in the set of human beings is reflexive.

A relation which fails to be reflexive is called nonreflexive, but if it con-
tains no ordered pair (z,z) with identical first and second members, it is
said to be irreflezive. Rz = {(1,2),(3,2)} is an example of an irreflexive
relation in A. Irreflexivity is a stronger condition than nonreflexivity since
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every irreflexive relation is nonreflexive but not conversely. The relation “s
taller than’ in the set of human beings is irreflexive (therefore also nonre-
flexive), while the relation “s a financial supporter of’ is nonreflexive (but
not irreflexive, since some people are financially self-supporting). Note that
arelation R in A is nonreflexive if and only if id4 € R; it is irreflexive if and
only if RNidy = 0.

Symmetry

Given a set A and a binary relation R in A, R is symmetric if and only if
for every ordered pair (z,y) in R, the pair (y,z) is also in R. It is important
to note that this definition does not require every ordered pair of A x A4 to
be in R. Rather for a relation R to be symmetric it must always be the case
that if an ordered pair is in R, then the pair with the members reversed is
also in R.

Here are some examples of symmetric relations in {1,2,3}:

Awlc AA”_J MVQ AM, “_.v“ Awu.va Aw, wvw
{(1,3),(3,1)}
{(2,2)}

{(2,2)} is a symmetric relation because for every ordered pair in it, i.e.,
(2,2), it is true that the ordered pair with the first and second members
reversed, i.e., (2,2), is in the relation. Another example of a symmetric
relation is ‘is a cousin of’ on the set of human beings. If for some (z,y)
in R, the pair (y,z) is not in R then R is nonsymmetric. The relation ‘is
a sister of” on the set of human beings is nonsymmetric (since the second

member may be male; it is, however, a symmetric relation defined on the set
of human females).

The following relations in {1,2,3} are nonsymimetric:

AwlmV AAM. qu AHu Mvw
{(3,3),(1,3)}
{(1,2),(2,1),(2,2),(1,1),(2,3)}

If it is never the case that for any (, y) in R, the pair (y,z) is in R, then
the relation is called asymmetric. The relation ‘is older than’ is asymmetric
on the set of human beings. Note that an asymmetric relation must be
irreflexive (because nothing in the asymmetry definition requires z and y to
be distinct). The following are examples of asymmetric relations in {1,2,3):
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Awl..wv AAN, ..wv, A“_J Mvw
{(1,3),(2,3),(1,2)}
{(3,2)} .

A relation is anti-symmetric if whenever both (z,y) and (y, z) are mb R,
then z = y. This definition says only that if both (z,y) and (y,z) are in R,

_then z and y are identical; it does not require {z,z) € R for p: z € A .Hb
other words, the relation need not be reflexive in order to be anti-symmetric.

The following relations in {1,2,3} are anti-symmetric:

Transitivity

A relation R is transitive if and only if for all ordered pairs (z,y) and
(y,2) in R, the pair (z,2) is also in R.

Because there is no necessity for z, y, and z all to be distinct, the fol-
lowing relation meets the definition of transitivity, ’

(3-8) {(2.2)}

wherez =y = 2= 2.
The relation given in (3-6) is not transitive,

almv AAM,w vawqm quw“w vw

,. ‘because (3,2) and (2,3) are members, but (3,3) is not.

Here are some more examples of transitive relations:

Awl.wv AAvav,AwuwvuﬁJwvw
{(1,2),(2,1),(1,1),(2,2)}
{(1,2),(2,3),(1,3),(3,2),(2; 1), (3, 1), (1, 1),(2,2), (3, 3)}

The relation ‘is an ancestor of’ is transitive in the set of human beings.
If a relation fails to meet the definition of transitivity, it is nontransitive. If
for no pairs (z,y) and (y, 2z} in R, the ordered pair (z,z) is in R, ;w: the
relation is intransitive. For example, the relation ‘is the mother of’ in the
set of human beings is intransitive.
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Relation (3-6) is nontransitive, as are the following two:

(3-8) {(1,2),(2,3)}
{(1,2),(2,3),(1,3),(3, 1)}

The first of these relations is also intransitive, as are the following relations:

Awlwv A:w. Hv“ GJ MY Aw, wvw
{(3,2),(1,3)}

Connectedness

A relation R in A is connected (or connez) if and only if for every two
distinct elements z and y in A, (z,3) € R or (y,z) € R (or both).

Note that the definition of connectedness refers, as does the definition of
reflexivity, to all the members of the set A. Further, the pairs (z,y) and (y, z)
mentioned in the definition are explicitly specified as containing nonidentical
first and second members. Pairs of the form (z,z) are not prohibited in a
connected relation, but they are irrelevant in determining connectedness.

The following relations in {1,2,3} are connected:

(3-10) {(1,2),(3,1),(3,2)}
{(1,1),(2,3),(1,2),3,1),(2,2)}

The following relations in {1, 2,3}, which fail the definition, are noncon-
nected:

(3-11) {(1,2),(2,3)}
{(1,3),(3,1),(2,2),(3,2)}

It may be useful at this point to give some examples of relations speci-
fied by predicates and to consider their properties of reflexivity, symmetry,
transitivity, and connectedness.

(3-12) Ezample: Ry is the relation ‘is father of’ in the set H of all human
beings. Ry is irreflexive (no one is his own father); asymmetric (if
z is y’s father, then it is never true that y is z’s father); intransitive
(if z is y’s father and y is 2’s father, then z is 2z’s grandfather but
not 2’s father); and noncornected (there are distinct individuals z
and y in H such that neither ‘z is the father of y’ nor ‘y is the
father of =’ is true).
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(3-13) Ezample: R is the relation ‘greater than’ defined in the set Z =
{1,2,3,4,...} of all the positive integers. Z contains an infinite
number of members and so does R, but we are able to determine
the relevant properties of R from our knowledge of the properties
of numbers in general. R is irreflexive (no number is greater than
itself); asymmetric (if z > y, then y ¥ z; transitive (if z > y
and y > z, then z > 2), and connected (for every distinct pair of
integers = and y, either z > y or y > .

(3-14) Ezample: R, is the relation defined by ‘z is the same age as y,’ i
the set H of all living human beings. R, is reflexive (everyone is
the same age as himself or herself); symmetric (if = is the same age
as y, then y is the same age as z); transitive (if 2 and y are the
same age and so are y and z, then z is the same age as z); and
nonconnected (there are distinct individuals in H who are not of
the same age).

3.2 Diagrams of relations

It may be helpful in assimilating the notions of reflexivity, symmetry and
transitivity to represent them in relational diagrams. The members of the
relevant set are represented by labeled points (the particular spatial arrange-
ment of them is irrelevant). If z is related to y, i.e. {x,y) € R, an arrow
connects the corresponding points. For example,

OO
2
of

Figure 3—-1: Relational diagram

Figure 3-1 represents the relation

R= AAHQ 2),(2, 1),(2,2),(1, 1),(2,3),(3, 3)}
It is apparent from the diagram that the relation is reflexive, since every
point bears a loop. The relation is nonsymmetric since 3 is not related to 2
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whereas 2 is related to 3. It cannot be called asymmetric or antisymmetric,
however, since 1 is related to 2 and 2 is related to 1. It is nontransitive since
1 is related to 2 and 2 is related to 3, but there is no direct arrow from 1 to
3. The relation cannot be intransitive because of the presence of pairs such
as (1,1).

If a relation is connected, every pair of distinct points in its diagram will
be directly joined by an arrow. We see that R is not connected since there
is no direct connection between 1 and 3 in Figure 3-1.

3.3 Properties of inverses and complements

Given that a relation R has certain properties of reflexivity, symmetry, tran-
sitivity or connectedness, one can often make general statements about the
question whether these properties are preserved when the inverse R!or
complement R’ of that relation is formed.

For example, take a reflexive relation Rin A. By the definition of reflexive
relations, for every z € A, (z,z) € R. Since R~! has all the ordered pairs
of R, but with the first and second members reversed, then every pair {z, z)
is also in R™1. So the inverse of R is reflexive also. The complement R’
contains all ordered pairs in A X A that are not in R. Since R contains
every pair of the form (z,z) for any z € A, R’ contains none of them. The
complement relation is therefore irreflexive.

As another example, take a symmetric relation R in A. Does its com-
plement have this property? Let’s assume that the complement R’ is not
symmetric, and see what we can derive from that assumption. If R’ is not
symmetric, then there is some (z,y) € R’ such that (y,z) ¢ R', by the def-

inition of a nonsymmetric relation. Since (y,z) € R, (y,z) must be in the

complement of R/, which is R itself. Because R is symmetric, (z,y) must
also be in R. But one and the same ordered pair {(z,y) cannot be both in K
and in its complement R’ so the assumption that the complement R’ is not
symmetric leads to an absurd conclusion. That means that the assumption
cannot be true and the complement R’ must be symmetric after all. If Ris a
symmetric relation in A, then the complement R’ is symmetric and vice versa
(the latter follows from essentially the same reasoning with R’ substituted
for R). This mode of reasoning is an instance of what is called a reductio
ad absurdum proof in logic. It is characterized by making an assumption
which leads to a necessarily false conclusion; you may then conclude that
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the negation of that assumption is true. In Chapter 6 we will introduce rules
of inference which will allow.such arguments to be made completely precise.

For sake of easy reference the table in Figure 3-2 presents a summary of
properties of relations and those of their inverses and complements. These
can all be proved on the basis of the definitions of the concepts and the laws
of set theory. Since we have not yet introduced a formal notion of proof, we
will not offer proofs here, but it is a good exercise to convince yourself of
the facts by trying out a few examples, reasoning informally along the lines
illustrated above.

R (not 0) R™! R

reflexive reflexive irreflexive
irreflexive irreflexive reflexive
symmetric symmetric (R~} = R) symmetric
asymmetric asymmetric nonsymmetric
anti-symmetric anti-symmetric depends on R
transitive transitive depends on R
intransitive intransitive depends on R
connected connected depends on R

Figure 3-2: Preservation of properties of a
relation in its inverse and its complement

3.4 Equivalence relations and partitions

An especially important class of relations are the equivalence relations. They
are relations which are reflexive, symmetric and transitive. Equality is the
most familiar example of an equivalence relation. Other examples are ‘has
the same hair color as’ and ‘is the same age as’. The use of equivalence
relations on a domain serves primarily to structure a domain into subsets
whose members are regarded as equivalent with respect to that relation.

For every equivalence relation there is a natural way to divide the set on
which it is defined into mutually exclusive (disjoint) subsets which are called
equivalence classes. We write [2] for the set of all y such that (z,y) € R.
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Thus, when R is an equivalence relation, [z] is the equivalence class which
contains z. The relation ‘is the same age as’ divides the set of people into age
groups, i.e., sets of people of the same age. Every pair of distinct equivalence
classes is disjoint, because each person, having only one age, belongs to ex-
actly one equivalence class. This is so even when somebody is 120 years old,
and is the only person of that age, consequently occupying an equivalence
class all by himself. By dividing a set into mutually exclusive and collectively
exhaustive nonempty subsets we effect what is called a partitioning of that
set.

Given a non-empty set A, a partition of A is a collection of non-empty
subsets of A such that (1) for any two distinct subsets X and Y, X NY =0
and (2) the union of all the subsets in the collection equals A. The notion of
a partition is not defined for an empty set. The subsets that are members
of a partition are called cells of that partition.

For example, let A = {a,b,c,d,e}. Then, P = {{a,c},{b,e},{d}} is
a partition of A because every pair of cells is disjoint: {a,c} N {b,e} = 0,
{b,e} N {d} = 0, and {a,c} N {d} = ; and the union of all the cells equals
A: U{{a,c},{b,e},{d}} = A.

The following three sets are also partitions of A:

(3-15) P = {{a,c,d},{b,e}}
Py = {{a},{b},{c},{d},{e}}
P; = {{a,b,¢,d,e}}

P; is the trivial partition of A into only one set. Note however that the
definition of a partition is satisfied.

The following two sets are not partitions of A:

Awlwmv C= A.?; b, nw?ﬁr &JA@Z.
D= AAQT‘?“&,“T@W

C fails the definition because {a,b,¢} N {b,d} # @ and D because |J{{a},
{b,e},{c}} # A

There is a close correspondence between partitions and equivalence rela-
tions. Given a partition of set A, the relation R = {{z,y) | z and y are in
the same cell of the partition} is an equivalence relation. Conversely, given a
reflexive, symmetric, and transitive relation R in A, there exists a partition
of A in which z and y are in the same cell if and only if z and y are related by
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R. The equivalence classes specified by R are just the cells of the partition.
An equivalence relation in A is sometimes said to induce a partition of A.

As an example, consider the set A = {1,2,3,4,5} and the equivalence
relation

Awlu..wv R= AAH,HV“Aquv“Aw.HvVA
(4r4),(5,2), (5, ).

which the reader can verify to be reflexive, symmetric, and transitive. In
this relation 1 and 3 are related among themselves in all possible ways, as
are 2, 4, and 5, but no members of the first group are related to any member
of the second group. Therefore, R defines the equivalence classes {1,3} and
{2,4,5}, and the corresponding partition induced on A4 is

(3-18) Pr = {{1,3},{2,4,5}}

Given a partition such as.

(3-19) Q = {{1,2},{3,5},{4}}

the relation Rq consisting of all ordered pairs (z,y) such that z and y are
in the same cell of the partition is as follows:

Awlwov Rq = .:H“ HY (1, wv“ Aw, 1), AM, 2), va wvg (3, .qu (5, qu (5, wv“ (4, Avv

R is seen to be reflexive, symmetric, and transitive, and it is thus an
equivalence relation.

Another example is the equivalence relation s on the same continent
as’ on the set A = {France, Chile, Nigeria, Ecuador, Luxembourg, Zambia,
Ghana, San Marino, Uruguay, Kenya, Hungary}. It partitions A into three
equivalence classes: (1) A; = {France, Luxembourg, San Marino, Hungary},
(2) 4, vH {Chile, Ecuador, Uruguay} and (3) A3 = {Nigeria, Zambia, Ghana,
Kenya}.

3.5 Orderings

An order is a binary relation which is transitive and in addition either (1)
reflexive and antisymmetric or else (ii) irreflexive and asymmetric. The
former are weak orders; the latter are strict (or strong).
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To illustrate, let A = {a,b,¢,d}. The following are all weak orders in A:

(3-21) Ry = {(a,)),(a,c),(a,d), (b,c),(a,a), (b,b),(c,c), (d, d)}
hm.wm = AA?QV“AF@YAQJQVVAPGYA& v A v A vw
Ry = A:&,av“?ﬁvv“A&QQV,APQV,Anv v A v A v A v
(d,d), (b,a)}

These are represented in Figure 3-3 as relational diagrams, from which it
can be verified that each is indeed reflexive, antisymmetric, and transitive.

S
oS Q00 A/ G0N

.G. O.I'.I'.I.'.O
a 4 b a d ¢ b a
L] .&
G G
R, R, R3
Figure 3-3:

Diagrams of the weak orders in (3-21)

To these weak orders there correspond the strict orders Sy, S3 and Ss,
respectively:

(3-22) S; = {{a,b),{a,c},(a,d), (b,c)}
S2 = :F mv, AP S, Aa.avw
83 = {(d, ), (d,d),(d,a), (c,0),{c,a), (b, a)}

These can be gotten from the weak orders by removing all the ordered
pairs of the form (z,z). Conversely, one can make a strict order into a weak
order by adding the pairs of the form (z,z) for every z in A.

As another example of an order, consider any collection of sets C and a
relation R in C defined by R = {(X,Y) | X C Y} We have already noted
in effect (Chapter 1, section 4) that the subset relation is transitive and
reflexive. It is also antisymmetric, since for any sets X and Y, if X C Y and
Y C X, then X =Y (this will be proved in Chapter 7). The corresponding
strict order is the ‘proper subset of’ relation in C.

Further, we saw in Example (3-13) that the relation R ‘greater than’ in
the set of positive integers is irreflexive, asymmetric and transitive. It is
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@ e @ e @ e @
a c b a d c b a
od od
_m.u. %n .m..w
Figure 3-4: °

Diagrams of the strict orders in (3-22)

therefore a strict order. (Problem: What relation defines the corresponding
weak order?)

Some terminology: if R is an order, either weak or strict, and (z, ¥) € R,
we say that z precedes y, = is a predecessor of y, y succeeds (or follows) z,
or y is a successor of z, these being equivalent locutions. If z precedes y
and = # y, then we say that z immediately precedes y or z is an immediate
predecessor of y, etc., just in case there is no element z distinct from both
z and y such that z precedes z and z precedes y. In other words, there is
no other element between z and y in the order. Note that no element can
be said to immediately precede itself since z and y in the definition must be
distinct.

In Ry and $; in (3-21) and (3-22), b is between a and ¢; therefore,
although a precedes c, a is not an immediate predecessor of c. In R, and S5,
¢ is an immediate predecessor of b, and b is an immediate predecessor of a.

In diagramming orders it is usually simpler and more perspicuous to
connect pairs of elements by arrows only if one is an immediate predecessor
of the other. The remaining connection can be inferred from the fact that
the relation is transitive. In order to distinguish weak from strict orders,
however, it is necessary to include the ‘reflexive’ loops in weak orders. Di-
agrammed in this way, the orders in (3-21) would appear as in Figure 3-5.
The diagrams of the corresponding strict orders would be identical except
for the absence of the loops on each element.

There is also a useful set of terms for elements which stand at the ex-
tremes of an order. Given an.order R in a set A,

1. an element z in A is minimal if and only if there is no other element
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o 900 0000
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Figure 3-5: Immediate predecessor diagrams
of the orders in (3-21)

in A which precedes = (examples: @ in Ry and S; ¢ and d in Ry and
So; d in Rz and S3)

»

an element z in A is least if and only if z precedes every other element
in A (examples: a in Ry and S;; d in Rz and 53)

3. an element z in A is mazimal if and only if there is no other element
in A which follows z (examples: ¢ and d in R; and S1; @ and d in R,
and $3; @ in R3 and S3)

4. an element z in A is greatest if and only if = follows every other element
in A (examples: a in R3 and S3).

Note that a in R; and §; is both a minimal and a least element, while
¢ and d in these same orders are both maximal but not greatest (¢ does
not follow d, for example). Element d in R, and S2 is both minimal and
maximal but neither greatest nor least. The order defined by R in Example
(3-13) has 1 as a maximal and greatest element (it follows all other elements
and has no successors) but there is no minimal or least element in the order.
Observe here that the form ‘greatest’ as used technically about orders need

not coincide with the notions ‘greater than’ or ‘greatest’ in the realm of
numbers.

A least element, if there is one in an order, is unique (if there were
two, each would have to precede the other, and this would violate either
asymmetry or antisymmetry), and similarly for a greatest element. There
may be more than one minimal element, however (e.g., c and d in R, and
Sz above), and more than one maximal element. An order might have none
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f these; the relation ‘greater than’ in the set of all positive and negative
integers and zero {0,1,-1,2,-1,...} has no maximal, minimal, greatest or
‘least elements.

Ifan order, strict or weak, is also connected, then it is said to be a total or
inear order. Examples are R3 and S5 above and the relation R of Example
wéwv. Their immediate predecessor diagrams show the elements arranged
n a single chain. Order R; is not total since d and ¢ are not related, for
example. Often orders in general are called partial orders or partially ordered
sets. The terminology is unfortunate, since it then happens that some partial
rders are total, but it is well established nonetheless, and we will sometimes
use it in the remainder of this book.

Finally, we mention some other frequently encountered notions pertain-
ing to orders. A set A is said to be well-ordered by a relation R if R is a
fotal order and, further, every subset of A has a least element in the order-
ing relation. The set of natural numbers, N = {0,1,2,3,...} is well-ordered
by the ‘is less than’ relation (it is a. total order, and every subset of N will
have a least element when ordered by this relation). The set of integers
Z={0,1,-1,2,-2,...}, on the other hand, is not well-ordered by that rela-
tion, since the negative integers get smaller ‘ad infinitum’. Note that every
finite linearly ordered set must be well-ordered.

A relation R in A is dense if for every (z,y) € R, ¢ # y, there exists
a member z € A, z # z and y #= z, such that (z,2) € R and (z,y) € R.
Density is an important property of the real numbers which we can think
of as all the points lying on a horizontal line of infinite extent. The relation
‘is greater than’ is not dense on the natural numbers, but it is dense on the
real numbers.

Exercises

1. (a) Determine the properties of the following relations on the set of
all people. In each case, make the strongest possible statement,
e.g., call a relation irreflexive whenever possible rather than non-
reflexive. ,
(i) is a child of
(ii is a brother of
(iit) is a descendant of
(iv) is an uncle of (assuming that one may marry one’s aunt or

uncle)
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{b) Which of your answers would be changed if these relations were
defined in the set of all male human beings?

Investigate the properties of each of the following relations. If any
one is an equivalence relation, indicate the partition it induces on the
appropriate set. (If you do not know the concepts, try to find some rea-
sonable assumptions, state them explicitly, and do the exercise based
on those).

(a) M = {(z,y) | = and y are a minimal pair of utterances of English}

(b) C = {{z,y) | = and y are phones of English in complementary
distribution}

(¢) F = {{z,9) | z and y are phones of English in free variation}

(d) A= {(z,y) | and y are allophones of the same English phoneme}

(e) Q is the relation defined by ‘X is a set having the same number
of members as Y’ in some appropriate collection of sets.

Let A = {1,2,3,4}.

(a) Determine the properties of each of the following relations, its
inverse, and its complement. If any of the relations happens to
be an equivalence relation, show the partition that is induced on

A.
R = AAH“HYAM,HVvAwu%vuAMqNVVAwuwv“AP%v,AA, va
R, = AAwmev,AH,vaAHvAYAwquvvaﬁv,G,wvw
R = .:w“»v,ﬁwqHv“Aquv“AmuquAH‘wv,AﬁwvgAnrwvw
Ry = :H.“_.vuAw,Av.Au—quvAwqmv“Aw,HvuA%u%v,Awqu,Aﬁvwvw

(b) Give the equivalence relation that induces the following partition
on A: P = {{1},{2,3}, {4}}.
(¢) How many distinct partitions of A are possible?

What is wrong with the following reasoning that reflexivity is a con-
sequence of symmetry and transitivity? (Birkhof & MacLane (1965)).
If (z,y) € R, then (y,z) € R, since we assume R is symmetric. If both
(z,y) and (y,z) are in R, then (z,z) must be in R by transitivity.

Let A = {1,2,3,5,6,10,15,30} and let R be a relation in A defined as
follows:
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R = {{z,y) | z divides y without remainder}

{a) List the members of R, and show that it is a weak partial order
but not'a total order.

(b) Construct an immediate predecessor diagram for this order and
identify any maximal, minimal, greatest, and least elements.

(¢) Do the same for the set p(B), where B = {a,b,c}, and the relation
‘is a subset of’.



