Relations and Functions

2.1 Ordered pairs and Cartesian products

Recall that there is no order imposed on the members of a set. We can, how-
ever, use ordinary sets to define an ordered pair, written {a, b) for example,
in which a is considered the first member and b is the second member of the
pair. The definition is as follows:

(2-1) (a,b) =gef{{a},{a,b}}

The first member of (a,b) is taken to be the element which occurs in
the singleton {a}, and the second member is the one which is a member of
the other set {a,b}, but not of {a}. Now we have the necessary properties
of an ordering since in general (a,b) # (b,a). This is so because we have
{{a},{a,0}} = {{b},{a,b}} (that is, (a,b) = (b,a)), if and only if we have
a = b. Of course, this definition can be extended to ordered triples and

in general ordered n-tuples for any natural number n. Ordered triples are
defined as

(2-2) (a,b,c) =def {{a,b),c)

It might have been intuitively simpler to start with ordered sets as an ad-
ditional primitive, but mathematicians like to keep the number of primitive
notions to a minimum.

If we have two sets A and B, we can form ordered pairs from them by
taking an element of A as the first member of the pair and an element of B
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as the second member. The Cartesian product of A and B, written A x B,
is the set consisting of all such pairs. The predicate notation defines it as

(2-3) Ax B=gg{(z,y) |z € Aand y € B}

Note that according to the definition if either A or B is 0, then Ax B = {.
Here are some examples of Cartesian products:

(2-4) Let K = {a,b,c} and L = {1,2}, then
KxL = {(a,1),(a,2),(b,1),(b,2),(c,1),(c,2)}
LxK = {(1,a),(2,a),(1,b),(2,8),(1,¢), (2,c}}
LxL = {(1,1),(1,2),(2,1),(2,2)}

It is important to remember that the members of a Cartesian product
are not ordered with respect to each other. Although each member is an
ordered pair, the Cartesian product is itself an unordered set of them.

Given a set M of ordered pairs it is sometimes of interest to determine
the smallest Cartesian product of which M is a subset. The smallest A and
B such that M C A x B can be found by taking A = {a | (a,b) € M for
some b} and B = {b| (a,b) € M for some a}. These two sets are called the
projections of M onto the first and the second coordinates, respectively. For

example, if M = {(1,1),(1,2),(3,2)}, the set {1,3} is the projection onto -

the first coordinate, and {1,2} the projection onto the second coordinate.
Thus {1,3} x {1,2} is the smallest Cartesian product of which M is a subset.

2.2 Relations

We have a natural understanding of relations as the sort of things that hold
or do not hold between objects. The relation ‘mother of’ holds between
any mother and her children but not between the children themselves, for
instance. Transitive verbs often denote relations; e.g., the verb ‘kiss’ can
be regarded as denoting an abstract relation between pairs of objects such
that the first kisses the second. The subset relation was defined above as
a relation between sets. Objects in a set may be related to objects in the
same or another set. We write Rab or equivalently aRb if the relation R
holds between objects a and b. We also write R € A x B for a relation
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etween objects from two sets A and B, which we call a relation from A mo
,. A relation holding of objects from a single set A is called a Hmyp.ﬁon in
A. The projection of R onto the first coordinate is called the domain of R
and the projection of R onto the second coordinate is called the range Om.mw.
A relation R from A to B thus can be viewed as a subset of the Cartesian
product A x B. (There are unfortunately no generally accepted terms mﬁ.va
the sets A and B of which the domain and the range are subsets.) It is
“important to realize that this is a set-theoretic reduction of the Hw_m.aouﬂ R to
" a set of ordered pairs, i.e. {(a,b) | aRb}. For example, the relation ‘mother
of’ defined on the set H of all human beings would be a set of ordered pairs
: n H x H such that in each pair the first member is mother of the second
. member. We may visually represent a relation R between two sets A and B
by arrows in a diagram displaying the members of both sets.

A B

Figure 2-1: Relation R: A — B

In Figure 2-1, A = {a,b} and B = {c,d,e} and the arrows represent
a set-theoretic relation R = {{(a,d), (a,¢), (b,¢c)}. Note ﬁr.ma a relation may
“relate one object in its domain to more than one object in its range. The
complement of a relation R C A X B, written R, is set-theoretically defined

as
Awlmv R H&@\A\» X mv - R

Thus R’ contains all ordered pairs of the Cartesian product which are not
members of the relation R. Note that (R') = R. The inverse of a relation
R C Ax B, written R™1, has as its members all the ordered pairs in R, with
their first and second elements reversed. For example, let 4 = {1,2,3} u.bm
let R C A x Abe {(3,2),(3,1),(2,1)}, which is the ‘greater than’ relation
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in A. The complement relation R' is {(1,1),(1,2), (1,3),(2,2),(2,3),(3,3)}
the ‘less than or equal to’ relation in A. The inverse of R hm..m mm‘ { Am w,v ﬁ,
3),(1,2)}, the ‘less than’ relation in A. Note that Aml_ku = MW and ,ﬁrm,a if
RC AxB,then R CBx A, but R C Ax B. v _

We have focused in this discussion on binary relations, i.e., sets of or-
dered pairs, but analogous remarks could be made about Hmﬂmaomm which are

moEvOmmm of ordered triples, quadruples, etc., L.e., ternary, quaternary, or
Just n-place relations. ’

2.3 Functions

A function is generally represented in set-theoretic terms as a special kind

of relation. A relation R from A to B is a function i if i
n if and onl
both of the following conditions: oy A meets

1. Each element in the domain is paired with just one element in the
range.

2. The domain of R is equal to A.

This mBoE;m“ to saying that a subset of a Cartesian product A x B can
be called a m.:bnaEb Just in case every member of A occurs exactly once as
a first coordinate in the ordered pairs of the set.

>m. an example, consider the sets A = {a,b,¢} and B = {1,2,3 4}. The
following relations from A to B are functions: o

Awlmv P = *Am H_.Vu AF Mv. AP wvw
Q = A:a. wvu?q%vu?ucw
R = AAQ.wvu AFMV. Aa“ wvw

The following relations from A to B are not functions:

AMI.NV S = AAQJ H_.Vu AF Mvv .
T = AAQJMV.Avng“AQJwv‘An.va
V. = {(a,2),(a,3),(b,4)}

S W.Em to meet condition 2 because the set of first members, namely
T.r b}, is not equal to A. T does not satisfy condition 1, since a is paired
with both 2 and 3. In relation V both conditions are violated.
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Much of the terminology used in talking about functions is the same as
hat for relations. We say that a function that is a subset of A X B is a
unction from A to B, while one in A X A is said to be a function in A. The
notation ‘F: A — B’ is used for ‘F is a function from A to B.” a in the domain
of a function are sometimes called arguments and their correspondents in the
range, values. Of function P in (2-6), for example, one may say that it takes
on the value 3 at argument ¢. The usual way to denote this fact is P(c) = 3,
with the name of the function preceding the argument, which is enclosed in
parentheses, and the corresponding value to the right of the equal sign.
“Transformation,’ ‘map,’ ‘mapping,’ and ‘correspondence’ are commonly
used synonyms for ‘function,’” and often ‘F(a) = 2’ is read as ‘F' maps a into
2. Such a statement gives a function the appearance of an active process
that changes arguments into values. This view of functions is reinforced by
the fact that in most of the functions commonly encountered in mathematics
the pairing of arguments and values can be specified by a formula contain-
ing operations such as addition, multiplication, division, etc. For example,
F(z) = 2z + 1 is a function which, when defined on the set of integers,
pairs 1 with 3, 2 with 5, 3 with 7, and so on. This can be thought of as
a rule which says, “To find the value of F at z, multiply = by 2 and add
1.” Later in this book it may prove to be necessary to think of functions as
‘dynamic processes transforming objects as their input into other objects as
their output, but for the present, we adhere to the more static set-theoretic
perspective. Thus, the function F(z) = 2z + 1 will be regarded as a set of
ordered pairs which could be defined in predicate notation as

(2-8) F ={(z,y) |y =2z + 1} (where z and y are integers)

Authors who regard functions as processes sometimes refer to the set of
ordered pairs obtained by applying the process at each element of the domain
as the graph of the function. The connection between this use of “graph”
and a representation consisting of a line drawn in a coordinate system is not
accidental.

We should also note that relations which satisfy condition 1 above but
perhaps fail condition 2 are sometimes regarded as functions, but if so, they
ate customarily designated as ‘partial functions.” For example, the function
which maps an ordered pair of real numbers (a,b) into the quotient of @
divided by b (e.g., it maps (6,2) into 3 and (5,2) into 2.5) is not defined
when b = 0. But it is single-valued — each pair for which it is defined is
associated with a unique value — and thus it meets condition 1. Strictly
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speaking, by our definition it is not a function, but it could be called a
partial function. A partial function is thus a total function on some subset
of the domain. Henceforth, we will use the term ‘function,’ if required, to
indicate a single-valued mapping whose domain may be less than the set A
containing the domain.

It is sometimes useful to state specifically whether or not the range of a
function from A to B is equal to the set B. Functions from A to B in general
are said to be into B. If the range of the function equals B, however, then the
function is onto B. (Thus onto functions are also into, but not necessarily
conversely.) In Figure 2-2 three functions are indicated by the same sort
of diagrams we introduced previously for relations generally. It should be
apparent that functions F and G are onto but H is not. All are of course
into.

A C A D A C
— ,,,
F ¢ H ]

Figure 2-2: Ilustration of onto and into
functions

A function F: A — B is called a one-to-one function just in case no mem-
ber of B is assigned to more than one member of A. Function F in Figure
2-2 is one-to-one, but G is not (since both b and ¢ are mapped into 2), nor
is H (since H(b) = H(c) = 3). The function F defined in (2-8) is one-to-one
since for each odd integer y there is a unique integer z such that y = 2z 4 1.
Note that F' is not onto the set of integers since no even integer is the value
of F for any argument . Functions which are not necessarily one-to-one
may be termed many-to-one. Thus all functions are many-to-one strictly
speaking, and some but not all of them are one-to-one. It is usual to apply
the term "many-to-one”, however, only to those functions which are not in
fact one-to-omne.

A function which is both one-to-one and onto (F in Figure 2-2 is an
example) is called a one-to-one correspondence. Such functions are of special
interest because their inverses are also functions. (Note that the definitions
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of the inverse and the complement of a relation apply to functions as well.)
The inverse of G in Figure 2-2 is not a function since 2 is mapped into both
b and ¢, and in H? the element 2 has no correspondent.

Problem: Is the inverse of function F in (2-8) also a function? Is F' a
one-to-one correspondence?

2.4 Composition .

Given two functions F: A — B and G: B — C, we may form a new function
from A to C, called the composite, or composition of F and G, written Go F.
In predicate notation function composition is defined ‘as

(2-9) GoF H&&;Aﬁuv | for some y,(z,y) € F and (y,2) € G}

Figure 2-3 shows two functions F and G and their composition.

K L

G:L—M

Figure 2-3: Composition of two functions F'

and G

Note that F is into while G is onto and that neither is one-to-one. This
shows that compositions may be formed from functions that do not have
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these special properties. It could happen, however, that the range of the
first function is disjoint from the domain of the second, in which case, there
is no y such that (z,y) € F and (y,2) € G, and so the set of ordered pairs
defined by G o F is empty. In Figure 2-3, F is the first function and G is
the second in the composition. Order is crucial here, since in general G o F’
is not equal to F o G. The notation G o F' may seem to read backwards,
but the value of a function F at an argument a is F(a), and the value of G
at the argument F(a) is written G(F¥(a)). By the definition of composition,
G(F(a)) and (G o F)(a) produce the same value.

A function F: A — A such that F = {(z,z) | £ € A} is called the
identity function, written td4. This function maps each element of A to
itself. Composition of a function F with the appropriate identity function
gives a function that is equal to the function F itself. This is illustrated in
Figure 2-4.

A B B
a 1 1
b 2 2
c > >
7 3
F idg
idgoF=F
A A B
T
T
idy F
Fo n.&.h”Mu

Figure 2-4: Composition with an identity
function

Given a function F: A — B that is a one-to-one correspondence (thus the
inverse is also a function), we have the following general equations:

(2-10) F-'oF ids
FoF-l = idg

These are illustrated in Figure 2-5.
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A B A
a NM/ >0,
b 2 b
c 3 c
F F-1
B A B
1 b/ 1
2 b 2
3 ¢ 3

F-1 F

Figure 2-5: Composition of one-to-one
correspondence with its inverse

The definition of composition need not be restricted to functions but can
be applied to relations in general. Given relations R C Ax B and § C B X c
the composite of R and S, written S o R, is the relation {{z, z) | for some y,
(z,y) € R and (y,z) € §}. An example is shown in Figure 2-6.

B C
l
RCAXB SCBxC SoRCAxC

Figure 2-6: Composition of two relations R
and S

For any relation R C A X B we also have the following:

(2-11) idgoR R
Roidy = R

(Note that the identity function in A, id4, is of course a relation and could
equally well be called tlie identity relation in A.)

The equations corresponding to (2-10) do not hold for relations (nor for
functions which are not one-to-one correspondences). However, we have for
any one-to-one relation R: A — B:
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(2-12) R-'oR
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We should note here that our previous remarks about ternary, quater-

nary, etc. relations can also be carried over to functions. A function may
have as its domain a set of ordered n-tuples for any n, but each such n-tuple
will be mapped into a unique value in the range. For example, there is a
function mapping each pair of natural numbers into their sum.

Exercises

1. Let A = {b,c} and B = {2,3}.

(a) Specify the following sets by listing their members.
(ify AxB (iv) (AUB)x B
(i) BxA (v) (AnB)xB
(i) AxA4 (vi) (A-B)x(B-A)
(b) Classify each statement as true or false.
(i) (AxB)N(BxA) =0
(i) (Ax A)C(Ax B)
(ifi) (e,c) C(Ax A)
(iv) {(5,3), (3,8} C (Ax B)U (B x A)
(v) PCAx A
(vi) {(b,2),(c,3)} is a relation from A to B
(vii) {(b,b)} is a relation in A
{c) Consider the following relation from A to (AU B):
R = {(b,b), (6,2}, (¢, 2), (e, wvw
(i) Specify the domain and range of R
(ii) Specify the complementary relation R’ and the inverse R~!

(iii) Is (R')™! (the inverse of the complement) equal to (R™!)
(the complement of the inverse)?

2. Let A = {a,b,c} and B = {1,2}. How many distinct relations are there
from A to B? How many of these are functions from A to B? How
many of the functions are onto? one-to-one? Do any of the functions
have inverses that are functions? Answer the same questions for all
relations from B to A.
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3. Let
Ry, = AAHQ Hvu Awq HY Awu%vu Awq Mvu Awu wv, A?%vv Aur va

Ry = {(3,4),(1,2),(1,4),(2,3),(2,4),(1,3)}
(both relations in' A, where A = {1,2,3,4}).
(a) Form the composites Rz o Ry and Ry o Ry. Are they equal?
(b) Show that B! o Ry # id4 and that R;' o Ry € ida.
4. For the functions F and G in Figure 2-3:
(a) show that (Go F)™! = F~1oG™1.

(b) Show that the corresponding equation holds for relations R and
S in Figure 2-6.



