Incumbency simulation in R

inputs
G = number of simulations to use
gamma
sigma2.theta

incumbency.function <- function(G=50000, gamma= 0, sigma2.theta=1, sigma2.epsilon=1, sigma2.xstar=1, sigma2.rw=0) {

 # first level simulation to calculate the normal vote
 thetaL <- rnorm(G, mean=0, sd=sqrt(sigma2.theta))
 thetaR <- rnorm(G, mean=0, sd=sqrt(sigma2.theta))
 epsilonL <- rnorm(G, mean=0, sd=sqrt(sigma2.epsilon))
 epsilonR <- rnorm(G, mean=0, sd=sqrt(sigma2.epsilon))
 lambda1 <- rep(sigma2.theta / (sigma2.theta + sigma2.epsilon), G)
 SL1 <- thetaL + epsilonL
 SR1 <- thetaR + epsilonR
 mL1 <- lambda1 * SL1
 mR1 <- lambda1 * SR1

 # The normal vote is
 reelect1 <- sum(mL1 - mR1 >= eta1) / (sum(mL1 - mR1 >= eta1) + sum(mL1 - mR1 < eta1))

 # yank off the first case keepig only those who won and run a second election
 # The incumbent's ability given that they won stays the same
 thetaL2 <- thetaL[mL1 - mR1 >= eta1]
 thetaR2 <- rnorm(length(thetaL2), mean=0, sd=sqrt(sigma2.theta))
 epsilonL2 <- rnorm(length(thetaL2), mean=0, sd=sqrt(sigma2.epsilon))
 epsilonR2 <- rnorm(length(thetaL2), mean=0, sd=sqrt(sigma2.epsilon))
 eta2 <- rnorm(length(thetaL2), mean=gamma, sd=sqrt(sigma2.xstar))
 lambda2 <- lambda1[mL1 - mR1 >= eta1]
 lambdaL2 <- (lambdaL2 * sigma2.theta + sigma2.rw) / (lambdaL2 * sigma2.theta + sigma2.rw + sigma2.epsilon)
 lambdaR2 <- rep(sigma2.theta / (sigma2.theta + sigma2.epsilon), length(thetaL2))

 # The signals
 SL2 <- thetaL2 + epsilonL2
 SR2 <- thetaR2 + epsilonR2

 # The posteriors
 mL2 <- lambdaL2 * SL2 + (1 - lambdaL2) * mL1[mL1 - mR1 >= eta1]
 mR2 <- lambdaR2 * SR2

 # Probability incumbent wins
 reelect2 <- sum(mL2 - mR2 >= eta2) / sum(mL2 - mR2 >= eta2)

 # Find the left-wing incumbency advantage by comparing probability incumbent wins to the normal
 iaL <- reelect2 - reelect1

 sigma <- sqrt(((2*(sigma2.theta^2))/ (sigma2.theta + sigma2.epsilon)) + sigma2.xstar)
 nv <- 1 - pnorm((gamma / sigma))
 cat("iaL ", iaL, "\n", "nv", nv, "\n")
 return(c(iaL, nv))
}

ruler< seq(-4,4,.25)
storage.matrix <- matrix(NA, length(ruler), 2)

put the output into a storage matrix
count <- 1
for(i in ruler) {
 storage.matrix[count,1:2] <- incumbency.function(G=50000, gamma=i)
 count <- count + 1
}
create the final matrix
storage.matrix2 <- matrix(NA, length(seq(ruler)), 4)

now put back in the original stuff (lw incumbency advantage and normal vote)
storage.matrix2[, 1:2] <- storage.matrix

now add the right wing incumbency advantage which is the mirror image of the left-wing incumbency advantage
for(j in seq(1, length(ruler))) {storage.matrix2[j, 3] <- storage.matrix2[34-j, 1]}

now add the average per district incumbency advantage, which is a weighted average of the two weighted by the nv
for(k in seq(1, length(ruler))) {storage.matrix2[k, 4] <- storage.matrix2[k, 2] * storage.matrix2[k, 1] + (1-storage.matrix2[k, 2]) * storage.matrix2[k, 34]}

Due to bad programming, change the parameter values and labels by hand to create the figures
epsilon figure
postscript(file = "c:/latex/incumbency/figuresR/epsilon/epsilonnew35.eps", horizontal = FALSE, par(cex=2)
plot(1-storage.matrix2[, 2], storage.matrix2[, 4],
 type="l", xlab="right-wing normal vote", ylab="average incumbency advantage",
 ylim=c(0,.10), main=expression(paste((sigma^2) [theta] == 1, "", "",
 (sigma^2) [epsilon] == 3.5, "", "", (sigma^2) [eta] == 1)))

eta figure
postscript(file = "c:/latex/incumbency/figuresR/eta/etanew1.eps", horizontal = FALSE, paper = "par(cex=2)
plot(1-storage.matrix2[, 2], storage.matrix2[, 4],
 type="l", xlab="right-wing normal vote", ylab="average incumbency advantage",
 ylim=c(0,.10), main=expression(paste((sigma^2) [theta] == 1, "", "",
 (sigma^2) [epsilon] == 1, "", "", (sigma^2) [eta] == 1)))

dev.off()