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Abstract

We reanalyze data from the observational study by Connors et al. (1996) on the impact of Swan-

Ganz catheterization on mortality outcomes. The Connors et al. (1996) study assumes that there are

no unobserved differences between patients who are catheterized and patients who are not catheterized

and finds that catheterization increases patient mortality. We instead allow for such differences between

patients by implementing both the instrumental variable bounds of Manski (1990), which only exploits

an instrumental variable, and the bounds of Shaikh and Vytlacil (2011), which exploit mild nonpara-

metric, structural assumptions in addition to an instrumental variable. We propose and justify the use

of indicators of weekday admission as an instrument for catheterization in this context. We find that

in our application, the Manski (1990) bounds do not indicate whether catheterization increases or de-

creases mortality, whereas the Shaikh and Vytlacil (2011) bounds reveal that catheterization increases

mortality at 30 days and beyond. We show that the bounds of Shaikh and Vytlacil (2011) remain valid

under even weaker assumptions than those described in Shaikh and Vytlacil (2011). We also extend the

analysis to exploit a further nonparametric, structural assumption – that doctors catheterize individuals

with systematically worse latent health – and find that this assumption further narrows these bounds

and strengthens our conclusions. In our analysis, we construct confidence regions using the methodology

developed in Romano and Shaikh (2008). We show in particular that the confidence regions are uni-

formly consistent in level over a large class of possible distributions for the observed data that include

distributions where the instrument is arbitrarily “weak.”
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1 Introduction

We reanalyze data from a well known observational study by Connors et al. (1996) on the impact of Swan-

Ganz catheterization on mortality outcomes. The Swan-Ganz catheter is a device placed in patients in the

intensive care unit (ICU) to guide therapy. Connors et al. (1996) examine data on mortality outcomes among

a population of patients admitted to the ICU and reach the controversial conclusion that patients who receive

Swan-Ganz catheterization during their first day in the ICU are 1.27 times more likely to die within 180

days of their admission. Even at 7 days after ICU admission, Connors et al. (1996) find that catheterization

increases mortality. This conclusion was very surprising to ICU doctors, many of whom continue to use the

Swan-Ganz catheter to guide therapy in the ICU.

The statistical strategy used by Connors et al. (1996) – the propensity score matching method – assumes

away the possibility of unobserved differences between catheterized and non-catheterized patients. Our

analysis, by comparison, permits the possibility of unobserved differences. We rely on an instrument for

Swan-Ganz catheterization to bound the average effect of catheterization on mortality. We consider the

bounds of Shaikh and Vytlacil (2011), which exploit not only an instrumental variable, but also threshold

crossing properties for both the treatment and the outcome variables. The assumptions underlying these

bounds are therefore stronger than those underlying the instrumental variable bounds of Manski (1990). We

show that the bounds of Shaikh and Vytlacil (2011) remain valid under even weaker assumptions than those

described in Shaikh and Vytlacil (2011) and also extend the analysis to exploit the assumption that doctors

tend to catheterize patients who have worse latent health. In each case, we construct confidence regions

using the methodology developed in Romano and Shaikh (2008). We show in particular that the confidence

regions are uniformly consistent in level over a large class of possible distributions for the observed data that

include distributions where the instrument is arbitrarily “weak.”

We use the day of the week that the patient was admitted to the ICU as an instrument for Swan-Ganz

catheterization. This same variable has been used as an instrument for treatment by Hamilton et al. (2000)

in their study of the effect of queuing time on mortality in a Canadian population undergoing hip-fracture

surgery. We argue that this variable meets the two crucial requirements for an instrument’s validity. First, it

is correlated with the application of the treatment: on weekends, patients are less likely to be catheterized.

Second, it is uncorrelated with outcomes, i.e., mortality rates have little to do with the particular day of the

week that a patient is admitted to the ICU and more to do with the arc of the patient’s medical condition.

We find that the bounds of Manski (1990) do not permit us to say whether catheterization increases

or decreases mortality – stronger assumptions are needed. In contrast, our application of the bounds of

Shaikh and Vytlacil (2011), which imposes mild structural assumptions in addition to those required by

Manski (1990), shows that for some diagnoses, Swan-Ganz catheterization increases mortality at 30 days

after catheterization and beyond. Imposing the additional assumption that doctors catheterize individuals

with the worst latent health further narrows these bounds.

Treating the decision to catheterize as based upon patient-specific factors that are, in part, unobservable

to us clears up an economic mystery – why would ICU doctors catheterize their patients at all if doing

so increases patient mortality? For every diagnosis we analyze, the answer we find is that catheterization

either decreases mortality or has an effect of indeterminant direction on mortality in the short run (while

the patient is still in the ICU). After the patient has left the ICU and is no longer under the care of an ICU
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physician, however, we find (like Connors et al., 1996) that catheterization, for some diagnoses, increases

mortality.

2 Background on Swan-Ganz Catheterization

The placement of Swan-Ganz catheters is common among ICU patients – over 2 million patients in North

America are catheterized each year. A Swan-Ganz catheter is a slender tube with sensors that measure

hemodynamic pressures in the right side of the heart and in the pulmonary artery. Once in place, the catheter

is often left in place for days, so it can continuously provide information to ICU doctors. This information

is often used to make decisions about treatment, such as whether to give the patient medications that affect

the functioning of the heart.

While there are some risks associated with the placement of the catheter itself, such complications are

rare. Rather, the greater risk may come from successful catheter placement. Information from Swan-

Ganz catheterization may, for example, lead to false diagnoses of heart failure, which in turn may lead

doctors to administer inappropriate treatments. Our goal in this paper is to estimate the treatment effect

of catheterization on patient mortality for ICU patients with different primary diagnoses. Given the nature

of the Swan-Ganz intervention, we interpret the treatment effect that we are measuring as an amalgam of

the effect of catheterization itself plus the therapies that the information gleaned from catheterization make

possible.

Before Connors et al. (1996), Gore et al. (1985) and Zion et al. (1990) also found found that catheterization

increases mortality. Dalen (2001) criticized both studies because they did not control for clinically important

differences between the patients who had catheters placed and those who did not. The Connors et al. (1996)

study was conceived in part as a response to this criticism. They included a dizzying array of clinical

variables designed to control as exhaustively as possible for observed differences between catheterized and

non-catheterized patients. In addition, Connors et al. (1996) expanded the set of ICU patients beyond just

heart attack patients to all ICU patients. Ironically, Weil (1998) argued that because Connors et al. (1996)

expanded the set of patients considered, they failed to take account of important unobserved clinical variables

in their statistical work.

Despite substantial criticism, the publication of the Connors et al. (1996) study was seminal in the

Swan-Ganz catheterization literature. Subsequent studies have focused on expanding the set of ICU patients

considered in the analysis and on minimizing the possibility of selection bias. There has been one reanalysis

of the Connors et al. (1996) study. Hirano and Imbens (2001) modify the propensity score matching method

by using a model selection procedure to determine which regressors to include in the propensity score model.

Their main finding is that the Connors et al. (1996) conclusion that catheterization increases mortality risk

is robust to their model selection exercise.

Prior to Connors et al. (1996), attempts to organize a randomized trial failed because doctors refused to

recruit patients into the control group. The belief in the efficacy of catheterization was so strong that doctors

believed it unethical to deny this procedure to patients on the basis of chance. See, for example, Fowler and

Cook (2003) and Guyatt (1991). Since Connors et al. (1996), there have been at least two randomized trials

on specialized ICU populations: Sandham et al. (2003) and Richard et al. (2003). Neither finds statistically

significant differences in mortality between catheterized and non-catheterized patients. While it would be
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appealing to compare our results with these trials, substantial differences between the populations studied

in the trials and this study preclude a direct comparison.

In recent work motivated in part by this paper, Li et al. (2008) and Altonji et al. (2008) also use the

data of Connors et al. (1996) to evaluate the effect of Swan-Ganz catheterization. Li et al. (2008) apply the

methodology of Li et al. (2009), which, like Connors et al. (1996), rules out the possibility of selection on

unobservable characteristics. Altonji et al. (2008) use the methodology of Altonji et al. (2005), which allows

for selection on unobservable characteristics, but involves restrictions on the relationship between the strength

of selection on observable characteristics and the strength of selection on unobservable characteristics. In

contrast to these papers, our methodology allows for selection on unobservable characteristics and requires

no such restrictions on the strength of selection on these characteristics relative to the strength of selection

on observable characteristics, but, in order to do so, it requires an instrumental variable.

3 Notation and Assumptions

In this section, we define our notation and assumptions. Let Y be an indicator for patient death within

the given number of days after admission into the ICU unit, and let D be an indicator for catheterization.

Let Y1 denote the potential outcome that would be observed if the individual receives treatment, and let Y0

denote the potential outcome that would be observed if the individual does not receive treatment. Only Y1

is observed for individuals who receive catheterization, and only Y0 is observed for individuals who did not

receive catheterization, so that Y = (1−D)Y0 +DY1. The effect of catheterization on mortality is Y1 − Y0,

and the average effect of the catheterization on mortality is E[Y1 − Y0] = P{Y1 = 1} − P{Y0 = 1} . Let X
be observed individual characteristics determining mortality and let Z be observed individual characteristics

determining catheterization. We assume that Y0, Y1 and D are determined by threshold crossing models,

i.e., for d ∈ {0, 1},
Y ∗
d = r(X, d) − ǫd

Yd = 1{Y ∗
d ≥ 0}

(1)

and
D∗ = s(Z)− ν

D = 1{D∗ ≥ 0} ,
(2)

where 1{A} is the indicator function of the event A and ǫ0, ǫ1 and ν are unobserved random variables. The

latent indices Y ∗
1 , Y

∗
0 may be interpreted as unobserved measures of health status with and without the

treatment, and the latent index D∗ may be interpreted as an unobserved measure of the desire by hospital

staff to conduct the catheterization.

We assume further that (X,Z) ⊥⊥ (ǫ0, ǫ1, ν). We thus allow catheterization to be endogenous, reflecting

the possible dependence between ǫ0, ǫ1, and ν, but we assume that all other regressors are exogenous. We

further impose the rank similarity assumption of Chernozhukov and Hansen (2005):

ǫd|ν ∼ ǫ|ν (3)

for d ∈ {0, 1}. This restriction is obviously weaker than assuming that ǫ0 = ǫ1, in which case we obtain the

triangular system of equations considered in Shaikh and Vytlacil (2011). We also assume that (ǫ, ν) has a

strictly positive density with respect to Lebesgue measure on R
2. This assumption eases the exposition but
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is not essential. We also require that there is at least one variable in Z that is not in X , i.e., there is some

variable that affects the decision to perform catheterization, but does not directly affect mortality. Such a

variable is often referred to as an instrumental variable. In our application, we will use an indicator variable

for whether the patient was admitted into the ICU on a weekend (rather than a weekday) for this purpose.

Remark 3.1 Vytlacil (2002) establishes the equivalence between the threshold crossing model defined in

(2) and the monotonicity assumption of Imbens and Angrist (1994). Using the potential treatment notation

of Imbens and Angrist (1994), we have that Dz = 1{s(z) − ν ≥ 0} for z ∈ {0, 1}. The special case of our

model with ǫ0 = ǫ1 is equivalent to the monotonicity assumption of Imbens and Angrist (1994) holding on

Y as well as on D.

Remark 3.2 An important special case of our model is the bivariate probit model with structural shift of

Heckman (1978), which imposes the further assumptions that ǫ0 = ǫ1, r(X,D) = Xβ+Dα, s(Z) = Zγ, and

(ǫ, ν) is distributed as a bivariate normal variable with zero means and unit variances. Our model nests this

model as a special case, but does not require any of its parametric assumptions.

Remark 3.3 Shaikh and Vytlacil (2011) require that ǫ1 = ǫ0, which implies that the sign of the treatment

effect does not vary among patients with the same observable characteristics. In our application, such a

restriction would rule out the possibility that, among patients with the same observable characteristics,

Swan-Ganz catheterization may result in negative effects for some patients while having positive effects for

other patients. In contrast, the rank similarity assumption in equation (3) does not rule out this possibility.

Note, however, that the restriction does impose that the sign of P{Y1 = 1|X, ν} − P{Y0 = 1|X, ν}, referred
to as the “Marginal Treatment Effect”in Heckman and Vytlacil (2005), does not vary with ν. On the other

hand, P{Y1 = 1|X, ν}−P{Y0 = 1|X, ν} may be a non-trivial function of ν. In this sense, the rank similarity

assumption allows for the possibility that doctors observe factors related to latent health status and factors

related to the effect of treatment that are not observed by the econometrician.

4 Bounds on the Average Treatment Effect

In this section, we develop several different bounds on the average treatment effect. For ease of exposition,

suppose that there are no X covariates and that Z is a binary random variable. See Remark 4.5 for a

discussion of how the results below would change if these assumptions were relaxed. We assume further that

Z is ordered so that P{D = 1|Z = 1} > P{D = 1|Z = 0}. In our application, Z = 1 therefore corresponds

to a admission into an ICU on a weekday while Z = 0 corresponds to admission on a weekend.

4.1 Bounds of Manski (1990)

Manski (1990) only assumes that Y1 and Y0 are (mean) independent of Z, i.e., P{Y0 = 1 | Z} = P{Y0 = 1}
and P{Y1 = 1 | Z} = P{Y1 = 1}. Note that

P{Y1 = 1 | Z = z} = P{D = 1, Y1 = 1 | Z = z}+ P{D = 0, Y1 = 1 | Z = z}.
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Since Y = Y1 when D = 1, P{D = 1, Y1 = 1 | Z = z} = P{D = 1, Y = 1 | Z = z} is immediately identified

from the distribution of the observed data. P{D = 0, Y1 = 1 | Z = z} = P{D = 0 | Z = z}P{Y1 = 1 |
D = 0, Z = z}, on the other hand, is not identified from the distribution of the observed data since we never

observe Y1 for individuals with D = 0. But 0 ≤ P{Y1 = 1 | D = 0, Z = z} ≤ 1, so

P{D = 1, Y = 1|Z = z} ≤ P{Y1 = 1|Z = z}
≤ P{D = 1, Y = 1|Z = z}+ P{D = 0|Z = z} .

The same argument mutatis mutandis can be used to derive similar bounds on P{Y0 = 1|Z = z}. Since Y0

and Y1 are (mean) independent of Z by assumption, we have

BL
M ≤ E[Y1 − Y0] ≤ BU

M

where

BL
M = max

z
{P{D = 1, Y = 1|Z = z}}

−min
z

{P{D = 0, Y = 1|Z = z}+ P{D = 1|Z = z}}

BU
M = min

z
{P{D = 1, Y = 1|Z = z}+ P{D = 0|Z = z}}

−max
z

{P{D = 0, Y = 1|Z = z}} .

4.2 Bounds of Shaikh and Vytlacil (2011)

We now construct bounds under the assumptions described in Section 3. Shaikh and Vytlacil (2011) construct

bounds on the average treatment effect under the assumptions described in Section 3 with the additional

restriction that ǫ0 = ǫ1. As we show below, their bounds continue to hold under the weaker rank similarity

assumption in equation (3). These assumptions, while remaining nonparametric in nature, are stronger than

those imposed by Manski (1990). Under the assumptions of Section 3,

P{Y = 1 | Z = z} = P{D = 1, Y = 1 | Z = z}+ P{D = 0, Y = 1 | Z = z}
= P{D = 1, Y1 = 1 | Z = z}+ P{D = 0, Y0 = 1 | Z = z}
= P{ν ≤ s(z), ǫ1 ≤ r(1)}+ P{ν > s(z), ǫ0 ≤ r(0)}
= P{ν ≤ s(z), ǫ ≤ r(1)} + P{ν > s(z), ǫ ≤ r(0)} ,

with the last equality following from (3). Recall that we have ordered Z so that P{D = 1 | Z = 1} > P{D =

1 | Z = 0}, which, under our assumptions, implies s(1) > s(0). Thus, if r(1) > r(0),

P{Y = 1 | Z = 1} − P{Y = 1 | Z = 0} = P{s(0) < ν ≤ s(1), r(0) < ǫ ≤ r(1)} ,

and if r(1) < r(0) then

P{Y = 1 | Z = 1} − P{Y = 1 | Z = 0} = −P{s(0) < ν ≤ s(1), r(1) < ǫ ≤ r(0)} .

It follows that

P{Y = 1 | Z = 1} > P{Y = 1 | Z = 0} ⇐⇒ r(1) > r(0)

P{Y = 1 | Z = 1} < P{Y = 1 | Z = 0} ⇐⇒ r(1) < r(0) .
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It follows that if P{Y = 1 | Z = 1} ≥ P{Y = 1 | Z = 0}, for example, then

P{Y = 1 | D = 1, Z = z} ≥ P{Y0 = 1 | D = 1, Z = z}
P{Y = 1 | D = 0, Z = z} ≤ P{Y1 = 1 | D = 0, Z = z}

The resulting bounds on the average treatment effect are the same as those derived by Shaikh and Vytlacil

(2011), and are given by

BL
SV ≤ E[Y1 − Y0] ≤ BU

SV ,

where

BL
SV = P{Y = 1 | Z = 1} − P{Y = 1 | Z = 0}

BU
SV = P{D = 1, Y = 1 | Z = 1}+ P{D = 0 | Z = 1} − P{D = 0, Y = 1 | Z = 0}

when P{Y = 1 | Z = 1} > P{Y = 1 | Z = 0},

BL
SV = P{D = 1, Y = 1 | Z = 1} − P{D = 0, Y = 1 | Z = 0} − P{D = 1 | Z = 0}

BU
SV = P{Y = 1 | Z = 1} − P{Y = 1 | Z = 0}

when P{Y = 1 | Z = 1} < P{Y = 1 | Z = 0}, and BL
SV = BU

SV = 0 when P{Y = 1 | Z = 1} = P{Y = 1 |
Z = 0}.

Remark 4.1 The Shaikh and Vytlacil (2011) bounds always lie on one side of zero, unless P{Y = 1 | Z =

1} = P{Y = 1 | Z = 0}, in which case the average treatment effect is identified to be zero. To see this, note

that if P{Y = 1 | Z = 1} > P{Y = 1 | Z = 0}, then the lower bound on the average treatment effect is

P{Y = 1 | Z = 1} − P{Y = 1 | Z = 0} > 0. Conversely, if P{Y = 1 | Z = 1} < P{Y = 1 | Z = 0}, then the

upper bound on the average treatment effect is P{Y = 1 | Z = 1} − P{Y = 1 | Z = 0} < 0. The bounds of

Shaikh and Vytlacil (2011) therefore always identify the sign of the average treatment effect.

Remark 4.2 Under the assumptions that D is given by (2) and that the unobservables are independent of

Z, it follows from the Theorem 2 of Heckman and Vytlacil (2001) that the bounds of Manski (1990) may be

written as

BL
M = P{D = 1, Y = 1|Z = 1} − P{D = 0, Y = 1|Z = 0} − P{D = 1 | Z = 0}

BU
M = P{D = 1, Y = 1|Z = 1}+ P{D = 0 | Z = 1} − P{D = 0, Y = 1|Z = 0} .

Note that if P{Y = 1 | Z = 1} ≥ P{Y = 1 | Z = 0}, then BU
SV = BU

M . The upper bounds on the average

treatment effect is therefore the same. On the other hand,

BL
SV −BL

M = P{D = 0, Y = 1 | Z = 1} − P{D = 1, Y = 1 | Z = 0}
+P{D = 1 | Z = 0}

= P{D = 0, Y = 1 | Z = 1}+ P{D = 1, Y = 0 | Z = 0} ≥ 0 ,

so BL
SV ≥ BL

M . Typically, the inequality will in fact be strict. Conversely, if P{Y = 1 | Z = 1} ≤ P{Y = 1 |
Z = 0}, then BL

SV = BL
M and BU

SV ≤ BU
M . The bounds of Shaikh and Vytlacil (2011) imposing threshold

crossing on both Y and D are therefore smaller than those of Manski (1990). This result is in contrast to

the results of Heckman and Vytlacil (2001), who show that imposing threshold crossing only on D alone

does not narrow the bounds of Manski (1990), but rather implies restrictions on the observable data that

simplifies the form of the bounds.
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Remark 4.3 Manski and Pepper (2000) consider a “monotone instrumental variables” (MIV) assumption

and a “monotone treatment response” (MTR) assumption. The MIV assumption is a weaker form of the

instrumental variable assumption found in Manski (1990). The MTR assumption requires that one knows

a priori that Y1 ≥ Y0 for all individuals or that one knows a priori that Y0 ≥ Y1 for all individuals. In the

present context of the effect of catheterization on mortality, where much of the debate focuses on whether

the average effect of catheterization is positive, negative, or zero, imposing MTR is unpalatable since it

would involve directly imposing the answer to the question of interest. The relationship of the analysis of

Shaikh and Vytlacil (2011) with the analysis of Manski and Pepper (2000) is studied in Bhattacharya et al.

(2008). As discussed by Bhattacharya et al. (2008), it is not possible to determine the sign of the treatment

effect in the same way as Shaikh and Vytlacil (2011) under the assumptions of Manski and Pepper (2000).

Current work by Machado et al. (2011) develops the sharp bounds for the average treatment effect under

the restriction that the outcome is monotone in the treatment, but without assuming the direction of the

monotonicity a priori or that the treatment is monotone in the instrument. They show further that the

sharp bounds under the assumptions of Manski and Pepper (2000) without assuming that the direction of

the effect is known a priori does not correspond to the bounds of Shaikh and Vytlacil (2011). See also

Blundell et al. (2007) for related analysis in the context of bounding changes in the distribution of wages

when wages are only observed for workers and there is non-random selection into employment. In this paper,

since we do not assume that ǫ0 = ǫ1, we do not require that Y1 ≥ Y0 for all individuals or that Y0 ≥ Y1 for

all individuals. Thus, we impose neither that the direction of the effect is the same for all individuals nor

that the direction of the average effect is known a priori.

4.3 An Extension of Shaikh and Vytlacil (2011)

In this section, we extend the analysis of Shaikh and Vytlacil (2011) to exploit the additional assumption

that doctors catheterize individuals with the worst latent health. This restriction is referred to as “monotone

treatment selection” by Manski and Pepper (2000), and is analogous to the stochastic dominance restriction

considered by Blundell et al. (2007). Formally, we assume that ǫ and ν are positive quadrant dependent

(PQD), i.e.,

P{ǫ ≤ t0 | ν ≤ t1} ≥ P{ǫ ≤ t0} for all t0, t1 .

Positive quadrant dependence is a relatively weak measure of positive dependence between two random

variables. See Joe (1997) for a discussion of the relationship between positive quadrant dependence and other

concepts of positive dependence. Put differently, this assumption requires that individuals with unobserved

characteristics that make them more likely to be catheterized (have a low value of ν) are individuals with

unobserved characteristics that make them more likely to suffer mortality (have a low values of ǫ).

The PQD assumption implies that

P{ǫ ≤ t0 | ν ≤ t1} ≥ P{ǫ ≤ t0 | ν > t1} for all t0, t1 .

It follows that

P{Y = 1|D = 1, Z = z} = P{ǫ1 ≤ r(1)|ν ≤ s(z)}
= P{ǫ ≤ r(1)|ν ≤ s(z)}
≥ P{ǫ ≤ r(1)|ν > s(z)}
= P{Y1 = 1|D = 0, Z = z} .
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Similarly, we have that

P{Y0 = 1|D = 1, Z = z} ≥ P{Y = 1|D = 0, Z = z} .

It therefore follows from the analysis of the preceding section that if P{Y = 1 | Z = 1} ≥ P{Y = 1 | Z = 0},
then

P{Y = 1 | D = 1, Z = z} ≥ P{Y1 = 1 | D = 0, Z = z} ≥ P{Y = 1 | D = 0, Z = z}
P{Y = 1 | D = 1, Z = z} ≥ P{Y0 = 1 | D = 1, Z = z} ≥ P{Y = 1 | D = 0, Z = z} ;

if, on the other hand, P{Y = 1 | Z = 1} ≤ P{Y = 1 | Z = 0}, then

min{P{Y = 1 | D = 1, Z = z}, P{Y = 1 | D = 0, Z = z}} ≥ P{Y1 = 1 | D = 0, Z = z} ≥ 0

max{P{Y = 1 | D = 1, Z = z}, P{Y = 1 | D = 0, Z = z}} ≤ P{Y0 = 1 | D = 1, Z = z} ≤ 1 .

These results bound P{Y0 = 1} and P{Y1 = 1}. If, for example, P{Y = 1 | Z = 1} > P{Y = 1 | Z = 0},
then

P{Y1 = 1} = P{Y1 = 1 | Z = z}
= P{D = 1 | Z = z}P{Y1 = 1 | D = 1, Z = z}

+P{D = 0 | Z = z}P{Y1 = 1 | D = 0, Z = z}
≤ P{Y = 1 | D = 1, Z = z} ,

which implies that

P{Y1 = 1} ≤ min
z

{P{Y = 1 | D = 1, Z = z}} .

Using arguments given in Shaikh and Vytlacil (2011), it is possible show that

min
z

{P{Y = 1 | D = 1, Z = z}} = P{Y = 1 | D = 1, Z = 1} .

The bounds resulting from this line of reasoning are given by

BL
PQD ≤ E[Y1 − Y0] ≤ BU

PQD ,

where

BL
PQD = P{Y = 1 | Z = 1} − P{Y = 1 | Z = 0}

BU
PQD = P{Y = 1 | D = 1, Z = 1} − P{Y = 1 | D = 0, Z = 0},

when P{Y = 1 | Z = 1} > P{Y = 1 | Z = 0},

BL
PQD = P{D = 1, Y = 1 | Z = 1} − P{D = 0, Y = 1 | Z = 0}

−P{D = 1 | Z = 0}
BU

PQD = P{D = 1, Y = 1 | Z = 1}+ P{D = 0 | Z = 1}
×min{P{Y = 1 | D = 1, Z = 1}, P{Y = 1 | D = 0, Z = 1}}
−P{D = 0, Y = 1 | Z = 0} − P{D = 1 | Z = 0}
×max{P{Y = 1 | D = 1, Z = 0}, P{Y = 1 | D = 0, Z = 0}} ,

when P{Y = 1 | Z = 1} < P{Y = 1 | Z = 0}, and BL
PQD = BU

PQD = 0 when P{Y = 1 | Z = 1} = P{Y =

1 | Z = 0}.
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Remark 4.4 The PQD bounds are (weakly) narrower than the SV bounds. To see this, first suppose that

P{Y = 1 | Z = 1} > P{Y = 1 | Z = 0}. In this case, BL
SV = BL

PQD, but

BU
SV −BU

PQD = P{D = 0|Z = 1} × P{Y = 0|D = 1, Z = 1}
+P{D = 1|Z = 0} × P{Y = 1|D = 0, Z = 0} ≥ 0 ,

so BU
SV ≥ BU

PQD. Similarly, if P{Y = 1 | Z = 1} < P{Y = 1 | Z = 0}, then it is possible to show that

BU
SV = BU

PQD, but BL
SV ≤ BL

PQD. Typically, these inequalities will in fact be strict. If P{Y = 1 | Z =

1} = P{Y = 1 | Z = 0}, then the average treatment effect is identifed to be zero and the two sets of bounds

coincide.

Remark 4.5 Throughout Section 4, we have assumed that there are no X covariates and that Z is binary.

Relaxing these assumptions is straightforward. If X is contained in Z, then all of the analysis can simply be

carried out conditional on X . If, on the other hand, there exists a component of X that is not contained in

Z, then it is possible to further narrow the bounds on the average treatment effect. If there is a continuous

component of X that is not contained in Z, then it is possible to obtain point identification. For further

details, see Shaikh and Vytlacil (2011) and Vytlacil and Yildiz (2007). If Z is not binary, then all of the

analysis can be carried out with z1 in place of 1 and z0 in place of 0, where z1 maximizes P{D = 1|Z = z}
and z0 minimizes P{D = 1|Z = z}. Shaikh and Vytlacil (2011) show that the resulting bounds are sharp

under the additional assumption that the support of the distribution of (X,Z) equals the product of the

support of the distribution of X and the support of the distribution of Z. On the other hand, Chiburis

(2010) shows that these bounds need not be sharp without this additional restriction.

5 Inference

In this section, we discuss inference for each of the bounds described in the preceding section. For ease of

exposition, we assume again that there are no X covariates. We also assume, as in the preceding section,

that Z is ordered so that P{D = 1|Z = 1} > P{D = 1|Z = 0}. Finally, we assume further that 0 < P{Y =

y,D = d, Z = z} < 1 for all (y, d, z) ∈ {0, 1}3.

Let (Yi, Di, Zi), i = 1, . . . , n be an i.i.d. sample of random variables with common distribution given by

the distribution of (Y,D,Z). For some pre-specified α ∈ (0, 1), we construct below random sets Cn such that

for each θ between the upper and lower bounds

lim inf
n→∞

P{θ ∈ Cn} ≥ 1− α . (4)

Following Romano and Shaikh (2008), who build upon earlier work by Chernozhukov et al. (2007), our

construction will be based upon test inversion. In each case, our confidence region will therefore be of the

form

Cn = {−1 ≤ θ ≤ 1 : Tn(θ) ≤ ĉn(θ, 1− α)} (5)

for an appropriate choice of test statistic Tn(θ) and critical value ĉn(θ, 1−α). The critical value ĉn(θ, 1−α)

will be constructed using subsampling. In order to describe the construction, we require some further

notation. Let b = bn < n be a sequence of positive integers tending to infinity, but satisfying bn/n → 0.
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Index by i = 1, . . . , Nn =
(

n
b

)

the different subsets of {1, . . . , n} of size b. Denote by Tn,b,i(θ) the test statistic

Tn(θ) computed using only the ith subset of data of size b. Let ĉn(θ, 1 − α) denote the (smallest) 1 − α

quantile of the distribution

Ln(x, θ) =
1

Nn

∑

1≤i≤Nn

1{Tn,b,i(θ) ≤ x} . (6)

Romano and Shaikh (2008) show that Cn defined by (5) satisfies the coverage property (4) under weak

conditions on the distribution of Tn(θ). In each of the applications below, it is straightforward to show that

these conditions hold under the above assumptions using arguments similar to those given in Section 3.2 of

Romano and Shaikh (2008). Theorem A.1 in Appendix A establishes that the confidence regions defined

below behave well uniformly over a large class of possible distributions for (Y,D,Z). In particular, the class

of distributions we consider allows for the instrument to be “weak” in the sense that the (strict) inequality

in P{D = 1|Z = 1} > P{D = 1|Z = 0} may be arbitrarily close to an equality. See Imbens and Manski

(2004) and Romano and Shaikh (2008) for further discussion of the importance of confidence regions that

behave well in this sense.

5.1 Bounds of Manski (1990)

Let

nz = |{1 ≤ i ≤ n : Zi = z}| (7)

and define

δ1,n(z1, z2) =
1

nz1

∑

1≤i≤n:Zi=z1

DiYi −
1

nz2

∑

1≤i≤n:Zi=z2

((1 −Di)Yi +Di) (8)

δ2,n(z1, z2) =
1

nz1

∑

1≤i≤n:Zi=z1

(DiYi + (1−Di))−
1

nz2

∑

1≤i≤n:Zi=z2

(1−Di)Yi . (9)

If z1 6= z2, then define

s1,n(z1, z2) =

√

σ̂2
n,DY |Z=z1

nz1

+
σ̂2
n,(1−D)Y+D|Z=z2

nz2

(10)

s2,n(z1, z2) =

√

σ̂2
n,DY+(1−D)|Z=z1

nz1

+
σ̂2
n,(1−D)Y |Z=z2

nz2

; (11)

if z1 = z2, then define

s1,n(z1, z2) =

√

σ̂2
n,DY−(1−D)Y−D|Z=z1

nz1

s2,n(z1, z2) =

√

σ̂2
n,DY+(1−D)−(1−D)Y |Z=z1

nz1

.

Finally, for −1 ≤ θ ≤ 1, define

Tn(θ) =
∑

(z1,z2)∈{0,1}2

(

δ1,n(z1, z2)− θ

s1,n(z1,z2)

)2

+

+
∑

(z1,z2)∈{0,1}2

(

θ − δ2,n(z1, z2)

s2,n(z1,z2)

)2

+

.
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Remark 5.1 Imbens and Manski (2004) discuss the construction of confidence regions with the coverage

property (4) for partially identified models where the identified set is an interval whose upper and lower

endpoints are means or at least behave like means asymptotically. Although the identified set here is also an

interval, the upper and lower endpoints do not have this property, so their analysis is not applicable here.

Chernozhukov et al. (2011), on the other hand, develop methods that would be applicable in our context.

5.2 Bounds of Shaikh and Vytlacil (2011)

Let

∆n =
1

n1

∑

1≤i≤n:Zi=1

Yi −
1

n0

∑

1≤i≤n:Zi=0

Yi , (12)

where nz is given by (7), and define

sn =

√

σ̂2
n,Y |Z=1

n1
+
σ̂2
n,Y |Z=0

n0
. (13)

For 0 < θ ≤ 1, define

Tn(θ) =

(−∆n

sn

)2

+

+

(

∆n − θ

sn

)2

+

+

(

θ − δ2,n(1, 0)

s2,n(1, 0)

)2

+

, (14)

where δ2,n(1, 0) is given by (9) and s2,n(1, 0) is given by (11); for −1 ≤ θ < 0, define

Tn(θ) =

(

∆n

sn

)2

+

+

(

θ −∆n

sn

)2

+

+

(

δ1,n(1, 0)− θ

s1,n(1, 0)

)2

+

,

where δ1,n(1, 0) is given by (8) and s1,n(1, 0) is given by (10); and for θ = 0, define

Tn(θ) =

(

∆n

sn

)2

.

5.3 PQD Bounds

Let

nz,d = |{1 ≤ i ≤ n : Zi = z,Di = d}| ,

let ∆n be given by (12), and let sn be given by (13). Define

δ3,n =
1

n1,1

∑

1≤i≤n:Zi=1,Di=1

Yi −
1

n0

∑

1≤i≤n:Zi=0

Yi

δ4,n =
1

n1,1

∑

1≤i≤n:Zi=1,Di=1

Yi −
1

n0,0

∑

1≤i≤n:Zi=0,Di=0

Yi

δ5,n =
1

n1

∑

1≤i≤n:Zi=1

Yi −
1

n0,0

∑

1≤i≤n:Zi=0,Di=0

Yi ,
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and

s3,n =

√

σ̂2
Y |Z=1,D=1

n1,1
+
σ̂2
Y |Z=0

n0

s4,n =

√

σ̂Y |Z=1,D=1

n1,1
+
σ̂Y |Z=0,D=0

n0,0

s5,n =

√

σ̂Y |Z=1

n1
+
σ̂Y |Z=0,D=0

n0,0
.

For 0 < θ ≤ 1, define

Tn(θ) =

(−∆n

sn

)2

+

+

(

∆n − θ

sn

)2

+

+

(

θ − δ4,n
s4,n

)2

+

;

for −1 ≤ θ < 0, define

Tn(θ) =

(

∆n

sn

)2

+

+

(

δ1,n(1, 0)− θ

s1,n(1, 0)

)2

+

+

(

θ −∆n

sn

)2

+

+

(

θ − δ3,n
s3,n

)2

+

+

(

θ − δ4,n
s4,n

)2

+

+

(

θ − δ5,n
s5,n

)2

+

,

where δ1,n(1, 0) is given by (8) and s1,n(1, 0) is given by (10); and for θ = 0, define

Tn(θ) =

(

∆n

sn

)2

.

6 A Test of Threshold Crossing

In this section, we briefly discuss a means of testing for the threshold crossing structure on the treatment

equation. As discussed in Remark 4.2, Heckman and Vytlacil (2001) show that when D is given by (2) and

that the unobservables are independent of Z the bounds of Manski (1990) may be written as

BL
M = P{D = 1, Y = 1|Z = 1} − P{D = 0, Y = 1|Z = 0} − P{D = 1 | Z = 0}

BU
M = P{D = 1, Y = 1|Z = 1}+ P{D = 0 | Z = 1} − P{D = 0, Y = 1|Z = 0} .

It is therefore possible to test whether D is given by (2) and that the unobservables are independent of Z

by comparing these expressions for the bounds of Manski (1990) with those stated in Section 4.1. These two

expressions will be the same if and only if

P{D = 0, Y = 1|Z = 1} − P{D = 1 | Z = 1} ≥ P{D = 0, Y = 1|Z = 0} − P{D = 1 | Z = 0}
P{D = 1, Y = 1|Z = 0}+ P{D = 0 | Z = 0} ≥ P{D = 1, Y = 1|Z = 1}+ P{D = 0 | Z = 1}

P{D = 1, Y = 1|Z = 1} ≥ P{D = 1, Y = 1|Z = 0}
P{D = 0, Y = 1|Z = 0} ≥ P{D = 0, Y = 1|Z = 1} .
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We now describe one of several possible ways of testing whether these inequalities hold jointly. Let nz be

given by (7) and define

ψ1,n =
1

n0

∑

1≤i≤n:Zi=0

((1 −Di)Yi −Di)−
1

n1

∑

1≤i≤n:Zi=1

((1−Di)Yi −Di)

ψ2,n =
1

n1

∑

1≤i≤n:Zi=1

(DiYi + (1 −Di))−
1

n0

∑

1≤i≤n:Zi=0

(DiYi + (1−Di))

ψ3,n =
1

n0

∑

1≤i≤n:Zi=0

DiYi −
1

n1

∑

1≤i≤n:Zi=1

DiYi

ψ4,n =
1

n1

∑

1≤i≤n:Zi=1

(1 −Di)Yi −
1

n0

∑

1≤i≤n:Zi=0

(1 −Di)Yi .

Consider the test statistic

Tn = max
1≤i≤4

ψi,n .

Large values of this test statistic provide evidence against the null hypothesis that all four of the above

inequalities hold. We may again construct a critical value for this test statistic using subsampling as described

in the beginning of Section 5. As before, the validity of such an approach can be verified using arguments

similar to those given in Section 3.2 of Romano and Shaikh (2008). It may, of course, be desirable to divide

each of the ψi,n by an estimate of its standard error, as was done in the previous section.

7 Data

The Connors et al. (1996) data come from intensive care units (ICUs) at five prominent hospitals – Duke

University Medical Center, Durham, NC; MetroHealth Medical Center, Cleveland, OH; St. Joseph’s Hos-

pital, Marshfield, WI; and University of California Medical Center, Los Angeles, CA. The study admitted

only severely ill patients with one of nine disease conditions: acute respiratory failure, chronic obstructive

pulmonary disease (COPD), congestive heart failure, cirrhosis, nontraumatic coma, metastatic colon cancer,

late-stage non-small cell lung cancer, and multiorgan system failure (MOSF) with malignancy or sepsis.

59.2% of the sample is over the age of 60. Murphy and Cluff (1990) provide a detailed description of pa-

tient recruitment procedures, including a list of exclusion criteria. Connors et al. (1996) count a patient as

catheterized if the procedure was performed within 24 hours of entering the ICU.

There are 5,735 patients, all of whom were admitted to or transferred to the ICU within 24 hours

of entering the hospital. Because we analyze each diagnosis separately, we drop patients with a primary

diagnosis of lung cancer or colon cancer because there are few patients with these diagnoses in the data

(seven colon cancer and 39 lung cancer patients). After these patients are dropped, there remain 5,689

patients in the data.

Connors et al. (1996) collected a large amount of information about each patient via standardized medical

chart abstraction methods and interviews with patients and patient surrogates. Tables 1 - 3 compare patients

who were catheterized during their first day of admission to the ICU with those who were not catheterized.

These tables present the p-value from a test of the hypothesis that the means of the variables are equal for

catheterized and non-catheterized patients.
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Table 1 compares patients on the basis of demographic variables and the primary diagnosis at admission.

Catheterized patients are more likely to be male (by 4.7%), privately insured (by 6.4%), richer (less likely

to have an income of less than $11,000 per year by 6.4%), and less likely to be on Medicaid (by 4.0%).

Catheterized patients also weigh more than non-catheterized patients (by 7.2 kg). The primary diagnosis on

ICU admission plays an important role in the probability of catheterization. Catheterized patients are less

likely to have COPD, cirrhosis, or coma as an admitting diagnosis, but more likely to have congestive heart

failure or MOSF with sepsis.

Table 2 compares patients on the basis of disease history prior to admission and functional status.

Catheterized patients are more likely to have had a history (hx) of cardiac disease (by 4.4%), but less likely

to have a history of dementia, psychiatric disease, or COPD. Catheterized patients are more likely than

non-catheterized patients to have arrived at the hospital by transfer from another hospital. Catheterized

patients have a 3.9% lower two month predicted survival rate upon admission than non-catheterized patients

and a worse acute physiology score. Catheterized patients have a lower Glasgow coma score and are less

likely to have requested a “do not resuscitate” (DNR) order. Patients with DNR orders typically want to

avoid aggressive therapies, including many of the sort supported by catheterization. Clearly, catheterized

patients are observably more ill than non-catheterized patients.

Table 3 compares catheterized and non-catheterized patients’ laboratory values at admission, as well as

any secondary diagnoses these patients may have had at admission. Among the laboratory values, all the

clinically significant and interpretable differences point toward the conclusion that catheterized patients are

observably sicker.

Remark 7.1 Because of the large number of comparisons we are making (there are 59 variables in Tables 1-

3), it is likely that we will reject several hypotheses falsely. We use the multiple testing procedure of Holm

(1979) to make the comparisons while controlling the familywise error rate – the probability of even one false

rejection – at level α. Let p̂(1) ≤ . . . ≤ p̂(s) denote the ordered values of the p-values and let H(1), . . . , H(s)

denote the corresponding null hypotheses. If p̂(1) ≥ α/s, then the procedure rejects no null hypotheses;

otherwise, it rejects null hypotheses H(1), . . . , H(r), where r is the largest index such that p̂(i) ≤ α/(s− i+1)

for all i ≤ r. This procedure always rejects at least as many null hypotheses as the Bonferroni procedure,

which simply rejects any null hypothesis Hi for which the corresponding p̂i ≤ α/s.

At the α = .05 significance level, we find that patients who are catheterized differ from those who are not

catheterized along 32 of 59 possible variables. The results are qualitatively similar at the α = .01 significance

level. Hence, even after accounting for the multiplicity of comparisons, we maintain our earlier conclusion

that catheterized patients are significantly different from non-catheterized patients.

8 Instrumenting with Admission Day

A direct comparison of outcomes between catheterized and non-catheterized patients is unlikely to yield the

causal effects of catheterization. Even if a full set of controls were included in the analysis, the results would

be unconvincing. If catheterized and non-catheterized patients differ on so many observed dimensions,

it is unlikely that they do not differ on unobserved dimensions as well. See Altonji et al. (2005) for a

formal justification of this argument. In this section, we develop suggestive evidence that day-of-the-week of

admission is an appropriate instrument to determine the causal effect of catheterization on patient mortality.
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8.1 Admission Day of Week Predicts Catheterization

We first establish that patients who are admitted to the ICU on a Saturday, Sunday, or Monday are sub-

stantially less likely to be catheterized on the day of admission than patients admitted on other days of the

week. The results remain similar if we exclude Monday from the definition of the weekend. Figure 1 shows

catheterization rates by day-of-the-week for patients, divided upon the basis of primary diagnosis upon ICU

admission. For patients with acute respiratory failure, congestive heart failure, MOSF with malignancy, or

MOSF with sepsis the probability of being catheterized decreases on weekends. A t-test of the difference

in probability of catheterization between weekend and weekday rejects equality at the α = 0.05 significance

level for all four groups. However, the same is not true for patients with COPD, cirrhosis, or coma: there

is no statistically significant difference, though the point estimates suggest that weekend admissions are less

likely to result in catheterization, even in these groups. As described in Section 5, the inference method we

use is robust to the presence of “weak” instruments, so we analyze all of these patient groups.

Remark 8.1 Since the bounding analysis includes no covariates (except for patient diagnosis), the analogous

first stage regression is a linear regression of the treatment on the instrument and indicators for each diagnosis.

The F -statistic from a test of the null hypothesis that the coefficient on the instrument in such a regression

is zero is 14.53, which suggests that the instrument is not “weak” by conventional standards. On the

other hand, if separate regressions are run for each diagnosis, then the F -statistic does not exceed 10

for any of the regressions, which suggests that the instrument is “weak” by conventional standards for a

diagnosis-by-diagnosis analysis. This fact is problematic for standard two-stage least squares estimator in

the diagnosis-by-diagnosis analysis, but not for our approach.

8.2 Patient Health and Day of Week of Admission

If patients admitted to the ICU on a weekday differed systematically from patients admitted on weekends,

then day-of-the-week would be a poor instrument since it would be correlated with unobserved determinants

of ICU patient mortality such as health status. We believe that there should be no such correlation, since

the health crises that precipitate ICU admissions are unlikely to respect distinctions between weekdays and

weekends. We now present suggestive evidence in favor of this view.

We divide patients up on the basis of whether they were admitted on a weekend or a weekday. Unlike, Ta-

bles 1 - 3 where there were many statistically significant differences between catheterized and non-catheterized

patients, we find that no statistically significant differences between weekend and weekday patients on the

basis of the 59 variables listed in Tables 1 - 3 at the α = 0.05 significance level (after adjusting for the fact

that we are testing for multiple hypotheses using the Holm (1979) procedure that we outline in Remark 7.1).

Importantly, there is no statistically significant difference between these groups on the basis of laboratory

tests at admission or other objectively measured variables. We further examine the possibility of differences

between the two groups by regressing the instrument on all of the 59 variables, and we fail to reject the null

hypothesis that the coefficients on all of these 59 variables are zero (the corresponding F -statistic is 1.11

and the p-value is 0.266).

Remark 8.2 Our belief that the day of week of admission is uncorrelated with the unobserved determinants

of mortality relies a great deal on the empirical fact that it is difficult for a doctor to control the course of a
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very sick patient’s condition to coincide with a weekday. While medical providers may desire patients arrive

at the ICU at a convenient time and day, in most cases this is beyond the ability of doctors to determine.

Card et al. (2007) similarly suggest that medical conditions for which admission rates do not depend on the

day of week of admission are exogenous to the control of doctors. In their study of the effect of Medicare

coverage on patient mortality, they include patients in their analysis on the basis of a test of admission rates

on weekend and weekdays. We conduct a similar test for each admitting condition in our data. For every

admitting diagnosis, we fail to reject the null hypothesis that admission rates for the condition are equal on

weekends and weekdays at the α = 0.05 significance level.

Remark 8.3 Even though health status at admission does not appear to vary by the day of week of ad-

mission to the ICU, death rates will vary if catheterization rates depend on day of week of admission and

mortality is affected by catheterization. Figures 2 and 3 show estimates mean mortality rates at 7, 30, 60, 90,

and 180 days after ICU admission for patients admitted on weekends and weekdays as well as 95% confidence

intervals for the mean. Figure 2 shows that for patients admitted for acute respiratory failure, congestive

heart failure, MOSF with malignancy, or MOSF with sepsis, observed mortality is the same at 7 days after

ICU admission for weekend and weekday patients, but higher for weekday patients at 30, 60, 90, and 180 days

post-ICU admission. Taken individually, none of these mortality differences between weekend and weekday

patients are statistically significant at the α = 0.05 significance level. However, when grouped together, the

differences at 30, 60, 90, and 180 days are statistically significant at the α = 0.05 significance level. By

contrast, Figure 3 shows that for patients admitted with COPD, coma, or cirrhosis, patients admitted on a

weekday have a lower mortality than patients admitted on a weekend, at nearly every time interval. This

suggests that for these patients, catheterization is protective, even after discharge from the ICU. As before,

none of the differences are statistically significant when taken diagnosis by diagnosis, but are statistically

significant when these three groups of patients are grouped together.

Remark 8.4 Empirically, it is interesting to know for which groups of patients day of the week of admission

is likely to be influential in the decision to catheterize. The threshold crossing assumption implies that there

are three different groups of patients that differ on this basis: one group would be catheterized on any day

of the week, a second group would not be catheterized on any day of the week, and a third group would be

catheterized on weekdays but not on weekends. This third group, in language of Angrist et al. (1996), are

called “compliers” and are interesting because the local average treatment effect equals the average treatment

effect for them. In our context, differences between compliers and non-compliers in the 59 variables shown

in Tables 1-3 would imply that the inferences drawn about the treatment effect for compliers should not be

extended to non-compliers.

Almond and Doyle (2008) develop a method, based on these ideas, to measure the expected value of

covariates among compliers. See equation (2) and the discussion that precedes it in their paper for details.

In our context, this equation says that the expected value of covariates among compliers is simply

πC + πA
πC

(

E[X |D = 1, Z = 1]− πA
πC + πA

E[X |D = 1, Z = 0]

)

,

where πA = P{D = 1|Z = 0}, πN = P{D = 1|Z = 1}, and πC = 1 − πA − πN . Using this equation, for

each covariate in Tables 1 - 3, we test whether the expected value of the covariate among compliers equals

the expected value of the covariate among compliers and non-compliers. After applying the multiple testing
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procedure described in Remark 7.1, we find at the α = 0.05 significance level differences for only three

covariates: proportion of patients with a primary diagnosis of COPD, proportion of patients with adverse

values of PACO2 (a measure of lung function), and proportion of patients with a secondary diagnosis of

respiratory disease. At the α = 0.01 significance level, only the proportion of patients with a diagnosis of

COPD remains statistically different between compliers and the overall population. In other words, compliers

are more likely to have pulmonary difficulties.

For brevity, we do not show the analogous table within each diagnosis category. These results show

that for nearly every diagnosis category, once we adjust for multiple testing, there are no differences among

compliers and non-compliers. There are only two exceptions: Within the COPD diagnostic category, the

compliers are about 2.4 percentage points less likely to have a secondary diagnosis of a neurological condition,

and within the coma category, the compliers have a lower two-month predicted survival rate at admission to

the ICU.

8.3 Day of Week, Hospital Staffing, and Outcomes

Although non-specialists sometimes find it surprising, it is well known in the health services literature that

medical staffing can have a major effect on treatment decisions, including the decision to catheterize a patient.

Rapoport et al. (2000), for example, find that patients admitted to ICUs that staff a full time ICU physician

are two-thirds less likely to be catheterized than those admitted to ICUs with no full time physician. Whether

this fact threatens the validity of our instrument depends upon whether there are unobserved differences in

treatment between weekday and weekend admissions, unassociated with catheterization, that help determine

patient mortality. If so, then admission day would not be a valid instrument.

Evaluating the importance of differences in treatment between weekend and weekday admissions is com-

plicated by the fact that Swan-Ganz catheterization itself is a gateway to a large number of other treatments.

For example, ICU physicians often use the information from catheterization to titrate the dose of inotropic

drugs, such as dopamine and dobutamine, which are designed to improve cardiac contractility. These drugs

have a narrow therapeutic range, and thus small differences in the dosing can be the difference between killing

and inadequately treating a patient. Since catheterization is less likely on weekends, it would be unsurprising

to find decreased use of inotropes on weekends as well. We can accommodate such differences in treatment

between weekend and weekday admissions by simply interpreting the treatment effect as catheterization and

all the other treatments it enables or encourages on mortality, rather than catheterization by itself.

It is possible that weekend-weekday staffing differences, for reasons having nothing to do with catheter-

ization or its downstream consequences, may lead to higher patient mortality. If so, then our instrument

would be invalid. Since staffing tends to be sparser on weekends, one would expect that mortality rates

would be higher then. In fact, in our data mortality rates are higher on weekdays for some diagnoses and

lower for others, which is inconsistent with a direct mortality effect of staffing. Furthermore, several studies

have found no evidence that staffing differences explain weekend-weekday mortality differences in ICUs. See

Ensminger et al. (2004), Wunsch et al. (2004) and Dobkin (2003).
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9 Results

In this section, we report results from the three different bounds described in Section 4. We analyze outcomes

t days after admission to the ICU separately for five different values of t – 7, 30, 60, 90, and 180 days. For

this reason, we write the outcome Y and the potential outcomes Y0 and Y1 as functions of t throughout the

remainder of the paper. Each of the bounds except one that we report rely upon our instrumental variable

– an indicator for whether the patient was admitted to the ICU on a Tuesday through Friday. For each of

the bounds, we display 95% confidence intervals for the average treatment effect computed as described in

Section 5. Computational details are described below in Remark 9.4.

Figures 4 and 5 show the bounds of Manski (1990) (labelled “Manski bounds”) for the treatment effect of

catheterization on mortality for patient groups divided up based on admitting diagnosis. These figures also

show the 95% confidence band around these bounds. In every case, and at every time interval, the Manski

(1990) bounds have a width of nearly one and thus always fail to exclude zero. Apparently, our instrument

plus the fact that probabilities lie between zero and one is insufficient to determine whether catheterization

increases or reduces mortality. See Remark 9.1 below for further discussion.

Figures 6 and 7 show the bounds of Shaikh and Vytlacil (2011) (labelled “SV bounds”) for each admitting

diagnosis (along with the 95% confidence bands around these bounds). The Shaikh and Vytlacil (2011)

bounds are considerably more informative than the Manski bounds in several cases. For instance, for patient

with acute respiratory failure, the SV bounds suggest that catheterization increases mortality at 30 and 180

days post ICU admission, but that one cannot rule out at the α = 0.05 significance level that it has no effect

on mortality (or even decreases mortality) at 7 days. A similar story can be told for patients with MOSF

with sepsis. For patients admitted with MOSF with malignancy, the SV bounds show a decrease in mortality

at 7 days, but an increase at 90 days (both statistically significant at the α = 0.05 significance level). For

these groups of patients, catheterization causes a short term improvement in survival, but a longer term loss.

For patients with an admitting diagnosis of COPD or cirrhosis, the SV bounds in Figure 7 suggest that

catheterization reduces mortality at 7 days (and even at 30 and 60 days for COPD patients), but that one

cannot rule out at the α = 0.05 significance level an increase in mortality at longer intervals. Of course, one

cannot rule out a decrease in mortality or no effect on mortality at those longer intervals.

Recall that Connors et al. (1996) found that catheterization increases mortality even at 7 days using this

same data set that we use here, but a different statistical method that assumes that there are no unobserved

differences between catheterized and non-catheterized patients. Their result raises the question of why ICU

doctors do not observe the increased mortality from catheterization and react accordingly. The Shaikh and

Vytlacil (2011) bounds provides a possible answer – ICU doctors do not see rise in mortality which happens

only after many patients have been released from the ICU.

Figures 8 and 9 show the bounds from the extension of Shaikh and Vytlacil (2011) described in Section 4.3

(labelled “PQD bounds”). These bounds impose the restriction that doctors are effective at triaging patients

so that it is those patients with the worst health who are actually catheterized. These figures show that

imposing this plausible restriction decreases the width of the treatment effect bounds, often dramatically.

By construction, these bounds are always on the same side of zero as the Shaikh and Vytlacil (2011)

bounds. The reduction in the width of the bounds is greatest when the average treatment effect is positive,

i.e., when catheterization increases mortality. This is to be expected, as the PQD restriction rules out the
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possibility that doctors cause great harm to large numbers of their patients. On the other hand, the PQD

bounds have a lower upper bound than the Shaikh and Vytlacil (2011) bounds when the average treatment

effect is negative, i.e., when catheterization decreases mortality, so it may permit researchers to conclude,

for example, that the intervention is cost-effective even as the Shaikh and Vytlacil (2011) bounds permit the

possibility that it may not be.

Remark 9.1 Despite the evidence presented in Section 8, it is interesting to consider how our inferences

would change if we did not rely upon our instrumental variable. One possible answer is to rely on the bounds

of Manski (1990), which may be constructed without an instrument. In that case, the width of the bounds

is always exactly one and thus always fail to exclude zero. A second possible answer is given by the analysis

of Section 4.3, which may also be constructed without an instrument. In that case, the PQD assumption

reduces to P{Y1 = 1 | D = 1} ≥ P{Y1 = 1 | D = 0} and P{Y0 = 1 | D = 1} ≥ P{Y0 = 1 | D = 0}, which
implies the following bounds on the average treatment effect:

P{Y1 = 1 | D = 1}P{D = 1} − P{Y0 = 1 | D = 0}P{D = 0} − P{D = 1}
≤ E[Y1 − Y0] ≤ P{Y1 = 1 | D = 1} − P{Y0 = 1 | D = 0}

Figures 10 and 11 shows these bounds and associated 95% confidence intervals. In every case, the bounds

cross zero, though their width is substantially less than one. The PQD assumption by itself is therefore not

enough to identify the direction of the treatment effect.

Remark 9.2 Heckman and Vytlacil (2001) show that the threshold crossing structure on D implies that

BU
M − BL

M = 1 − P{D = 1|Z = 1} + P{D = 1|Z = 0}, where Z is ordered such that P{D = 1|Z = 1} >
P{D = 1|Z = 0}. If P{D = 1|Z = 1} is close to one and P{D = 1|Z = 0} is close to zero, then the bounds

will have width close to zero. In contrast, if P{D = 1|Z = 1} is close to P [D = 1|Z = 0}, then the width

of the bounds will be nearly one, i.e., almost as wide as the naive bounds that do not impose or exploit an

instrument described in Remark 9.1. Our empirical result that the width of the bounds is close to one is a

direct result of the instrument being “weak” in the sense that P{D = 1|Z = 1} is close to P{D = 1|Z = 0}.

Remark 9.3 We also implement the test of the threshold crossing assumption that is described in Section 6.

For each value of t, we fail to reject the inequalities shown in that section at the α = 0.10 significance level.

This provides at least weak evidence in favor of the assumptions underlying the bounds described in Sections

4.2 and 4.3.

Remark 9.4 For the results we reported above, we used a subsample size of b = 50. In results not reported

here, we also tried different subsample sizes ranging from 25 to 75 and found that our results are remained

similar for these values of b. Finally, because Nn is large, we used an approximation to (6) in which we

randomly chose with replacement Bn = 1000 of the Nn possible subsamples. It follows from Corollary 2.4.1

of Politis et al. (1999) that critical values constructed in this way remain valid provided that Bn tends to

infinity.
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10 Conclusion

While direct comparisons of the mortality of catheterized and non-catheterized patients lead to the conclusion

that catheterization increases mortality, we show evidence that this result is due to profound differences

between the catheterized and non-catheterized patients: the former are much more severely ill than the

latter.

We provide suggestive evidence that weekday admission can serve as an instrumental variable for catheter-

ization. Patients admitted on a weekday are about four to eight percentage points more likely to be catheter-

ized than patients admitted on a weekend. Yet, weekday and weekend patients appear similar in health

status along a large number of dimensions. Exploiting an instrumental variable permits us to address the

unobserved differences between catheterized and non-catheterized ICU patients.

We apply different bounding approaches that exploit access to our instrument, in particular, the recent

approach introduced by Shaikh and Vytlacil (2011), which we compare with the approach of Manski (1990).

We find that, while the bounds of Manski (1990) always straddle zero, the bounds of Shaikh and Vytlacil

(2011) typically produces a clearer answer – catheterization increases mortality at 30 days and beyond,

while at 7 days the average treatment effect may be zero or negative. We extend the analysis of Shaikh

and Vytlacil (2011) to exploit a further nonparametric structural assumption – that doctors catheterize

individuals with systematically worse latent health – and find that this assumption further narrows these

bounds and strengthens these conclusions.

The main theme of the paper is the trade-off induced by the acceptance of potentially unverifiable struc-

tural assumptions. If one is willing to accept very strong structural assumptions, such as those underlying the

bivariate probit model, then one can obtain point identification. At the other extreme, if the only structural

assumption one accepts is that probabilities lie between zero and one (such as in the Manski (1990) bounds

without an instrument), then the width of the bounds on the average treatment effect is exactly one, so it is

not possible to determine the sign of the average treatment effect. In between these two extremes, one may

accept different nonparametric, structural assumptions, such as the validity of an instrument or threshold

crossing models on the outcome or treatment variables, which may not lead to point identification, but may

reduce the width of the bounds considerably, as in our empirical example, and are more palatable than the

very strong parametric assumptions required for the bivariate probit model.

Our primary substantive finding is that catheterization improves mortality outcomes only in the short

run, if at all, and in most cases we cannot rule out that it increases mortality in the long run. This finding

is intuitively appealing because it suggests a possible explanation for the fact that many ICU doctors are

committed to the use of the Swan-Ganz catheter. Since most ICU patients leave the ICU well before 30

days after admission have elapsed, ICU doctors may never observe the increase in mortality. Our results

also suggest a second (not mutually exclusive) possibility: a simple selection story. Catheterization saves

the lives, in the short run, of the most severely ill patients, but the deaths of these patient cannot be staved

off for long. Disentangling these possibilities will require even more detailed data and further research.
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A Appendix

In this Appendix, we show that the confidence regions described in Section 5 behave well uniformly over

a large class of possible distributions P for (Y,D,Z). Our main result is Theorem A.1 below. Note that

in the statement of the theorem we index the upper and lower bounds by P ∈ P to reflect their obvious

dependence on the distribution of the observed data. The proof of the theorem utilizes Lemma B.6, which

is established in the following Appendix.

Theorem A.1 Let (Yi, Di, Zi), i = 1, . . . , n be an i.i.d. sequence of random variables with distribution

P ∈ P. Suppose P is such that

P{Y = y,D = d, Z = z} > ǫ

for some ǫ > 0 and

P{D = 1|Z = 1} > P{D = 1|Z = 0} (15)

for all (y, d, z) ∈ {0, 1}3 and P ∈ P. Let b = bn < n be a sequence of positive integers tending to infinity,

but satisfying bn/n→ 0. Then, the following statements are true:

(i) If Tn(θ) is defined as in Section 5.1, then Cn defined by (5) satisfies

lim inf
n→∞

inf
P∈P

inf
BL

M
(P )≤θ≤BU

M
(P )

P{θ ∈ Cn} ≥ 1− α .

(ii) If Tn(θ) is defined as in Section 5.2, then Cn defined by (5) satisfies

lim inf
n→∞

inf
P∈P

inf
BL

SV
(P )≤θ≤BU

SV
(P )

P{θ ∈ Cn} ≥ 1− α .

(iii) If Tn(θ) is defined as in Section 5.3, then Cn defined by (5) satisfies

lim inf
n→∞

inf
P∈P

inf
BL

PQD
(P )≤θ≤BU

PQD
(P )

P{θ ∈ Cn} ≥ 1− α .

Proof: We prove only part (ii) of the theorem. The arguments for parts (i) and (iii) are very similar. To

this end, suppose by way of contradiction that (ii) fails to hold. It follows that there exists η < 1− α and a

sequence {(Pn, θn) ∈ P× [−1, 1] : n ≥ 1} with BL
SV (Pn) ≤ θn ≤ BU

SV (Pn) for all n ≥ 1 such that

Pn{θn ∈ Cn} = Pn{Tn(θn) ≤ ĉn(θ, 1 − α)} → η . (16)

By considering a subsequence if necessary, we may assume that θn > 0, θn < 0, or θn = 0 for all n ≥ 1.

Suppose θn > 0 for all n ≥ 1. It follows that Tn(θn) is given by (14) and that

−(µY |Z=1(Pn)− µY |Z=0(Pn)) ≤ 0

(µY |Z=1(Pn)− µY |Z=0(Pn))− θn ≤ 0

θn − (µDY +(1−D)|Z=1(Pn)− µ(1−D)Y |Z=0(Pn)) ≤ 0 .

Next, apply Lemma B.6 to ((−Y, Y −θ,−DY −(1−D)), (−Y, Y, θ−(1−D)Y ), Z) by identifying P in Lemma

B.6 with (P, θ) in the present context. It is straightforward to see that the conditions of Lemma B.6 are

satisfied. It follows that (16) can’t hold. In a similar way, we reach a contradiction when θn < 0 or θn = 0

for all n ≥ 1. The desired result thus follows.

Remark A.1 Note that Theorem A.1 allows the equality in (15) to be arbitrarily close to an equality. In

fact, part (i) of Theorem A.1 continues to hold even if we do not require (15) to hold for all P ∈ P.
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B Appendix

In this Appendix, we derive a series of lemmas, building up to to Lemma B.6 which is used in the derivation

of Theorem A.1.

Lemma B.1 Let (Xi, Zi), i = 1, . . . , n be an i.i.d. sequence of random variables with distribution P ∈ P on

R× {0, 1}. Suppose

lim sup
λ→∞

sup
P∈P

EP

[

(

X − µX|Z=1(P )

σX|Z=1(P )

)2

I

{∣

∣

∣

∣

X − µX|Z=1(P )

σX|Z=1(P )

∣

∣

∣

∣

> λ

}

∣

∣Z = 1

]

= 0 (17)

and for some ǫ > 0 that

inf
P∈P

P{Z = 1} > ǫ . (18)

Then,

lim sup
λ→∞

sup
P∈P

EP





(

(X − µX|Z=1(P ))Z

σ(X−µX|Z=1(P ))Z(P )

)2

I

{∣

∣

∣

∣

∣

(X − µX|Z=1(P ))Z

σ(X−µX|Z=1(P ))Z(P )

∣

∣

∣

∣

∣

> λ

}



 = 0 . (19)

Proof: Note that the lefthand-side of (19) equals

lim sup
λ→∞

sup
P∈P

EP





(

X − µX|Z=1(P )

σX|Z=1(P )
√

P{Z = 1}

)2

I

{∣

∣

∣

∣

∣

X − µX|Z=1(P )

σX|Z=1(P )
√

P{Z = 1}

∣

∣

∣

∣

∣

> λ

}

∣

∣Z = 1



P{Z = 1} .

The desired result (19) now follows from (17) and (18).

Lemma B.2 Let Zi, i = 1, . . . , n be an i.i.d. sequence of random variables with distribution P ∈ P on

{0, 1}. Then,
lim sup
λ→∞

sup
P∈P

EP [|Z − µZ(P )| I {|Z − µZ(P )| > λ}] = 0 . (20)

Proof: Follows simply by noting that |Z − µZ(P )| ≤ 1.

Lemma B.3 Let (Xi, Zi), i = 1, . . . , n be an i.i.d. sequence of random variables with distribution P ∈ P on

R× {0, 1}. Suppose for some ǫ > 0 that (17) and (18) hold. Then, under any sequence {Pn ∈ P : n ≥ 1},

σ̂2
n,X|Z=1/σ

2
X|Z=1(Pn)

Pn→ 1 .

Proof: Assume without loss of generality that µX|Z=1(P ) = 0 and σ2
X|Z=1(P ) = 1. Hence, µXZ(P ) = 0

and µX2Z(P ) = P{Z = 1}. Note that

1

n1

∑

1≤i≤n:Zi=1

Xi =





1

n

∑

1≤i≤n

XiZi





/





1

n

∑

1≤i≤n

Zi





=

(

1
n

∑

1≤i≤nXiZi

P{Zi = 1}

)

/

(

P{Zi = 1}
1
n

∑

1≤i≤n Zi

)

.
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From Lemma B.1, we see that (19) holds. Note that σXZ(P ) =
√

P{Z = 1}. It therefore follows from

Lemma 11.4.2 of Lehmann and Romano (2005) that

1
n

∑

1≤i≤nXiZi
√

Pn{Zi = 1}
Pn→ 0 .

Hence,
1
n

∑

1≤i≤nXiZi

Pn{Zi = 1}
Pn→ 0 .

From Lemma B.2, we see that (20) holds. It therefore follows from Lemma 11.4.2 of Lehmann and Romano

(2005) that
1

n

∑

1≤i≤n

Zi − Pn{Zi = 1} Pn→ 0 .

Hence,
1
n

∑

1≤i≤n Zi

Pn{Zi = 1} =
1
n

∑

1≤i≤n Zi − Pn{Zi = 1}
Pn{Zi = 1} + 1

Pn→ 1 .

Thus,
1

n1

∑

1≤i≤n:Zi=1

Xi
Pn→ 0 .

Next, note that

1

n1

∑

1≤i≤n:Zi=1

X2
i =





1

n

∑

1≤i≤n

X2
i Zi





/





1

n

∑

1≤i≤n

Zi





=

(

1
n

∑

1≤i≤nX
2
i Zi

P{Zi = 1}

)

/

(

P{Zi = 1}
1
n

∑

1≤i≤n Zi

)

.

It follows from Lemma 11.4.3 of Lehmann and Romano (2005) that

1
n

∑

1≤i≤nX
2
i Zi

Pn{Zi = 1}
Pn→ 1 .

Thus,
1

n1

∑

1≤i≤n:Zi=1

X2
i

Pn→ 1 .

The desired result now follows.

Lemma B.4 Let (Xi, Yi, Zi), i = 1, . . . , n be an i.i.d. sequence of random variables with distribution P ∈ P

on R×R× {0, 1}. Suppose that for some ǫ > 0

ǫ < inf
P∈P

P{Z = 1} ≤ sup
P∈P

P{Z = 1} < 1− ǫ (21)

and that

lim sup
λ→∞

sup
P∈P

EP

[

(

X − µX|Z=1(P )

σX|Z=1(P )

)2

I

{∣

∣

∣

∣

X − µX|Z=1(P )

σX|Z=1(P )

∣

∣

∣

∣

> λ

}

∣

∣Z = 1

]

= 0

and

lim sup
λ→∞

sup
P∈P

EP

[

(

Y − µY |Z=0(P )

σY |Z=0(P )

)2

I

{∣

∣

∣

∣

Y − µY |Z=0(P )

σY |Z=0(P )

∣

∣

∣

∣

> λ

}

∣

∣Z = 0

]

= 0 .

Then, the following are true:
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(i) For any sequence {Pn ∈ P : n ≥ 1},
(

σ2
X|Z=1(Pn)

Pn{Zi = 1} +
σ2
Y |Z=0(Pn)

Pn{Zi = 0}

)

/

(

σ2
X|Z=1

1
n

∑

1≤i≤n Zi

+
σ2
Y |Z=0

1
n

∑

1≤i≤n(1− Zi)

)

Pn→ 1 .

(ii) For any sequence {Pn ∈ P : n ≥ 1},
(

σ2
X|Z=1(Pn)

Pn{Zi = 1} +
σ2
Y |Z=0(Pn)

Pn{Zi = 0}

)

/

(

σ̂2
n,X|Z=1

1
n

∑

1≤i≤n Zi

+
σ̂2
n,Y |Z=0

1
n

∑

1≤i≤n(1− Zi)

)

Pn→ 1 .

(iii) For any sequence {Pn ∈ P : n ≥ 1},
(

σ2
X|Z=1(Pn)

n1
+
σ2
Y |Z=0(Pn)

n0

)

/

(

σ̂2
n,X|Z=1

n1
+
σ̂2
n,Y |Z=0

n0

)

Pn→ 1 .

Proof: To establish (i), note from Lemma B.2 and Lemma 11.4.2 of Lehmann and Romano (2005) that

σ2
X|Z=1(Pn)

Pn{Zi = 1}
/
σ2
X|Z=1(Pn)

1
n

∑

1≤i≤n Zi

Pn→ 1

σ2
Y |Z=0(Pn)

Pn{Zi = 0}
/

σ2
Y |Z=0(Pn)

1
n

∑

1≤i≤n(1− Zi)

Pn→ 1 .

Note further that for any positive real numbers a, b, c and d, that
∣

∣

∣

∣

a+ b

c+ d
− 1

∣

∣

∣

∣

≤
∣

∣

∣

a

c
− 1
∣

∣

∣+

∣

∣

∣

∣

b

d
− 1

∣

∣

∣

∣

.

The desired result thus follows. A similar argument establishes (ii) and (iii).

Lemma B.5 Let (Xi, Yi, Zi), i = 1, . . . , n be an i.i.d. sequence of random variables with distribution P ∈ P

on R
k ×R

k × {0, 1}. Suppose (21) holds for some ǫ > 0 and for each 1 ≤ j ≤ k that

lim sup
λ→∞

sup
P∈P

EP

[

(

Xj − µXj |Z=1(P )

σXj |Z=1(P )

)2

I

{∣

∣

∣

∣

Xj − µXj |Z=1(P )

σXj |Z=1(P )

∣

∣

∣

∣

> λ

}

∣

∣Z = 1

]

= 0 (22)

and

lim sup
λ→∞

sup
P∈P

EP

[

(

Yj − µYj |Z=0(P )

σYj |Z=0(P )

)2

I

{∣

∣

∣

∣

Yj − µYj |Z=0(P )

σYj |Z=0(P )

∣

∣

∣

∣

> λ

}

|Z = 0

]

= 0 . (23)

Define Wn(P ) to be the vector whose jth element for 1 ≤ j ≤ k is given by

1
n1

∑

1≤i≤n:Zi=1Xj,i − µXj |Z=1(P )− 1
n0

∑

1≤i≤n:Zi=0 Yj,i − µYj |Z=0(P )
√

σ2
Xj |Z=1

(P )

n1
+

σ2
Yj |Z=0

(P )

n0

and

V (P ) = D(P )ΩX|Z=1(P ) + (I −D(P ))ΩY |Z=0(P ) , (24)

where ΩX|Z=1(P ) is the correlation matrix of X conditional on Z = 1 under P , ΩY |Z=0(P ) is the correlation

matrix of Y conditional on Z = 0 under P ,

D(P ) = diag





σ2
X1|Z=1(P )

P{Zi=1}
σ2
X1|Z=1

(P )

P{Zi=1} +
σ2
Y1|Z=0

(P )

P{Zi=0}

, . . . ,

σ2
Xk|Z=1(P )

P{Zi=1}
σ2
Xk|Z=1

(P )

P{Zi=1} +
σ2
Yk|Z=0

(P )

P{Zi=0}



 ,
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and I is the k-dimensional identity matrix. Let {Pn ∈ P : n ≥ 1} be such that V (Pn) → V ∗ for some matrix

V ∗. Then,

Wn(Pn)
d→ ΦV ∗(x) (25)

under Pn.

Proof: Assume without loss of generality that µX|Z=1(P ) = µY |Z=0(P ) = 0. It follows from Lemma B.2,

Lemma 11.4.2 of Lehmann and Romano (2005), and part (i) of Lemma B.4 that for any 1 ≤ j ≤ k

1
n1

∑

1≤i≤n:Zi=1Xj,i
√

σ2
Xj |Z=1

(P )

n1
+

σ2
Yj |Z=0

(P )

n0

= (1 + δ1,n(P ))

√

σ2
Xj |Z=1

(P )

P{Zi=1}
√

σ2
Xj |Z=1

(P )

P{Zi=1} +
σ2
Yj |Z=0

(P )

P{Zi=0}

1√
n

∑

1≤i≤n
Xj,iZi

P{Zi=1}
√

σ2
Xj |Z=1

(P )

P{Zi=1}

(26)

1
n0

∑

1≤i≤n:Zi=0 Yj,i
√

σ2
Xj |Z=1

(P )

n1
+

σ2
Yj |Z=0

(P )

n0

= (1 + δ0,n(P ))

√

σ2
Yj |Z=0

(P )

P{Zi=0}
√

σ2
Xj |Z=1

(P )

P{Zi=1} +
σ2
Yj |Z=0

(P )

P{Zi=0}

1√
n

∑

1≤i≤n
Yj,i(1−Zi)
P{Zi=0}

√

σ2
Yj |Z=0

(P )

P{Zi=0}

, (27)

where

δ1,n(Pn)
Pn→ 0

δ0,n(Pn)
Pn→ 0 .

Define W ∗
n(P ) to be the vector whose first k elements are given by (26) for 1 ≤ j ≤ k and whose second k

elements are given by (27) for 1 ≤ j ≤ k.

Suppose by way of contradiction that (25) fails. Then, there exists a subsequence {Pnm
∈ P : m ≥ 1}

and x ∈ R
k such that

Pnm
{Wnm

(Pnm
) ≤ x} 6→ ΦV ∗(x) .

By considering a further subsequence if necessary, we may assume that

D(Pnm
) → D∗

ΩY |Z=0(Pnm
) → Ω∗

0

ΩX|Z=1(Pnm
) → Ω∗

1

for matrices D∗, Ω∗
0 and Ω∗

1 such that

V ∗ = D∗Ω∗
1 + (I −D∗)Ω∗

0 .

It suffices to show that

W ∗
nm

(Pnm
)

d→ N(0, V̄ ) (28)

under Pnm
, where

V̄ = diag(D∗Ω∗
1, (I −D∗)Ω∗

0) .

From Lemma B.1, we see that

lim sup
λ→∞

sup
P∈P

EP

[

(

XjZ − µXjZ(P )

σXjZ(P )

)2

I

{∣

∣

∣

∣

XjZ − µXjZ(P )

σXjZ(P )

∣

∣

∣

∣

> λ

}

]

= 0 (29)
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and

lim sup
λ→∞

sup
P∈P

EP

[

(

Yj(1 − Z)− µYj(1−Z)(P )

σYj(1−Z)(P )

)2

I

{∣

∣

∣

∣

Yj(1− Z)− µYj(1−Z)(P )

σYj(1−Z)(P )

∣

∣

∣

∣

> λ

}

]

= 0 . (30)

Furthermore, (29) and (30) continue to hold if XjZ and Yj(1− Z) are replaced with
XjZ

P{Zi=1} and
Yj(1−Z)
P{Zi=0} ,

respectively. Finally, note that

σ2
XjZ

P{Z=1}

(P ) =
σ2
Xj |Z=1(P )

P{Z = 1}

σ2
Yj(1−Z)

P{Z=0}

(P ) =
σ2
Yj |Z=0(P )

P{Z = 0}

and

N(0, V̄nm
)

d→ N(0, V̄ ) ,

where

V̄n = diag(D(Pn)ΩX|Z=1(Pn), (I −D(Pn))ΩY |Z=0(Pn)) .

The desired conclusion (28) now follows from Lemma 3.1 of Romano and Shaikh (2008) and Slutsky’s

Theorem.

Lemma B.6 Let (Xi, Yi, Zi), i = 1, . . . , n be an i.i.d. sequence of random variables with distribution P ∈ P

on R
k ×R

k × {0, 1}. Suppose (21) holds for some ǫ > 0 and for each 1 ≤ j ≤ k that

µXj |Z=1(P )− µYj |Z=0(P ) ≤ 0

for all P ∈ P and that (22) and (23) hold. Define

Tn =
∑

1≤j≤k









1
n1

∑

1≤i≤n:Zi=1Xj,i − 1
n0

∑

1≤i≤n:Zi=0 Yj,i
√

σ̂2
n,Xj |Z=1

n1
+

σ̂2
n,Yj |Z=0

n0









2

+

and Jn(x, P ) = P{Tn ≤ x}. Let b = bn < n be a sequence of positive integers tending to infinity, but

satisfying b/n → 0. Index by i = 1, . . . , Nn =
(

n
b

)

the different subsets of {1, . . . , n} of size b. Denote by

Tn,b,i the test statistic Tn computed using only the ith subset of data of size b. Let

ĉn(1− α) = inf







x ∈ R :
1

Nn

∑

1≤i≤Nn

I{Tn,b,i ≤ x} ≤ 1− α







.

Then,

lim inf
n→∞

inf
P∈P

P{Tn ≤ ĉn(1− α)} ≥ 1− α .

Proof: From Theorem 2.1 of Romano and Shaikh (2010b), it suffices to show that

lim sup
n→∞

sup
P∈P

sup
x∈R

{Jb(x, P )− Jn(x, P )} ≤ 0 . (31)
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In order to establish (31), first note that because Tn ≥ 0, it is enough to consider the supremum over x ≥ 0.

For 1 ≤ j ≤ k, define

Tn,j =
1
n1

∑

1≤i≤n:Zi=1Xj,i − 1
n0

∑

1≤i≤n:Zi=0 Yj,i
√

σ̂2
n,Xj |Z=1

n1
+

σ̂2
n,Yj |Z=0

n0

T ∗
n,j(P ) =

1
n1

∑

1≤i≤n:Zi=1Xj,i − µXj |Z=1(P )− 1
n0

∑

1≤i≤n:Zi=0 Yj,i − µYj |Z=0(P )
√

σ̂2
n,Xj |Z=1

n1
+

σ̂2
n,Yj |Z=0

n0

.

Note that

Tn,j = T ∗
n,j(P ) + ∆̂n,j(P ) ,

where

∆̂n,j(P ) =
µXj |Z=1(P )− µYj |Z=0(P )
√

σ̂2
n,Xj |Z=1

n1
+

σ̂2
n,Yj |Z=0

n0

.

Further note that

∆̂n,j(P ) = δn,j(P )∆n,j(P ) ,

where

δn,j(P ) =





√

σ2
Xj |Z=1(P )

P{Zi = 1} +
σ2
Yj |Z=0(P )

P{Zi = 0}





/





√

√

√

√

σ̂2
n,Xj |Z=1

1
n

∑

1≤i≤n Zi

+
σ̂2
n,Yj |Z=0

1
n

∑

1≤i≤n(1− Zi)





∆n,j(P ) =
√
n
µXj |Z=1(P )− µYj |Z=0(P )
√

σ2
Xj |Z=1

(P )

P{Zi=1} +
σ2
Yj |Z=0

(P )

P{Zi=0}

.

We may therefore write

Jn(x, P ) = P{Tn ≤ x}

= P







∑

1≤j≤k

(Tn,j)
2
+ ≤ x







= P







∑

1≤j≤k

(T ∗
n,j(P ) + ∆̂n,j(P ))

2
+ ≤ x







= P







∑

1≤j≤k

(T ∗
n,j(P ) + δn,j(P )∆n,j(P ))

2
+ ≤ x







.

Since b ≤ n and µXj |Z=1(P )− µYj |Z=0(P ) ≤ 0, we see that ∆n,j(P ) ≤ 0 and

∆b,j(P ) ≥ ∆n,j(P ) .

Since δn,j(P ) ≥ 0, it follows that

Jb(x, P ) ≤ J∗
b (x, P ) ,

where

J∗
b (x, P ) = P







∑

1≤j≤k

(T ∗
b,j(P ) + δb,j(P )∆n,j(P ))

2
+ ≤ x







.
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It therefore suffices to show that

sup
P∈P

sup
x≥0

|J∗
b (x, P )− Jn(x, P )| → 0 . (32)

Suppose by way of contradiction that (32) fails to hold. It follows that there exists η > 0 and a sequence

{Pn ∈ P : n ≥ 1} such that

sup
x≥0

|J∗
b (x, Pn)− Jn(x, Pn)| → η . (33)

By extracting a further subsequence if necessary, we may assume that

V (Pn) → V ∗ ,

where V (P ) is given by (24), for some matrix V ∗. Define Ŵn(P ) to be the vector whose jth element for

1 ≤ j ≤ k is given by T ∗
n,j(P ). It follows from part (iii) of Lemma B.4, Lemma B.5 and Slutsky’s Theorem

that

Ŵn(Pn)
d→ N(0, V ∗)

under Pn. Similarly, we see that

Ŵb(Pn)
d→ N(0, V ∗)

under Pn. There are two cases to consider. First consider the case where there is a subsequence {Pnm
∈ P :

m ≥ 1} such that for all 1 ≤ j ≤ k

∆nm,j(Pnm
) → −∞ .

By Lemma B.4, for all 1 ≤ j ≤ k,

δnm,j(Pnm
)

Pnm→ 1

δbnm ,j(Pnm
)

Pnm→ 1 .

Hence,

sup
x≥0

|J∗
bnm

(x, Pnm
)− 1| → 0

sup
x≥0

|Jnm
(x, Pnm

)− 1| → 0 .

It therefore follows from the triangle inequality that

sup
x≥0

|J∗
bnm

(x, Pnm
)− Jnm

(x, Pnm
)| → 0 . (34)

If this is not the case, then there is a subsequence {Pnm
∈ P : m ≥ 1} and ∅ 6= J ⊆ {1, . . . , k} such that for

all j 6∈ J

∆nm,j(Pnm
) → −∞

and for all j ∈ J

∆nm,j(Pnm
) → −cj

for some cj > 0. It follows that

∑

1≤j≤k

(T ∗
bnm ,j(Pnm

) + δbnm ,j(Pnm
)∆nm,j(Pnm

))2+
d→
∑

j∈J

(Zj − cj)
2
+ (35)
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under Pnm
, where Z ∼ N(0, V ∗). Note that the distribution of the righthand-side of (35) is continuous

everywhere except possibly at zero. It is straightforward to check that

Pnm







∑

1≤j≤k

(T ∗
bnm ,j(Pnm

) + δbnm ,j(Pnm
)∆nm,j(Pnm

))2+ ≤ 0







→ P







∑

j∈J

(Zj − cj)
2
+ ≤ 0







.

Hence,

sup
x≥0

∣

∣

∣

∣

∣

∣

J∗
bnm

(x, Pnm
)− P







∑

j∈J

(Zj − cj)
2
+ ≤ x







∣

∣

∣

∣

∣

∣

= sup
x≥0

∣

∣

∣

∣

∣

∣

Pnm







∑

1≤j≤k

(T ∗
bnm ,j(Pnm

) + δbnm ,j(Pnm
)∆nm,j(Pnm

))2+ ≤ x







− P







∑

j∈J

(Zj − cj)
2
+ ≤ x







∣

∣

∣

∣

∣

∣

→ 0 ,

where the convergence to zero follows from Lemma A.2 of Romano and Shaikh (2010a). Similarly, we see

that

sup
x≥0

∣

∣

∣

∣

∣

∣

Jnm
(x, Pnm

)− P







∑

j∈J

(Zj − cj)
2
+ ≤ x







∣

∣

∣

∣

∣

∣

→ 0 .

From the triangle inequality, we see again that (34) holds. We thus reach a contradiction to (33), from which

the desired result follows.
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Table 1: Catheterized vs. Not Catheterized; Demographic and Diagnostic Comparisons

Variable Not Catheterized [ s.d. ] Catheterized [ s.d. ] p-value

Age 61.7 [0.323] 60.7 [0.292] 0.020

Male 53.8% [0.009] 58.5% [0.011] 0.001

Black 16.5% [0.007] 15.3% [0.008] 0.184

Other Race 6.0% [0.004] 6.5% [0.006] 0.564

Years Education 11.6 [0.052] 11.9 [0.080] 0.003

No Insurance 5.3% [0.004] 6.2% [0.005] 0.160

Private Insurance 27.1% [0.008] 33.5% [0.011] < 0.001

Medicare 26.7% [0.007] 23.4% [0.010] 0.003

Medicaid 12.8% [0.005] 8.8% [0.006] < 0.001

Private Insurance and Medicare 21.0% [0.007] 22.5% [0.008] 0.150

Family Income: < $11k 58.8% [0.009] 52.4% [0.010] < 0.001

Family Income: $11-25k 20.1% [0.006] 20.7% [0.009] 0.558

Family Income: $25-50k 13.9% [0.006] 18.0% [0.010] 0.001

Weight (kg) 65.2 [0.475] 72.4 [0.626] < 0.001

Dx: Acute Respiratory Failure 45.0% [0.007] 41.7% [0.010] 0.007

Dx: COPD 11.4% [0.006] 2.7% [0.004] < 0.001

Dx: Congestive Heart Failure 7.0% [0.005] 9.6% [0.006] < 0.001

Dx: Cirrhosis 5.0% [0.003] 2.2% [0.003] < 0.001

Dx: Coma 9.7% [0.004] 4.4% [0.004] < 0.001

Dx: MOSF with malignancy 6.9% [0.005] 7.3% [0.005] 0.574

Dx: MOSF with sepsis 15.0% [0.006] 32.1% [0.010] < 0.001

N 3,511 (61.7%) 2,178 (38.3%) -

Note: Each entry shows the mean and standard deviation (in brackets) for each variable. The p-value (not adjusted for multiple

comparisons – see Remark 7.1) is for a t-test of the hypothesis that the means for catheterized and non-catheterized patients

are equal.
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Table 2: Catheterized vs. Not Catheterized; Disease History and Functional Status

Variable Not Catheterized [ s.d. ] Catheterized [ s.d. ] p-value

Hx: Cardiac Disease 16.1% [0.006] 20.5% [0.008] < 0.001

Hx: Congestive Heart Failure 16.9% [0.006] 19.5% [0.008] 0.002

Hx: Dementia 11.7% [0.005] 6.9% [0.005] < 0.001

Hx: Psychiatric Condition 8.1% [0.005] 4.6% [0.005] < 0.001

Hx: Chronic Pulmonary Disease 21.8% [0.007] 14.4% [0.007] < 0.001

Hx: Renal Disease 4.2% [0.003] 4.8% [0.004] 0.201

Hx: Liver Disease 7.5% [0.005] 6.2% [0.006] 0.070

Hx: GI Bleed 3.7% [0.003] 2.5% [0.003] 0.002

Hx: Malignant Cancer 23.7% [0.008] 20.1% [0.008] 0.004

Hx: Immunological Disease 25.7% [0.008] 29.2% [0.009] 0.009

Hx: Acute Myocardial Infarction 3.0% [0.003] 4.3% [0.005] 0.017

Admitted via transfer 9.5% [0.005] 15.0% [0.007] < 0.001

2 month predicted survival 60.8% [0.003] 56.9% [0.004] < 0.001

Duke Activity Scale Index 20.4 [0.090] 20.7 [0.106] 0.022

Acute Physiology Score 51.1 [0.319] 60.8 [0.345] < 0.001

Glasgow Coma Score 22.4 [0.518] 19.0 [0.619] < 0.001

Diastolic Blood Pressure 84.9 [0.612] 68.1 [0.731] < 0.001

Do Not Resuscitate Order 13.9% [0.005] 7.1% [0.006] < 0.001

Note: Each entry shows the mean and standard deviation (in brackets) for each variable. The p-value (not adjusted for multiple

comparisons – see Remark 7.1) is for a t-test of the hypothesis that the means for catheterized and non-catheterized patients

are equal.
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Table 3: Catheterized vs. Not Catheterized; Lab Values and Secondary Diagnoses

Variable Not Catheterized [ s.d. ] Catheterized [ s.d. ] p-value

WBC count 15.3 [0.172] 16.3 [0.280] 0.002

Heart rate 113.0 [0.684] 118.9 [0.870] < 0.001

Respiratory rate 29.0 [0.272] 26.7 [0.253] < 0.001

Temperature (oC) 37.6 [0.027] 37.6 [0.040] 0.320

PAO2/(0.01*F iO2) 240.0 [2.055] 192.5 [2.409] < 0.001

Albumin 3.2 [0.012] 3.0 [0.024] < 0.001

Hematocrit 32.7 [0.151] 30.5 [0.133] < 0.001

Bilirubin 2.0 [0.078] 2.7 [0.105] < 0.001

Creatinine 1.9 [0.036] 2.5 [0.046] < 0.001

Sodium 137.0 [0.136] 136.3 [0.160] 0.002

Potassium 4.1 [0.020] 4.1 [0.020] 0.315

PACO2 40.0 [0.216] 36.8 [0.193] < 0.001

Serum Ph 7.4 [0.002] 7.4 [0.002] < 0.001

2nd Dx: Respiratory 41.9% [0.009] 28.9% [0.010] < 0.001

2nd Dx: Neurological 16.2% [0.005] 5.4% [0.005] < 0.001

2nd Dx: Gastrointestinal 14.8% [0.007] 19.2% [0.008] < 0.001

2nd Dx: Renal 4.2% [0.003] 6.7% [0.005] < 0.001

2nd Dx: Metabolic 4.8% [0.004] 4.3% [0.004] 0.260

2nd Dx: Hematological 6.8% [0.004] 5.2% [0.004] 0.004

2nd Dx: Sepsis 14.6% [0.007] 23.7% [0.008] < 0.001

Note: Each entry shows the mean and standard deviation (in brackets) for each variable. The p-value (not adjusted for multiple

comparisons – see Remark 7.1) is for a t-test of the hypothesis that the means for catheterized and non-catheterized patients

are equal.

Table 4: Compliers vs. Overall Sample: Significant Differences

Variable Overall [ s.d. ] Compliers [ s.d. ] p-value

Dx: COPD 0.080 [0.004] 0.011 [0.017] ¡0.001

PACO2 38.757 [0.146] 35.191 [0.988] ¡0.001

2nd Dx: Respiratory 0.369 [0.007] 0.212 [0.043] ¡0.001

Note: Please see Remark 8.4. Each entry shows the mean and standard deviation (in brackets) for each variable. For each of the

59 variables in Tables 1-3, we conduct a test of the null hypothesis that the mean of the indicated variable among “compliers”

equals the mean of the indicated variable among all patients. Here, we report the variables that show a statistically significant

difference at the α = 0.05 significance level after adjustment for multiple comparisons. Please see Remark 7.1. After such

adjustment, only three of these variables show a statistically significantly difference – PACO2, 2nd Dx: Respiratory, and Dx:

COPD. At the α = 0.01 significance level, there is only one statistically significant difference – Dx: COPD.
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Figure 1: % Catheterized by Day-of-Week of Admission by Diagnosis
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Figure 2: Mortality Rates for Weekend vs. Weekday Admissions (Part I)
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Figure 3: Mortality Rates for Weekend vs. Weekday Admissions (Part II)
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Figure 4: Manski (1990) Bounds (Part I)
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Figure 5: Manski (1990) Bounds (Part II)
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Figure 6: Shaikh and Vytlacil (2011) Bounds (Part I)
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Figure 7: Shaikh and Vytlacil (2011) Bounds (Part II)
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Figure 8: PQD Bounds (Part I)
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Figure 9: PQD Bounds (Part II)
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Figure 10: PQD Bounds Without Instrument (Part I)
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Figure 11: PQD Bounds Without Instrument (Part II)
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