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Abstract

This paper considers identification and inference about the sign of the average effect of a binary

endogenous regressor (or treatment) on a binary outcome of interest when a binary instrument is available.

In this setting, the average effect of the endogenous regressor on the outcome is sometimes referred

to as the average treatment effect (ATE). We consider four different sets of assumptions: instrument

exogeneity, instrument exogeneity and monotonicity on the outcome equation, instrument exogeneity and

monotonicity on the equation for the endogenous regressor, or instrument exogeneity and monotonicity

on both the outcome equation and the equation for the endogenous regressor. For each of these sets

of conditions, we characterize when (i) the distribution of the observed data is inconsistent with the

assumptions and (ii) the distribution of the observed data is consistent with the assumptions and the

sign of ATE is identified. A distinguishing feature of our results is that they are stated in terms of a

reduced form parameter from the population regression of the outcome on the instrument. In particular,

we find that the reduced form parameter being far enough, but not too far, from zero, implies that the

distribution of the observed data is consistent with our assumptions and the sign of ATE is identified,

while the reduced form parameter being too far from zero implies that the distribution of the observed

data is inconsistent with our assumptions. For each set of restrictions, we also develop methods for

simultaneous inference about the consistency of the distribution of the observed data with our restrictions

and the sign of the ATE when the distribution of the observed data is consistent with our restrictions.

We show that our inference procedures are valid uniformly over a large class of possible distributions for

the observed data that include distributions where the instrument is arbitrarily “weak.” A novel feature

of the methodology is that the null hypotheses involve unions of moment inequalities.
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1 Introduction

This paper considers identification and inference about the sign of the average effect of an endogenous re-

gressor on an outcome of interest when an instrumental variable is available. In order to obtain simple,

closed-form results and for ease of exposition, we focus on the case where the outcome of interest Y , en-

dogenous regressor D and instrumental variable Z, whose joint distribution we denote by P , are all binary.

In this setting, the endogenous regressor is sometimes referred to as the treatment and the average effect

of the endogenous regressor on the outcome of interest is sometimes referred to as the average treatment

effect (ATE). We consider four different sets of assumptions: instrument exogeneity, instrument exogeneity

and monotonicity on the outcome equation, instrument exogeneity and monotonicity on the equation for the

endogenous regressor, or instrument exogeneity and monotonicity on both the outcome equation and the

equation for the endogenous regressor. Here, monotonicity in the outcome equation requires that different

individuals do not have opposite responses to the endogenous regressor, whereas monotonicity in the equa-

tion for the endogenous regressor requires that different individuals do not have opposite responses to the

instrumental variable. These conditions generally only provide partial identification of ATE.

For each set of assumptions, we show that the sign of the ATE is identified to be positive if and only if

the reduced form parameter

∆(P ) = EP [Y |Z = 1]− EP [Y |Z = 0]

= P{Y = 1|Z = 1} − P{Y = 1|Z = 0} (1)

lies in a particular region that depends only on P and that the sign of the ATE is identified to be negative if

and only if ∆(P ) lies in another region that, again, depends only on P . When imposing instrument exogeneity

and monotonicity in only the equation for the endogenous regressor, we find that when ∆(P ) is sufficiently

large in magnitude and positive (negative), one can conclude that the sign of the ATE is positive (negative).

When imposing instrument exogeneity and monotonicity in both the outcome equation and the equation for

the endogenous regressor, we find that the sign of the ATE simply equals the sign of ∆(P ). Finally, when

imposing only instrument exogeneity or when imposing instrument exogeneity and monotonicity in only the

outcome equation, we not only find that the sign of the ATE need not equal the sign of ∆(P ), but that it is

possible for ∆(P ) to be so large in magnitude and positive (negative) that one concludes the sign of the ATE

is in fact negative (positive). For each set of restrictions, we show further that a value for ∆(P ) sufficiently

far from zero implies that our assumptions are false. These results may be viewed as formalizing applied

researchers’ suspicions of empirical results using instrumental variables when the reduced form parameter is

“too large” (or, by re-scaling appropriately, when the usual linear instrumental variables estimand is “too

large” – see Remark 2.1).

Our analysis reveals that instrument exogeneity alone results in the same ability to determine the sign of

the average treatment effect as instrument exogeneity and monotonicity in the equation for the endogenous

regressor; instrument exogeneity and monotonicity in the equation for the endogeous regressor has less

ability to determine the sign of the average treatment effect than instrument exogeneity and monotonicity

in the outcome equation; and instrument exogeneity and monotonicity in the outcome equation has less
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ability to determine the sign of the average treatment effect than instrument exogeneity and monotonicity in

both the outcome equation and the equation for the endogenous regressor. On the other hand, instrument

exogeneity alone imposes weaker testable restrictions than instrument exogeneity and monotonicity in the

outcome equation; instrument exogeneity and monotonicity in the outcome equation imposes weaker testable

restrictions than instrument exogeneity and monotonicity in the equation for the endogenous regressor; and

instrument exogeneity and monotonicity in the equation for the endogenous regressor imposes the same

testable restrictions as instrument exogeneity and monotonicity in both the outcome equation and the

equation for the endogenous regressor.

For each set of restrictions, we develop methods for simultaneous inference about the consistency of the

distribution of the observed data with our restrictions and the sign of the ATE when the distribution of the

observed data is consistent with our restrictions. For this purpose, we consider a multiple testing problem

with three null hypotheses, where rejection of the first null hypothesis means that P is consistent with the

assumptions, rejection of the first and second null hypotheses means that P is both consistent with the

assumptions and only a positive ATE, and rejection of the first and third null hypotheses means that P is

both consistent with the assumptions and only a negative ATE. The multiple testing procedure we develop

is an example of a “gatekeeping” multiple testing procedure in that it only considers testing the second and

third null hypotheses when the first null hypothesis has been rejected. Another novel feature of the analysis

is that some of the null hypotheses involve unions of moment inequalities. We develop a bootstrap-based

testing procedure for this family of null hypotheses that controls the familywise error rate – the probability

of any false rejection – uniformly over a large class of possible distributions for P that include distributions

where the instrument is arbitrarily “weak.”

In the context of instrument exogeneity and instrument exogeneity and monotonicity in the equation

for the endogenous regressor, our analysis is most closely related to Balke and Pearl (1997), who study

partial identification of the ATE and also characterize when P is consistent with their assumptions. A

characterization of consistency that does not require Y to be binary can be found in Kitagawa (2015),

who builds upon the work of Imbens and Rubin (1997) and Huber and Mellace (2011). Kitagawa (2015)

and Bhattacharya et al. (2012) also develop tests for the null hypothesis of instrument exogeneity and

monotonicity in the equation for the endogenous regressor. Other related literature includes the local average

treatment effect literature (LATE) (Imbens and Angrist, 1994) and the local instrumental variables/non-

parametric selection model literature (Heckman and Vytlacil, 2001b), both of which impose instrument

exogeneity and monotonicity in the equation for the endogenous regressor. Related results are obtained

in Richardson and Robins (2010). In the context of instrument exogeneity and monotonicity in both the

outcome equation and the equation for the endogenous regressor, our analysis is most closely related to

Bhattacharya et al. (2012) and Shaikh and Vytlacil (2005, 2011), who study partial identification of the

ATE, but do not characterize when P is consistent with the assumptions. Related results are obtained by

Chiburis (2010), though under a different instrument exogeneity assumption. See also Abrevaya et al. (2010),

who focus on inference about the sign of the average treatment effect in a semi-parametric model in a related

context while allowing for the treatment to be non-binary and allowing for covariates. In the context of

monotonicity in the outcome equation, the most closely related results are found in Chiburis (2010), though,
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as mentioned previously, under a different instrument exogeneity assumption.

The remainder of the paper proceeds as follows. In Section 2, we define our notation and the assumptions

that will be used in the remainder of the paper. For each set of assumptions, we characterize in terms of ∆(P )

in Section 3 when (i) P is inconsistent with the assumptions, (ii) when P is consistent with the assumptions

and only a positive ATE, and (iii) when P is consistent with the assumptions and only a negative ATE. We

further explore when P is inconsistent with our assumptions in Section 4. Finally, in Section 5, methods for

inference are developed. Proofs of all results along with a numerical exploration of some of our results and a

simulation study of the behavior of our inference procedure in finite samples can be found in the Appendix.

2 Notation and Assumptions

Let Y denote a binary outcome of interest, D denote a binary endogenous regressor, and Z denote a

binary instrument. For example, Y might denote mortality one year after the start of the experiment, D

might denote receipt of the medical treatment, and Z random assignment to the medical treatment, where

the randomized experiment suffers from noncompliance so that Z differs from D with positive probability.

Further denote by Y1 the potential outcome if treated, by Y0 the potential outcome if not treated, by D1

the potential value of the endogenous regressor if the instrument were to be externally set to 1, and by D0

the potential value of the endogenous regressor if the instrument were to be externally set to 0. Following

Angrist et al. (1996), we will refer to realizations with D1 > D0 as “compliers”, realizations with D1 < D0

as “defiers”, realizations with D1 = D0 = 1 as “always takers,” and realizations with D1 = D0 = 0 as “never

takers.” In this notation,

Y = DY1 + (1−D)Y0 (2)

D = ZD1 + (1− Z)D0 . (3)

Let P denote the distribution of (Y,D,Z) and Q denote the distribution of (Y0, Y1, D0, D1, Z). Since

(Y,D,Z) = T (Y0, Y1, D0, D1, Z) ,

where T is characterized by (2) and (3), we have that

P = QT−1 .

Below we will restrict Q ∈ Q, where Q is a set of distributions for (Y0, Y1, D0, D1, Z) satisfying certain

restrictions. In particular, we will require Z to be an instrument in the sense that every Q ∈ Q satisfies the

following exogeneity condition:

Assumption 2.1 (Instrument Exogeneity): Z ⊥⊥ (Y0, Y1, D0, D1) under Q.
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We will additionally consider the restriction that every Q ∈ Q satisfy one or both of the following mono-

tonicity conditions:

Assumption 2.2 (Monotonicity of D in Z): Q{D1 ≥ D0} = 1 or Q{D1 ≤ D0} = 1.

Assumption 2.3 (Monotonicity of Y in D): Q{Y1 ≥ Y0} = 1 or Q{Y1 ≤ Y0} = 1.

We do not impose instrument relevance, i.e., we allow for P{D = 1|Z = 1} = P{D = 1|Z = 0}. Without

loss of generality, we will order Z such that P{D = 1|Z = 1} ≥ P{D = 1|Z = 0}. Given this ordering and

Assumption 2.1, we have that Assumption 2.2 is equivalent to the restriction that Q{D1 ≥ D0} = 1.

Our object of interest is the average effect of the endogenous regressor on the outcome, defined to be

EQ[Y1 − Y0] = Q{Y1 = 1} −Q{Y0 = 1} . (4)

This quantity is typically referred to in the treatment effect literature as the average treatment effect (ATE).

It will be useful to partition Q as Q = Q+ ∪Q0 ∪Q−, where

Q+ = {Q ∈ Q : Q{Y1 = 1} −Q{Y0 = 1} > 0}

Q0 = {Q ∈ Q : Q{Y1 = 1} −Q{Y0 = 1} = 0}

Q− = {Q ∈ Q : Q{Y1 = 1} −Q{Y0 = 1} < 0} ,

and define

Q0,+ = Q+ ∪Q0

Q0,− = Q− ∪Q0 .

In other words, Q− (Q0,−) is the set of distributions for (Y0, Y1, D0, D1, Z) satisfying our restrictions and

having a (weakly) negative ATE, Q0 is the set of distributions for (Y0, Y1, D0, D1, Z) satisfying our restrictions

and having a zero ATE, and Q+ (Q0,+) is the set of distributions for (Y0, Y1, D0, D1, Z) satisfying our

restrictions and having a (weakly) positive ATE. In this notation, the ATE is identified to be positive if

P ∈ Q+T
−1 ∩ (Q0,−T

−1)c , (5)

where Q+T
−1 = {QT−1 : Q ∈ Q+}; Q−T

−1, Q0,−T
−1 and Q0,+T

−1 are defined similarly. In other

words, we identify the ATE to be positive if the distribution of (Y,D,Z) is consistent with our restrictions

holding with a positive ATE but not consistent with our restrictions holding with a zero or negative ATE.

Symmetrically, the ATE is identified to be negative if

P ∈ Q−T
−1 ∩ (Q0,+T

−1)c . (6)
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Analogously, the distribution of the observed data, P , is consistent with our restrictions if

P ∈ QT−1 . (7)

For completeness, we note that the identified set for the ATE, as a function of P , is given by

{EQ[Y1 − Y0] : Q ∈ Q and P = QT−1} .

Remark 2.1 Our results below will be stated in terms of the reduced form parameter ∆(P ), defined in

(1). In the biostatistics literature, when Z is random assignment to treatment with possible non-compliance,

∆(P ) is sometimes referred to as the “intention-to-treat” parameter. If the instrument is relevant, i.e.,

P{D = 1|Z = 1} 6= P{D = 1|Z = 0}, then, under mild regularity conditions, the usual linear instrumental

variables estimand in this setting is simply ∆(P ) divided by P{D = 1|Z = 1} − P{D = 1|Z = 0}. Under

our assumptions, the sign of ∆(P ) and the usual linear instrumental variables estimand are therefore the

same. As a result, it will be straightforward to re-scale our results to state them in terms of this quantity.

Remark 2.2 Note that Assumption 2.2 is the same monotonicity assumption found in Imbens and Angrist

(1994), who also refer to it as an assumption of “no defiers.” It follows from results in Vytlacil (2002) that

this assumption is equivalent to the selection model of Heckman and Vytlacil (2001b, 2005). In particular,

it is equivalent to assuming that there exists a representation of the model as

Dz = I{δ0 + δ1z + η ≥ 0} (8)

with δ1 being nonrandom. Similarly, Assumption 2.3 is equivalent to assuming that there exists a represen-

tation of the model as

Yd = I{β0 + β1d+ ε ≥ 0} (9)

with β1 nonrandom, and Assumptions 2.2 and 2.3 is equivalent to assuming both (8) and (9) with δ1 and β1

nonrandom. In this way, the monotonicity assumptions considered in this paper are implicit in many models

with constant coefficients. Note further that Assumption 2.3 is considerably weaker than the “monotone

treatment response” assumption considered in Manski and Pepper (2000).

Remark 2.3 A stronger version of Assumption 2.3 in which it is assumed further that the direction of the

monotonicity is known a priori is referred to as the “monotone treatment response” assumption by Manski

(1997) and Manski and Pepper (2000). They characterize the identified set for the ATE under this type of

restriction. As discussed by Bhattacharya et al. (2008), these results do not hold if only Assumption 2.3 is

assumed. In some settings, it may not be reasonable to assume that the direction of the effect is known a

priori. Our analysis, which focuses on the sign of the ATE, is useful in such settings.
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3 Identifying the Sign of the Average Treatment Effect from IV

In this section, for each of our four possible restrictions on Q, we characterize whether P satisfies (5), (6) or

(7) in terms of ∆(P ).

3.1 Instrument Exogeneity and Monotonicity of D in Z

In this section, we assume that every Q ∈ Q satisfies Assumptions 2.1 and 2.2. In this case, our results

essentially follow from Balke and Pearl (1997), who characterize the identified set for the ATE under these

assumptions and also when P is consistent with these restrictions. See also Heckman and Vytlacil (2001a)

and Kitagawa (2015), who generalize these results.

In order to state our results, we require some additional notation. Define

A1(P ) = max{A1
1(P ), A2

1(P )}
A2(P ) = −P{Y = 0, D = 0|Z = 1} − P{Y = 1, D = 1|Z = 0}
A3(P ) = P{Y = 1, D = 0|Z = 1}+ P{Y = 0, D = 1|Z = 0}
A4(P ) = min{A1

4(P ), A2
4(P )} ,

(10)

where

A1
1(P ) = P{Y = 1, D = 0|Z = 1} − P{Y = 1, D = 0|Z = 0}

A2
1(P ) = P{Y = 0, D = 1|Z = 0} − P{Y = 0, D = 1|Z = 1}

A1
4(P ) = P{Y = 1, D = 1|Z = 1} − P{Y = 1, D = 1|Z = 0}

A2
4(P ) = P{Y = 0, D = 0|Z = 0} − P{Y = 0, D = 0|Z = 1} .

Note that A2(P ) ≤ A4(P ), A1(P ) ≤ A3(P ), and A2(P ) ≤ 0 ≤ A3(P ).

Theorem 3.1 If every Q ∈ Q satisfies Assumptions 2.1 and 2.2, then

(i) P ∈ QT−1 if and only if

∆(P ) ∈ [A1(P ), A4(P )] . (11)

(ii) P ∈ Q+T
−1 ∩ (Q0,−T

−1)c if and only if

∆(P ) ∈ (A3(P ), A4(P )] .

(iii) P ∈ Q−T
−1 ∩ (Q0,+T

−1)c if and only if

∆(P ) ∈ [A1(P ), A2(P )) .
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Remark 3.1 Part (i) of Theorem 3.1 implies that P is inconsistent with our restrictions if and only if

∆(P ) 6∈ [A1(P ), A4(P )]. Hence, P is inconsistent with our restrictions if and only if (a) A1(P ) > A4(P ),

(b) A1(P ) ≤ A4(P ) and ∆(P ) < A1(P ), or (c) A1(P ) ≤ A4(P ) and ∆(P ) > A4(P ). If A1(P ) ≤ A4(P ) and

∆(P ) < A1(P ), then it is possible to show that A1(P ) ≤ 0. Similarly, if A1(P ) ≤ A4(P ) and ∆(P ) > A4(P ),

then it is possible to show that A4(P ) ≥ 0. In this sense, part (i) of Theorem 3.1 implies that P is inconsistent

with our restrictions whenever ∆(P ) is “too far” from zero.

Remark 3.2 Parts (ii) and (iii) of Theorem 3.1 imply that we are both unable to reject our restrictions and

unable to determine the sign of the ATE whenever ∆(P ) is “too close” to zero, i.e.,

∆(P ) ∈ [A2(P ), A3(P )] ,

where A2(P ) ≤ 0 ≤ A3(P ). The width of the region of indeterminacy is given by

P{D = 0|Z = 1}+ P{D = 1|Z = 0} = 1−Q{D1 > D0} ,

which decreases with the strength of the instrument, as measured by P{D = 1|Z = 1}−P{D = 1|Z = 0} =

Q{D1 > D0}. Using results in Imbens and Angrist (1994), we have that

∆(P ) = EQ[Y1 − Y0|D1 > D0]Q{D1 > D0}

under Assumptions 2.1 and 2.2. The reduced form parameter ∆(P ) thus combines the strength of the

instrument with the strength of the treatment on “compliers.” In this way, the sign of the ATE is easier to

determine when the instrument is stronger or the effect of the treatment on the “compliers” is stronger.

Remark 3.3 Part (i) of Theorem 3.1 is derived from results in Balke and Pearl (1997). A more general

result that does not require Y to be binary can be found in Kitagawa (2015), who builds upon the work of

Imbens and Rubin (1997). Kitagawa (2015) also develops a testing procedure. For binary Y , Bhattacharya

et al. (2012) develop a test of Assumptions 2.1 and 2.2 by comparing the bounds on the ATE in Manski

(1990) with those in Heckman and Vytlacil (2001a). The resulting conditions are in fact equivalent to part

(i) of Theorem 3.1.

3.2 Instrument Exogeneity and Monotonicity of Y in D and D in Z

In this section, we assume that every Q ∈ Q satisfies Assumptions 2.1, 2.2 and 2.3. These restrictions have

been previously considered in the literature by Bhattacharya et al. (2008, 2012) and Shaikh and Vytlacil

(2005, 2011), who find that the sign of ATE equals the sign of ∆(P ). The following theorem re-states this

result and additionally characterizes when P ∈ QT−1 in terms of ∆(P ). We emphasize that this additional

result is not found in either Bhattacharya et al. (2012) or Shaikh and Vytlacil (2005, 2011).

Theorem 3.2 If every Q ∈ Q satisfies Assumptions 2.1, 2.2 and 2.3, then
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(i) P ∈ QT−1 if and only if

∆(P ) ∈ [A1(P ), A4(P )] , (12)

(ii) P ∈ Q+T
−1 ∩ (Q0,−T

−1)c if and only if

∆(P ) ∈ (0, A4(P )] ,

(iii) P ∈ Q−T
−1 ∩ (Q0,+T

−1)c if and only if

∆(P ) ∈ [A1(P ), 0) .

Remark 3.4 Note that the conditions on ∆(P ) in (12) that determine whether or not P is consistent with

our assumptions are exactly the same as the ones in (11). In other words, P is consistent with Assumptions

2.1 and 2.2 if and only if P is consistent with Assumptions 2.1, 2.2 and 2.3.

Remark 3.5 In contrast to our earlier results, the only circumstance in which we are both unable to reject

our restrictions and unable to determine the sign of the ATE is if ∆(P ) = 0.

3.3 Instrument Exogeneity and Monotonicity of Y in D

In this section, we assume that every Q ∈ Q satisfies Assumptions 2.1 and 2.3. Note that Assumption 2.3

has not been considered without Assumption 2.2 previously in the literature. In order to state our results,

we require some additional notation. Define

B1(P ) = max{B1
1(P ), B2

1(P )}
B2(P ) = min{B1

2(P ), B2
2(P )}

B3(P ) = max{B1
3(P ), B2

3(P )}
B4(P ) = min{B1

4(P ), B2
4(P )} ,

(13)

where

B1
1(P ) = −P{Y = 1, D = 1|Z = 0}

B2
1(P ) = −P{Y = 0, D = 0|Z = 1}

B1
2(P ) = P{Y = 1, D = 1|Z = 1}

B1
2(P ) = P{Y = 0, D = 0|Z = 0}

B1
3(P ) = −P{Y = 0, D = 1|Z = 1}

B2
3(P ) = −P{Y = 1, D = 0|Z = 0}

B1
4(P ) = P{Y = 0, D = 1|Z = 0}

B2
4(P ) = P{Y = 1, D = 0|Z = 1} .

9



Note that B1(P ) ≤ 0 and B3(P ) ≤ 0, while B2(P ) ≥ 0 and B4(P ) ≥ 0. Using this notation, we have the

following theorem:

Theorem 3.3 If every Q ∈ Q satisfies Assumptions 2.1 and 2.3, then

(i) P ∈ QT−1 if and only if

∆(P ) ∈ [min{B1(P ), B3(P )},max{B2(P ), B4(P )}] , (14)

(ii) P ∈ Q+T
−1 ∩ (Q0,−T

−1)c if and only if

∆(P ) ∈ [B1(P ), B2(P )] \ [B3(P ), B4(P )] , (15)

(iii) P ∈ Q−T
−1 ∩ (Q0,+T

−1)c if and only if

∆(P ) ∈ [B3(P ), B4(P )] \ [B1(P ), B2(P )] . (16)

Remark 3.6 Analogously to our earlier results, part (i) of Theorem 3.3 implies that P is inconsistent with

our assumptions if and only if ∆(P ) is “too far” from zero. Here, “too far” means ∆(P ) < min{B1(P ), B3(P )} ≤
0 or ∆(P ) > max{B2(P ), B4(P )} ≥ 0. Since A1(P ) ≥ B3(P ) and A4(P ) ≤ B2(P ),

[A1(P ), A4(P )] ⊆ [min{B1(P ), B3(P )},max{B2(P ), B4(P )}] .

Furthermore, the inclusion may be strict, so it is possible to reject Assumptions 2.1 and 2.2 without rejecting

Assumptions 2.1 and 2.3, while the reverse is not possible.

Remark 3.7 Parts (ii) and (iii) of Theorem 3.3 imply that we are both unable to reject our restrictions and

unable to determine the sign of the ATE if ∆(P ) is “too close” to zero, i.e.,

∆(P ) ∈ [max{B1(P ), B3(P )},min{B2(P ), B4(P )}] ,

where this interval necessarily includes zero. Since A2(P ) ≤ B1(P ) and B4(P ) ≤ A3(P ),

[max{B1(P ), B3(P )},min{B2(P ), B4(P )}] ⊆ [A2(P ), A3(P )] .

Furthermore, the inclusion may be strict. Thus, it is possible to identify the sign of ATE under Assumptions

2.1 and 2.3 without being able to identify the sign of ATE under Assumptions 2.1 and 2.2, while the reverse

is not possible.

Remark 3.8 A possibly counterintuitive implication of Theorem 3.3 is that it is possible for ∆(P ) to be so

large that one determines that the sign of the ATE is in fact negative or for ∆(P ) to be so small that one
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determines that the sign of the ATE is in fact positive. The first case happens when

max{B2(P ), B4(P )} = B4(P ) and B2(P ) < ∆(P ) ≤ B4(P ) , (17)

whereas the second case happens when

max{B1(P ), B3(P )} = B3(P ) and B1(P ) ≤ ∆(P ) < B3(P ). (18)

In order to better understand this result, it is instructive to note that

∆(P ) =

Q{Y1 > Y0, D1 > D0} −Q{Y1 > Y0, D1 < D0} if Y1 ≥ Y0

Q{Y1 < Y0, D1 < D0} −Q{Y1 < Y0, D1 > D0} if Y1 ≤ Y0

.

The first case occurs when Q{Y1 < Y0, D1 < D0} > Q{Y1 < Y0, D1 > D0}, so we require enough “defiers”

with a negative treatment effect, and the second case occurs when Q{Y1 > Y0, D1 > D0} < Q{Y1 > Y0, D1 <

D0}, so we require enough “defiers” with a positive treatment effect. Note further that

Q{Y1 > Y0, D1 > D0} −Q{Y1 > Y0, D1 < D0} ∈ [B1(P ), B2(P )]

Q{Y1 < Y0, D1 < D0} −Q{Y1 < Y0, D1 > D0} ∈ [B3(P ), B4(P )] .

It follows that it must be the case that Y1 ≤ Y0 whenever ∆(P ) ∈ (B2(P ), B4(P )] ⊆ (0, 1] and that Y1 ≥ Y0

whenever ∆(P ) ∈ [B1(P ), B3(P )) ⊆ [−1, 0).

Remark 3.9 In order to gain further insight into Theorem 3.3, it is instructive to consider what happens

when ∆(P ) satisifes (11). Recall from the discussion in Remark 3.6 that ∆(P ) satisfying (11) implies that P

is not only consistent with Assumptions 2.1 and 2.2, but also with Assumptions 2.1 and 2.3. In that case, it

is possible to show that a sufficient condition for (15) is ∆(P ) ∈ [A3(P )/2, A4(P )] and a sufficient condition

for (16) is ∆(P ) ∈ [A1(P ), A2(P )/2]. By comparing these regions with parts (ii) and (iii) of Theorem 3.1,

we therefore see that whenever ∆(P ) satisifes (11), the identifying power of Assumptions 2.1 and 2.3 is at

least twice that of Assumptions 2.1 and 2.2. Furthermore, a necessary condition for (15) is that ∆(P ) > 0

and a necessary condition for (16) is that ∆(P ) < 0. As a result, the counterintuitive possibility discussed in

Remark 3.8 of determining that the sign of the ATE is positive from a negative value of ∆(P ) or vice versa

is not possible whenever ∆(P ) satisifes (11).

3.4 Instrument Exogeneity

In this section, we assume that every Q ∈ Q satisfies Assumption 2.1. In this case, our results essentially

follow from Balke and Pearl (1997), who characterize the identified set for the ATE under these assumptions

and also when P is consistent with these restrictions.
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In order to state the results, we require some additional notation. Define

C1(P ) = max{C1
1 (P ), C2

1 (P )}
C2(P ) = max{C1

2 (P ), . . . , C8
2 (P )}

C3(P ) = min{C1
3 (P ), . . . , C8

3 (P )}
C4(P ) = min{C1

4 (P ), C2
4 (P )} ,

(19)

where

C1
1 (P ) = −P{Y = 0, D = 0|Z = 1} − P{Y = 1, D = 0|Z = 0}

C2
1 (P ) = −P{Y = 1, D = 1|Z = 0} − P{Y = 0, D = 1|Z = 1}

C1
2 (P ) = A2(P )

C2
2 (P ) = −P{Y = 0|Z = 1} − P{Y = 1|Z = 0}+ P{Y = 1, D = 0|Z = 1}+ P{Y = 0, D = 1|Z = 0}

C3
2 (P ) = −P{Y = 0|Z = 1} − P{Y = 1, D = 1|Z = 0}+ P{Y = 0, D = 1|Z = 0}

C4
2 (P ) = −P{Y = 0, D = 0|Z = 1} − P{Y = 1|Z = 0}+ P{Y = 1, D = 0|Z = 1}

C5
2 (P ) = −2P{Y = 0|Z = 1} − P{Y = 1, D = 1|Z = 0}+ 2P{Y = 0, D = 1|Z = 0}

C6
2 (P ) = −2P{Y = 1, D = 1|Z = 0} − P{Y = 0, D = 0|Z = 0}

C7
2 (P ) = −2P{Y = 0, D = 0|Z = 1} − P{Y = 1, D = 1|Z = 1}

C8
2 (P ) = −P{Y = 0, D = 0|Z = 1} − 2P{Y = 1|Z = 0}+ 2P{Y = 1, D = 0|Z = 1}

C1
3 (P ) = A3(P )

C2
3 (P ) = P{Y = 1, D = 0|Z = 1}+ P{Y = 0|Z = 0} − P{Y = 0, D = 0|Z = 1}

C3
3 (P ) = P{Y = 1|Z = 1}+ P{Y = 0|Z = 0} − P{Y = 0, D = 0|Z = 1} − P{Y = 1, D = 1|Z = 0}

C4
3 (P ) = P{Y = 1|Z = 1}+ P{Y = 0, D = 1|Z = 0} − P{Y = 1, D = 1|Z = 0}

C5
3 (P ) = 2P{Y = 0, D = 1|Z = 0}+ P{Y = 1, D = 0|Z = 0}

C6
3 (P ) = 2P{Y = 1|Z = 1}+ P{Y = 0, D = 1|Z = 0} − 2P{Y = 1, D = 1|Z = 0}

C7
3 (P ) = P{Y = 1, D = 0|Z = 1}+ 2P{Y = 0|Z = 0} − 2P{Y = 0, D = 0|Z = 1}

C8
3 (P ) = 2P{Y = 1, D = 0|Z = 1}+ P{Y = 0, D = 1|Z = 1}

C1
4 (P ) = P{Y = 1, D = 1|Z = 1}+ P{Y = 0, D = 1|Z = 0}

C2
4 (P ) = P{Y = 0, D = 0|Z = 0}+ P{Y = 1, D = 0|Z = 1} .

Theorem 3.4 If every Q ∈ Q satisfies Assumption 2.1, then

(i) P ∈ QT−1 if and only if

∆(P ) ∈ [C1(P ), C4(P )] . (20)

(ii) P ∈ Q+T
−1 ∩ (Q0,−T

−1)c if and only if

∆(P ) ∈ [C1(P ), C4(P )] \ [C1(P ), C3(P )] .
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(iii) P ∈ Q−T
−1 ∩ (Q0,+T

−1)c if and only if

∆(P ) ∈ [C1(P ), C4(P )] \ [C2(P ), C4(P )] .

Remark 3.10 Part (i) of Theorem 3.4 implies that P is inconsistent with our restrictions if and only if

∆(P ) 6∈ [C1(P ), C4(P )]. Since C1(P ) ≤ 0 ≤ C4(P ), part (i) of Theorem 3.4 implies that P is inconsistent

with our restrictions whenever ∆(P ) is “too far” from zero. Note further that

[min{B1(P ), B3(P )},max{B2(P ), B4(P )}] ⊆ [C1(P ), C4(P )] .

Furthermore, the inclusion may be strict, so it is possible to reject Assumptions 2.1 and 2.3 without rejecting

Assumptions 2.1, while the reverse is not possible.

Remark 3.11 Balke and Pearl (1997) show that the identified set for the ATE under Assumptions 2.1

and 2.2 is the same as the identified set for the ATE under Assumption 2.1 alone. By combining this

observation with Theorem 3.1, we see that if ∆(P ) satisfies (11), then we do not reject Assumption 2.1

and do identify that the sign of the ATE is positive under Assumption 2.1 whenever ∆(P ) > A3(P ) ≥ 0,

do not reject Assumption 2.1 and do identify that the sign of the ATE is negative under that assumption

whenever ∆(P ) < A2(P ) ≤ 0, and neither reject Assumption 2.1 nor identify the sign of the ATE under

that assumption if ∆(P ) ∈ [A2(P ), A3(P )], an interval that necessarily includes zero.

Remark 3.12 It is possible to show by construction that the counter-intuitive possibility under Assumptions

2.1 and 2.3 discussed in Remark 3.8 is also possible under Assumption 2.1 alone: it is possible to identify a

positive ATE from a negative ∆(P ), or vice versa, under Assumption 2.1 alone. In light of the discussion in

Remark 3.11, this phonenomon is only possible when ∆(P ) 6∈ [A1(P ), A4(P )]. On the other hand, it may

occur regardless of whether ∆(P ) satisfies (14), that is, regardless of whether or not P is consistent with

Assumptions 2.1 and 2.3.

Remark 3.13 If ∆(P ) ∈ [min{B1(P ), B3(P )},max{B2(P ), B4(P )}] \ [A1(P ), A4(P )], so P is consistent

with Assumptions 2.1 and 2.3, but not with Assumptions 2.1 and 2.2, then it is possible to show that

Assumption 2.1 has less ability to determine the sign of the ATE than Assumptions 2.1 and 2.3 in the sense

that the set of distributions for which one can identify the sign of the ATE under Assumption 2.1 is a strict

subset of the set of distributions for which one can identify the sign of the ATE under Assumptions 2.1 and

2.3.

4 Detecting Failure of the Restrictions

In the preceding section, we characterized when P was consistent with our restrictions in terms of the

reduced form parameter ∆(P ). In particular, we showed that in each case a value of ∆(P ) sufficiently far

from zero implied that the restrictions were violated. In this section, we first characterize conditions on Q for
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a violation of instrument exogeneity to be detectable in the sense that they lead to ∆(P ) being sufficiently

far from zero. We then, while maintaining instrument exogeneity, characterize which types of violations of

the monotonicity assumptions are detectable. To complement the analytical results in this section, we also

provide some numerical results in Appendix A, where we explore which violations of the restrictions are

detectable in the context of a parametric model for Y and D.

4.1 Instrument Exogeneity

Part (i) of Theorem 3.4 shows that P is consistent with Assumption 2.1 if and only if ∆(P ) satisfies (20).

The following proposition states conditions on Q for which ∆(P ) fails to satisfy (20). In order to state our

results, we require some additional notation. Define

∆0(Q) = EQ[Y0 | Z = 1]− EQ[Y0 | Z = 0]

∆1(Q) = EQ[Y1 | Z = 1]− EQ[Y1 | Z = 0].

Note that Assumption 2.1 implies in particular that ∆0(Q) = ∆1(Q) = 0. More generally, ∆d(Q) measures

the dependence between Yd and Z under Q. Further define

G1
0(Q) = −Q{Y0 = 1, D = 1|Z = 0} −Q{Y0 = 0, D = 1|Z = 1}

G2
0(Q) = Q{Y0 = 1, D = 1|Z = 1}+Q{Y0 = 0, D = 1|Z = 0}

G1
1(Q) = −Q{Y1 = 1, D = 0|Z = 0} −Q{Y1 = 0, D = 0|Z = 1}

G2
1(Q) = Q{Y1 = 1, D = 0|Z = 1}+Q{Y1 = 0, D = 0|Z = 0}.

In terms of this notation, we have the following result:

Proposition 4.1 If P = QT−1, then ∆(P ) 6∈ [C1(P ), C4(P )] if and only if

∆d(Q) 6∈ [G1
d(Q), G2

d(Q)]

for some d ∈ {0, 1}. Furthermore,

(i) ∆0(Q) 6∈ [G1
0(Q), G2

0(Q)] if |∆0(Q)| > P{D = 1 | Z = 1}+ P{D = 1 | Z = 0} .

(ii) ∆1(Q) 6∈ [G1
1(Q), G2

1(Q)] if |∆1(Q)| > 2− P{D = 1 | Z = 1} − P{D = 1 | Z = 0} .

(iii) ∆0(Q) 6∈ [G1
0(Q), G2

0(Q)] only if P{D = 1 | Z = 1}+ P{D = 1 | Z = 0} < 1 .

(iv) ∆1(Q) 6∈ [G1
1(Q), G2

1(Q)] only if P{D = 1 | Z = 1}+ P{D = 1 | Z = 0} > 1 .

Remark 4.1 Since zero always lies in [G1
d(Q), G2

d(Q)] and ∆d(Q) equals zero whenever Yd ⊥⊥ Z, it follows

from Proposition 4.1 that P is only inconsistent with Assumption 2.1 if Yd 6⊥⊥ Z for some d ∈ {0, 1}. Part (i)

of Proposition 4.1 implies that even slight deviations from Y0 ⊥⊥ Z will be detectable if P{D = 1 | Z = 1}
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and P{D = 1 | Z = 0} are both sufficiently close to zero, and part (ii) of Proposition 4.1 implies that even

slight deviations from Y1 ⊥⊥ Z will be detectable if P{D = 1 | Z = 1} and P{D = 1 | Z = 0} are both

sufficiently close to one. On the other hand, part (iii) of Proposition 4.1 implies that no deviation from

Y0 ⊥⊥ Z can be detected if P{D = 1 | Z = 1} + P{D = 1 | Z = 0} ≥ 1, and part (iv) of Proposition 4.1

implies no deviation from Y1 ⊥⊥ Z can be detected if P{D = 1 | Z = 1} + P{D = 1 | Z = 0} ≤ 1. In

particular, no violation of Assumption 2.1 can be detected if P{D = 1 | Z = 1} + P{D = 1 | Z = 0} = 1,

which includes both the case in which P{D = 1|Z = 1} = P{D = 1|Z = 0} = 1
2 (i.e., Z is irrelevant) and

the case in which P{D = 1|Z = 1} = 1, P{D = 1|Z = 0} = 0 (i.e., an experiment with full compliance).

4.2 Monotonicity of D in Z (and Y in D) While Maintaining Instrument Exo-

geneity

Parts (i) of Theorems 3.1 and 3.2 show that P is consistent with Assumptions 2.1 and 2.2 (and 2.3) if and

only if ∆(P ) satisfies (11). The following proposition characterizes distributions Q satisfying Assumption

2.1 for which ∆(P ) fails to satisfy (11).

Proposition 4.2 If P = QT−1 for a distribution Q that satisfies Assumption 2.1, then ∆(P ) 6∈ [A1(P ), A4(P )]

if and only if

Q{Yj = k,D1 < D0} > Q{Yj = k,D1 > D0}

for some (j, k) ∈ {0, 1}2.

Remark 4.2 Given our normalization that P{D = 1|Z = 1} ≥ P{D = 1|Z = 0} and Assumption 2.1, we

have that the fraction of “compliers,” Q{D1 > D0} weakly exceeds the fraction of “defiers,” Q{D1 < D0} and

does so by the magnitude of P{D = 1|Z = 1}−P{D = 1|Z = 0} = Q{D1 > D0}−Q{D1 < D0}. Proposition

4.2 therefore implies that in order to detect a violation of Assumption 2.2 while satisfying Assumption 2.1 it

must be the case that the fraction of “defiers” is sufficiently large (which in turn requires the instrument be

sufficiently weak in that P{D = 1|Z = 1}−P{D = 1|Z = 0} is sufficiently small) and that the distribution of

potential outcomes among “defiers” and “compliers” differs, i.e., Q{Yj = 1|D1 < D0} 6= Q{Yj = 1|D1 > D0}
for some j ∈ {0, 1}.

4.3 Monotonicity of Y in D While Maintaining Instrument Exogeneity

Part (i) of Theorem 3.3 showed that P is consistent with Assumptions 2.1 and 2.3 if and only if ∆(P ) satisfies

(14). The following proposition characterizes distributions Q satisfying Assumption 2.1 for which ∆(P ) fails
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to satisfy (14). In order to state our results, we require some additional notation. Define

M1
1 (Q) = Q{Y1 > Y0, D1 = D0 = 1}+Q{Y1 = Y0 = 1, D1 = D0 = 1}+Q{Y1 = Y0 = 1, D1 < D0}

M2
1 (Q) = Q{Y1 > Y0, D1 = D0 = 0}+Q{Y1 = Y0 = 0, D1 = D0 = 0}+Q{Y1 = Y0 = 0, D1 < D0}

M1
2 (Q) = Q{Y1 > Y0, D1 = D0 = 1}+Q{Y1 = Y0 = 1, D1 = D0 = 1}+Q{Y1 = Y0 = 1, D1 > D0}

M2
2 (Q) = Q{Y1 > Y0, D1 = D0 = 0}+Q{Y0 = Y1 = 0, D1 = D0 = 0}+Q{Y0 = Y1 = 0, D1 > D0}

M1
3 (Q) = Q{Y1 < Y0, D1 = D0 = 1}+Q{Y1 = Y0 = 0, D1 = D0 = 1}+Q{Y1 = Y0 = 0, D1 > D0}

M2
3 (Q) = Q{Y1 < Y0, D1 = D0 = 0}+Q{Y0 = Y1 = 1, D1 = D0 = 0}+Q{Y0 = Y1 = 1, D1 > D0}

M1
4 (Q) = Q{Y1 < Y0, D1 = D0 = 1}+Q{Y1 = Y0 = 0, D1 = D0 = 1}+Q{Y1 = Y0 = 0, D1 < D0}

M2
4 (Q) = Q{Y1 < Y0, D1 = D0 = 0}+Q{Y1 = Y0 = 1, D1 = D0 = 0}+Q{Y1 = Y0 = 1, D1 < D0}

and, for 1 ≤ j ≤ 4, let

Mj(Q) = min{M1
j (Q),M2

j (Q)} .

Using this notation, we have the following result:

Proposition 4.3 If P = QT−1 for a distribution Q that satisfies Assumptions 2.1, then

∆(P ) 6∈ [min{B1(P ), B3(P )},max{B2(P ), B4(P )}]

if and only if either

Q{Y1 > Y0, D1 > D0}+Q{Y1 < Y0, D1 < D0}

< min{Q{Y1 < Y0, D1 > D0} −M1(Q), Q{Y1 > Y0, D1 < D0} −M3(Q)} (21)

or

Q{Y1 < Y0, D1 > D0}+Q{Y1 > Y0, D1 < D0}

< min{Q{Y1 < Y0, D1 < D0} −M2(Q), Q{Y1 > Y0, D1 > D0} −M4(Q)} . (22)

Remark 4.3 Note that if there are no “defiers,” then it is impossible for either (21) or (22) to hold. Hence,

while satisfying Assumption 2.1, it is only possible to detect violations of Assumption 2.3 if Assumption 2.2

does not hold.

Remark 4.4 In order to satisfy (21), there must be strong negative dependence between Y1 − Y0 and

D1 − D0. In addition, it seems that the probability of being an “always taker” or “never taker” must be

small so that M1(Q) and M3(Q) will be small. For instance, (21) is satisfied when Q{Y1 < Y0|D1 > D0} = 1,

Q{Y1 > Y0|D1 < D0} = 1 and Q{D1 = D0} = 0. Analogous comments apply to (22). In this sense, it seems

that the requirements on Q in order to satisfy either (21) or (22) are rather extreme. The numerical results

in Appendix A further highlight the difficulty of detecting violations of Assumption 2.3 when Assumption

2.1 holds.
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5 Inference

In this section, we let (Yi, Di, Zi), i = 1, . . . , n be an i.i.d. sequence of random variables with distribution

P ∈ P on {0, 1}3 and, for each of the four sets of restrictions considered in the previous sections, consider

the problem of simultaneous inference about the consistency of the distribution of the observed data with

our restrictions and the sign of the ATE when the distribution of the observed data is consistent with our

restrictions. More precisely, for each set of restrictions on Q, we will consider the problem of testing the

family of null hypotheses

Hj : P ∈ Pj for 1 ≤ j ≤ 3 , (23)

where P1 ⊆ P, P2 ⊆ P and P3 ⊆ P are such that

Pc1 = {P ∈ P : P ∈ QT−1}

Pc2 ∩Pc1 = {P ∈ P : P ∈ Q+T
−1 ∩ (Q0,−T

−1)c}

Pc3 ∩Pc1 = {P ∈ P : P ∈ Q−T
−1 ∩ (Q0,+T

−1)c} ,

in a way that satisfies

lim sup
n→∞

sup
P∈P

FWERP ≤ α . (24)

Here, Pcj is understood to be relative to P, i.e., Pcj = P \Pj , and

FWERP = P{any false rejection} .

Note that P1 is defined so that Pc1 equals the set of distributions P ∈ P that are consistent with our

restrictions (in particular, with our instrument exogeneity restriction and with the specified monotonicity

restrictions), P2 is defined so that Pc2∩Pc1 equals the set of distributions P ∈ P that are both consistent with

our restrictions and the sign of the ATE only being positive, and P3 is defined so that Pc3 ∩ Pc1 equals the

set of distributions P ∈ P that are both consistent with our restrictions and the sign of the ATE only being

negative. Our testing procedure below will only consider testing H2 or H3 when H1 is rejected; in that sense,

H1 is a “gatekeeper” for H2 and H3. See Dmitrienko et al. (2008) for further examples of “gatekeeping”

multiple testing procedures. If H1 is rejected, then we will conclude that P is consistent with our restrictions;

if H1 and H2 are rejected, then we will conclude that P is consistent with our restrictions and only a positive

ATE; if H1 and H3 are rejected, then we will conclude that P is consistent with our restrictions and only a

negative ATE. The testing procedure will additionally have the feature that it is not possible to reject H2

and H3 at the same time. We explore the finite-sample performance of our inference procedures in a small

simulation study in Appendix B.

Below we will assume that P is such that

inf
P∈P

inf
(y,d,z)∈{0,1}3

P{Y = y,D = d, Z = z} > ε (25)

for some ε > 0. We will also denote by P̂n the empirical distribution of (Yi, Di, Zi), i = 1, . . . , n.
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5.1 Instrument Exogeneity and Monotonicity of D in Z

In this section, we assume every Q ∈ Q satisfies Assumptions 2.1 and 2.2. For this choice of Q, it follows

from Theorem 3.1 that

P1 = {P ∈ P : ∆(P ) < A1(P ) ∪∆(P ) > A4(P )} (26)

P2 = {P ∈ P : ∆(P ) ≤ A3(P )} (27)

P3 = {P ∈ P : ∆(P ) ≥ A2(P )} . (28)

In order to describe our testing procedure, it is useful to introduce some further notation. Define

a1(P ) = −a8(P ) = A1
1(P )−∆(P )

a2(P ) = −a9(P ) = A2
1(P )−∆(P )

a3(P ) = −a6(P ) = ∆(P )−A1
4(P )

a4(P ) = −a7(P ) = ∆(P )−A2
4(P )

a5(P ) = ∆(P )−A3(P )

a10(P ) = A2(P )−∆(P ) .

For 1 ≤ j ≤ 3, define

T 1
j,n = min

K∈K1
j

max
k∈K

ak(P̂n)

σ̂ak,n
,

where

K1
1 = {{6}, {7}, {8}, {9}}

K1
2 = {{5}}

K1
3 = {{10}} ,

and σ̂ak,n for 1 ≤ k ≤ 10 is the usual (unpooled) estimate of the standard deviation of ak(P̂n). Note that at

most one of T 1
2,n and T 1

3,n will be strictly positive. Furthermore, the maximum over k ∈ K is superfluous in

the definition of T 1
j,n, but we retain it to maintain consistency with the subsequent sections.

For ∅ 6= K ⊆ 2{1,...,10} \ {∅}, define

ĉ1,n(K, 1− α) = max
K∈K

J−1
1,n(1− α,K, P̂n) , (29)

where

J1,n(x,K, P ) = P

{
max
k∈K

ak(P̂n)− ak(P )

σ̂ak,n
≤ x

}
.
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For ∅ 6= S ⊆ {1, 2, 3}, further define

K1(S) = {∪j∈SCj : Cj ∈ K1
j} .

Using this notation, the testing procedure is given by the following algorithm:

Algorithm 5.1

Step 1: Reject H1 if

T 1
1,n > ĉ1,n(K1({1}), 1− α) .

Step 2: If H1 is rejected, then further reject any additional Hj with

T 1
j,n > ĉ1,n(K1({2, 3}), 1− α) .

Theorem 5.1 Consider testing (23) with P1, P2 and P3 given by (26), (27) and (28), respectively. If P

satisifes (25), then Algorithm 5.1 satisfies (24).

Remark 5.1 It may be of interest to test only H2 and H3 simultaneously without testing H1. The argument

used to establish Theorem 5.1 implies that the test that rejects any Hj with T 1
j,n > ĉ1,n(K1({2, 3}), 1 − α)

satisfies (24) for this smaller family of null hypotheses.

Remark 5.2 It may be of interest to test the null hypothesis that P is consistent with our restrictions,

P ∈ Pc1 (as opposed to H1 above, which specifies that P ∈ P1). By arguing as in the proof of Theorem 5.1,

it is possible to show that the test

φ1
n = I

{
max

k∈{1,2,3,4}

ak(P̂n)

σ̂ak,n
> J−1

1,n(1− α, {1, 2, 3, 4}, P̂n)

}

satisfies

lim sup
n→∞

sup
P∈Pc

1

EP [φ1
n] ≤ α .

Remark 5.3 The critical value ĉ1,n(K, 1− α) in (29) may be viewed as a “least favorable” critical value in

the same way that critical values based on assuming that all moments are binding in the moment inequality

literature are “least favorable.” To see this, it is useful to note that ĉ1,n(K, 1− α) is the same critical value

that would be used to test the null hypothesis that

P ∈
⋃
K∈K

⋂
k∈K

{P ∈ P : ak(P ) ≤ 0}

at level α using the test statistic

min
K∈K

max
k∈K

ak(P̂n)

σ̂ak,n
.
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In contrast to the moment inequality literature, where the null hypotheses only involve a single set of

inequalities, the null hypothesis involves a union of different sets of inequalities. As a result, there is no

longer a single “least favorable” critical value, but rather one for each set of inequalities in the union. It

is for this reason that the maximum appears in (29). It is possible to construct critical values that are not

“least favorable” by modifying other approaches in the moment inequality literature, such as the “generalized

moment selection” approach of Andrews and Soares (2010) or the recent approach by Romano et al. (2012).

Indeed, “generalized moment selection” critical values may be constructed simply by replacing K in (29)

with

K̂(K) =

{
k ∈ K :

ak(P̂n)

σ̂ak,n
> −εn

}

for εn → ∞, but satisfying εn/
√
n → 0. Analogous comments apply to each of our subsequent theorems.

See Canay and Shaikh (2016) for an overview of these and related methods in the context of inference for

partially identified models.

5.2 Instrument Exogeneity and Monotonicity of Y in D and D in Z

In this section, we assume every Q ∈ Q satisfies Assumptions 2.1, 2.2 and 2.3. For this choice of Q, it follows

from Theorem 3.2 that

P1 = {P ∈ P : ∆(P ) < A1(P ) ∪∆(P ) > A4(P )} (30)

P2 = {P ∈ P : ∆(P ) ≤ 0} (31)

P3 = {P ∈ P : ∆(P ) ≥ 0} . (32)

Recall the definitions of ak(P ) and σ̂ak,n for 1 ≤ k ≤ 10 in Section 5.1 and define

a11(P ) = −a12(P ) = ∆(P ) .

For 1 ≤ j ≤ 3, define

T 2
j,n = min

K∈K2
j

max
k∈K

ak(P̂n)

σ̂ak,n
,

where

K2
1 = {{6}, {7}, {8}, {9}}

K2
2 = {{11}}

K2
3 = {{12}} ,

and σ̂ak,n for 11 ≤ k ≤ 12 is the usual (unpooled) estimate of the standard deviation of ak(P̂n). Note that at

most one of T 2
2,n and T 2

3,n will be strictly positive. For ∅ 6= K ⊆ 2{1,...,12} \ {∅}, define

ĉ2,n(K, 1− α) = max
K∈K

J−1
2,n(1− α,K, P̂n) ,
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where

J2,n(x,K, P ) = P

{
max
k∈K

ak(P̂n)− ak(P )

σ̂ak,n
≤ x

}
.

For ∅ 6= S ⊆ {1, 2, 3}, further define

K2(S) = {∪j∈SCj : Cj ∈ K2
j} .

Using this notation, the testing procedure is given by the following algorithm:

Algorithm 5.2

Step 1: Reject H1 if

T 2
1,n > ĉ2,n(K2({1}), 1− α) .

Step 2: If H1 is rejected, then further reject any additional Hj with

T 2
j,n > ĉ2,n(K2({2, 3}), 1− α) .

Theorem 5.2 Consider testing (23) with P1, P2 and P3 given by (30), (31) and (32), respectively. If P

satisifes (25), then Algorithm 5.2 satisfies (24).

Remark 5.4 As in the previous section, it may be of interest to test only H2 and H3 simultaneously. The ar-

gument used to establish Theorem 5.2 implies that the test that rejects anyHj with T 2
j,n > ĉ2,n(K2({2, 3}), 1−

α) satisfies (24) for this smaller family of null hypotheses.

Remark 5.5 As in the previous section, it may be of interest to test the null hypothesis that P ∈ Pc1 (as

opposed to H1 above, which specifies that P ∈ P1). Since Pc1 under instrument exogeneity and monotonicity

of both D in Z and Y in D equals Pc1 under instrument exogeneity and monotonicty of D in Z alone, the

test described in Remark 5.2 may be used for this purpose.

5.3 Instrument Exogeneity and Monotonicity of Y in D

In this section, we assume every Q ∈ Q satisfies Assumptions 2.1 and 2.3. For this choice of Q, it follows

from Theorem 3.3 that

P1 = {P ∈ P : ∆(P ) < min{B1(P ), B3(P )} ∪∆(P ) > max{B2(P ), B4(P )}} (33)

P2 = {P ∈ P : B2(P ) ≤ B4(P ) ∪∆(P ) ≤ B4(P ),

B3(P ) ≤ B1(P ) ∪∆(P ) ≥ B3(P )} (34)

P3 = {P ∈ P : B2(P ) ≥ B4(P ) ∪∆(P ) ≤ B2(P ),

B3(P ) ≥ B1(P ) ∪∆(P ) ≥ B1(P )} . (35)
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In order to describe our testing procedure, it is useful to introduce some further notation. Define

b1(P ) = −b19(P ) = B1
1(P )−∆(P )

b2(P ) = −b20(P ) = B2
1(P )−∆(P )

b3(P ) = −b31(P ) = B1
3(P )−∆(P )

b4(P ) = −b32(P ) = B2
3(P )−∆(P )

b5(P ) = −b13(P ) = ∆(P )−B1
2(P )

b6(P ) = −b14(P ) = ∆(P )−B2
2(P )

b7(P ) = −b25(P ) = ∆(P )−B1
4(P )

b8(P ) = −b26(P ) = ∆(P )−B2
4(P )

b9(P ) = −b21(P ) = B1
2(P )−B1

4(P )

b10(P ) = −b23(P ) = B1
2(P )−B2

4(P )

b11(P ) = −b22(P ) = B2
2(P )−B1

4(P )

b12(P ) = −b24(P ) = B2
2(P )−B2

4(P )

b15(P ) = −b27(P ) = B1
3(P )−B1

1(P )

b16(P ) = −b29(P ) = B2
3(P )−B1

1(P )

b17(P ) = −b28(P ) = B1
3(P )−B2

1(P )

b18(P ) = −b30(P ) = B2
3(P )−B2

1(P ) .

For 1 ≤ j ≤ 3, define

T 3
j,n = min

K∈K3
j

max
k∈K

bk(P̂n)

σ̂bk,n
,

where

K3
1 = {A ∪B : A ∈ {{13}, {14}}, B ∈ {{25}, {26}}} ∪ {A ∪B : A ∈ {{19}, {20}}, B ∈ {{31}, {32}}}

K3
2 = {A ∪B : A ∈ {{7, 8}, {9, 10}, {11, 12}}, B ∈ {{3, 4}, {15, 16}, {17, 18}}}

K3
3 = {A ∪B : A ∈ {{5, 6}, {21, 22}, {23, 24}}, B ∈ {{1, 2}, {27, 28}, {29, 30}}} ,

and σ̂bk,n for 1 ≤ k ≤ 32 is the usual (unpooled) estimate of the standard deviation of bk(P̂n). Note that at

most one of T 3
2,n and T 3

3,n will be strictly positive. For ∅ 6= K ⊆ 2{1,...,32} \ {∅}, define

ĉ3,n(K, 1− α) = max
K∈K

J−1
3,n(1− α,K, P̂n) ,

where

J3,n(x,K, P ) = P

{
max
k∈K

bk(P̂n)− bk(P )

σ̂bk,n
≤ x

}
.
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For ∅ 6= S ⊆ {1, 2, 3}, further define

K3(S) = {∪j∈SCj : Cj ∈ K3
j} .

Using this notation, the testing procedure is given by the following algorithm:

Algorithm 5.3

Step 1: Reject H1 if

T 3
1,n > ĉ3,n(K3({1}), 1− α) .

Step 2: If H1 is rejected, then further reject any additional Hj with

T 3
j,n > ĉ3,n(K3({2, 3}), 1− α) .

Theorem 5.3 Consider testing (23) with P1, P2 and P3 given by (33), (34) and (35), respectively. If P

satisifes (25), then Algorithm 5.3 satisfies (24).

Remark 5.6 As in the previous section, it may be of interest to test only H2 and H3 simultaneously. The ar-

gument used to establish Theorem 5.3 implies that the test that rejects anyHj with T 3
j,n > ĉ3,n(K3({2, 3}), 1−

α) satisfies (24) for this smaller family of null hypotheses.

Remark 5.7 As in the previous section, it may be of interest to test the null hypothesis that P ∈ Pc1 (as

opposed to H1 above, which specifies that P ∈ P1). By arguing as in the proof of Theorem 5.3, it is possible

to show that the test

φ3
n = I

{
min
K∈K̃3

1

max
k∈K

bk(P̂n)

σ̂bk,n
> max
K∈K̃3

1

J−1
3,n(1− α,K, P̂n)

}
,

where

K̃3
1 = {A ∪B : A ∈ {{1, 2}, {3, 4}}, B ∈ {{5, 6}, {7, 8}} ,

satisfies

lim sup
n→∞

sup
P∈P̃c

1

EP [φ3
n] ≤ α .

5.4 Instrument Exogeneity

In this section, we assume every Q ∈ Q satisfies Assumption 2.1. For this choice of Q, it follows from

Theorem 3.4 that

P1 = {P ∈ P : ∆(P ) < C1(P ) ∪∆ > C4(P )} (36)

P2 = {P ∈ P : ∆(P ) ≤ C3(P )} (37)

P3 = {P ∈ P : ∆(P ) ≥ C2(P )} . (38)
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In order to describe our testing procedure, it is useful to introduce some further notation. Define

c1(P ) = −c5(P ) = C1
1 (P )−∆(P )

c2(P ) = −c6(P ) = C2
1 (P )−∆(P )

c3(P ) = −c7(P ) = ∆(P )− C1
4 (P )

c4(P ) = −c8(P ) = ∆(P )− C2
4 (P )

c9(P ) = ∆(P )− C1
3 (P )

c10(P ) = ∆(P )− C2
3 (P )

c11(P ) = ∆(P )− C3
3 (P )

c12(P ) = ∆(P )− C4
3 (P )

c13(P ) = ∆(P )− C5
3 (P )

c14(P ) = ∆(P )− C6
3 (P )

c15(P ) = ∆(P )− C7
3 (P )

c16(P ) = ∆(P )− C8
3 (P )

c17(P ) = C1
2 (P )−∆(P )

c18(P ) = C2
2 (P )−∆(P )

c19(P ) = C3
2 (P )−∆(P )

c20(P ) = C4
2 (P )−∆(P )

c21(P ) = C5
2 (P )−∆(P )

c22(P ) = C6
2 (P )−∆(P )

c23(P ) = C7
2 (P )−∆(P )

c24(P ) = C8
2 (P )−∆(P ) .

For 1 ≤ j ≤ 3, define

T 4
j,n = min

K∈K1
j

max
k∈K

ck(P̂n)

σ̂ck,n
,

where

K4
1 = {{5}, {6}, {7}, {8}}

K4
2 = {{9, 10, 11, 12, 13, 14, 15, 16}}

K4
3 = {{17, 18, 19, 20, 21, 22, 23, 24}} ,

and σ̂ck,n for 1 ≤ k ≤ 24 is the usual (unpooled) estimate of the standard deviation of ck(P̂n). Note that at

most one of T 4
2,n and T 4

3,n will be strictly positive. For ∅ 6= K ⊆ 2{1,...,24} \ {∅}, define

ĉ4,n(K, 1− α) = max
K∈K

J−1
1,n(1− α,K, P̂n) , (39)
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where

J4,n(x,K, P ) = P

{
max
k∈K

ck(P̂n)− ck(P )

σ̂ck,n
≤ x

}
.

For ∅ 6= S ⊆ {1, 2, 3}, further define

K4(S) = {∪j∈SCj : Cj ∈ K4
j} .

Using this notation, the testing procedure is given by the following algorithm:

Algorithm 5.4

Step 1: Reject H1 if

T 4
1,n > ĉ4,n(K4({1}), 1− α) .

Step 2: If H1 is rejected, then further reject any additional Hj with

T 4
j,n > ĉ4,n(K4({2, 3}), 1− α) .

Theorem 5.4 Consider testing (23) with P1, P2 and P3 given by (36), (37) and (38), respectively. If P

satisifes (25), then Algorithm 5.4 satisfies (24).

Remark 5.8 As in the previous section, it may be of interest to test only H2 and H3 simultaneously. The ar-

gument used to establish Theorem 5.4 implies that the test that rejects anyHj with T 4
j,n > ĉ4,n(K4({2, 3}), 1−

α) satisfies (24) for this smaller family of null hypotheses.

Remark 5.9 As in the previous section, it may be of interest to test the null hypothesis that P ∈ Pc1 (as

opposed to H1 above, which specifies that P ∈ P1). By arguing as in the proof of Theorem 5.4, it is possible

to show that the test

φ4
n = I

{
max

k∈{1,2,3,4}

ck(P̂n)

σ̂ck,n
> J−1

4,n(1− α, {1, 2, 3, 4}, P̂n)

}

satisfies

lim sup
n→∞

sup
P∈Pc

1

EP [φ4
n] ≤ α .
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A Numerical Results

Below we provide numerical results to complement the analytical results from Section 4. We consider a

parametric, latent variable model for Y and D and examine which parameterizations of the model result

in detectable violations of the restrictions. We first examine which parameterizations result in detectable

violations of instrument exogeneity – Assumption 2.1. We then examine which parameterizations result in

detectable violations of each of the monotonicity restrictions while maintaining instrument exogeneity.

A.1 Instrument Exogeneity

Consider the following model for Y and D:

Y0 = I{α+ ν0 ≥ 0}
Y1 = I{α+ ν1 ≥ 0}
D = I{ζ + δZ + η ≥ 0}
ν0 = λ0Z + ε

ν1 = λ1Z + ε,

with α = −2, Z ⊥⊥ (ε, η), and (ε, η) ∼ N(0, I2), where I2 is the 2-dimensional identity matrix. The outcome

Y is determined by (D,Y0, Y1) from (2). The parameter λd indexes the dependence between Yd and Z. Using

the notation of Section 4.1, we have

∆d(Q) = Q{Yd = 1 | Z = 1} −Q{Yd = 1 | Z = 0} = Φ(α+ λd)− Φ(α).

Proposition 4.1 relates the ability to detect violations of Yd ⊥⊥ Z of given strength of violation |∆d(Q)| to

the magnitude of P{D = 1 | Z = 1}+ P{D = 1 | Z = 0}.

We fix δ at either 0 or 0.5, vary P{D = 1 | Z = 1} + P{D = 1 | Z = 0} by varying ζ, and, for

each resulting P{D = 1 | Z = 1} + P{D = 1 | Z = 0}, compute the minimal value of |∆d(Q)| for

which the violation of Yd ⊥⊥ Z is detectible. We then compare this minimal value to the upper bound

on the minimal detectible violation from Proposition 4.1. On the lefthand-side of Figures 1 (for δ = 0)

and 2 (for δ = 0.5), we consider values of ζ such that P{D = 1 | Z = 1} + P{D = 1 | Z = 0} < 1.

From Proposition 4.1, for this range of P{D = 1 | Z = 1} + P{D = 1 | Z = 0}, we have that no

violation of Y1 ⊥⊥ Z is detectible and an upper bound on the minimal value of |∆0(Q)| such that violation

of Y0 ⊥⊥ Z is detectible is given by P{D = 1 | Z = 1} + P{D = 1 | Z = 0}. We graph in that range

the actual minimal value of ∆0(Q) for which we detect the violation in blue, and graph the upper bound

on that value from Proposition 4.1 in red. On the righthand-side of Figures 1 and 2, we consider values

of ζ such that P{D = 1 | Z = 1} + P{D = 1 | Z = 0} > 1. From Proposition 4.1, for this range

of P{D = 1 | Z = 1} + P{D = 1 | Z = 0}, we have that no violation of Y0 ⊥⊥ Z is detectible and

an upper bound on the minimal value of |∆1(Q)| such that violation of Y1 ⊥⊥ Z is detectible is given by

2− P{D = 1 | Z = 1} − P{D = 1 | Z = 0}. We graph in that range the actual minimal value of ∆1(Q) for

which we detect the violation in blue, and graph the upper bound on that value from Proposition 4.1 in red.
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We find that the minimal value of |∆d(Q)| for which we can detect violation of Yd ⊥⊥ Z is, as it must be,

below the upper bound on that minimal value, with the gap between the actual minimum and the upper

bound on the minimum being modest in magnitude and shrinking to zero as P{D = 1 | Z = 1}+P{D = 1 |
Z = 0} approaches 0 from the right or approaches 1 from the left (for detecting violations of Y0 ⊥⊥ Z) and as

P{D = 1 | Z = 1}+P{D = 1 | Z = 0} approaches 1 from the right or 2 from the left (for detecting violations

of Y1 ⊥⊥ Z). The upper bounds on the minimal detectible violation of Y0 ⊥⊥ Z shrinks monotonically to

zero as P{D = 1 | Z = 1} + P{D = 1 | Z = 0} approaches 0, and so does the actual minimum detectible

violation. The upper bounds on the minimal detectible violation of Y1 ⊥⊥ Z shrinks monotonically to zero as

P{D = 1 | Z = 1}+ P{D = 1 | Z = 0} approaches 2, and so does the actual minimum detectible violation.

A.2 Monotonicity of D in Z

Consider the following model for Y and D:

Y = I{βD + ε ≥ 0}
D = I{δZ + η ≥ 0}

(40)

with Z ⊥⊥ (ε, η, β, δ), (ε, η, β, δ) ∼ N(µ,Σ), and E[δ] > 0. Note that this model satisfies Assumption 2.1 and

that Assumption 2.2 is violated whenever Var[δ] > 0. Corr[β, δ] measures the dependence between treatment

response to the instrument and outcome response to the treatment. Var[δ] and E[δ] measure the strength of

the instrument, which is decreasing in Var[δ] and increasing in E[δ]. From Proposition 4.2, we have that the

ability to detect violations of Assumption 2.2 is increasing in the size of the violation (increasing in fraction

of “defiers”, Q{D1 < D0}), and the maximum possible size of the violation is decreasing in the strength of

the instrument (decreasing in P{D = 1 | Z = 1} − P{D = 1 | Z = 0). In addition, as explained in Remark

4.2, the ability to detect violations requires sufficient difference in the distribution of potential outcomes

among “compliers” and “defiers.” The difference between these distributions is increasing in |Corr[β, δ]|. We

therefore examine below how the ability to detect violations of Assumption 2.2 varies with Var[δ], E[δ], and

Corr[β, δ]. In particular, we consider parameterizations of (40) with

µ =


0

0

0

µδ

 , Σ =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 σβ,δ σ2
δ


and vary µδ from 0.1 to 1, σ2

δ from 0.2 to 50, and σβ,δ so that Corr[β, δ] varies from −1 to 1.

Figure 3 displays the minimum value of Var[δ] for which it is possible to detect violations of Assumption

2.2 for different values of E[δ], Corr[β, δ]. For presentation purposes, we have truncated the graph at 50 for

the minimum value of Var(δ). The minimum value of Var[δ] for which it is possible to detect violations of

Assumption 2.2 is increasing in E[δ], though not dramatically so. In contrast, the minimum value of Var[δ]

for which it is possible to detect violations of Assumption 2.2 asymptotes to infinity as Corr[β, δ] approaches

zero.
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Figure 4 displays the maximum strength of the instrument, as indexed by E[δ], for which it is possible

to detect violations of Assumption 2.2 for different values of Var[δ] and Corr[β, δ]. The maximum value of

E[δ] for which it is possible to detect violations is increasing in Var[δ]: if the violation is more severe, then

the instrument can be stronger with the violation still being detectable. As Corr[β, δ] approaches zero, the

maximum value of E[δ] for which it is possible to detect violations approaches 0. For any Corr[β, δ] 6= 0,

there is a strength of instrument sufficiently weak such that the violation of Assumption 2.2 can still be

detected. On the other hand, if Corr[β, δ] = 0, then it is not possible to detect violation of Assumption 2.2

for any value of E[δ] and Var[δ].

The lefthand-side of Figure 5 displays the maximum value of Corr[β, δ] < 0 for which we can detect

violations of Assumption 2.2 for different values of E[δ] and Var[δ]; the righthand-side of Figure 5 displays

the minimum value of Corr[β, δ] > 0 for which we can detect violations of Assumption 2.2 for different values

of E[δ] and Var[δ]. The figure is plotted from an “overhead” view, with warmer colors indicating higher

values for the maximum/minumum value of Corr[β, δ] for which the violation is detectable and white space

for values of E[δ] and Var[δ] for which there is no value of Corr[β, δ] for which the violation is detectable.

The ability to detect the violation of Assumption 2.2 is increasing in |Corr(β, δ)|, but, for a fairly large range

of values of E[δ] and Var[δ], there exists no value of Corr[β, δ] for which the violation is detectable.

A.3 Monotonicity of Y in D

Extensive experimentation revealed that it is difficult to find parameterizations of (40) for which it is possible

to detect violations of Assumption 2.3. For example, with Corr[η, β] = 0, Corr[η, δ] = 0 and Corr[β, δ] ≈ ±1,

we were unable to find any parameterizations for which it is possible to detect violations Assumption 2.3.

The only parameterizations we found for which it is possible to detect violations of Assumption 2.3 involved

Corr[β, δ] ≈ 1, Corr[η, β] ≈ −1, Corr[η, δ] ≈ −1, and both Var[β] and Var[δ] large. This remained true even

for extreme violations of Assumption 2.3, such as Var[β] = 10, 000. The results suggest that in a model of

the form of (40), it is difficult to find parameterizations such that the fractions of “always takers” and “never

takers” are small enough so that it is possible to detect violations of Assumption 2.3.

Because of the difficulty in finding parameterizations of (40) for which it is possible to detect violations

of Assumption 2.3, we consider the following model for Y and D:

Y = I{βD + ε ≥ 0}
D = I{αt(δ) + δt(δ)Z + η ≥ 0}

(41)

with Z ⊥⊥ (ε, η, β, δ), (ε, η, β, δ) ∼ N(µ,Σ), and

αt(δ) =

−t if δ > 0

t if δ ≤ 0

δt(δ) =

δ + 2t if δ > 0

δ − 2t if δ ≤ 0
.
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Here, the parameter t > 0 is used as an index to control the fractions of “always takers” and “never takers.”

In particular, these fractions are decreasing in t. We consider parameterizations of (41) with

µ =


0

0

0

.1

 , Σ =


1 0 0 0

0 1 0 0

0 0 σ2
β 0

0 0 σβ,δ 10

 .

Extensive experimentation again revealed that it is difficult to find parameterizations of (41) for which it

is possible to detect violations of Assumption 2.3 for small values of t, though less difficult as t gets larger

(and thus the probability of being an “always taker” or “never taker” approaches zero). For example, when

t ≥ 4, Q{D1 = D0} ≈ 0, and, for such t, it is possible to detect violations of Assumption 2.3 if Corr[β, δ]

and Var[β] are sufficiently large, such as Corr[β, δ] = .8 and Var[δ] ≥ 3.

B Simulation Study

In this section, we investigate the finite-sample performance of our inference procedures developed in Section

5 with a small simulation study. We set:

Y = I{γ + βD + ν ≥ 0}
D = I{ζ + δZ + η ≥ 0}
ν = λZ + ε

with Z ⊥⊥ (ε, η, β, δ), Z binary with P{Z = 1} = P{Z = 0} = .5, (ε, η, β, δ) ∼ N(µ,Σ), and

µ =


0

0

µβ

µδ

 , Σ =


1 0 0 0

0 1 ση,β ση,δ

0 ση,β σ2
β σβ,δ

0 ση,δ σβ,δ σ2
δ

 .

In Table 1, we list the parameter values for the different designs we consider, and, in Table 2, we report

descriptive statistics for each design. Importantly, Assumptions 2.1, 2.2 and 2.3 hold in designs (1)-(5), but

these designs differ according to the strength of the instrument (indexed by δ) and the strength of the average

treatment effect (indexed by β). In this way, these designs allow us to investigate the ability of our inference

procedures to correctly determine the sign of ATE when these restrictions hold, and how that ability varies

with the strength of the treatment effect and the strength of the instrument. In contrast, Assumptions 2.2

and 2.3 are both violated in designs (6)-(7) and Assumption 2.1 is violated in designs (8)-(9). In this way,

these designs allow us to investigate the ability of our inference procedure to correctly detect violations of

these restrictions. For convenience, in Table 3 we list which null hypotheses are false for each design and set

of restrictions.

In the simulations, we consider sample sizes of n =200, 500, 1000, 5000 and 10000. For each design, we
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perform our inference procedures under each of our alternative sets of restrictions: Assumption 2.1 alone,

Assumption 2.1 and 2.2, Assumption 2.1 and 2.3, and Assumptions 2.1, 2.2 and 2.3. For each test, we use

a 5% nominal significance level and 500 bootstrap replications when computing the relevant critical values.

All results are reported based on 3000 simulations.

Tables 4 and 5 report our results for designs (1)-(5). Designs (1), (3) and (4) have a stronger instrument

(δ = 1.5, corresponding to P{D = 1 | Z = 1} − P{D = 1 | Z = 0} = 0.53), while designs (2) and (5) have

a weaker instrument (δ = 0.5, corresponding to P{D = 1 | Z = 1} − P{D = 1 | Z = 0} = 0.15). Designs

(3) and (5) have larger, positive ATEs (β = 1.5, corresponding to ATE of 0.53), designs (2) and (4) have

smaller, positive ATEs (β = 0.5, corresponding to ATEs of 0.15), and design (1) has an ATE of zero.

The left column for each design reports the probability of rejecting H1 and thereby correctly concluding

that P is consistent with the restrictions. We find that the probability of correctly rejecting H1 is higher in

specifications with a stronger instrument, and also higher under assumptions with weaker testable restric-

tions. The right column for each design reports the probability of rejecting both H1 and H2, and thereby

concluding that P is consistent with the restrictions and a positive effect. Recall that ATE is zero in design

(1) and positive in designs (2)-(5), though not always identified to be positive. From these tables, we see

that the procedure is generally conservative, in that, in those cases where H2 is true, it falsely rejects H1

and H2 with probability less than the nominal size. In those cases where both H1 and H2 are false, we have

very high power to reject H1 and H2, and thus to correctly conclude that ATE is positive, when both the

instrument and the treatment effect are strong; lower, but still substantial, power when the instrument is

strong but the treatment effect is weak; and slightly lower power still when the treatment effect is strong,

but the instrument is weak. When both the instrument and the effect are weak (design 2), we identify ATE

to be positive only under Assumptions 2.1, 2.2 and 2.3, and in that case only have power above nominal size

for n ≥ 5, 000. As confirmed below by Table 9, this low power is a result of low power to reject H1 and thus

conclude that the P is consistent with the assumptions.

In these tables, we do not report the probability of rejecting H1 and H3, as it was estimated to be 0.000

in all cases.

One somewhat paradoxical result from the tables is that in design (3), which features both a strong

instrument and a strong treatment effect, the power to conclude correctly that the ATE is positive is slightly

weaker under Assumptions 2.1, 2.2 and 2.3 as compared to under Assumptions 2.1 and 2.3. This result seems

paradoxical as we are imposing more assumptions in the former case than the later, and we have shown that

we have great ability to determine the sign of the ATE at the population level in the former case than in the

later. The explanation for the paradoxical result is that, because the former case imposes more restrictions

on the observable data, it is more difficult to reject H1 in the former case than in the later case.

Table 6 reports the probability of rejecting H1 for designs (6)-(9). In designs (6) and (7), Assumption

2.1 holds, but not Assumption 2.2 or 2.3. In designs (8) and (9), the instrument is endogenous, so that

Assumption 2.1 is violated, though in a way that is detectable under Assumption 2.1 alone for design (9),

but not for design (8). In this table, we only report the probabilty of rejecting H1, as the probability of

rejecting H1 and H2 or of rejecting H1 and H3 was estimated to be 0.000 in all cases. We find that the
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probability of incorrectly rejecting H1 is very low for all cases for which H1 is true, while the probability of

correctly rejecting H1 is substantial when H1 is false. It is worth noting that these statements are for the

probability of correctly concluding whether P is consistent with the restrictions, not for the probability of

correctly concluding whether the restrictions are valid. For example, in design (8), the procedure with high

probability correctly concludes that the data is consistent with Assumption 2.1 even though the instrument

is endogenous (in a way that is not detectable).

Tables 7 and 8 report our results for testing only H2 and H3 simultaneously as suggested in in Remark

5.1. In these tables, we only report the probabilty of rejecting H2, as the probability of rejecting H3 was

estimated to be 0.000 in all cases. For designs (2)-(5), where the restrictions hold and the true ATE is

positive, we find some increase in power to correctly reject H2 for the smaller sample sizes compared to our

procedure that uses H1 as a “gatekeeper.” In all cases, we have greater power to reject H2 correctly under

Assumptions 2.1, 2.2 and 2.3 compared to under Assumptions 2.1 and 2.3. Thus, the paradoxical result

described above does not occur when not using H1 as a “gatekeeper.”

The results for designs (2)-(5) show that there is a cost to using H1 as a “gatekeeper,” in that there

is some increase in power to reject H2 correctly for small sample sizes when not using H1 in this way. In

contrast, the results for designs (6)-(9) highlight the advantage of using H1 as a “gatekeeper.” In these

designs, the true value of ATE is zero, and H2 is true in all cases, so that any rejection of H2 is a false

rejection. In these designs, the procedure that only tests H2 and H3 often incorrectly rejects H2 and thus

incorrectly concludes that the ATE is positive. For example, consider the results under Assumptions 2.1,

2.2 and 2.3. Note that P is incompatible with that set of restrictions under any of the designs (6)-(9).

When we use our procedure that includes H1 a “gatekeeper,” the procedure incorrectly rejected H1 with

probability 0.000 in each of those designs for each sample size considered, and thus incorrectly rejected H2

with probability 0.000 as well. In contrast, when not using H1 as a “gatekeeper,” as reported in Table 8,

the procedure incorrectly rejects H2 and thus incorrectly concludes that the ATE is positive with very high

probability. Thus, we find that while using H1 as a “gatekeeper” does somewhat decrease our power to

determine the sign of the ATE correctly when the restrictions are true, it also greatly reduces the probability

of incorrectly determining the sign of the ATE when the restrictions are incompatible with the data.

Tables 9 and 10 report results that follow Remark 5.2 in testing the null hypothesis that P is consistent

with our restrictions, P ∈ Pc1, as opposed to H1 above, which specifies that P ∈ P1. In other words, these

results are for a model specification test, where the null is correct specification. In designs (1)-(5), P is

consistent with each alternative set of restrictions, and we find that in all cases the test rejects P ∈ Pc1

incorrectly with probability less than nominal size. In designs (6)-(9), we find generally substantial power

to correctly reject that P is consistent with the restrictions. We find higher power to detect violations of

those sets of assumptions that impose stronger testable restrictions than those that impose weaker testable

restrictions. This finding is in contrast to the results for testing H1, where we found it more difficult to

correctly reject the null for sets of assumptions that implied stronger testable restrictions than for those that

implied weaker testable restrictions.

The results for design (8) highlight one possible reason why a researcher who is confident in monotonicity

of D in Z and less confident of instrument exogeneity might wish to perform inference maintaining mono-
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tonicity of D in Z: maintaining monotonicity of D in Z makes it far easier to detect violations of instrument

exogeneity. In design (8), Assumption 2.1 fails, though the violation of instrument exogeneity is not de-

tectible under Assumption 2.1 alone while it is detectible under Assumptions 2.1 and 2.2. For this design,

as reported in Table 10, we see that the violation of instrument exogeneity is correctly detected with very

high probability under Assumptions 2.1 and 2.2, while it is not detectible under Assumption 2.1 alone.

C Proofs for Section 3

Proof of Theorem 3.1: First consider assertion (i). For 1 ≤ j ≤ 2, ∆(P ) = Aj1(P ) + Aj4(P ), so that

∆(P ) ≥ Aj1(P ) =⇒ Aj4(P ) ≥ 0 and ∆(P ) ≤ Aj4(P ) =⇒ Aj1(P ) ≤ 0. Thus, ∆(P ) ∈ [A1(P ), A4(P )]

if and only if A1(P ) ≤ 0 and A4(P ) ≥ 0. The result then follows from Balke and Pearl (1997). Now

consider assertions (ii) and (iii). From Balke and Pearl (1997), the identified set for EQ[Y1 − Y0] is given by

[∆(P )−A3(P ),∆(P )−A2(P )]. Combining this result with (i) gives the stated results.

Proof of Theorem 3.2: The proof follows the same strategy as in Balke and Pearl (1997), who solve a

linear programming problem that maximizes/minimizes the average treatment effect and has as constraints

the restrictions between the unobserved latent probability and the distribution of the observed data satisfying

Assumptions 2.1 and 2.2. Imposing Assumption 2.3 in addition to Assumptions 2.1 and 2.2 results in the

additional constraints in the optimization problem that any candidate Q satisfy either

Q{Y1 > Y0, D1 = j,D0 = k} = 0 for all (j, k) ∈ {0, 1}2, (42)

or

Q{Y1 < Y0, D1 = j,D0 = k} = 0 for all (j, k) ∈ {0, 1}2. (43)

Testable restrictions arise by characterizing admissible values of observed probabilities under which the linear

programming problem is feasible, which amounts to checking whether the dual problem is unbounded. We

compute the maximum and minimum values for the average treatment effect and specify the conditions that

rule out unboundness of the dual as the testable restrictions. Following this procedure for Q satisfying (43)

results in the restriction that ∆(P ) ∈ [A1(P ), 0], while following this procedure for Q satisfying (42) results

in the restriction ∆(P ) ∈ [0, A4(P )]. The result now follows.

Proof of Theorem 3.3: As in the proof of Theorem 3.1, we follow the same linear programming strategy

as in Balke and Pearl (1997), but with modifications to the constraint set for the optimization problem. In

particular, under Assumptions 2.1 and 2.3, we have the same constraints as Balke and Pearl (1997) except

replacing their constraints that

Q{Y1 = j, Y0 = k,D1 < D0} = 0 for all (j, k) ∈ {0, 1}2,

with the constraints that any candidate Q satisfy either

Q{Y1 < Y0, D1 = j,D0 = k} = 0 for all (j, k) ∈ {0, 1}2, (44)
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or

Q{Y1 > Y0, D1 = j,D0 = k} = 0 for all (j, k) ∈ {0, 1}2. (45)

Solving the resulting optimization problem for Q satisfying (45) results in the restriction that ∆(P ) ∈
[B1(P ), B2(P )] with ATE bounded from below by |∆(P )|, while solving the resulting optimization problem

for Q satisfying (44) results in the restriction that ∆(P ) ∈ [B3(P ), B4(P )] with ATE bounded from above

by −|∆(P )|. The result now follows.

Proof of Theorem 3.4: Proof follows immediately from the results of Balke and Pearl (1997).

D Proofs for Section 4

Proof of Proposition 4.1: ∆(P ) ∈ [C1(P ), C4(P )] is equivalent to the following four equalities holding:

P{Y = 1, D = 0 | Z = 1}+ P{Y = 0, D = 0 | Z = 0} ≤ 1

P{Y = 1, D = 0 | Z = 0}+ P{Y = 0, D = 0 | Z = 1} ≤ 1

P{Y = 1, D = 1 | Z = 1}+ P{Y = 0, D = 1 | Z = 0} ≤ 1

P{Y = 1, D = 1 | Z = 0}+ P{Y = 0, D = 1 | Z = 1} ≤ 1.

(46)

Plugging ∆d(Q), G0
d(Q), G1

d(Q), d ∈ {0, 1}, into (46), we can rewrite the expression as

∆0(Q) ≤ G2
0(Q)

∆0(Q) ≥ G1
0(Q)

∆1(Q) ≤ G2
1(Q)

∆1(Q) ≥ G1
1(Q).

(47)

Each inequality in (46) holds if and only if the corresponding inequality in (47) holds, and we have thus

established the first assertion of the proposition. Part (i) of the proposition now follows from the absolute

value of the righthand-side of the first two inequalities in (47) being bounded from above by P{D = 1 | Z =

1} + P{D = 1 | Z = 0}, and part (ii) follows from the absolute value of the righthand-side of the last two

inequalities in (47) being bounded from above by 2 − P{D = 1 | Z = 1} − P{D = 1 | Z = 0}. Part (iii) of

the proposition follows from the lefthand-side of the first two terms of (46) being bounded from above by

2 − P{D = 1 | Z = 1} − P{D = 1 | Z = 0}, while part (iv) follows from the lefthand-side of the last two

terms of (46) are bounded from above by P{D = 1 | Z = 1}+ P{D = 1 | Z = 0}.

Proof of Proposition 4.2: Using (2)-(3) and Assumption 2.1, ∆(P ) may be expressed as(
Q{Y1 > Y0, D1 > D0} −Q{Y1 < Y0, D1 > D0}

)
−
(
Q{Y1 > Y0, D1 < D0} −Q{Y1 < Y0, D1 < D0}

)
. (48)
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Furthermore,

A1
1(P ) = Q{Y0 = 1, D1 < D0} −Q{Y0 = 1, D1 > D0}

A2
1(P ) = Q{Y1 = 0, D1 < D0} −Q{Y1 = 0, D1 > D0}

A1
4(P ) = Q{Y1 = 1, D1 > D0} −Q{Y1 = 1, D1 < D0}

A2
4(P ) = Q{Y0 = 0, D1 > D0} −Q{Y0 = 0, D1 < D0} .

Thus,

∆(P )−A1
1(P ) = Q{Y1 = 1, D1 > D0} −Q{Y1 = 1, D1 < D0}

∆(P )−A2
1(P ) = Q{Y0 = 0, D1 > D0} −Q{Y0 = 0, D1 < D0}

∆(P )−A1
4(P ) = −Q(Y0 = 1, D1 > D0}+Q{Y0 = 1, D1 < D0}

∆(P )−A2
4(P ) = −Q{Y1 = 0, D1 > D0}+Q{Y1 = 0, D1 < D0} .

The desired result now follows immediately.

Proof of Proposition 4.3: Using Assumption 2.1, we have that

B1(P ) = −min

{
Q{Y1 > Y0, D1 < D0}+Q{Y1 > Y0, D1 = D0 = 1}+Q{Y1 = Y0 = 1, D0 = 1},
Q{Y1 > Y0, D1 < D0}+Q{Y1 > Y0, D1 = D0 = 0}+Q{Y1 = Y0 = 0, D1 = 0}

}
,

B2(P ) = min

{
Q{Y1 > Y0, D1 > D0}+Q{Y1 > Y0, D1 = D0 = 1}+Q{Y1 = Y0 = 1, D1 = 1},
Q{Y1 > Y0, D1 > D0}+Q{Y1 > Y0, D1 = D0 = 0}+Q{Y0 = Y1 = 0, D0 = 0}

}
,

B3(P ) = −min

{
Q{Y1 < Y0, D1 > D0}+Q{Y1 < Y0, D1 = D0 = 1}+Q{Y1 = Y0 = 0, D1 = 1}
Q{Y1 < Y0, D1 > D0}+Q{Y1 < Y0, D1 = D0 = 0}+Q{Y0 = Y1 = 1, D0 = 0}

}
,

B4(P ) = min

{
Q{Y1 < Y0, D1 < D0}+Q{Y1 < Y0, D1 = D0 = 1}+Q{Y1 = Y0 = 0, D0 = 1}
Q{Y1 < Y0, D1 < D0}+Q{Y1 < Y0, D1 = D0 = 0}+Q{Y1 = Y0 = 1, D1 = 0}

}
.

so that

B1(P ) = −Q{Y1 > Y0, D1 < D0} −M1(Q)

B2(P ) = Q{Y1 > Y0, D1 > D0}+M2(Q)

B3(P ) = −Q{Y1 < Y0, D1 > D0} −M3(Q)

B4(P ) = Q{Y1 < Y0, D1 < D0}+M4(Q) .

The desired result now follows immediately.
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E Proofs for Section 5

The proofs of Theorems 5.1 – 5.4 are essentially the same, so we only provide a proof of Theorem 5.1.

Proof of Theorem 5.1: Suppose by way of contradiction that (24) fails. Then there exists a subsequence

{Pnm
∈ P : m ≥ 1} and α′ > α such that

FWERPnm
→ α′ . (49)

Let

I(P ) = {1 ≤ j ≤ 3 : P ∈ Pj} ⊆ {1, 2, 3} .

Since there are only finitely many possible values for I(P ) and FWERP = 0 when I(P ) = ∅, we may assume

further (by considering another subsequence if necessary) that I(Pnm
) = I 6= ∅.

Consider first the case in which 1 ∈ I. Note that

{Pnm
∈ P : m ≥ 1} ⊆

⋃
K∈K1

1

PK ,

where

PK =
⋂
k∈K

{P ∈ P : ak(P ) ≤ 0} .

Since there are only finitely many K ∈ K1
1, we may assume further (by considering another subsequence if

necessary) that there is K∗ ∈ K1
1 such that

{Pnm ∈ P : m ≥ 1} ⊆ PK∗ . (50)

Using the fact that 1 ∈ I and the definition of Algorithm 5.1, we have that

FWERPnm
= Pnm

{
T 1

1,nm
> ĉ1,nm

(K1({1}), 1− α)
}

≤ Pnm

{
max
k∈K∗

ak(P̂nm
)

σ̂ak,nm

> J−1
1,nm

(1− α,K∗, P̂nm)

}
, (51)

where in (51) we have used the definitions of T 1
1,nm

and ĉ1,nm(K1({1}), 1 − α) as well as the fact that

K∗ ∈ K1
1 = K1({1}). Using (50) and Theorem F.1, we see that the righthand-side of (51) tends to α,

contradicting (49), and thereby establishing the desired result.

Now consider the case in which 1 6∈ I. Since I ⊆ {2, 3}, it must be the case that

{Pnm ∈ P : m ≥ 1} ⊆
⋃

K∈K1(I)

PK .

Since there are only finitely many K ∈ K1(I), we may assume further (by considering another subsequence

35



if necessary) that there is K∗ ∈ K1(I) such that

{Pnm ∈ P : m ≥ 1} ⊆ PK∗ . (52)

Next, note that

max
j∈I

T 1
j,n = max

j∈I
min
K∈K1

j

max
k∈K

ak(P̂n)

σ̂ak,n

≤ max
k∈K∗

ak(P̂n)

σ̂ak,n
. (53)

To establish (53), simply note that from the definiton of K1(I) that for each j ∈ I ⊆ {2, 3} it must be the

case that there exists K ∈ K1
j such that K ⊆ K∗. The desired inequality thus follows. Since there exists

K ∈ K1({2, 3}) such that K∗ ⊆ K, we have further that

ĉ1,n(K1({2, 3}), 1− α) = max
K∈K1({2,3})

J−1
1,n(1− α,K, P̂n)

≥ J−1
1,n(1− α,K∗, P̂n) . (54)

Using the fact that 1 6∈ I and the definition of Algorithm 5.1, we have that

FWERPnm
= Pnm

{
max
j∈I

T 1
j,nm

> ĉ1,nm
(K1({2, 3}), 1− α)

}
≤ Pnm

{
max
k∈K∗

ak(P̂nm)

σ̂ak,nm

> J−1
1,nm

(1− α,K∗, P̂nm)

}
, (55)

where (55) follows from (53) and (54). Using (52) and Theorem F.1, we see that the righthand-side of (55)

tends to α, contradicting (49), and thereby establishing the desired result.

F Auxiliary Results

In this appendix, we establish the following result:

Theorem F.1 Let (Xi, Yi, Zi), i = 1, . . . , n be an i.i.d. sequence of random variables with distribution P ∈ P

on Rk ×Rk × {0, 1}. Suppose P is such that

ε < inf
P∈P

P{Z = 1} ≤ sup
P∈P

P{Z = 1} < 1− ε (56)

for some ε > 0, and for each 1 ≤ j ≤ k that

lim sup
λ→∞

sup
P∈P

EP

[(
Xj − µXj |Z=1(P )

σXj |Z=1(P )

)2

I

{∣∣∣∣Xj − µXj |Z=1(P )

σXj |Z=1(P )

∣∣∣∣ > λ

}
|Z = 1

]
= 0 (57)
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and

lim sup
λ→∞

sup
P∈P

EP

[(
Yj − µYj |Z=0(P )

σYj |Z=0(P )

)2

I

{∣∣∣∣Yj − µYj |Z=0(P )

σYj |Z=0(P )

∣∣∣∣ > λ

}
|Z = 0

]
= 0 . (58)

Let

Jn(x, P ) = P

{
max

1≤j≤k
Tn,j(P ) ≤ x

}
, (59)

where

Tn,j(P ) =
1
n1

∑
1≤i≤n:Zi=1Xj,i − µXj |Z=1(P )− 1

n0

∑
1≤i≤n:Zi=0 Yj,i − µYj |Z=0(P )√

σ2
Xj |Z=1

(P̂n)

n1
+

σ2
Yj |Z=0

(P̂n)

n0

.

Then

lim sup
n→∞

sup
P∈P

P

{
max

1≤j≤k
Tn,j(P ) > J−1

n (1− α, P̂n)

}
≤ α .

Before presenting the proof of Theorem F.1, we present a series of useful lemmata.

Lemma F.1 Let (Xi, Zi), i = 1, . . . , n be an i.i.d. sequence of random variables with distribution P ∈ P on

R× {0, 1}. Suppose P is such that

inf
P∈P

P{Z = 1} > ε

for some ε > 0 and that

lim sup
λ→∞

sup
P∈P

EP
[∣∣X − µX|Z=1(P )

∣∣ I {∣∣X − µX|Z=1(P )
∣∣ > λ

}
|Z = 1

]
= 0 . (60)

Then, for any {Pn ∈ P : n ≥ 1},

1

n1

∑
1≤i≤n:Zi=1

Xi − µX|Z=1(Pn)
Pn→ 0 ,

where n1 =
∑

1≤i≤n Zi.

Proof: First assume w.l.o.g. that µX|Z=1(Pn) = 0. Thus, EPn
[ZX] = 0. Next, note that (60) implies that

lim sup
λ→∞

1

Pn{Z = 1}
EPn

[|ZX| I {|ZX| > λ} |Z = 1] = 0 .

Since Pn{Z = 1} > ε, it follows that

lim sup
λ→∞

EPn
[|ZX| I {|ZX| > λ} |Z = 1] = 0 .

By Lemma 11.4.2 of Romano and Shaikh (2012), we therefore have that

1

n

∑
1≤i≤n

XiZi
Pn→ 0 .
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Since |Z − µZ(Pn)| ≤ 1, we also have that

lim sup
λ→∞

EPn [|Z − µZ(Pn)| I {|Z − µZ(Pn)| > λ} |Z = 1] = 0 .

Thus,
1

n

∑
1≤i≤n

Zi = Pn{Z = 1}+ oPn(1) .

To complete the argument, note that

1

n1

∑
1≤i≤n:Zi=1

Xi =

 1

n

∑
1≤i≤n

XiZi

 /

 1

n

∑
1≤i≤n

Zi

 .

The desired result now follows since Pn{Z = 1} > ε.

Lemma F.2 Let (Xi, Yi, Zi), i = 1, . . . , n be an i.i.d. sequence of random variables with distribution P ∈ P

on Rk × Rk × {0, 1}. Suppose (56) holds for some ε > 0 and for all 1 ≤ j ≤ k that (57) and (58) hold.

Then, for any {Pn ∈ P : n ≥ 1},

||ΩX|Z=1(P̂n)− ΩX|Z=1(Pn)|| Pn→ 0 (61)

||ΩY |Z=0(P̂n)− ΩY |Z=0(Pn)|| Pn→ 0 , (62)

where || · || denotes the component-wise maximum of the absolute value of all elements.

Proof: We provide only the proof for (61), as the same argument establishes (62). To establish (61), first

note that we may assume w.l.o.g. for all 1 ≤ j ≤ k that µXj |Z=1(Pn) = 0 and σXj |Z=1(Pn) = 1. The (j, `)

element of ΩX|Z=1(Pn) is thus given by

EPn
[XjX`|Z = 1]

and the (j, `) element of ΩX|Z=1(P̂n) is given by

1
n1

∑
1≤i≤n:Zi=1Xi,jXi,` −

(
1
n1

∑
1≤i≤n:Zi=1Xi,j

)(
1
n1

∑
1≤i≤n:Zi=1Xi,`

)
σXj |Z=1(P̂n)σX`|Z=1(P̂n)

,

where n1 =
∑

1≤i≤n Zi. From Lemma B.3 in Bhattacharya et al. (2012), we see that

σXj |Z=1(P̂n)
Pn→ 1

σX`|Z=1(P̂n)
Pn→ 1 .
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From Lemma F.1, we see that

1

n1

∑
1≤i≤n:Zi=1

Xi,j
Pn→ 0

1

n1

∑
1≤i≤n:Zi=1

Xi,`
Pn→ 0 .

Using the inequality

|a||b|I{|a||b| > λ} ≤ a2I{|a| >
√
λ}+ b2I{|b| >

√
λ} ,

we see that

lim sup
λ→∞

EPn [|XjX`| I {|XjX`| > λ} |Z = 1] = 0 .

Since |EPn [XjX`|Z = 1]| ≤ 1 by the Cauchy-Schwartz inequality, we have further that

lim sup
λ→∞

EPn
[|XjX` − EPn

[XjX`|Z = 1]| I {|XjX` − EPn
[XjX`|Z = 1]| > λ} |Z = 1] = 0 .

Thus, Lemma F.1 implies that

1

n1

∑
1≤i≤n:Zi=1

Xi,jXi,` = EPn
[XjX`|Z = 1] + oPn

(1) .

The desired result now follows immediately.

Lemma F.3 Let (Xi, Yi, Zi), i = 1, . . . , n be an i.i.d. sequence of random variables with distribution P ∈ P

on Rk × Rk × {0, 1}. Suppose (56) holds for some ε > 0 and for all 1 ≤ j ≤ k that (57) and (58) hold.

Define

D(P ) = diag

 σ2
X1|Z=1(P )

P{Z=1}
σ2
X1|Z=1

(P )

P{Z=1} +
σ2
Y1|Z=0

(P )

P{Z=0}

, . . . ,

σ2
Xk|Z=1(P )

P{Z=1}
σ2
Xk|Z=1

(P )

P{Z=1} +
σ2
Yk|Z=0

(P )

P{Z=0}

 .

Then,

||D(P̂n)ΩX|Z=1(P̂n)−D(Pn)ΩX|Z=1(Pn)|| Pn→ 0 (63)

||(I −D(P̂n))ΩY |Z=0(P̂n)− (I −D(Pn))ΩY |Z=0(Pn)|| Pn→ 0 , (64)

where I is the k-dimensional identity matrix and || · || denotes the component-wise maximum of the absolute

value of all elements. Hence,

||V (P̂n)− V (Pn)|| Pn→ 0 , (65)

where

V (P ) = D(P )ΩX|Z=1(P ) + (I −D(P ))ΩY |Z=0(P ) . (66)

Proof: We provide only the proof for (63); the same argument establishes (64) and (65) then follows

immediately from the triangle inequality. To establish (63), first note that D(Pn) is invertible and that from
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Lemma B.4 of Bhattacharya et al. (2012)

||D(Pn)−1D(P̂n)− I|| Pn→ 0 .

Next, note for a universal constant C that

||D(P̂n)ΩX|Z=1(P̂n)−D(Pn)ΩX|Z=1(Pn)||

≤ C||D(Pn)||||D(Pn)−1D(P̂n)ΩX|Z=1(P̂n)− ΩX|Z=1(Pn)||

≤ C2||D(Pn)||||ΩX|Z=1(P̂n)||
(
||D(Pn)−1D(P̂n)− I||+ ||ΩX|Z=1(P̂n)− ΩX|Z=1(Pn)||

)
Since the elements of D(Pn) and ΩX|Z=1(P̂n) are all bounded, the norm of these matrices are also bounded.

It therefore suffices to show that

||ΩX|Z=1(P̂n)− ΩX|Z=1(Pn)|| Pn→ 0 ,

which follows from Lemma F.2.

Lemma F.4 Let (Xi, Yi, Zi), i = 1, . . . , n be an i.i.d. sequence of random variables with distribution P ∈ P

on Rk × Rk × {0, 1}. Suppose (56) holds for some ε > 0 and for all 1 ≤ j ≤ k that (57) and (58) hold.

Then, for any {Pn ∈ P : n ≥ 1},

max
1≤j≤k

{∫ ∞
0

|rj(λ, P̂n)− rj(λ, P )|dλ
}

Pn→ 0 (67)

max
1≤j≤k

{∫ ∞
0

|sj(λ, P̂n)− sj(λ, P )|dλ
}

Pn→ 0 , (68)

where

rj(λ, P ) = EP

[(
Xj − µXj |Z=1(P )

σXj |Z=1(P )

)2

I

{
Xj − µXj |Z=1(P )

σXj |Z=1(P )
> λ

}
|Z = 1

]
(69)

sj(λ, P ) = EP

[(
Yj − µYj |Z=0(P )

σYj |Z=0(P )

)2

I

{
Yj − µYj |Z=0(P )

σYj |Z=0(P )
> λ

}
|Z = 0

]
. (70)

Proof: We provide only the proof for (67); the same argument establishes (68). To establish (67), consider

any 1 ≤ j ≤ k. First note that we may assume w.l.o.g. that µXj |Z=1(Pn) = 0 and σXj |Z=1(Pn) = 1. Next,

note for any 1 ≤ j ≤ k that rj(λ, P̂n) = An − 2Bn +Bn, where

An =
1

σXj |Z=1(P̂n)

1

n1

∑
1≤i≤n:Zi=1

X2
i,jI{|Xi,j − µXj |Z=1(P̂n)| > λσXj |Z=1(P̂n)}

Bn =
µXj |Z=1(P̂n)

σXj |Z=1(P̂n)

1

n1

∑
1≤i≤n:Zi=1

Xi,jI{|Xi,j − µXj |Z=1(P̂n)| > λσXj |Z=1(P̂n)}

Cn =
µXj |Z=1(P̂n)2

σXj |Z=1(P̂n)

1

n1

∑
1≤i≤n:Zi=1

I{|Xi,j − µXj |Z=1(P̂n)| > λσXj |Z=1(P̂n)} .
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From Lemma F.1, we see that µXj |Z=1(P̂n)
Pn→ 0. From Lemma B.3 in Bhattacharya et al. (2012), we see

that σXj |Z=1(P̂n)
Pn→ 1. From Lemma F.1, we also see that

1

n1

∑
1≤i≤n:Zi=1

|Xi,j | = EPn
[|Xj |] + oPn

(1) .

Since EPn
[|Xj |] ≤ 1 by the Cauchy-Schwartz inequality, it follows that Bn = oPn

(1) uniformly in λ. A

similar argument establishes that Bn = oPn(1) uniformly in λ. In summary,

rj(λ, Pn) =
1

σXj |Z=1(P̂n)

1

n1

∑
1≤i≤n:Zi=1

X2
i,jI{|Xi,j − µXj |Z=1(P̂n)| > λσXj |Z=1(P̂n)}+ ∆n

uniformly in λ, where ∆n = oPn(1).

For δ > 0, define the events

En(δ) = {|µXj |Z=1(P̂n)| < δ ∩ 1− δ < σXj |Z=1(P̂n) < 1 + δ}

E′n(δ) =

sup
t∈R

∣∣∣∣∣∣ 1

n1

∑
1≤i≤n:Zi=1

X2
i,jI{|Xi,j | > t} − EPn

[X2
j I{|Xj | > t}|Z = 1]

∣∣∣∣∣∣ < δ


E′′n(δ) = {|∆n| < δ} .

We now argue that Pn{En(δ) ∩ E′n(δ) ∩ E′′n(δ)} → 1. Since µXj |Z=1(P̂n)
Pn→ 0, σXj |Z=1(P̂n)

Pn→ 1, and

∆n = oPn(1), it suffices to argue that

Pn{E′n(δ)} → 1 . (71)

To see this, note that

1

n1

∑
1≤i≤n:Zi=1

X2
i,jI{|Xi,j | > t} − EPn

[X2
j I{|Xj | > t}|Z = 1]

=

1
Pn{Z=1}

1
n

∑
1≤i≤n ZiX

2
i,jI{|Xi,j | > t}

Z̄n

Pn{Z=1}

− 1

Pn{Z = 1}
EPn

[ZX2
j I{|Xj | > t}]

=

(
1− Pn{Z = 1}

Z̄n

)
1

Pn{Z = 1}
1

n

∑
1≤i≤n

ZiX
2
i,jI{|Xi,j | > t}

1

Pn{Z = 1}

 1

n

∑
1≤i≤n

ZiX
2
i,jI{|Xi,j | > t} − EPn [ZX2

j I{|Xj | > t}]


=

(
1− Pn{Z = 1}

Z̄n

)
Z̄n

Pn{Z = 1}
1

n1

∑
1≤i≤n:Zi=1

X2
i,jI{|Xi,j | > t} (72)

1

Pn{Z = 1}

 1

n

∑
1≤i≤n

ZiX
2
i,jI{|Xi,j | > t} − EPn

[ZX2
j I{|Xj | > t}]

 . (73)

From Lemma F.1, we see that
Z̄n

Pn{Z = 1}
Pn→ 1
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and
1

n1

∑
1≤i≤n:Zi=1

X2
i,jI{|Xi,j | > t} = EPn

[X2
j I{|Xj | > t}|Z = 1] + oPn

(1) .

The Cauchy-Schwartz inequality implies that EPn
[X2

j I{|Xj | > t}|Z = 1] ≤ 1. Hence, (72) is oPn
(1) uniformly

in t. Note further that the class of functions

{zx2I{|x| > t} : t ∈ R} (74)

is a VC class of functions. Therefore, by Theorem 2.6.7 and Theorem 2.8.1 of van der Vaart and Wellner

(1996), we see that the class of functions (74) is Glivenko-Cantelli uniformly over P. Since Pn{Z = 1} > ε, it

follows that the supremum over t ∈ R of (73) tends in probability to zero under Pn. The desired conclusion

(71) follows.

To complete the argument, it now suffices to argue as in the proof of Lemma S.12.2 in Romano and

Shaikh (2012).

Lemma F.5 Let (Xi, Yi, Zi), i = 1, . . . , n be an i.i.d. sequence of random variables with distribution P ∈ P

on Rk × Rk × {0, 1}. Suppose (56) holds for some ε > 0 and for all 1 ≤ j ≤ k that (57) and (58) hold.

Then, for any {Pn ∈ P : n ≥ 1},
ρ(P̂n, Pn)

Pn→ 0 ,

where

ρ(Q,P ) = max

{
||V (Q)− V (P )||, |Q{Z = 1} − P{Z = 1}|,

max
1≤j≤k

{∫ ∞
0

|rj(λ,Q)− rj(λ, P )|dλ
}
, max
1≤j≤k

{∫ ∞
0

|sj(λ,Q)− sj(λ, P )|dλ
}}

. (75)

Here, V (P ), rj(λ, P ), and sj(λ, P ) are defined as in (66), (69), and (70), respectively, and || · || denotes the

component-wise maximum of the absolute value of all elements.

Proof: By arguing as in the proof of Lemma F.2, we have that

P̂n{Z = 1} − Pn{Z = 1} = Z̄n − Pn{Z = 1} Pn→ 0 .

The desired result now follows from Lemmas F.3 and F.4.

Lemma F.6 Let P be a set of distributions on Rk ×Rk × {0, 1} such that (56) holds for some ε > 0 and

for all 1 ≤ j ≤ k that (57) and (58) hold. Let P′ be the set of all distributions on Rk ×Rk × {0, 1}. Define

ρ(Q,P ) as in (75) and Jn(x, P ) as in (59). Then, for any {Qn ∈ P′ : n ≥ 1} and {Pn ∈ P : n ≥ 1}
satisfying ρ(Qn, Pn)→ 0,

lim sup
n→∞

sup
P∈P
|Jn(x,Qn)− Jn(x, Pn)| → 0 . (76)
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Proof: Consider sequences {Qn ∈ P′ : n ≥ 1} and {Pn ∈ P : n ≥ 1} satisfying ρ(Qn, Pn)→ 0. By arguing

as in the proof of Lemma S.12.1 in Romano and Shaikh (2012), we see that

lim
λ→∞

lim sup
n→∞

rj(λ, Pn) = 0

lim
λ→∞

lim sup
n→∞

rj(λ,Qn) = 0

lim
λ→∞

lim sup
n→∞

sj(λ, Pn) = 0

lim
λ→∞

lim sup
n→∞

sj(λ,Qn) = 0 .

We now establish (76). Suppose by way of contradiction that (76) fails. It follows that there exists a

subsequence such that nm such that V (Pnm
)→ V ∗, V (Qnm

)→ V ∗, and either

sup
x∈R
|Jnm

(x, Pnm
)− ΦV ∗(x)| 6→ 0 (77)

or

sup
x∈R
|Jnm

(x,Qnm
)− ΦV ∗(x)| 6→ 0 . (78)

Let Wn(Pn) be the vector whose jth element for 1 ≤ j ≤ k is given by

1
n1

∑
1≤i≤n:Zi=1Xi,j − µXj |Z=1(P )− 1

n0

∑
1≤i≤n:Zi=0 Yi.j − µYj |Z=0(P )√

σ2
Xj |Z=1

(P̂n)

n1
+

σ2
Yj |Z=0

(P̂n)

n0

.

From Lemmas B.4 and B.5 in Bhattacharya et al. (2012) and Slutsky’s Lemma, we see that

Wnm
(Pnm

)
d→ ΦV ∗(x)

under Pnm
. It therefore follows from Polya’s Theorem that (77) can not hold. Similarly, we see that (78)

can not hold. The desired conclusion thus follows.

Proof of Theorem F.1: The desired result follows immediately from Lemmas F.5 and F.6 and Theorem

2.4 in Romano and Shaikh (2012).
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Figure 1: Detecting Violations of Instrument Exogeneity, Irrelevant Instrument (δ = 0)
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Figure 2: Detecting Violations of Instrument Exogeneity, Strong Instrument (δ = 0.5)
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Figure 3: Detecting Violations of D Monotonic in Z: Minimum Var[δ]

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0

10

20

30

40

50

E(δ)

Corr(β,δ)

M
in

 V
a

r(
δ
)

Figure 4: Detecting Violations of D Monotonic in Z: Maximum E[δ]
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Figure 5: Detecting Violations of D Monotonic in Z: Minimum/Maximum Corr[β, δ]
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Table 1: Parameterizations of Different Designs

Monte Carlo Design
Parametrization (1) (2) (3) (4) (5) (6) (7) (8) (9)

µβ 0 .5 1.5 .5 1.5 0 0 0 0
µδ 1.5 .5 1.5 1.5 .5 .5 .5 .5 .5
σ2
β 0 0 0 0 0 1 5 0 0

σ2
δ 0 0 0 0 0 5 5 0 0

Corr[β, δ] 0 0 0 0 0 .9 .9 0 0
γ -1 -1 -1 -1 -1 0 0 0 0
ζ -1 -1 -1 -1 -1 0 0 0 1

Corr[η, β] 0 0 0 0 0 0 -.9 0 0
Corr[η, δ] 0 0 0 0 0 0 -.9 0 0

λ 0 0 0 0 0 0 0 1 1

Table 2: Descriptive Statistics for Different Designs

Monte Carlo Design
Statistics (1) (2) (3) (4) (5) (6) (7) (8) (9)

∆(P ) 0.000 0.023 0.284 0.080 0.080 0.097 0.272 0.341 0.341
A1(P ) -0.084 -0.024 -0.084 -0.084 -0.024 0.056 0.203 0.140 0.273
A4(P ) 0.084 0.046 0.368 0.164 0.104 0.041 0.069 0.201 0.069
B1(P ) -0.025 -0.049 -0.110 -0.049 -0.110 -0.209 -0.096 -0.049 -0.011
B2(P ) 0.110 0.095 0.478 0.213 0.213 0.250 0.250 0.250 0.079
B3(P ) -0.133 -0.133 -0.133 -0.133 -0.095 -0.194 -0.201 -0.110 -0.079
B4(P ) 0.049 0.107 0.047 0.049 0.049 0.210 0.181 0.250 0.056
C1(P ) -0.393 -0.262 -0.323 -0.393 -0.205 -0.443 -0.298 -0.299 -0.090
C4(P ) 0.243 0.205 0.527 0.323 0.262 0.460 0.431 0.510 0.136

∆(P )−A3(P ) -0.182 -0.197 0.186 -0.079 -0.079 -0.363 -0.312 -0.168 -0.136
∆(P )−A2(P ) 0.285 0.653 0.653 0.389 0.772 0.556 0.549 0.640 0.773
∆(P )− C3(P ) -0.182 -0.197 0.186 -0.079 -0.079 -0.363 -0.290 -0.168 0.081
∆(P )− C2(P ) 0.285 0.653 0.653 0.389 0.772 0.500 0.324 0.409 0.238
LB, Y ≤ D -0.182 -0.197 0.186 -0.079 -0.079 -0.363 -0.312 -0.168 -0.136
UB, Y ≥ D 0.285 0.653 0.653 0.389 0.772 0.500 0.346 0.490 0.500
E[D0] 0.159 0.159 0.159 0.159 0.159 0.500 0.500 0.500 0.841
E[D1] 0.691 0.309 0.691 0.691 0.309 0.581 0.639 0.691 0.933
E[Y0] 0.159 0.159 0.159 0.159 0.159 0.500 0.500 0.670 0.670
E[Y1] 0.159 0.308 0.691 0.308 0.691 0.500 0.500 0.670 0.670

P{D1 > D0} 0.533 0.150 0.533 0.533 0.150 0.225 0.437 0.191 0.092
P{D1 < D0} 0.000 0.000 0.000 0.000 0.000 0.144 0.299 0.000 0.000
P{D1 = D0} 0.467 0.850 0.467 0.467 0.850 0.631 0.264 0.809 0.908
P{Y1 > Y0} 0.000 0.150 0.533 0.150 0.533 0.125 0.183 0.000 0.000
Pr(Y1 < Y0} 0.000 0.000 0.000 0.000 0.000 0.125 0.183 0.000 0.000
P{Y1 = Y0} 1.000 0.850 0.467 0.850 0.467 0.750 0.634 1.000 1.000
Corr[ν, Z] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.447 0.447

P{Y1 = 1|Z = 1} − P{Y1 = 1|Z = 0} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.341 0.341
P{Y0 = 1|Z = 1} − P{Y0 = 1|Z = 0} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.341 0.341
P{D = 1|Z = 1}+ P{D = 1|Z = 0} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.192 1.774
1 Descriptive statistics are computed using 30000000 replications.
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Table 3: Which Null Hypotheses are False

Design
Restrictions (1) (2) (3) (4) (5) (6) (7) (8) (9)

2.1 H1 H1 H1 & H2 H1 H1 H1 H1 H1 -
2.1, 2.2 H1 H1 H1 & H2 H1 H1 - - - -

2.1, 2.2, 2.3 H1 H1 & H2 H1 & H2 H1 & H2 H1 & H2 - - - -
2.1, 2.3 H1 H1 H1 & H2 H1 & H2 H1 & H2 H1 - - -

Table 4: Rejection Probabilities for Designs (1)-(3)

Design
1 2 3

Restrictions n P{rej. H1} P{rej. H1, H2} P{rej. H1} P{rej. H1, H2} P{rej. H1} P{rej. H1, H2}
2.1 200 0.997 0.000 0.889 0.000 0.998 0.528

500 1.000 0.000 1.000 0.000 1.000 0.953
1000 1.000 0.000 1.000 0.000 1.000 1.000
5000 1.000 0.000 1.000 0.000 1.000 1.000
10000 1.000 0.000 1.000 0.000 1.000 1.000

2.1, 2.2 200 0.471 0.000 0.017 0.000 0.605 0.448
500 0.929 0.000 0.107 0.000 0.942 0.933
1000 0.999 0.000 0.240 0.000 0.999 0.999
5000 1.000 0.000 0.790 0.000 1.000 1.000
10000 1.000 0.000 0.970 0.000 1.000 1.000

2.1, 2.2, 2.3 200 0.471 0.003 0.017 0.000 0.605 0.599
500 0.929 0.029 0.107 0.001 0.942 0.942
1000 0.999 0.051 0.240 0.002 0.999 0.999
5000 1.000 0.056 0.790 0.443 1.000 1.000
10000 1.000 0.051 0.970 0.863 1.000 1.000

2.1, 2.3 200 0.588 0.000 0.213 0.000 0.970 0.826
500 0.982 0.000 0.694 0.000 1.000 0.999
1000 1.000 0.000 0.939 0.000 1.000 1.000
5000 1.000 0.000 1.000 0.000 1.000 1.000
10000 1.000 0.000 1.000 0.000 1.000 1.000
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Table 5: Rejection Probabilities for Designs (4)-(5)

Design
4 5

Restrictions n P{rej. H1} P{rej. H1, H2} P{rej. H1} P{rej. H1, H2}
2.1 200 0.998 0.000 0.892 0.000

500 1.000 0.000 1.000 0.000
1000 1.000 0.000 1.000 0.000
5000 1.000 0.000 1.000 0.000
10000 1.000 0.000 1.000 0.000

2.1, 2.2 200 0.605 0.001 0.016 0.000
500 0.942 0.000 0.101 0.000
1000 0.999 0.000 0.233 0.000
5000 1.000 0.000 0.789 0.000
10000 1.000 0.000 0.970 0.000

2.1, 2.2, 2.3 200 0.605 0.149 0.016 0.002
500 0.942 0.628 0.101 0.030
1000 0.999 0.923 0.233 0.166
5000 1.000 1.000 0.789 0.789
10000 1.000 1.000 0.970 0.970

2.1, 2.3 200 0.804 0.005 0.548 0.001
500 0.998 0.043 0.967 0.025
1000 1.000 0.108 1.000 0.069
5000 1.000 0.570 1.000 0.458
10000 1.000 0.910 1.000 0.787
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Table 6: Rejection Probabilities for Designs (6)-(9)

Design
6 7 8 9

Restrictions n P{rej. H1} P{rej. H1} P{rej. H1} P{rej. H1}
2.1 200 0.999 0.636 0.733 0.000

500 1.000 0.959 0.989 0.000
1000 1.000 1.000 1.000 0.000
5000 1.000 1.000 1.000 0.000
10000 1.000 1.000 1.000 0.000

2.1, 2.2 200 0.000 0.000 0.000 0.000
500 0.000 0.000 0.000 0.000
1000 0.000 0.000 0.000 0.000
5000 0.000 0.000 0.000 0.000
10000 0.000 0.000 0.000 0.000

2.1, 2.2, 2.3 200 0.000 0.000 0.000 0.000
500 0.000 0.000 0.000 0.000
1000 0.000 0.000 0.000 0.000
5000 0.000 0.000 0.000 0.000
10000 0.000 0.000 0.000 0.000

2.1, 2.3 200 0.621 0.012 0.000 0.000
500 0.952 0.005 0.000 0.000
1000 1.000 0.004 0.000 0.000
5000 1.000 0.000 0.000 0.000
10000 1.000 0.000 0.000 0.000
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Table 7: Rejection Probabilities for Testing Only H2 and H3 Simultaneously for Designs (1)-(5)

Design
1 2 3 4 5

Restrictions n P{rej. H2} P{rej. H2} P{rej. H2} P{rej. H2} P{rej. H2}
2.1 200 0.000 0.000 0.531 0.000 0.000

500 0.000 0.000 0.953 0.000 0.000
1000 0.000 0.000 1.000 0.000 0.000
5000 0.000 0.000 1.000 0.000 0.000
10000 0.000 0.000 1.000 0.000 0.000

2.1, 2.2 200 0.000 0.000 0.783 0.001 0.001
500 0.000 0.000 0.991 0.000 0.000
1000 0.000 0.000 1.000 0.000 0.000
5000 0.000 0.000 1.000 0.000 0.000
10000 0.000 0.000 1.000 0.000 0.000

2.1, 2.2, 2.3 200 0.057 0.108 0.994 0.394 0.345
500 0.052 0.163 1.000 0.685 0.625
1000 0.051 0.250 1.000 0.924 0.879
5000 0.056 0.649 1.000 1.000 1.000
10000 0.051 0.892 1.000 1.000 1.000

2.1, 2.3 200 0.000 0.000 0.856 0.018 0.020
500 0.000 0.000 0.999 0.044 0.039
1000 0.000 0.000 1.000 0.108 0.069
5000 0.000 0.000 1.000 0.570 0.458
10000 0.000 0.000 1.000 0.910 0.787
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Table 8: Rejection Probabilities for Testing Only H2 and H3 Simultaneously for Designs (6)-(9)

Design
6 7 8 9

Restrictions n P{rej. H2} P{rej. H2} P{rej. H2} P{rej. H2}
2.1 200 0.000 0.000 0.000 0.056

500 0.000 0.000 0.000 0.128
1000 0.000 0.000 0.000 0.266
5000 0.000 0.000 0.000 0.946
10000 0.000 0.000 0.000 1.000

2.1, 2.2 200 0.000 0.000 0.000 0.000
500 0.000 0.000 0.000 0.000
1000 0.000 0.000 0.000 0.000
5000 0.000 0.000 0.000 0.000
10000 0.000 0.000 0.000 0.000

2.1, 2.2, 2.3 200 0.393 0.987 1.000 1.000
500 0.697 1.000 1.000 1.000
1000 0.929 1.000 1.000 1.000
5000 1.000 1.000 1.000 1.000
10000 1.000 1.000 1.000 1.000

2.1, 2.3 200 0.000 0.026 0.007 0.015
500 0.000 0.145 0.008 0.048
1000 0.000 0.423 0.007 0.122
5000 0.000 1.000 0.006 0.744
10000 0.000 1.000 0.004 0.976
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Table 9: Rejection Probabilities for Testing Hc
1 : P ∈ Pc1 for Designs (1)-(5)

Design
1 2 3 4 5

Restrictions n P{rej. Hc
1} P{rej. Hc

1} P{rej. Hc
1} P{rej. Hc

1} P{rej. Hc
1}

2.1 200 0.000 0.000 0.000 0.000 0.000
500 0.000 0.000 0.000 0.000 0.000
1000 0.000 0.000 0.000 0.000 0.000
5000 0.000 0.000 0.000 0.000 0.000
10000 0.000 0.000 0.000 0.000 0.000

2.1, 2.2 200 0.000 0.003 0.000 0.000 0.004
500 0.000 0.002 0.000 0.000 0.002
1000 0.000 0.001 0.000 0.000 0.000
5000 0.000 0.000 0.000 0.000 0.000
10000 0.000 0.000 0.000 0.000 0.000

2.1, 2.2, 2.3 200 0.000 0.003 0.000 0.000 0.004
500 0.000 0.002 0.000 0.000 0.002
1000 0.000 0.001 0.000 0.000 0.000
5000 0.000 0.000 0.000 0.000 0.000
10000 0.000 0.000 0.000 0.000 0.000

2.1, 2.3 200 0.000 0.000 0.000 0.000 0.000
500 0.000 0.000 0.000 0.000 0.000
1000 0.000 0.000 0.000 0.000 0.000
5000 0.000 0.000 0.000 0.000 0.000
10000 0.000 0.000 0.000 0.000 0.000
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Table 10: Rejection Probabilities for Testing Hc
1 : P ∈ Pc1 for Designs (6)-(9)

Design
6 7 8 9

Restrictions N P{rej. Hc
1} P{rej. Hc

1} P{rej. Hc
1} P{rej. Hc

1}
2.1 200 0.000 0.000 0.000 0.862

500 0.000 0.000 0.000 1.000
1000 0.000 0.000 0.000 1.000
5000 0.000 0.000 0.000 1.000
10000 0.000 0.000 0.000 1.000

2.1, 2.2 200 0.114 0.817 0.665 0.973
500 0.254 0.998 0.976 1.000
1000 0.485 1.000 1.000 1.000
5000 0.997 1.000 1.000 1.000
10000 1.000 1.000 1.000 1.000

2.1, 2.2, 2.3 200 0.114 0.817 0.665 0.973
500 0.254 0.998 0.976 1.000
1000 0.485 1.000 1.000 1.000
5000 0.997 1.000 1.000 1.000
10000 1.000 1.000 1.000 1.000

2.1, 2.3 200 0.000 0.020 0.150 0.967
500 0.000 0.041 0.473 1.000
1000 0.000 0.062 0.866 1.000
5000 0.000 0.254 1.000 1.000
10000 0.000 0.509 1.000 1.000
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