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Abstract

We review recent developments in the econometrics of shape restrictions
and their role in applied work. Our objectives are threefold. First, we aim
to emphasize the diversity of applications in which shape restrictions have
played a fruitful role. Second, we intend to provide practitioners with an
intuitive understanding of how shape restrictions impact the distribution of
estimators and test statistics. Third, we aim to provide an overview of new
advances in the theory of estimation and inference under shape restrictions.
Throughout the review, we outline open questions and interesting directions
for future research.
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1. INTRODUCTION

Shape restrictions have a long history in economics, with their crucial role being recognized as
early as Slutsky (1915). Over a century later, we find their prominence increasing as breakthroughs
across different literatures have widened their empirical applicability. In theoretical work, for
instance, shape restrictions have continued to arise both as testable implications of models and
as ways to obtain sharp counterfactual predictions. Meanwhile, econometric research has made
important advances in developing suitable asymptotic approximations while continuing to find
novel applications of shape restrictions for establishing point (or partial) identification. Finally,
these developments in econometrics have been complemented by a growing literature in statistics
focusing on shape-restricted estimation and inference.

In this article, we aim to provide an introduction to the complementary literatures in which
shape restrictions have played a role. We take as our starting point an excellent earlier review by
Matzkin (1994) and focus primarily on the progress made in the past 20 years. The breadth, scope,
and sometimes technically challenging nature of the existing contributions make a detailed and
comprehensive review impractical. As a result, we opt to instead structure our discussion around
often simplified examples that nonetheless effectively illustrate important insights. We hope in
this manner to provide the reader with not only an overview of recent advances, but also a helpful
entry point into the different strands of the literature.

We begin, in Section 2, by discussing examples of the different roles that shape restrictions
have played in empirical and theoretical work. Our selection of examples is necessarily nonex-
haustive and intended primarily to illustrate the diversity of applications of shape restrictions. In
identification analysis, for example, shape restrictions have often been imposed to achieve point
identification or narrow the identified set of a partially identified parameter. Testing for the va-
lidity of shape restrictions is also often of interest, as their violation may provide evidence against
particular economic theories, while their presence can have strong economic implications. Finally,
shape restrictions that are deemed to hold can sometimes be employed to obtain more powerful
tests and more accurate estimators—insights that have been applied to areas as diverse as state
price density estimation and inference in regression discontinuity analysis.

In Section 3, we aim to provide insight into the methodological challenges that arise in esti-
mation and inference under shape restrictions. Heuristically, the impact of shape restrictions on
the finite-sample distribution of statistics depends on two main factors: (a) the degree of sampling
uncertainty and (b) the region of the parameter space in which the underlying parameter lies. For
instance, when imposing a shape restriction such as monotonicity on an identified function θ0, the
finite-sample distribution of a constrained estimator depends on both the steepness of θ0 and the
statistical precision with which θ0 can be estimated. Thus, shape restrictions can prove particularly
helpful in applications in which the shape restrictions are close to binding or the model is hard to
estimate—e.g., when the sample size is small, an unconstrained estimator for θ0 has a slow rate of
convergence, or the model is high dimensional. We emphasize, however, that it is precisely when
shape restrictions are most informative that conventional asymptotic analysis may be unreliable.
We illustrate these insights from the literature with a numerical example of the impact of im-
posing the law of demand in estimation. Fortunately, the econometrics literature has developed
asymptotic approximations addressing this concern.

Finally, Sections 4 and 5 summarize recent developments in the theories of estimation and
inference under shape restrictions, respectively. With regard to estimation, we discuss alternative
methodologies for imposing shape restrictions and understanding the finite-sample properties of
the resulting estimators. With regard to inference, we review different strategies for testing for
shape restrictions and employing them to obtain sharper inference on an underlying parameter.
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Throughout Sections 4 and 5, we again employ specific examples to guide our discussion. Our
intent in this regard is to introduce the general insights of the broader literature by illustrating
them through concrete statistical procedures. We thus hope that the reader does not attribute
undue prominence to the selected examples, but instead finds the discussion of them to be a
helpful starting point toward a more in-depth exploration of the literature.

2. THE ROLES OF SHAPE RESTRICTIONS

Shape restrictions can play a variety of roles in identification, estimation, and inference. In this
section, we illustrate these uses by discussing different applications from the literature. Our exam-
ples are necessarily nonexhaustive and purposely selected with the aim of illustrating the diversity
of applications of shape restrictions.

2.1. Establishing Point Identification

Imposing shape restrictions can be a powerful device for establishing identification of a parameter
of interest. An influential example of this approach is developed by Imbens & Angrist (1994), who
employ monotonicity to identify a local average treatment effect.

Consider a setting in which there are two potential outcomes (Y 0, Y1), a binary instrument
Z ∈ {0, 1}, and two potential treatment decisions (D0, D1). The observable variables are Z, the
treatment decision D, and the outcome Y , which equal

D ≡ (1 − Z)D0 + ZD1, Y ≡ (1 − D)Y0 + DY1. 1.

Assuming that (Y0, Y1, D0, D1) are independent of Z, it then follows from Equation 1 that

E[Y |Z = 1] − E[Y |Z = 0] = E[Y1 − Y0|D1 − D0 = 1]P (D1 − D0 = 1) 2.

− E[Y1 − Y0|D0 − D1 = 1]P (D0 − D1 = 1). 3.

Heuristically, the above decomposition consists of the average treatment effect for individuals
induced into treatment by a change of Z from zero to one (i.e., Equation 2) and the average
treatment effect for individuals induced out of treatment by the same change in Z (i.e., Equation 3).
The conflation of these average treatment effects presents a fundamental impediment to identifying
the causal effect of treatment.

To resolve this challenge, Imbens & Angrist (1994) stipulate that the treatment be monotone
in z—i.e., either D1 ≥ D0 almost surely or D0 ≥ D1 almost surely. Under this condition, assuming
D1 ≥ D0, the term in Equation 3 equals zero and we obtain

E[Y |Z = 1] − E[Y |Z = 0]
P (D = 1|Z = 1) − P (D = 1|Z = 0)

= E[Y1 − Y0|D1 − D0 = 1]. 4.

Thus, monotonicity enables us to identify the average treatment effect for individuals switched
into treatment by the instrument.

Interestingly, the monotonicity restriction is equivalent to the existence of a latent index struc-
ture (Vytlacil 2002), which may also be viewed as a shape restriction. Heckman & Vytlacil (2005)
and the references they cite provide further discussion of this. In particular, they employ this
latent index structure to study the identification of what they refer to as policy-relevant treat-
ment effects. Heckman & Pinto (2017) develop a more general notion of monotonicity, termed
unordered monotonicity, that is motivated by choice-theoretic restrictions and applies to set-
tings in which there is more than one treatment (see also Lee & Salanié 2017 for related results
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concerning multiple treatments). Finally, we note that there is an extensive literature studying
partial identification of treatment effects under shape restrictions, which we discuss in Section 2.2.

We conclude by noting that shape restrictions motivated by economic theory have been ex-
tensively used for identification by Matzkin (1991, 1992). More recently, Allen & Rehbeck (2016)
employ a version of Slutsky symmetry to establish identification in a class of consumer choice
models. In single equation models in which unobserved heterogeneity enters in a nonadditively
separable manner, monotonicity is often employed to establish identification under both exo-
geneity (Matzkin 2003) and endogeneity (Chernozhukov & Hansen 2005). Similar arguments
have also been successfully applied in nonseparable triangular models by Chesher (2003), Imbens
& Newey (2009), Torgovitsky (2015), and D’Haultfœuille & Février (2015). Shi & Shum (2016)
employ a generalization of monotonicity, termed cyclic monotonicity, to establish identification
in multinomial choice models with fixed effects (see also Pakes & Porter 2013).

2.2. Improving Partial Identification

In certain applications, shape restrictions may fail to deliver point identification but nonetheless
provide informative bounds on the parameter of interest (Manski 1997). A particularly successful
empirical application of this approach is developed by Blundell et al. (2007b), who examine the
evolution of wage inequality in the United Kingdom.

Concretely, letting W denote log-wages, D ∈ {0, 1} denote a dummy variable indicating em-
ployment, and X denote a set of demographic characteristics, Blundell et al. (2007b) study how
the interquartile range (IQR) of W conditional on X has evolved through time. The main chal-
lenge in their analysis is that the IQR is not (point) identified in the presence of selection into
employment. The lack of identification follows from

P (W ≤ c |X ) = P (W ≤ c|X , D = 0)P (D = 0|X ) + P (W ≤ c|X , D = 1)P (D = 1|X ), 5.

which emphasizes the dependence of the conditional distribution of W given X on the unidentified
distribution of wages of the unemployed. One can further use Equation 5 to bound the conditional
distribution of wages, and in turn the IQR, by noting that the unidentified distribution of wages
of the unemployed must be bounded between zero and one. These so-called worst-case bounds
were first studied by Manski (1989).

Blundell et al. (2007b) supplement the worst-case analysis by imposing additional shape re-
strictions that help narrow the bounds for the IQR. For example, in the presence of positive
selection into employment, the distribution of W for workers first-order stochastically dominates
the distribution of W for nonworkers—i.e., for all c ∈ R,

P (W ≤ c |X , D = 1) ≤ P (W ≤ c |X , D = 0). 6.

The restriction in Equation 6 can be combined with Equation 5 to improve on the worst-case
bounds for the IQR. Alternatively, for Z equal to the unemployment benefits an individual is
eligible for when unemployed, Blundell et al. (2007b) also examine the implications of imposing

P (W ≤ c|X , Z′) ≤ P (W ≤ c|X , Z) 7.

whenever Z′ ≥ Z (see also Manski & Pepper 2000 for related restrictions). The constraints in
both Equation 6 and Equation 7 prove to be informative, yielding empirically tighter bounds for
the change in the IQR of log-wages of men between 1978 and 1998.

In related work, Kreider et al. (2012) apply shape restrictions to study the efficacy of the food
stamps program. Bhattacharya et al. (2008) and Machado et al. (2013) find monotonicity restric-
tions that can be informative even if one is unwilling to assume the direction of the dependence
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in Z (i.e., nondecreasing or nonincreasing). Lee (2009) bounds the average treatment effect of job
training programs in the United States by exploiting the monotonicity restriction of Imbens &
Angrist (1994). Finally, Kline & Tartari (2016) and Lee & Bhattacharya (2016) employ revealed
preference and Slutsky-type restrictions, respectively, to sharpen their bounds.

2.3. Testing Model Implications

Economic theory sometimes yields testable implications that can be characterized through shape
restrictions. An interesting example of this phenomenon arises in auction theory.

Consider a first price sealed bid auction with I bidders having independent and identically
distributed valuations. The Bayesian Nash equilibrium in this auction is unique and symmetric, so
that the resulting bids are independent and identically distributed as well. Since bids are observed
and valuations are not, an interesting question is whether there exists a distribution of valuations
such that the distribution of bids is compatible with bidders playing a Bayesian Nash equilibrium.
Guerre et al. (2000) find that, for the distribution of bids to be compatible with a Bayesian Nash
equilibrium, the function

ξ (b) ≡ b + G(b)
(I − 1)G′(b)

8.

must be strictly increasing in b , where G denotes the cumulative distribution function of the
distribution of bids. Thus, monotonicity arises as a key testable implication of the model. An
analogous result for affiliated private values has been established by Li et al. (2002) and Athey
& Haile (2007). Lee et al. (2018) develop a general procedure that may be applied to test these
monotonicity restrictions, while Jun et al. (2010) construct a nonparametric test of affiliation in
auction models.

Additional examples of shape restrictions as testable implications are present in consumer
theory (Samuelson 1938). In this vein, McFadden & Richter (1990) characterize the empirical
content of random utility models (see also Kitamura & Stoye 2013 for a formal test). More
recently, Bhattacharya (2017) characterizes the empirical content of discrete choice models as
shape restrictions on the conditional choice probabilities. We also note that the instrumental
variables model examined in Section 2.1 generates restrictions on the distribution of the observed
data (see, e.g., Balke & Pearl 1997, Heckman & Vytlacil 2001, Imbens & Rubin 1997, Kitagawa
2015, Machado et al. 2013). Ellison & Ellison (2011) find that a test for monotonicity can be
employed to detect strategic investments by firms that aim to deter entrance into their markets.

2.4. Delivering Economic Implications

In certain applications, whether shape restrictions are satisfied has strong economic implications.
A central example is whether goods are, loosely speaking, complements or substitutes—concepts
that can often be formalized through the shape restrictions of supermodularity and submodularity
(Milgrom & Roberts 1995).

Supermodularity has particularly strong implications in matching markets. Following Shimer
& Smith (2000), consider a two-sided market where workers are matched with firms. Unmatched
workers of type X ∈ [0, 1] engage in a random search and, upon meeting a firm of type Y ∈ [0, 1],
can generate output V, given by

V = F (X , Y ),

where the production function F is assumed to be strictly increasing in X and Y . In this model,
Shimer & Smith (2000) establish that supermodularity of F (and some of its derivatives) implies

www.annualreviews.org • Shape Restrictions 35

A
nn

u.
 R

ev
. E

co
n.

 2
01

8.
10

:3
1-

63
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

73
.7

5.
44

.2
32

 o
n 

08
/0

7/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.
 



EC10CH02_Santos ARI 27 June 2018 8:40

positive assortative matching (PAM) in equilibrium, i.e., higher-type workers are employed by
higher-type firms. Thus, higher-type workers receive higher salaries both due to their type and
by virtue of being matched to higher-type firms. As a result, supermodularity of F can translate
into higher dispersion in wages.

The implications of PAM for the wage distribution and the increasing availability of employer–
employee matched data sets have motivated an important empirical literature (see Card et al. 2016
for a recent review). For example, following Abowd et al. (1999), several studies have estimated
worker-specific and firm-specific fixed effects and found little correlation between them. However,
as noted by Eeckhout & Kircher (2011), these fixed effects need not be connected to the underlying
firm and worker types. Hagedorn et al. (2017) propose an estimator of F , but its asymptotic
properties are unknown. To our knowledge, no test of PAM or supermodularity of F is available.

In related work, Athey & Stern (1998) employ supermodularity to define whether different
firm organizational practices are complements or substitutes. Kretschmer et al. (2012) apply their
approach to determine whether the adoption of a new software application is complementary to the
scale of production. A novel model for studying whether goods are complements is introduced by
Gentzkow (2007), who examines whether print and online media act as complements or substitutes.
The nonparametric identification of such a model is established by Fox & Lazzati (2013) (see
Chernozhukov et al. 2015 for a test of complementarity).

2.5. Informing Estimation

When shape restrictions implied by economic theory are deemed to hold, they can be employed
in applications to improve estimation of a parameter of interest. This approach has been pursued,
for example, by Aı̈t-Sahalia & Duarte (2003) in the nonparametric estimation of the state price
density (SPD) function.

Consider a call option on an asset with strike price X expiring at time T . For St , the price of the
underlying asset at time t; r , the deterministic risk free rate; and p∗, the SPD, the price C(St , X , r)
of the call option at time t is given by

C(St , X , r) = e−(T−t) r
∫ ∞

0
max{ST − X , 0}p∗(ST )dST . 9.

In this case, we have, for simplicity, omitted the dependence on the dividend yields of the asset
and other state variables. Differentiating Equation 9 with respect to X implies that

−e(T−t) r ≤ ∂

∂X
C(St , X , r) ≤ 0 ≤ ∂2

∂X 2
C(St , X , r) = p∗(X )e(T−t) r . 10.

Exploiting Equation 10, Aı̈t-Sahalia & Lo (1998) construct an unconstrained nonparametric esti-
mator of the SPD by estimating the second derivative of the pricing function C with respect to the
strike price X . The derivation in Equation 10, however, further implies that the call option pric-
ing function must be nonincreasing and convex in the strike price. Building on this observation,
Aı̈t-Sahalia & Duarte (2003) build a nonparametric estimator of C that satisfies the constraints
in Equation 10, which they in turn differentiate to estimate the SPD. In estimating the S&P 500
Index SPD, they find that the constrained nonparametric estimator outperforms the constrained
estimator.

A related literature has noted that, in disagreement with theoretical expectations, estimates
of the pricing kernel are often nonmonotonic (Rosenberg & Engle 2002). As a result, a series of
studies has tested whether the violations from monotonicity are statistically significant (see, e.g.,
Beare & Schmidt 2016). Beare & Dossani (2018) impose monotonicity of the pricing kernel to
inform forecasts. Within economics, monotonicity constraints have been imposed by Henderson
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et al. (2012) in the empirical study of auctions. Restrictions from consumer theory, such as Slutsky
inequalities, are imposed in estimation under exogeneity of prices by Blundell et al. (2012) and
under endogeneity by Blundell et al. (2013).

2.6. Informing Inference

Finally, shape restrictions may help conduct inference on parameters of interest. In this section,
we present an example of this way of using shape restrictions from Armstrong (2015).

Consider a sharp regression discontinuity (RD) model in which, for an outcome Y ∈ R,

Y = θ0(R) + ε, E[ε|R] = 0,

where R ∈ R, and an individual is assigned to treatment whenever R > 0. In certain applications,
a researcher may be confident in maintaining that θ0 is nondecreasing near (but not necessarily
at) the discontinuity point zero. Armstrong (2015) demonstrates that such knowledge can be
exploited in the construction of one-sided confidence intervals for the average treatment effect
at zero, which equals limr↓0 θ0(r) − limr↑0 θ0(r) (see Hahn et al. 2001 for explanations in terms of
the potential outcome framework). In particular, given a sample {Yi , Ri }n

i=1, one can define the
one-sided k-nearest-neighbor estimators as

θ̂+,k(0) ≡ 1
k

∑
i∈A+(k)

Yi , θ̂−,k(0) ≡ 1
k

∑
i∈A−(k)

Yi ,

where A+(k) ≡ {i :
∑n

j=1 1{0 < Rj ≤ Ri } ≤ k} and A−(k) ≡ {i :
∑n

j=1 1{Rj ≤ Ri ≤ 0} ≤ k}. The
monotonicity of θ0 ensures directional control of the bias, which greatly facilitates the choice of
k in an optimal (minimax) way (see Section 5.2 for detailed related arguments). Concretely, let
�θ̂k(0) ≡ θ̂+,k(0) − θ̂−,k(0), let cα be the α quantile of

min
kmin≤k≤kmax

√
k{�θ̂k(0) − E[�θ̂k(0)|{Ri }n

i=1]}

conditional on {Ri }n
i=1, and let kmin ≤ kmax be given. The one-sided confidence interval(

−∞, min
kmin≤k≤kmax

{
�θ̂k(0) − cα√

k

}]
11.

then possesses asymptotic coverage probability 1 − α despite k being chosen in Equation 11 to
make the interval as short as possible. Whenever the distribution of ε is known, as in the work of
Armstrong (2015), the resulting procedure is tuning parameter free in that we may set kmin = 1
and kmax = n. In contrast, if the distribution of ε is unknown, then kmin and kmax may be set to
equal kmin = √

n and kmax = n/ log(n), and cα can be estimated using bootstrap methods such as
those of Chetverikov (2012).

The work of Armstrong (2015) is one of numerous recent advances in the theoretical liter-
ature studying inference under shape restrictions. Other recent contributions include those of
Freyberger & Horowitz (2015), Chernozhukov et al. (2015), Freyberger & Reeves (2017),
Horowitz & Lee (2017), and Mogstad et al. (2017) from econometrics and Dümbgen (2003)
and Cai et al. (2013) from statistics. We review this literature in Section 5.

3. INTUITION FOR ASYMPTOTICS

A common feature of the examples in Section 2 is that shape restrictions can affect the distribution
of statistics in nonstandard ways (Andrews 1999, 2001). Before discussing estimation and inference,
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we therefore first develop insight into the methodological complications that arise from imposing
shape restrictions. Specifically, we focus on situations when we might expect shape restrictions to
matter and on the appropriateness of different asymptotic frameworks.

3.1. Basic Model

We base our exposition on a simple example inspired by Dupas (2014), who conducts a random-
ized pricing experiment of malaria nets. Consider a sample of n individuals, each of whom is
independently assigned a price Xi ∈ {L, M, H} with probabilities

P (Xi = L) = P (Xi = M) = P (Xi = H ) = 1
3
.

Upon observing the price, individual i decides whether to purchase the net, and we let Yi be a
binary variable indicating purchase. The parameters of interest are

�j ≡ P (Yi = 1|Xi = j )

for j ∈ {L, M, H}. We study, for different values of h ≥ 0, the specification

�L = �M + h, �M = 1
2

, �H = �M − h. 12.

We consider two different estimators for � ≡ (�L,�M ,�H ). First, we examine a constrained
estimator that imposes the law of demand �L ≥ �M ≥ �H :

(�̂C
L , �̂C

M , �̂C
H ) ≡ arg min

δL≥δM≥δH

1
n

n∑
i=1

⎛
⎝Yi −

∑
j∈{L,M,H}

δj1{Xi = j }
⎞
⎠

2

. 13.

Second, we examine an unconstrained estimator �̂U ≡ (�̂U
L , �̂U

M , �̂U
H ) that minimizes the same

criterion as that in Equation 13 but without imposing the constraint δL ≥ δM ≥ δH .

3.2. Pointwise Asymptotics

Early research on shape restrictions made the observation that, if the restrictions hold strictly,
then the unconstrained estimator will asymptotically satisfy the constraints. To illustrate this
logic, suppose h > 0 in Equation 12 so that the law of demand inequalities holds strictly. Due to
the consistency of the unconstrained estimators, it then follows that

lim
n→∞

Ph(�̂U
L − �̂U

M > 0 and �̂U
M − �̂U

H > 0) = 1, 14.

where we write Ph in place of P to emphasize that the probability depends on h. However, if
the unconstrained estimator satisfies the law of demand, then it must also solve the constrained
optimization problem in Equation 13. In other words, Equation 14 implies that the constrained
and unconstrained estimators equal each other with probability tending to one.

The preceding arguments rely on pointwise asymptotics—the name reflecting the fact that h
is held fixed as n diverges to infinity. Somewhat negatively, these arguments seem to imply that
imposing shape restrictions has no effect. Yet such a theoretical conclusion clashes with empirical
studies that have found imposing shape restrictions to be informative in a variety of contexts
(Aı̈t-Sahalia & Duarte 2003, Blundell et al. 2012). This apparent tension may be reconciled by
noting that, for a given sample size n, the probability on the left-hand side of Equation 14 may
be far from one. Whenever this is the case, pointwise asymptotics do not reflect the finite-sample
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situation, and as we see in simulations below, approximations based on these asymptotics can be
very misleading.

In the next section, we describe an alternative asymptotic framework that better reflects a finite-
sample setting in which shape restrictions are informative. Before proceeding, however, we note
that, in some cases, nonasymptotic (i.e., finite-sample) bounds on the error of estimators subject
to shape restrictions are also available (see Section 4.2.2 for a discussion of some such results; see
also Chetverikov & Wilhelm 2017).

3.3. Local Asymptotics

A local asymptotic analysis is one way to improve on a pointwise asymptotic approximation. A
prominent example of such an approach is that developed by Staiger & Stock (1997), who use
weak-instrument asymptotics to model a finite-sample situation in which the first stage F statistic
is small. For our purposes, we desire a local asymptotic analysis that reflects a finite-sample setting
in which imposing shape restrictions proves informative.

The first step in such an analysis is to develop an understanding of when we might expect shape
restrictions to be informative. To this end, we return to our example and note that the estimators√

n{�̂U
L − �̂U

M} and
√

n{�̂U
M − �̂U

H} are approximately normal with

(�̂U
L − �̂U

M ) ≈ N
(

h,
σh√

n

)
, (�̂U

M − �̂U
H ) ≈ N

(
h,
σh√

n

)
, 15.

where, in our design, the standard deviation is the same for both constraints. When h is large
relative to σh/

√
n, the demand function is sufficiently elastic that the unconstrained estimator

satisfies the law of demand with high probability. In contrast, when h is of the same order as
σh/

√
n (or smaller), the amount of sampling uncertainty is such that a priori knowledge of the law

of demand is informative. Therefore, whether imposing the law of demand affects estimation and
inference depends on the ratio of the elasticity of demand (as measured by h) to the amount of
sampling uncertainty (as measured by σh/

√
n).

Pointwise asymptotics (i.e., Equation 14) that rely on h being fixed as n diverges to infinity
require that σh/

√
n be small relative to h. In this way, they mechanically model a finite-sample

setting in which shape restrictions have no effect. To move away from this paradigm, we must
consider an asymptotic framework in which h and σh/

√
n remain of the same order regardless of

the sample size. As a consequence of Equation 15, such a framework ensures that the unconstrained
estimators violate the law of demand with positive probability even as n diverges to infinity—i.e.,
shape restrictions remain informative asymptotically. The resulting analysis is termed local in
that h is thus modeled as tending to zero with the sample size and is thus local to zero. We stress,
however, that it is incorrect to think of a local analysis as merely modeling inelastic demand curves.
Rather, local asymptotics are simply a device for approximating finite-sample settings in which
the amount of sampling uncertainty renders imposing the law of demand informative.

Figure 1 depicts scatter plots of the constrained versus unconstrained estimators of �M for
different values of

√
nh/σh . As expected from the preceding discussion, we see that the differ-

ences between the constrained and unconstrained estimator decrease as
√

nh/σh increases. While
Figure 1 is based on simulations with n equal to a thousand, the results are qualitatively similar for
different values of n. Figure 1 hides, however, that the value of

√
nh/σh affects the distribution of

the constrained estimator but not the distribution of the unconstrained estimator. This contrast is
illustrated in Table 1, which summarizes the mean squared error (MSE) for the constrained and
unconstrained estimators for �M (scaled by n). In accord with our discussion, we find that, when
sampling uncertainty (as measured σh/

√
n) is large relative to h, imposing the law of demand
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Figure 1
Estimators of �M and the local parameter.

proves informative, and the constrained estimator outperforms its unconstrained counterpart.
In contrast, as

√
nh/σh increases, we find that the improvements in estimation obtained by the

constrained estimator diminish.
We conclude this section with a few important takeaways. First, the finite-sample distribution

of statistics can be significantly impacted by the presence of shape restrictions. As a result, it
is imperative to employ asymptotic frameworks that reflect this phenomenon, such as the local
approximations discussed above. Second, the higher the degree of sampling uncertainty, the more
informative shape restrictions may be. This importance of sampling uncertainty is dramatically
exemplified by Chetverikov & Wilhelm (2017), who study the impact of imposing monotonicity
in nonparametric instrumental variable regression—a setting in which the rate of convergence
can be as slow as logarithmic in n (Blundell et al. 2007a, Hall & Horowitz 2005).

Remark 1. Local asymptotic analysis arises naturally in establishing the uniform asymp-
totic validity of statistical procedures, such as tests and confidence regions. This more
demanding notion of validity often leads to procedures that have desirable properties in
finite samples (see, e.g., the discussion in Andrews et al. 2011, Romano & Shaikh 2012).
Its importance in the analysis of nonstandard problems has been recently recognized
in a variety of applications (see, e.g., Andrews & Cheng 2012, Leeb & Pötscher 2005,
Mikusheva 2007). In the case of shape restrictions, such a notion of validity would, in
particular, ensure that a test has approximately the right size or that a confidence re-
gion has approximately the right coverage probability in large samples regardless of the
informativeness of the shape restrictions.

Table 1 Scaled mean squared error
√

nh/σh

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Constrained estimator 0.32 0.39 0.45 0.52 0.59 0.64 0.69 0.72 0.74

Unconstrained estimator 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77
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Remark 2. Multiple shape restrictions, such as concavity, monotonicity, and super-
modularity, may be intuitively thought of as inequality restrictions. In contrast, other
shape restrictions, such as symmetry (Haag et al. 2009, Lewbel 1995), homogeneity
(Keuzenkamp & Barten 1995, Tripathi & Kim 2003), or certain semi- or nonparametric
specifications (Blundell et al. 2007a), can be thought of as equality restrictions. It is worth
noting that pointwise asymptotic approximations are often more reliable under equality
restrictions than under inequality restrictions.

4. ESTIMATION

In this section, we discuss methods for estimating parameters that satisfy a conjectured shape
restriction. We organize our discussion around two approaches: (a) estimators that are built by
imposing a shape restriction on an originally unconstrained estimator and (b) estimators that are
obtained as constrained optimizers to a criterion function.

4.1. Building on Unconstrained Estimators

In many applications, an unconstrained estimator for a parameter of interest is readily available.
Such an estimator may then be transformed to satisfy a desired shape restriction in a variety of
ways. Because unconstrained estimators are often easy to compute and analyze, these two-step
approaches can be computationally and theoretically straightforward.

In this section, we denote the parameter of interest by θ0 and presume that we have an estimator
θ̂n available for it. It is important to be explicit about the space in which θ0 and θ̂n reside, and we
therefore let θ0, θ̂n ∈ D, where D is a complete vector space with norm ‖ · ‖D—i.e., D is a
Banach space. Our objective is to understand the properties of an estimator θ̂2sn that is obtained
by imposing the relevant shape restriction on θ̂n. Formally, θ̂2sn and θ̂n are therefore related by
a known transformation φ : D → D that maps the unconstrained estimator into a constrained
version of it—i.e., θ̂2sn = φ(θ̂n).

To fix ideas, we introduce three examples of transformations φ.

Example 1. When estimating quantile functions, we face the possibility that our esti-
mators are not monotonic in the quantile. This quantile crossing can manifest itself, for
example, when employing quantile regression or quantile instrumental variable methods
(Abadie et al. 2002, Chernozhukov & Hansen 2005). Suppose we observe {Yi , Xi , Di }n

i=1

with Yi , Di ∈ R, Xi ∈ Rdx , and we estimate

[β̂n(τ ), θ̂n(τ )] ≡ arg min
(β,θ )

1
n

n∑
i=1

ρτ (Yi − X ′
iβ − Diθ ), 16.

where ρτ (u) is the check function ρτ (u) ≡ u(τ − 1{u < 0}). We are interested in the
quantile regression function τ �→ θ̂n(τ ), which should be monotonic in τ . The estima-
tion procedure in Equation 16, however, does not guarantee that θ̂n will be monotone.
Chernozhukov et al. (2010) therefore suggest instead employing an estimator θ̂2sn ≡
φ(θ̂n), where

φ(θ )(τ ) ≡ inf
{

c :
∫ 1

0
1{θ (ũ) ≤ c }dũ ≥ τ

}
. 17.

The resulting estimator θ̂2sn is called the monotone rearrangement of θ̂n. Intuitively,
θ̂2sn (τ ) is simply the τ th quantile of {θ̂n(u) : u ∈ [0, 1]}, and therefore θ̂2sn is monotonic.
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Example 2. Building on Example 1, an alternative to employing the monotone re-
arrangement of θ̂n is to instead let θ̂2sn be the closest monotone function to θ̂n, e.g.,

θ̂2sn ≡ arg min
f :[0,1]→R

∫ 1

0
[θ̂n(u) − f (u)]2du s.t. f nondecreasing. 18.

In practice, Equation 18 may be solved over a grid of [0, 1]. Importantly, this approach
can be easily generalized to shape restrictions beyond monotonicity. To this end, recall
that θ̂n is in a space D with norm ‖ · ‖D and note that we may think of the set of
parameters satisfying a shape restriction as a subset C ⊂ D; for example, in Equation 18,
‖θ‖2

D = ∫
θ (u)2du and C is the set of nondecreasing functions. We may then let θ̂2sn be

the closest parameter to θ̂n satisfying the desired shape restriction by defining φ : D → D
to equal

φ(θ ) ≡ arg min
f ∈C

‖ f − θ‖D 19.

and setting θ̂2sn = φ(θ̂n). Applying this approach, Fang & Santos (2014) compare an
unconstrained trend in the dispersion of residual wage inequality to the closest concave
trend to examine whether skill-biased technical change has decelerated.

Example 3. An alternative approach to Equation 19 for imposing concavity is to employ
the least concave majorant (LCM) of a function. Specifically, for a bounded function θ
defined on, e.g., [0, 1], the LCM of θ is the function φ(θ ) defined pointwise as

φ(θ )(u) ≡ inf{g(u) : g is concave and g(u) ≥ θ (u) for all u ∈ [0, 1]}. 20.

Intuitively, the LCM of θ is the smallest concave function that is larger than θ . Thus,
letting θ̂2sn ≡ φ(θ̂n), we obtain a concave function θ̂2sn as a transformation of θ̂n. The LCM
has been widely studied in statistics (see Robertson et al. 1988). Within econometrics,
the LCM has been employed by Delgado & Escanciano (2012) in testing stochastic
monotonicity, Beare & Schmidt (2016) in examining the monotonicity of the pricing
kernel, and Luo & Wan (2018) in studying auctions.

4.1.1. Local analysis via the delta method. As emphasized in Section 3, it is important to employ
asymptotic approximations that accurately reflect the impact of shape restrictions on the finite-
sample distribution of statistics. Two features of the present context make developing a local
approximation particularly tractable. First, θ̂2sn is a deterministic transformation of an original
estimator θ̂n. Second, θ̂n is unconstrained, and thus its asymptotic distribution is often readily
available. These two aspects of the problem make it amenable to the delta method.

In this section, we keep the exposition informal for conciseness but refer the reader to the
cited material for additional details. Since we are interested in a local approximation, we let the
distribution of the data depend on the sample size n and denote it by Pn. The parameter of interest
therefore also depends on n, and we denote it by θ0,n. For instance, in Example 1, θ0,n corresponds
to the quantile coefficient function when the data are distributed according to Pn. It is, in addition,
convenient to impose

θ0,n = θ0 + λ√
n

, 21.

where θ0 may be understood as the limiting value of θ0,n along Pn, and λ ∈ D is often referred to

as the local parameter. Letting
Ln→ denote convergence in distribution along Pn, we assume that
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θ̂n satisfies
√

n{θ̂n − θ0,n} Ln→ G0, 22.

where the limit G0 does not depend on λ. Intuitively, Equation 22 demands that θ̂n be robust to
local perturbations of the underlying distribution—notice, e.g., that, in Table 1, the MSE of the
unconstrained estimator does not depend on

√
nh/σh .

To complete our setup, we presume that φ : D → D maps any function satisfying the desired
shape restriction into itself. Since θ̂2sn ≡ φ(θ̂n), we may then write

√
n{θ̂2sn − θ0,n} = √

n{φ(θ̂n) − φ(θ0,n)}, 23.

where we exploit φ(θ0,n) = θ0,n due to θ0,n satisfying the shape restriction. The equality in
Equation 23, together with Equation 22, reveals the potential applicability of the delta method.
However, one last obstacle remains: In our problems, the map φ often fails to be (fully) differ-
entiable. Fortunately, a remarkable extension of the delta method developed by Shapiro (1991)
and Dümbgen (1993) continues to apply provided φ is directionally differentiable instead. The
relevant concepts of full and directional differentiability are as follows.

Definition 1. Let D, E be Banach spaces with norms ‖ · ‖D, ‖ · ‖E, and φ : D → E.

1. φ is Hadamard differentiable at θ if there is a continuous linear map φ′
θ : D → E

such that, for all sequences {hn} ⊂ E and {tn} ⊂ R with hn → h and tn → 0,

lim
n→∞

∥∥∥∥φ(θ + tnhn) − φ(θ )
tn

− φ′
θ (h)

∥∥∥∥
E

= 0. 24.

2. φ is Hadamard directionally differentiable at θ if there is a continuous map φ′
θ :

D → E such that, for all sequences {hn} ⊂ D and {tn} ⊂ R+ with hn → h and
tn ↓ 0,

lim
n→∞

∥∥∥∥φ(θ + tnhn) − φ(θ )
tn

− φ′
θ (h)

∥∥∥∥
E

= 0. 25.

A map φ is (fully) Hadamard differentiable at θ if it can be locally approximated by a linear map
φ′
θ . In turn, φ is Hadamard directionally differentiable at θ if a similar approximation requirement

holds for a map φ′
θ that may no longer be linear. As an illustrative example, suppose D = E = R

and φ(θ ) = max{θ , 0}. It is then straightforward to verify that, if we have θ > 0, then φ is Hadamard
differentiable and we haveφ′

θ (h) = h for all h ∈ R. In contrast, if we have θ = 0, thenφ is Hadamard
directionally differentiable with φ′

θ (h) = max{h, 0} for all h ∈ R. We further note that, in some
applications, a more general concept called tangential Hadamard (directional) differentiability is
required.

Shapiro (1991) and Dümbgen (1993) originally noted that the delta method continues to apply
when φ is Hadamard directionally (but not fully) differentiable. In particular, the local analysis in
Dümbgen (1993), together with Equations 21–23, establishes that

√
n{θ̂2sn − θ0,n} Ln→ φ′

θ0
(G0 + λ) − φ′

θ0
(λ). 26.

Crucially, if φ is (fully) Hadamard differentiable, then φ′
θ0

is linear, and Equation 26 implies that
the asymptotic distribution of θ̂2sn does not depend on λ. In applications involving shape restric-
tions, however, φ′

θ0
is often nonlinear, reflecting that φ is Hadamard directionally (but not fully)

differentiable. In such instances, the limiting distribution in Equation 26 depends on λ, entailing
an impact of shape restrictions on the finite-sample distribution (see, e.g., the MSE of the con-
strained estimator in Table 1). This dependence on the local parameter λ implies that, whenever
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G0 is Gaussian, a naive plug-in bootstrap is inconsistent (Fang & Santos 2014). Nonetheless, the
result in Equation 26 can be employed to study the validity of alternative resampling schemes
such as the rescaled bootstrap (Dümbgen 1993), m out of n bootstrap (Shao 1994), or subsampling
(Politis et al. 1999) (see, e.g., Hong & Li 2014). Finally, we note that Equation 26 can also be used
to study the risk and optimality (or lack thereof ) of estimators (Fang 2014).

Returning to our examples, Chernozhukov et al. (2010) establish the (full) Hadamard differ-
entiability of the monotone rearrangement operator (i.e., φ as in Equation 17) at any strictly
increasing θ . Whenever θ is not strictly increasing, φ remains (fully) Hadamard differentiable if
the domain of θ is restricted to areas in which the derivative of θ is bounded away from zero.
Whether φ remains Hadamard directionally differentiable without such domain restrictions ap-
pears to be an open question. We further note that the Hadamard directional differentiability of
the projection operator (i.e., φ as in Equation 19) is shown by Zarantonello (1971) whenever C
is closed and convex and D is a Hilbert space. Finally, the Hadamard directional differentiability
of the LCM operator (i.e., φ as in Equation 20) is proven by Beare & Moon (2015) and Beare &
Fang (2018).

4.1.2. Finite-sample improvements. Chernozhukov et al. (2009) propose imposing monotonic-
ity to improve confidence intervals for monotone functions. In this section, we apply their ideas
to general shape restrictions.

For simplicity, we assume θ0 is a scalar-valued bounded function with domain [0, 1]. In many
applications, it is possible to construct a confidence interval for θ0 over a subset A ⊆ [0, 1] by
employing an unconstrained estimator θ̂n (see, e.g., Belloni et al. 2015 and Chen & Christensen
2018 for constructions for nonparametric regression without and with endogeneity, respectively).
These confidence intervals employ functions l̂n and ûn, satisfying

lim inf
n→∞

P (l̂n(u) ≤ θ0(u) ≤ ûn(u) for all u ∈ A) ≥ 1 − α 27.

for some prespecified confidence level 1 − α. Moreover, the asymptotic coverage can often be
shown to hold uniformly in a suitable class of underlying distributions.

Whenever θ0 is known to satisfy a particular shape restriction, it may be desirable for l̂n and ûn

to satisfy it as well. Chernozhukov et al. (2009), for example, observe that imposing monotonicity
on l̂n and ûn can yield finite-sample improvements on confidence intervals for a monotone function
θ0. Specifically, suppose φ : D → D assigns to any function θ ∈ D another function φ(θ ) ∈ D
satisfying the desired shape restriction. Moreover, assume that (a) φ(θ ) = θ whenever θ satisfies
the shape restriction; (b) φ satisfies

φ(θ1)(u) ≤ φ(θ2)(u) for all u ∈ [0, 1] 28.

whenever θ1(u) ≤ θ2(u) for all u ∈ [0, 1]; and (c) for any θ1, θ2 ∈ D, we have

‖φ(θ1) − φ(θ2)‖D ≤ ‖θ1 − θ2‖D. 29.

For a map φ satisfying these requirements, Chernozhukov et al. (2009) propose employing l̂2sn ≡
φ(l̂n) and û2s

n ≡ φ(ûn) to obtain a transformed confidence region for θ0. By construction, l̂2sn and
û2s

n now satisfy the shape restriction and

P (l̂2sn (u) ≤ θ0(u) ≤ û2s
n (u) for all u ∈ A) ≥ P (l̂n(u) ≤ θ0(u) ≤ ûn(u) for all u ∈ A)

as a consequence of Equation 28 and φ(θ0) = θ0. Thus, the transformed confidence region still
has a confidence level of at least 1 − α as a consequence of Equation 27. Also, using the condition
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in Equation 29, we can conclude that ‖l̂2sn − û2s
n ‖D ≤ ‖l̂n − ûn‖D, and thus that the new confidence

region is, in this sense, no larger than the original.
Returning to our examples, Chernozhukov et al. (2009) establish that the monotone rearrange-

ment operator (i.e., φ as in Equation 17) satisfies Equations 28 and 29. In this review, we also
observe that the projection operator (i.e., φ as in Equation 18) satisfies the desired properties
whenever D is a Hilbert space, C is closed and convex, and the pointwise minimum and maximum
of any θ1, θ2 ∈ C also belong to C.1 The LCM operator (i.e., φ as in Equation 20) satisfying Equa-
tion 28 is immediate from its definition, while the fact that the LCM map satisfies the requirement
in Equation 29 follows from theorem 5.11 of Eggermont & LaRiccia (2001).

Finally, we mention a recent proposal by Freyberger & Reeves (2017), who obtain confidence
bands for certain parameters via test inversion. Their construction applies to a rich class of prob-
lems in which constrained estimators are equal to the projection of the unconstrained estimator.
While computationally intensive, the resulting confidence bands are shown to be valid uniformly
in the underlying distribution of the data.

4.2. Constrained Estimation: Bandwidth Free

A recent literature in statistics has found multiple applications in which nonparametric estimation
under shape restrictions may be carried out without the need to select a smoothing parameter.
We illustrate these results by reviewing select examples and refer the reader to Groeneboom &
Jongbloed (2014) for a broader review of the literature.

4.2.1. Density estimation. Motivated by the study of mortality, Grenander (1956) proposes a
density estimator based on a nonparametric maximum likelihood procedure subject to the con-
straint that the density be nonincreasing. Specifically, given an independent and identically dis-
tributed sample {Xi }n

i=1 from a distribution on R+ with density f0, the Grenander estimator equals

f̂n ≡ arg max
f :R+→R+

n∏
i=1

f (Xi ) s.t. f nonincreasing and
∫

R+
f (x)dx = 1. 30.

The Grenander estimator is straightforward to compute, as it in fact equals the left derivative of
the least concave majorant of the empirical distribution function (recall Example 3); Prakasa Rao
(1969) provides a closed form expression for f̂n.

Especially notable of the Grenander estimator is that it requires no smoothing parameter akin
to the bandwidth of a kernel estimator. This remarkable feature has led to a significant literature
examining the statistical properties of f̂n. In particular, Prakasa Rao (1969) establishes that, for
any x0 in the interior of the support of Xi , f̂n(x0) is consistent for the true density f0(x0) provided
that f0 is indeed nonincreasing and continuous. Under the additional requirements that f0 be
differentiable at x0 and f ′

0(x0) �= 0, Prakasa Rao (1969) further finds the asymptotic distribution
of f̂n(x0) to equal

n1/3[ f̂n(x0) − f0(x0)] L→ |4 f0(x0) f ′
0(x0)|1/3 × arg max

u∈R
[W (u) − u2], 31.

where W is a standard two-sided Brownian motion with W (0) = 0. Groeneboom & Well-
ner (2001) tabulate the quantiles of arg maxu∈R[W (u) − u2], which is said to have Chernoff ’s
distribution, and thus Equation 31 may be employed for inference given an estimator of

1The fact that projection operators satisfy Equation 28 follows from lemma 2.4 of Nishimura & Ok (2012), while the condition
in Equation 29 is well known to be satisfied (see, e.g., lemma 46.5.4 in Zeidler 1984).
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| f0(x0) f ′
0(x0)|.2 Alternatively, the quantiles of the limiting distribution of the Grenander estimator

may be estimated by subsampling (Politis et al. 1999), the m out of n bootstrap (Sen et al. 2010),
or a procedure proposed by Cattaneo et al. (2017). The nonparametric bootstrap is, however,
unfortunately inconsistent (Kosorok 2008). We emphasize, though, that these inferential proce-
dures are justified under pointwise asymptotics, and they may be inaccurate whenever f0 is not
sufficiently steep at x0 (relative to the sample size). In particular, the discussion by Groeneboom
(1985) implies that the asymptotic distribution in Equation 31 can be a poor approximation for
the finite-sample distribution of n1/3[ f̂n(x0) − f0(x0)] whenever f ′

0(x0) is close to zero.
The asymptotic distribution in Equation 31 reveals an interesting feature of the Grenander

estimator: The closer f0 is to the boundary of the constraint set in the neighborhood of x0 [i.e.,
the smaller | f ′

0(x0)| is], the more accurate the estimator f̂n(x0) is. In fact, even though the rate of
convergence of f̂n(x0) is n−1/3 whenever f ′

0(x0) �= 0, the rate improves to n−1/2 whenever f0 is flat
in the neighborhood of x0 (Groeneboom 1985).

While the analysis of Prakasa Rao (1969) concerns the asymptotic behavior of f̂n at a point,
other studies have examined the properties of f̂n as a global estimator of f0. We highlight work
by Groeneboom (1985), who shows that if f0 is nonincreasing, has compact support, and has a
continuous first derivative, then it follows that

lim
n→∞

n1/3 E
[∫

R+
| f̂n(x) − f0(x)|dx

]
= 0.82

∫
R+

| f0(x) f ′
0(x)/2|1/3dx. 32.

Birge (1989) derives a finite-sample estimation error bound for f̂n in the L1 norm that holds
uniformly over all nonincreasing f0. One of the main takeaways from his analysis is that f̂n may
be interpreted as a variable bin width histogram, where the length of the bin width at each point
x ∈ R+ is selected in an (almost) optimal way. Thus, even though computing f̂n does not require
choosing a smoothing parameter, f̂n may nonetheless be viewed as the estimator corresponding
to an (almost) optimal choice of an underlying smoothing parameter (i.e., the bin width length).

Although the assumption of a monotone density may be difficult to justify in economic appli-
cations, the described results are useful because they provide a good benchmark for analyses under
weaker assumptions. For example, for a point x0 in the support of Xi , we may instead assume that
the density f0 of Xi is nonincreasing in a set A containing x0. Letting f0(·|X ∈ A) be the density
of X conditional on X ∈ A, we obtain

f0(x0) = f0(x0|X ∈ A)P (X ∈ A), 33.

which suggests an immediate estimator for f0(x0). Specifically, we may estimate P (X ∈ A) by
its sample analog and f0(x0|X ∈ A) by computing the Grenander estimator on the subsample
{Xi : Xi ∈ A}. The asymptotic distribution of this local Grenander estimator is immediate from
Equation 31, since estimating P (X ∈ A) has no asymptotic impact.

We conclude by mentioning a number of shape restrictions beyond monotonicity that have
been shown to enable bandwidth-free nonparametric estimation. Birge (1997), for instance, stud-
ies estimation of a density that is known to be nondecreasing or nonincreasing to the left or right
of an unknown point μ. In turn, Rufibach (2007) proposes computing a nonparametric maximum
likelihood estimator under the assumption that f0 is log-concave (see also Dümbgen & Rufibach
2009 and Balabdaoui et al. 2009 for the asymptotic properties of the maximum likelihood esti-
mator and Koenker & Mizera 2010 for computational aspects). Finally, Balabdaoui & Wellner

2To this end, note that f̂n(x0) is consistent for f0(x0) but that f̂ ′
n(x0) is not consistent for f ′

0(x0).
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(2007) study the estimation of k-monotone densities, which include monotonicity and convexity
restrictions as special cases. As with the Grenander estimator, these shape restrictions may be
applied locally by exploiting Equation 33.

4.2.2. Regression estimation. The insights gained from studying the shape-restricted maximum
likelihood density estimator have been successfully applied to other settings, including hazard rate
estimation, censored models, and deconvolution problems (see Groeneboom & Jongbloed 2014).
In this section, we review recent advances in the study of shape-restricted nonparametric regres-
sion. In particular, we focus on theoretical insights characterizing the impact of shape restrictions
on the finite-sample performance of estimators.

In this section, we let Y ∈ R, X ∈ R be continuously distributed, and suppose

Y = θ0(X ) + ε, E[ε|X ] = 0, 34.

for some unobservable ε ∈ R and unknown regression function θ0 that is assumed to be nonincreas-
ing. For simplicity, we further suppose X has support [0, 1], in which case the shape-constrained
nonparametric estimator of θ0 is given by

θ̂n ∈ arg min
θ :[0,1]→R

1
n

n∑
i=1

[Yi − θ (Xi )]2 s.t. θ is nonincreasing. 35.

Thus, computing θ̂n at points in the sample {Xi }n
i=1 only requires solving a quadratic optimization

problem subject to linear constraints. Since θ̂n is not uniquely determined by Equation 35 at points
x0 outside the sample, {Xi }n

i=1, θ̂n is often additionally required to be left continuous and piecewise
constant between observations. The resulting θ̂n then equals the left derivative of the least concave
majorant of a cumulative sum diagram—a characterization that reveals a close connection between
θ̂n and Grenander’s estimator.

Let x0 ∈ (0, 1) and suppose θ ′
0(x0) exists and E[ε2|X ] ≤ σ 2 almost surely holds true for some

σ 2 > 0. Also, let X( j ) denote the j th lowest value in {Xi }n
i=1 and set 1 ≤ i0 ≤ n to be the

smallest integer such that X(i0) ≥ x0. For any 1 ≤ u ≤ v ≤ n, further define θ̄u,v
0 ≡ (v − u +

1)−1 ∑v

j=u θ0[X( j )], which is simply the sample average of the function θ0 over all observations
between the uth and vth lowest [i.e., between X(u) and X(v)]. Exploiting θ0 being nonincreasing
and martingale arguments like those of Zhang (2002), it is then possible to show for any 0 ≤ m ≤
min(i0 − 1, n − i0) that

E[|θ̂n(x0) − θ0(x0)||{Xi }n
i=1]

≤ θ̄
i0−m,i0
0 − θ̄

i0,i0+m
0 + 2σ√

m + 1
+ θ0(X(i0−1)) − θ0(X(i0)). 36.

The result in Equation 36 is important because it can be used to understand how the finite-
sample accuracy of θ̂n(x0) depends on the flatness of θ0 around the point x0. For instance, note that
θ0(X(i0−1)) − θ0(X(i0)) = Op(n−1) and θ̄ i0−m,i0

0 − θ̄
i0,i0+m
0 = Op(m/n) since θ ′

0(x0) exists. Thus, setting
m � n2/3 in Equation 36 implies, via Markov’s inequality, that

|θ̂n(x0) − θ0(x0)| = Op(n−1/3).

However, if θ0 is constant in a neighborhood of x0, then θ̄ i0−m,i0
0 = θ̄

i0,i0+m
0 for m up to order n.

Thus, setting m � n gives

|θ̂n(x0) − θ0(x0)| = Op(n−1/2).
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Thus, as in the case of the Grenander density estimator, θ̂n(x0) typically has an n−1/3 rate of
convergence, but if θ0 is flat around x0, then the estimator is able to adapt to this situation, and its
convergence improves to an n−1/2 rate.

The finite-sample bound obtained in Equation 36 emphasizes that studying the rate of con-
vergence of shape-constrained estimators is a nuanced problem. In particular, as discussed in
Section 3, the finite-sample impact of imposing a shape restriction in estimation depends on both
the sampling uncertainty and the region of the parameter space that θ0 is in. For this reason,
recent studies of the risk of constrained estimators have focused on finite-sample bounds such
as Equation 36. Chatterjee & Lafferty (2015), for example, derive finite-sample bounds for non-
parametric regression estimators constrained to be nondecreasing or nonincreasing to the left or
right of an unknown point in the support of X . They find an n−1/3 rate of convergence under
a particular norm, with improvements as θ0 approaches the boundary of the constraint set. In
turn, Guntuboyina & Sen (2015) show that nonparametric regression estimators constrained to
be convex converge at an n−2/5 rate (up to log factors), with improvements near the boundary of
the constraint set (for related additional results, see Bellec 2016, Chatterjee et al. 2014).

Finally, we note that the fact that θ̂n (as in Equation 35) and the Grenander estimator f̂n (as
in Equation 30) equal the left derivative of a least concave majorant leads to similarities in their
analysis. Brunk (1970), for instance, obtains an asymptotic distribution by showing, under mild
assumptions, that if θ0 is differentiable and θ ′

0(x0) �= 0, then

n1/3[θ̂n(x0) − θ0(x0)] L→ 2
∣∣∣∣σ 2

0 θ
′
0(x0)

2 fX (x0)

∣∣∣∣
1/3

× arg max
u∈R

[W (u) − u2],

where fX is the probability density function of X , σ 2
0 ≡ E[ε2|X = x0], and W is a standard

two-sided Brownian motion with W (0) = 0 (compare to Equation 31). The common structure
present in both θ̂n and f̂n has led to a more general literature studying the properties of left
derivatives of least concave majorants of stochastic processes. Anevski & Hössjer (2006) provide a
study of asymptotic distributions, and Durot et al. (2012) provide a study of uniform confidence
bands.

4.3. Constrained Estimators with Smoothing

An advantage of the estimators discussed in Section 4.2 is that they do not require selecting
smoothing parameters. However, if the function to be estimated is sufficiently smooth, then
unconstrained kernel or series estimators can outperform the procedures of Section 4.2. For
example, in the mean regression model (as in Equation 34), with θ0 twice differentiable and
θ ′

0(x0) < 0, the isotonic estimator θ̂n(x0) in Equation 35 converges at an n−1/3 rate, while a kernel
or series estimator can attain an n−2/5 rate (Belloni et al. 2015, Horowitz 2009). However, the
constrained estimators of Section 4.2 can possess a faster rate of convergence than their kernel
or series counterparts near the boundary of the constraint set. These observations motivate the
study of shape-constrained kernel or series estimators as a way to combine the advantages of both
approaches.

In the context of kernel estimation of conditional means, Hall & Huang (2001) develop a
clever method for combining kernel and constrained estimators. In this section, we illustrate their
approach, as applied by Blundell et al. (2012) to impose the Slutsky restrictions. Specifically, let
{Yi , Pi , Qi }n

i=1 be a random sample with Yi denoting income, Pi denoting price, and Qi denoting
quantity demanded. The classical Nadaraya-Watson kernel estimator of the conditional mean of
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Qi given (Pi , Yi ) at a point (p0, y0) is given by

θ̂n(p0, y0) ≡
∑n

i=1 Qi K ((Pi − p0)/h, (Yi − y0)/h)∑n
i=1 K ((Pi − p0)/h, (Yi − y0)/h)

,

where h is a bandwidth, and K is a bivariate kernel function. The estimator θ̂n, however, need
not satisfy the Slutsky restrictions implied by economic theory. Therefore, Blundell et al. (2012)
propose instead employing the estimator

θ̂n,C (p0, y0) ≡
∑n

i=1 ξi Qi K ((Pi − p0)/h, (Yi − y0)/h)
n−1

∑n
i=1 K ((Pi − p0)/h, (Yi − y0)/h)

,

where {ξi }n
i=1 are weights chosen to impose the Slutsky restrictions on θ̂n,C . In particular, for a

prespecified set {(pj, yj)}J
j=1, a suitable way to select {ξi }n

i=1 is to let

{ξi }n
i=1 ≡ arg min

{wi }n
i=1

{
n −

n∑
i=1

(nwi )1/2

}
s.t. wi ≥ 0 for all i ,

n∑
i=1

wi = 1,

and max
1≤ j≤J

{
∂θ̂n,C (pj, yj)

∂p
+ θ̂n,C (pj, yj)

∂θ̂n,C (pj, yj)
∂y

}
≤ 0. 37.

Intuitively, the weights (ξ1, . . . , ξn) ensure that θ̂n,C satisfies the Slutsky restrictions while being
as close as possible to the empirical distribution weights (1/n, . . . , 1/n). Note that the Slutsky
restrictions are only imposed on a subset of points rather than on the entire support. This approach
produces satisfactory results as long as the spacing between the subset of points is sufficiently small.
We also observe that θ̂n,C can be potentially modified to allow for other shape restrictions by simply
changing the constraints in Equation 37. Indeed, the original proposal of Hall & Huang (2001)
concerns estimation of monotonic conditional means.

Imposing shape restrictions on series (or sieve) estimators is also straightforward. Moreover,
the wide applicability of sieve estimators enables the use of shape restrictions in a rich class of
settings (Chen 2007). We illustrate such an approach through the nonparametric instrumental
variable (NPIV) model of Newey & Powell (2003). Specifically, suppose that for some unknown
θ0 we have

Y = θ0(X ) + ε, E[ε|W ] = 0, 38.

where Y ∈ R, X ∈ R is endogenous, and W ∈ R is an instrument. In this context, Chetverikov &
Wilhelm (2017) study the problem of estimating θ0 under the assumption that it is nonincreasing.
Specifically, let p(u) = [p1(u), . . . , pk(u)]′ be a vector of functions such as splines, wavelets, or
polynomials. The simplest version of the constrained estimator studied in Chetverikov & Wilhelm
(2017) is then

θ̂n,CW (x) ≡ p(x)′β̂n, 39.

where β̂n are the two-stage least squares coefficients obtained from regressing Y on the vector
p(X ), employing p(W ) as instruments subject to the constraint θ̂ ′

n,CW (x) ≤ 0 for all x in a grid
{xj}J

j=1. For series estimators, we note that properly selecting {xj}J
j=1 may ensure θ̂ ′

n,CW (x) ≤ 0 at
all points, not just for x ∈ {xj}J

j=1 (see, e.g., Mogstad et al. 2017).
It is, by now, well known that the NPIV model is ill posed and that, as a result, the unconstrained

estimator of θ0 can suffer from a very slow, potentially logarithmic rate of convergence (Blundell
et al. 2007a, Hall & Horowitz 2005). Given our discussion in Section 3, it is therefore intuitively
clear that the constrained estimator θ̂n,CW can outperform its unconstrained counterpart even in
large samples and when θ0 is rather steep. It is less clear, however, why the improvements from
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imposing the constraint are as substantial as those found in simulations. In an effort to answer
this question, Chetverikov & Wilhelm (2017) show that, when the function θ0 is constant, under
certain conditions, the constrained estimator θ̂n,CW does not suffer from the ill-posedness of the
model in Equation 38 and has a fast rate of convergence in a (truncated) L2 norm: (k2 log n/n)1/2

if p consists of polynomials and (k log n/n)1/2 if p consists of splines. Moreover, Chetverikov &
Wilhelm (2017) derive a finite-sample risk bound that reveals that θ̂n,CW has superior estimation
properties when θ0 is in a neighborhood of a constant function. Crucially, this neighborhood can
be rather large depending on the degree of ill-posedness.

However, the results in Chetverikov & Wilhelm (2017) rely upon a monotone instrumental
variables assumption, which requires the conditional distribution of X given W to be nondecreas-
ing in W (in the sense of first-order stochastic dominance). Although this is plausible in many
applications, it is unclear whether this assumption is necessary for their results to hold. In addition,
their estimation error bounds apply only in a truncated L2 norm, which is defined as the usual L2

norm but with integration being over a strict subset of the support of X . It would be of interest to
investigate under what conditions the results of Chetverikov & Wilhelm (2017) can be extended
to the usual L2 (or other stronger) norms (see, however, Scaillet 2016 for important challenges in
this regard).

5. INFERENCE

We next examine recent contributions to inference under shape restrictions. For conciseness, we
focus on three specific areas. First, we review tests of whether shape restrictions are satisfied by
a parameter of interest. Second, we illustrate the role shape restrictions can play in informing
inference by delivering adaptive confidence intervals. Third, we discuss inference methods based
on constrained minimization of criterion functions.

5.1. Testing Shape Restrictions

There are multiple ways to test whether a parameter of interest satisfies a shape restriction. In this
section, we discuss an approach based on unconstrained estimators and an alternative that avoids
parameter estimation altogether. A third construction based on the constrained minimization of
criterion functions is examined in Section 5.3.

5.1.1. Using unconstrained estimators. Unconstrained estimators may be used to test for shape
restrictions by assessing whether violations of the conjectured restrictions are statistically signifi-
cant. In this section, we discuss a simplified version of the test used by Lee et al. (2018).

We consider, as in Section 2.3, first price sealed bid auctions in which we observe bids and an
auction characteristic X ∈ R such as appraisal value. Let q (τ |X , I ) denote the τ th quantile of the
bid distribution conditional on X and the auction receiving I bids. Under appropriate restrictions,
Bayesian Nash equilibrium bidding behavior implies

q (τ |X , I2) − q (τ |X , I1) ≤ 0 for all τ ∈ (0, 1) 40.

almost surely in X whenever I1 < I2. Lee et al. (2018) construct a test of this implication of
equilibrium behavior as an application of their general procedure. In particular, suppose we observe
two samples {Bi , Xi }n1

i=1 and {Bi , Xi }n2
i=1 of auctions of size I1 and I2, where Bi is the vector of

submitted bids at auction i . We may then test whether Equation 40 holds by employing local
quantile regression estimators q̂n(τ |x, Ij) of q (τ |x, Ij) for j ∈ {1, 2}. Specifically, Lee et al. (2018)
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consider the test statistic

Tn ≡
∫

max{0,
√

nh[q̂n(τ |x, I2) − q̂n(τ |x, I1)]}dF (τ , x),

where n = n1 + n2, F is a weighting measure chosen by the researcher, and h ↓ 0 is the bandwidth
employed in computing the local quantile regression estimators [we assume for simplicity that the
same bandwidth is employed to estimate q (τ |x, I1) and q (τ |x, I2)].

Provided that the bandwidth h is chosen appropriately, it is possible to show that

√
njh[q̂n(τ |x, Ij) − q (τ |x, Ij)] = 1√

njh

nj∑
i=1

ψn(Bi , Xi |τ , x, Ij) + op(1)

for j ∈ {1, 2} and some functions ψn(·, ·|τ , x, Ij) satisfying E[ψn(Bi , Xi |τ , x, Ij)] = 0. Expansions of
this type are known as Bahadur representations. If we exploit such an expansion, it then follows
for any distribution satisfying the null hypothesis in Equation 40 that

Tn ≤
∫

max

⎧⎨
⎩0,

2∑
j=1

(−1) j √n
nj

√
h

nj∑
i=1

ψn(Bi , Xi |τ , x, Ij)

⎫⎬
⎭ dF (τ , x) + op(1). 41.

Moreover, since E[ψn(Bi , Xi |τ , x, Ij)] = 0 holds true for all (τ , x), the quantiles of the upper bound
in Equation 41 are easily estimated by the bootstrap. Concretely, for q̂ ∗

n (τ |x, Ij), the bootstrap
analog to q̂n(τ |x, Ij) for j ∈ {1, 2}, Lee et al. (2018) show that the 1 − α quantile of∫

max{0,
√

nh{q̂ ∗
n (τ |x, I2) − q̂ ∗

n (τ |x, I1) − [q̂n(τ |x, I2) − q̂n(τ |x, I1)]}}dF (τ , x)

conditional on the data provides a valid critical value for the test statistic Tn. Such a critical value is
often called least favorable in that it corresponds to the largest (pointwise) asymptotic distribution
possible under the null hypothesis.

Lee et al. (2018) further provide alternative critical values that, loosely speaking, attempt
to determine at what values of (τ , x) Equation 40 holds with equality, which can improve the
power of the test against certain alternatives. Finally, we note that the general construction of
Lee et al. (2018) more broadly applies to testing whether an unknown function θ0 of X satisfies
θ0(X ) ≤ 0 almost surely. As in our discussion, their proposed test statistic is based on the positive
part of a kernel-based estimator θ̂n for θ0 (as in Equation 41), and critical values are obtained by
the bootstrap. The procedure is applicable in many settings, including testing for monotonicity,
convexity, and supermodularity in both mean and quantile regression models.

5.1.2. Avoiding parameter estimation. A challenge of the tests discussed in Section 5.1.1 is
that ensuring that a Bahadur representation is valid imposes restrictive conditions on the choice
of bandwidth h. In certain applications, it may be possible to avoid estimation of the underlying
parameter and obtain a valid test under weaker restrictions on the choice of h. We illustrate such
an approach in the context of testing for monotonicity in the mean regression model.

Suppose that, for observable Y , X ∈ R, unknown function θ0, and unobservable ε ∈ R, we
have

Y = θ0(X ) + ε, E[ε|X ] = 0.

We also let X have support [0, 1] and {Yi , Xi }n
i=1 be a random sample. The null hypothesis to be

tested is that θ0 is nonincreasing on [0, 1], and the alternative is that there exist x1, x2 ∈ [0, 1] such
that x1 < x2 but θ0(x1) > θ0(x2). Ghosal et al. (2000) propose a test of such a hypothesis based on
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the process (indexed by x ∈ [0, 1])

Un,h(x) ≡ 2
n(n − 1)

∑
1≤i< j≤n

sign (Yi − Yj) sign (Xi − Xj)K
(

Xi − x
h

)
K
(

Xj − x
h

)
,

where K : R → R+ is a kernel function and h > 0 is a bandwidth. Intuitively, Un,h(x) is a local
measure of association between Y and X similar to Kendall’s τ statistic. In particular, the limiting
expectation of Un,h(x) as h ↓ 0 is negative if θ0 is nonincreasing at x but positive otherwise. Thus,
Ghosal et al. (2000) consider the test statistic

TGSV
n,h ≡ sup

x∈[0,1]

√
nUn,h(x)
σ̂n,h(x)

, 42.

where σ̂ 2
n,h(x) is an appropriate variance normalization. They establish that the asymptotic distribu-

tion of TGSV
n,h is bounded from above by a Gumbel distribution, and in this manner obtain analytical

critical values that ensure the resulting test is of asymptotic level α. Crucially, the construction of
TGSV

n,h avoids estimating θ0, so that a Bahadur representation is unnecessary. As a result, asymptotic
size control is achieved under weaker conditions on the bandwidth h than those required by Lee
et al. (2018).

While the test of Ghosal et al. (2000) is easy to implement and has asymptotic size control
under weak conditions on h, it has good power only if h is carefully selected. To address this
drawback, Chetverikov (2012) suggests taking the supremum in Equation 42 over both x ∈ [0, 1]
and h ∈ Hn, where Hn is a growing set of possible bandwidth values. Concretely, Chetverikov
(2012) considers the test statistic

TC
n ≡ sup

h∈Hn

TGSV
n,h = sup

x∈[0,1], h∈Hn

√
nUn,h(x)
σ̂n,h(x)

.

This modification substantially complicates the derivation of the limiting distribution of the test
statistic, since the extreme value theory arguments employed by Ghosal et al. (2000) are no longer
applicable. Instead, Chetverikov (2012) relies on the work of Chernozhukov et al. (2013, 2017) to
develop several bootstrap methods that yield the critical value cC

α,n for which the test that rejects
whenever TC

n exceeds cC
α,n also has asymptotic level α.

The test of Chetverikov (2012) is minimax rate optimal against certain Hölder classes. However,
it may potentially be improved by using the arguments of Dümbgen & Spokoiny (2001). Intuitively,
for small values of h, the statistic TGSV

n,h can take large values even under the null, since it contains
the maximum over many asymptotically independent random variables. As a result, including
small values of h in Hn can significantly increase the quantiles of TC

n ≡ suph∈Hn
TGSV

n,h and thus also
the corresponding critical value cC

α,n. In turn, the resulting larger critical values cC
α,n undermine the

power of the test based on the pair (TC
n , cC

α,n) against alternatives that can best be detected by large
values of h, revealing a sensitivity of the procedure to whether small values of h are included in
Hn. In the related Gaussian white noise model, Dümbgen & Spokoiny (2001) solve this problem
by employing h-dependent critical values. Within our context, such a test would reject the null
hypothesis that θ0 is nonincreasing whenever, for appropriate choices of cα,n(h), we find that

sup
x∈[0,1]

√
nUn,h(x)
σ̂n,h(x)

> cα,n(h) for at least for one h ∈ Hn. 43.

The analysis in Dümbgen & Spokoiny (2001) of the Gaussian white noise model suggests that the
modification in Equation 43 should substantially increase the power against alternatives that are
best detected by large values of h with almost no effect on the power against alternatives that are
best detected by small values of h. It would be of interest to extend the analysis of Dümbgen &
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Spokoiny (2001) to cover the standard mean regression model by studying the properties of the
test in Equation 43.

5.2. Adaptive Confidence Intervals via Shape Restrictions

We consider a standard mean regression model in which Y ∈ R, X ∈ R, and

Y = θ0(X ) + ε E[ε|X ] = 0 44.

for some unknown function θ0 and unobservable ε ∈ R, and where, for notational simplicity, we let
X ∈ [0, 1]. Suppose that we observe an independent and identically distributed sample {Yi , Xi }n

i=1

and are interested in estimating θ0(x0) for some x0 ∈ (0, 1). It is well known that the precision with
which θ0(x0) can be estimated depends on the smoothness of θ0: The smoother the function θ0 is,
the better θ0(x0) can be estimated. In most applications, however, the smoothness of θ0 is unknown,
and it is therefore unclear how well θ0(x0) can be estimated. Adaptive confidence intervals that are
as precise as possible given the unknown smoothness of θ0 are of particular interest in such settings.
These confidence intervals should be shorter the smoother θ0 is. Regrettably, a fundamental result
developed by Low (1997) is that adaptive confidence intervals for θ0(x0) typically do not exist. For
example, suppose we know that θ0 is Lipschitz continuous, i.e., θ0 ∈ �(M), where�(M) is given by

�(M) ≡ {θ : [0, 1] → R s.t. |θ (a) − θ (b)| ≤ M|a − b | for all a , b ∈ [0, 1]}. 45.

In addition, suppose [cL,α , cR,α] is a confidence region with confidence level 1 − α, so that

inf
θ0∈�(M)

Pθ0 (cL,α ≤ θ0(x0) ≤ cR,α) ≥ 1 − α, 46.

where we write Pθ0 in place of P to emphasize that the probability depends on θ0. It then follows
from the results of Low (1997) that, for all θ0 that are Lipschitz continuous with Lipschitz
constant M ′ < M, we will find for some constant K > 0 that

E[cR,α − cL,α] ≥ K
n1/3

, 47.

which corresponds to the precision of estimating a Lipschitz-continuous function. For instance,
when θ0 is a constant function, we would hope for the confidence region to shrink at an
n−1/2 � n−1/3 rate, since θ0(x0) can then be estimated by the sample mean of {Yi }n

i=1. However, the
confidence interval [cL,α , cR,α] will not be able to take advantage of the smoothness of a constant
θ0 because it is constrained to control size, as in Equation 46—i.e., the confidence region fails to
adapt to the smoothness of θ0.3

Adaptive confidence intervals for θ0(x0) exist, however, if we assume that θ0 is either non-
decreasing/nonincreasing or convex/concave (Cai et al. 2013, Dümbgen 2003). We discuss the
construction of Cai et al. (2013) for nondecreasing θ0 and refer the reader to their original work
for the other cases. In addition, since Cai et al. (2013) work with Gaussian ε, we slightly modify
their procedure to allow for non-Gaussian ε.

To construct an adaptive confidence interval for θ0(x0), we first order the data according
to the regressors {Xi }n

i=1. Specifically, consider all Xi such that Xi > x0 and order them into
X(1), . . . , X(n1) so that x0 < X(1) ≤ X(2) ≤ · · · ≤ X(n1), where n1 is the number of observations i with
Xi > x0. Similarly, consider all Xi such that Xi ≤ x0 and order them into X(−1), . . . , X(−n2) so that
x0 ≥ X(−1) ≥ X(−2) ≥ · · · ≥ X(−n2), where n2 ≡ n−n1 is the number of observations i with Xi ≤ x0.

3Low (1997) establishes the result for density estimation, but the extension to regression models is immediate (see also Cai &
Low 2004).

www.annualreviews.org • Shape Restrictions 53

A
nn

u.
 R

ev
. E

co
n.

 2
01

8.
10

:3
1-

63
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

73
.7

5.
44

.2
32

 o
n 

08
/0

7/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.
 



EC10CH02_Santos ARI 27 June 2018 8:40

In addition, let Y(1), . . . , Y(n1) be the Yi corresponding to X(1), . . . , X(n1) and Y(−1), . . . , Y(−n2) be the
Yi corresponding to X(−1), . . . , X(−n2). Finally, for any a ∈ R, let �a� denote the largest integer
smaller than or equal to a , set the integers k0,n and kj ,n to be given by

kj ,n ≡
⌊

k0,n

2 j

⌋
and k0,n ≡ min

{
n1, n2,

⌊
n

log(n)

⌋}
, 48.

and let J be the largest integer such that k0,n/2J ≥ √
n. Given this notation, we define

δ j ,L ≡ 1
kj ,n

k j ,n∑
i=1

Y(−i ) and δ j ,R ≡ 1
kj ,n

k j ,n∑
i=1

Y(i ) 49.

for any 1 ≤ j ≤ J, which are one-sided nearest-neighbor estimators of θ0(x0). Moreover, we note
that, since θ0 is nondecreasing, the biases of δ j ,R and δ j ,L can be signed:

E[δ j ,L|{Xi }n
i=1] ≤ θ0(x0) ≤ E[δ j ,R|{Xi }n

i=1]. 50.

Under mild regularity conditions, the variances of δ j ,L and δ j ,R are approximately

Var{δ j ,R|{Xi }n
i=1} ≈ Var{δ j ,L|{Xi }n

i=1} ≈ σ 2

kj ,n
, 51.

whereσ 2 ≡ E[ε2|X = x0]. Letting cα denote the
√

1 − α quantile of a standard normal distribution,
these derivations suggest, for each 1 ≤ j ≤ J, building the confidence region [c j ,L,α , c j ,R,α] ≡
[δ j ,L−cασ/

√
kj ,n, δ j ,R+cασ/

√
kj ,n]. Indeed, notice that, by independence of δ j ,L and δ j ,R conditional

on {Xi }n
i=1, we obtain from Equations 50 and 51

P

(
δ j ,L − σ√

kj ,n
cα ≤ θ0(x0) ≤ δ j ,R + σ√

kj ,n
cα

)

≥ P

(√
kj ,n

σ
{δ j ,L − E[δ j ,L]} ≤ cα

)
P

(
−cα ≤

√
kj ,n

σ
{δ j ,R − E[δ j ,R]}

)
≈ 1 − α. 52.

It is worth emphasizing the fundamental role that the monotonicity of θ0 plays in ensuring
that the constructed confidence intervals are valid for all 1 ≤ j ≤ J (as in Equation 52). Without
monotonicity, Equation 50 may not hold, and it is possible to find a θ0 for which the (now
uncontrolled) biases of δ j ,L and δ j ,R cause the coverage in Equation 52 to fail. In contrast, since,
thanks to the monotonicity of θ0, the coverage in Equation 52 holds for all 1 ≤ j ≤ J, we are now
free to search for the best j in a data-dependent way. Specifically, we note that

E[c j ,R,α − c j ,L,α|{Xi }n
i=1] = E[δ j ,R − δ j ,L|{Xi }n

i=1] + 2σ√
kj ,n

cα , 53.

where the first term on the right-hand side is nonincreasing in j and the second term is nonde-
creasing in j . Thus, to minimize the expected length of the confidence interval, we would like to
set j to make these two terms equal. However, this choice is not feasible, since E[δ j ,R −δ j ,L|{Xi }n

i=1]
is unknown. Instead, Cai et al. (2013) define

ξj ≡ 1
kj−1,n

k j−1,n∑
i=k j ,n+1

[Y(i ) − Y(−i )] 54.

and set ĵ to be the smallest j such that ξj ≤ 3cασ/(2kj)—if ĵ > J or ĵ does not exist, then let ĵ = J.
The arguments in Cai et al. (2013) then imply that the confidence interval

CI∗
α ≡

[
δ ĵ ,L − σ√

k ĵ ,n
cα , δ ĵ ,R + σ√

k ĵ ,n
cα

]
55.
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covers θ0(x0) with asymptotic probability of at least 1−α uniformly over all nondecreasing functions
θ0. Moreover, CI∗

α adapts to θ0 in the sense that its expected length (under θ0) is bounded from
above up to a constant by that of the best confidence interval, which minimizes the expected
length under θ0 subject to the constraint of guaranteeing coverage uniformly over all monotonic
functions.

Finally, we note that, while we have assumed that σ 2 ≡ E[ε|X = x0] is known for simplicity,
the construction of a feasible confidence region requires a suitable consistent estimator for σ 2.
One possible such estimator σ̂ 2 is given by

σ̂ 2 ≡ 1
2kJ,n

kJ,n∑
i=1

[
Y 2

(i ) + Y 2
(−i )

]
−
⎧⎨
⎩ 1

2kJ,n

kJ,n∑
i=1

[Y(i ) + Y(−i )]

⎫⎬
⎭

2

. 56.

5.3. Criterion-Based Tests

The classical analysis of criterion-based tests, such as the likelihood ratio test, assumes that
the parameter of interest is in the interior of the parameter space. As early as Chernoff (1954),
however, it was found that imposing inequality restrictions on the parameter of interest leads to
nonstandard (pointwise) limiting distributions. Subsequently, related conclusions were found by
a variety of authors, including in extensions by Self & Liang (1987), Shapiro (1989), and King
& Rockafellar (1993) and in studies of linear and nonlinear models by Gouriéroux et al. (1981,
1982) and Wolak (1989).

Intuitively, inequality restrictions on a vector may be thought of as the finite-dimensional
analog of shape restrictions on nonparametric parameters. As a result, it is to be expected that
similar complications will arise when employing criterion-based tests to conduct inference under
shape restrictions. In this section, we illustrate a solution to these challenges through a special
case of the analysis of Chernozhukov et al. (2015).

5.3.1. Testing problem. Suppose that, for some observable X ∈ Rdx and Z ∈ Rdz , the parameter
of interest θ0 ∈ � is identified by the conditional moment restriction

E[ρ(X , θ0)|Z] = 0, 57.

where ρ : Rdx ×� → R is a known function assumed to be scalar valued for simplicity. Inference
in this model has been extensively studied under the assumption that θ0 is in the interior of the
parameter space (see Hansen 1985, Ai & Chen 2003, and Chen & Pouzo 2015 for parametric,
semiparametric, and nonparametric specifications, respectively).

Testing for or imposing shape restrictions, however, often requires studying the behavior of
test statistics in regions near the boundary of the parameter space. Intuitively, numerous shape
restrictions can be thought of as inequality constraints that generate similar challenges to those
originally found by Chernoff (1954). We focus on the work of Chernozhukov et al. (2015), who
examine hypothesis tests with the structure

H0 : θ0 ∈ R, H1 : θ0 /∈ R, 58.

where the set R represents the restrictions that we are interested in. Specifically, Chernozhukov
et al. (2015) allow for equality and inequality constraints by introducing maps ϒG : � → G and
ϒF : � → F (for spaces G and F) and setting R to equal

R ≡ {θ ∈ � : ϒF (θ ) = 0 and ϒG(θ ) ≤ 0}. 59.
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The spaces G and F must be sufficiently general to encompass a diverse set of constraints such
as homogeneity, monotonicity, supermodularity, or Slutsky restrictions (see Chernozhukov et al.
2015 for technical details).

For illustrative purposes, we consider an example in which X = (V, W ) with V ∈ [0, 1], θ0 is
a twice continuously differentiable function of V, and we are interested in building a confidence
region for a functional g : � → R of θ0 while imposing concavity. In such an application, we
would let � be the space of twice continuously differentiable functions, set ϒF (θ ) = g(θ ) − λ for
a λ ∈ R, and let ϒG(θ ) = ∇2θ with G being the set of continuous functions on [0, 1]. The set R
then becomes

R = {θ ∈ � : g(θ ) = λ and ∇2θ (v) ≤ 0 for all v ∈ [0, 1]}, 60.

and we may obtain a confidence region for g(θ0) that imposes concavity on θ0 by conducting a test
inversion of Equation 58 for R, as in Equation 60, over different values of λ ∈ R.

5.3.2. Statistical and critical values. Since θ0 satisfies the conditional moment restriction in
Equation 57, a possible approach for conducting inference is to construct an overidentification
test. To this end, let {qj}∞

j=1 be a set of functions of Z; for some kn increasing with the sample size,
let q kn (Zi ) ≡ [q1(Zi ), . . . , qkn (Zi )]′; and define the test statistic

Tn ≡ inf
θ∈�n∩R

∥∥∥∥∥ 1√
n

n∑
i=1

ρ(Xi , θ )q kn (Zi )

∥∥∥∥∥ , 61.

where �n is a finite-dimensional approximation to �, i.e., �n is a sieve, such as a polynomial,
spline, or wavelet, whose size increases with the sample size (Chen 2007). Heuristically, if θ0

indeed satisfies the conjectured restrictions (i.e., θ0 ∈ R), then the unconditional population
moments equal zero for some θ ∈ � and Tn should converge in distribution. In contrast, if θ0 does
not satisfy the restrictions (i.e., θ0 /∈ R), then it will not be possible to zero the moment conditions,
and Tn should diverge to infinity.

As expected from Section 3, the finite-sample distribution of Tn depends on where on the
parameter space θ0 is. To elucidate this relationship, it is convenient to define

Gn(θ ) ≡ 1√
n

n∑
i=1

{ρ(Xi , θ )q kn (Zi ) − E[ρ(Xi , θ )q kn (Zi )]}, 62.

which we note should be approximately normally distributed for any θ ∈ �. It is further conve-
nient, but not necessary, to assume that ρ(X , ·) is differentiable in θ , and we let ∇θρ(Xi , θ )[h] ≡
∂

∂τ
ρ(Xi , θ0 + τh)|τ=0. Under appropriate conditions, we then obtain

Tn = inf
h:θ0+ h√

n ∈�n∩R

∥∥∥∥Gn

(
θ0 + h√

n

)
+ √

nE
[
ρ

(
Xi , θ0 + h√

n

)
q kn (Zi )

]∥∥∥∥ 63.

= inf
h:θ0+ h√

n ∈�n∩R
‖Gn(θ0) + E[∇θρ(Xi , θ0)[h]q kn (Zi )]‖ + op(1), 64.

where Equation 63 follows by parameterizing h = √
n{θ − θ0}, and Equation 64 follows by arguing

through consistency that the value ĥn minimizing in Equation 63 must be such that ĥn/
√

n = op(1)
holds true.

These derivations yield two important observations. First, the distribution of Tn depends on
where θ0 is in the parameter space through the restriction θ0 + h/

√
n ∈ �n ∩ R in Equation 64.

For instance, returning to our example in Equation 60, if we stipulate that θ0 be concave, then the set
of functions h such that θ0 +h/

√
n is concave depends on θ0. Second, Equation 64 emphasizes that

the distribution of Tn only depends on three unknowns: the distribution of Gn(θ0), the expectation
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E[∇θρ(Xi , θ0)[h]q kn (Zi )], and the (unknown) set of h that satisfies θ0 +h/
√

n ∈ �n ∩ R. Critical val-
ues for Tn may therefore be obtained by employing suitable substitutes for these three unknowns.

In particular, the distribution of Gn(θ0) may be approximated via simulation or the bootstrap.
Chernozhukov et al. (2015) propose, for example, employing

Ĝn(θ̂n) ≡ 1√
n

n∑
i=1

ωi

{
ρ(Xi , θ̂n)q kn (Zi ) − 1

n

n∑
i=1

ρ(Xi , θ̂n)q kn (Zi )

}
, 65.

where θ̂n is the minimizer of Equation 61, and {ωi }n
i=1 are drawn by the researcher from a standard

normal distribution independently of {Xi , Zi }n
i=1. Notice that, conditional on the data, Ĝn(θ̂n)

follows a normal distribution, and thus Equation 65 is simply a computationally convenient method
for simulating a Gaussian vector whose covariance matrix is the sample analog of the covariance
matrix of Gn(θ0).

The set of h satisfying the constraint θ0 + h/
√

n ∈ �n ∩ R cannot be uniformly consistently
estimated. As a result, Chernozhukov et al. (2015) propose a construction that, when applied to
the set R as defined in Equation 60, reduces to restricting h to the set4

Ĉn ≡
{

h : g
(
θ̂n + h√

n

)
= λ and

∇2h(v)√
n

≤ max{0, −[∇2θ̂n(v) + rn]} for all v ∈ [0, 1]
}
.

In this case, rn is a bandwidth selected by the researcher that is meant to reflect the sampling
uncertainty present in ∇2θ̂n as an estimator for ∇2θ0. Combining these constructions then leads
to a bootstrap analog T∗

n to the statistic Tn that is given by

T∗
n ≡ inf

h∈Ĉn

∥∥∥∥∥Ĝn(θ̂n) + 1
n

n∑
i=1

∇θρ(Xi , θ̂n)[h]q kn (Zi )

∥∥∥∥∥ . 66.

The 1 − α quantile of T∗
n conditional on the data (but unconditional on {ωi }n

i=1) then provides a
valid critical value for Tn. Specifically, a test that rejects the null hypothesis whenever Tn is larger
than such a critical value has asymptotic level α. We note that, from a computational perspective,
obtaining the desired quantile requires simulating a sample {ωi }n

i=1 multiple times, solving the
optimization problem in Equation 66 for each draw of {ωi }n

i=1, and obtaining the 1 − α quantile
across simulations of the corresponding T∗

n .

6. CONCLUSION

In this review, we discuss recent developments in the econometrics of shape restrictions. While
important advances have been made, particularly in estimation and inference, there undoubtedly
remain multiple exciting areas for future research. Optimality results have often been limited to
the nonparametric white noise Gaussian model, and their extension to richer economic models
is needed. Along these lines, our understanding of efficient semiparametric estimation under
shape restrictions remains limited; however, there is a literature studying the canonical limiting
experiment under a tangent cone assumption (Chen & Santos 2015, van der Vaart 1989). Finally,
we note that we find the possibility of extending the bandwidth-free nonparametric estimation
methods of Section 4.2 to a richer class of models particularly exciting.

4In a more general setting, withϒG being linear, we find Ĉn ≡ {θ ∈ �n : ϒF (θ̂n +h) = 0 andϒG(h) ≤ {−[ϒG(θ̂n) + rn1G]}∨0}
for ∨ being the least upper bound and 1G being the one element in G (i.e., the order unit).
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