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We are extremely appreciative of the insightful comments made by all the responders.
The goal of constructing useful multiple testing methods which control the false dis-
covery rate and other measures of error is currently a thriving and important area of
research. On the one hand, the bootstrap method presented in the present work seems
to work quite well and is supported by some theoretical analysis. On the other hand,
many more important practical, computational, and mathematical questions remain,
some of which are addressed by the responders and which we touch upon below.

We also appreciate the added references, which help to provide a more thorough
discussion of the available methods. Our paper was the development of a particular
methodology and was by no means a comprehensive account of the burgeoning FDR
literature.

This rejoinder is discussed in the comments available at:
http://dx.doi.org/10.1007/s11749-008-0127-5, http://dx.doi.org/10.1007/s11749-008-0128-4,
http://dx.doi.org/10.1007/s11749-008-0129-3, http://dx.doi.org/10.1007/s11749-008-0130-x,
http://dx.doi.org/10.1007/s11749-008-0131-9.
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1 Reply to José Ferreira and Mark A. van de Wiel

The non-null values θj = 0.2 were chosen as an intermediate case between two non-
interesting extremes: (i) if θj is very large, the corresponding Hj will be rejected with
probability (almost) equal to one for all methods, and so there is little distinction in
terms of power; (ii) if θj is very close to zero, Hj will be rejected with very small
probability for all methods, and so, again, there is little distinction in terms of power.
By trial and error, the value θj = 0.2 was found to be an interesting middle ground.
On the other hand, we understand the concern about the performance of our method
for a sequence of alternatives which approach the null in a continuous fashion. To
shed some light on this issue, we repeated the simulations, restricting attention to the
scenario of common correlation, for the values θj = 0.1 and 0.01. The results can be
found in Tables 1 and 2. The average number of rejections naturally declines with θj ,
but qualitatively the results do not really change very much.

Concerning the empirical distribution of the p-values generated under the null:
these p-values were computed using the tn−1 distribution for the studentized test
statistics. Since under the null, θj = 0, as opposed to θj < 0, in our simulation set-up,
the null test statistics have exactly this tn−1 distribution, and so the null p-values have
exactly a uniform [0, 1] distribution. We therefore did not feel the need to give some
information about the empirical distribution of the null p-values.

We were also quite surprised by how badly the STS version of the BH method
does when the data are dependent. The choice of λ = 0.5 (or what the discussants
call x = 0.5) may well be partly responsible. However, we would like to point out
that we simply used the “default” value of Storey et al. (2004) rather than deliber-
ately choosing a value of λ which makes the STS version look bad. The question of
whether a different choice of λ might lead to a better performance is a very good one.
This issue is also addressed by S. Sarkar and R. Heller who argue that the choice
λ = α/(1 + α) results in more reliable FDR control under dependence. We redid Ta-
ble 1 of the paper, replacing STS by STS∗, where the latter uses λ = 0.1/1.1; see

Table 1 Empirical FDRs expressed as percentages (in the rows “Control”) and average number of false
hypotheses rejected (in the rows “Rejected”) for various methods, with n = 100 and s = 50. The nominal
level is α = 10%. The number of repetitions is 5,000 per scenario, and the number of bootstrap resamples
is B = 500

σi,j = 0.0 σi,j = 0.5 σi,j = 0.9

BH STS BKY Boot BH STS BKY Boot BH STS BKY Boot

Ten θj = 0.1

Control 8.1 9.7 7.4 7.5 5.6 15.8 5.7 7.7 4.8 27.3 5.3 9.7

Rejected 0.4 0.5 0.4 0.4 0.8 2.1 0.8 1.0 0.9 3.4 0.9 2.2

Twenty five θj = 0.1

Control 5.1 7.6 4.8 4.3 4.7 7.9 4.6 4.4 4.3 11.1 4.8 6.1

Rejected 1.6 2.8 1.5 1.5 1.7 3.5 1.7 1.7 2.6 6.3 2.8 3.5

All θj = 0.1

Control 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Rejected 5.5 23.8 5.6 5.4 6.0 24.2 6.5 6.4 8.0 27.5 9.8 11.9
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Table 2 Empirical FDRs expressed as percentages (in the rows “Control”) and average number of false
hypotheses rejected (in the rows “Rejected”) for various methods, with n = 100 and s = 50. The nominal
level is α = 10%. The number of repetitions is 5,000 per scenario, and the number of bootstrap resamples
is B = 500

σi,j = 0.0 σi,j = 0.5 σi,j = 0.9

BH STS BKY Boot BH STS BKY Boot BH STS BKY Boot

Ten θj = 0.01

Control 8.1 8.3 7.3 8.1 5.3 13.4 4.9 7.8 4.0 26.6 3.6 7.8

Rejected 0.03 0.03 0.03 0.03 0.19 1.26 0.23 0.30 0.47 3.3 0.45 0.76

Twenty five θj = 0.01

Control 4.7 4.9 4.3 4.7 4.8 5.4 4.4 5.0 3.5 6.8 3.3 5.1

Rejected 0.08 0.09 0.08 0.08 0.10 0.14 0.09 0.10 0.37 1.88 0.39 0.54

All θj = 0.01

Control 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Rejected 0.17 0.20 0.16 0.17 0.20 0.33 0.19 0.20 0.63 3.84 0.69 0.95

Table 3 Empirical FDRs expressed as percentages (in the rows “Control”) and average number of false
hypotheses rejected (in the rows “Rejected”) for various methods, with n = 100 and s = 50. The nominal
level is α = 10%. The number of repetitions is 5,000 per scenario, and the number of bootstrap resamples
is B = 500

σi,j = 0.0 σi,j = 0.5 σi,j = 0.9

BH STS∗ BKY Boot BH STS∗ BKY Boot BH STS∗ BKY Boot

All θj = 0

Control 10.0 10.0 9.1 10.0 6.4 8.3 6.0 9.9 4.8 8.5 4.4 9.8

Rejected 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Ten θj = 0.2

Control 7.6 9.3 7.3 7.3 6.4 9.3 7.5 9.3 5.0 8.1 5.8 10.0

Rejected 3.4 3.7 3.4 3.4 3.5 3.7 3.5 4.1 3.7 3.8 3.7 6.0

Twenty five θj = 0.2

Control 5.0 7.8 6.2 6.7 4.3 8.6 7.4 8.9 3.9 8.0 7.1 9.5

Rejected 13.2 16.2 14.5 14.9 12.3 14.3 13.1 14.0 12.6 15.1 12.7 16.6

All θj = 0.2

Control 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Rejected 34.8 46.2 44.9 48.2 31.9 39.9 36.4 39.1 32.1 37.9 32.1 36.4

Table 3. Similar to the simulations carried out by Sarkar and Heller, STS∗ success-
fully controls the FDR in all scenarios considered and dominates both BH and BKY
in terms of power. Compared to Boot, it is a bit more powerful for ρ = 0. Under
positive dependence, there is no clear ranking. Depending on the value of ρ > 0 and
the number of false hypotheses, either method can be more powerful than the other.
Of course, SKS∗ is computationally much less expensive than Boot, which is an im-
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Fig. 1 Boxplots of the simulated FDRs similar to those described in Sect. 7.2, except that we use s = 10
instead of s = 4 hypotheses now. The horizontal dashed lines indicate the nominal level α = 0.1

portant practical advantage, especially when s is very large. There may well be other
methods to come up with estimates of s0 that take the dependence structure into ac-
count, say via resampling, but this is beyond the scope of this reply.



Rejoinder on: Control of the false discovery rate under dependence 465

Fig. 2 Boxplots of the simulated FDRs similar to those described in Sect. 7.2, except that STS is replaced
by STS∗ now. The horizontal dashed lines indicate the nominal level α = 0.1

Concerning the simulations in Sect. 7.2, there were actually two reasons for the
choice s = 4. On the one hand, we wanted to cover the space of random correlation
matrices “more thoroughly.” On the other hand, something like s = 50 is computa-
tionally infeasible. Unfortunately, the computational burden of our method is a draw-
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back. While simulating a single scenario with s = 50 is no problem, doing it 1,000
times over (for 1,000 different correlation matrices) would take weeks. However, we
were able to at least redo the exercise for the larger value s = 10; see Fig. 1. In terms
of the FDR control of our bootstrap method, the results do not change qualitatively
compared to s = 4. So there is reason to hope that they would continue to hold for
s = 50, say. However, note that there is generally a reduced variation in the boxplots,
especially for STS. This indicates that indeed, we cover the space of random correla-
tion matrices “less thoroughly” for s = 10. For example, while all the realizations for
STS lie above 0.1, we know that for some correlation matrices, the FDR is actually
successfully controlled (e.g., for the identity matrix). On the other hand, while all
the realizations lie below 0.2, we know that for some correlation matrices, the FDR
is actually higher than that (e.g., for the constant correlation matrix with correlation
close to one). So in some sense the plot for s = 4 is indeed more informative.

In view of the above discussion, we repeated the exercise, keeping s = 4 but re-
placing STS by STS∗; see Fig. 2. It is seen that STS∗ is more conservative than STS
but still fails to generally control the FDR. Therefore, if one wishes to use a method
based on the marginal p-values and is ignorant about the underlying dependence
structure, it might be safer to use BKY rather than STS∗.

Finally, we agree with you that Remark 1 could be clearer, and we wish we had
the possibility of reviews before the final version. In any case, for the benefit of new
readers, the values of both Tn,r:t and T ∗

n,r:t are always meant to be ordered so that
they are nondecreasing as r increases.

2 Reply to Wenge Guo

2.1 High-dimensional, low sample size data analysis

We agree that for many applications, these days the number of hypotheses, s, is very
large, while the number of data points, n, is very small (at least in comparison).
Our bootstrap procedure was not designed for such applications. At this point, the
justification of our methods is based on the assumption that n → ∞ while s remains
fixed. Also, mild assumptions are imposed on the data generating mechanism P , from
which it follows that all false null hypotheses will be rejected with probability tending
to one. Arguably, such assumptions are problematic when s = 2,000 and n = 10, for
example, which might be considered a “typical” combination for microarray data.

Contamination with outliers, which is quite common for microarray data, is a se-
vere problem for our procedure, at least when non-robust test statistics are used, such
as the usual t-statistic. However, the problem lies more with these outliers not ap-
pearing in bootstrap resamples. Take the case of a single small sample that is “well
behaved,” apart from a solitary, very large outlier. The t-statistic, for testing the null
hypothesis that the population mean is zero, will be close to one in absolute value (as
the outlier gets larger and larger in absolute value). Whenever the outlier does not ap-
pear in the bootstrap sample, the bootstrap t-statistic—centered by the sample mean
of the original data rather than zero—will be large in absolute value, and this happens
with probability (1 − 1

n )n ≈ 1/e ≈ 0.38. So the bootstrap test, applied to this single
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sample, will not reject the null at any customary significance level, just like the usual
t-test. Now consider a multiple testing set-up. Our bootstrap method is a stepdown
procedure and the “first” critical value (that is, the critical value used to compare the
largest of the test statistics) is the 1 − α quantile of the sampling distribution of the
largest bootstrap t-statistic T ∗

n,(s). Even a single data set with a very large outlier, out
of all s individual data sets, can dominate the sampling distribution of this maximum,
leading to large critical value. As a result, not even a single hypothesis might get
rejected. It is plausible that stepup methods are more robust in this sense. Unfortu-
nately, no bootstrap stepup methods have been suggested in the literature at all so far,
not even for the more traditional FWER. This appears, therefore, an important topic
for future research.

On the other hand, the fact that stepup procedures based on individual p-values
are more robust, in their ability to make rejections at all, to very large outliers in
individual samples, does not necessarily mean that they will lead to reliable inference,
at least when based on non-robust individual test statistics such as the usual t-statistic.
It might be worthwhile to explore suitable robust test statistics as an alternative.

2.2 Computational problem

We agree that the main drawback of the bootstrap method is its computational burden.
We are grateful for the suggestions to improve matters. However, consider expres-
sion (2). As pointed out, for the bth bootstrap data set, one has basically to compute
the number of rejections determined by the critical constants ĉi , i = 1, . . . , j − 1, and
the ordered test statistics T ∗b

i:j , i = j − 1. For a given value of c, this number, denoted
by r∗b

j , together with T ∗b
j :j , determines the contribution of the bth bootstrap sample to

the expression FDRj,P̂ (c). Actually, our software implementation is really compara-
ble in computational complexity to this suggestion. So, unfortunately, things could
not be sped up significantly along these lines.

The number of bootstrap repetitions, B , is not all that crucial in successfully con-
trolling the FDR. Note that in our simulations we only used B = 200. On the other
hand, consider two researchers applying the method to the same data set, both using
the same value of B but a different random number generator (or a different seed
value). It may well happen that, due to the randomness of the critical values which
are computed sequentially, the two researchers might obtain quite different results in
terms of the rejected hypotheses. It is therefore indeed desirable to pick B as large as
possible, given the computational resources.

2.3 Some possible extensions

We agree that bootstrap stepup methods should be less sensitive to a few extreme
outliers or a large number of skewed data sets, as typical with microarray data. How-
ever, to the best of our knowledge, no such methods have been developed yet in the
multiple testing literature, even for the presumably simpler problem of controlling
the FWER (at least not in the nonparametric setting under weak conditions). This
remains an exciting field for future research.



468 J.P. Romano et al.

As pointed out, the computation of the critical values progresses from the “bottom
up” rather than “top down.” The latter would save much time in case the number of
false hypotheses is relatively small. Unfortunately, we have not yet been able to come
up with a “top down” method.

At this point, if the number of hypotheses is very large compared to the sample
size, we would not be comfortable with applying the bootstrap method. In such ap-
plications, it is probably safer to use methods based on the marginal p-values. But as
much effort as possible should be made to ensure that the distribution of the null p-
values is as close as possible to the uniform [0,1] distribution in finite samples. Using
the usual t-test to compute individual p-values in the presence of extreme outliers
or skewed data, combined with small sample sizes, does not appear prudent, yet it
seems quite common in practice.

It would be very desirable to develop bootstrap methods that provide error rate
control (whether FWER, FDP, or FDR) under more general asymptotics where the
number of hypotheses is allowed to tend to infinity together with the sample size.
This appears a very challenging task, but we hope to make some progress here in
future research.

3 Reply to James F. Troendle

We fully agree that for many, if not most, applications, it would be preferable to con-
trol the FDP rather than the FDR. As pointed out, by controlling an expected value,
one cannot really say anything of much use about the realized FDP for a given data
set. (Of course, one can apply Markov’s inequality to get some crude information;
see (34) of Lehmann and Romano (2005a). In this sense, it is indeed unfortunate to
see that many researches use FDR controlling methods and then interpret their results
as if they had actually controlled the FDP instead.

However, control of the FDR is widespread, while control of the FDP is still used
comparatively rarely. We hope that this will change over time. In the meantime, and
also for those applications where control of the FDR might actually be preferred,
we tried to develop a resampling method to account for the unknown dependence
structure in order to improve power or the ability to detect false null hypotheses.

Notably, in our own research, we have worked on resampling methods for FDP
control first; see Romano and Wolf (2007) and Romano et al. (2008). In the latter pa-
per, inspired by the example in Korn et al. (2004), we also addressed the tail behavior
of the realized FDP under FDR control. It was seen that, especially under strong de-
pendence, high values of the FDP can become very likely, even though the FDR is
perfectly controlled.

We also agree that there is potential for the subsampling method when the sample
size is much larger than one considered in our simulation study, that is, n = 100. It
is interesting that, even in testing problems involving mean-like parameters and sta-
tistics, the asymptotic behavior of the bootstrap and subsampling method are quite
distinct in the behavior of critical values. Usually, their first-order asymptotic behav-
ior is the same, but not in the setting of the present paper. It is also frustrating that we
could not justify the bootstrap without the exchangeability assumption, even though
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this assumption is not needed for subsampling. Future research will be dedicated to
these issues.

4 Reply to Sanat K. Sarkar and Ruth Heller

In the setting of our paper, weak assumptions are imposed on the mechanism gener-
ating the data, denoted by P , with the number of data points n asymptotically tending
to ∞ while the number of tests s remains fixed. It is a consequence of these assump-
tions (rather than a basic assumption) that all false null hypotheses are rejected with
probability tending to one. As Sarkar and Heller point out, the false discovery rate,
which is indeed both a function of n and P , now denoted FDRn,P , behaves asymp-
totically like their expression (1).

In order to interpret our asymptotic results, let us be clear. As pointed out, our
results do not imply that there exists a sufficiently large n0 = n0(α) such that
FDRn,P ≤ α for all n ≥ n0. The actual statement is that, for any ε > 0, there exists
a sufficiently large n0 = n0(α,P ) such that FDRn,P < α + ε for all n ≥ n0(α,P ).
Notice that n0(α,P ) depends on the unknown P ; that is, our asymptotic analysis is
pointwise in P . Uniform asymptotic convergence over a broad class P of P would
demand that n0 not depend on P ∈ P. The distinction between pointwise and uniform
convergence in the case of single testing is discussed in Sect. 11.1 of Lehmann and
Romano (2005b). Since P is unknown, the stronger uniform convergence results are
generally more desirable, though they require additional arguments and sometimes
do not hold (for example, as a consequence of the Bahadur–Savage result). Although
we did not prove the stronger uniform convergence result in this paper, for the spe-
cial case where the test statistics are studentized sample means like those considered
in the simulations, we expect our results to hold uniformly over a broad class P. In
the single testing case, one restriction is that the underlying family of distributions
have a uniformly bounded 2 + δ moment, and a weaker condition is given in (11.77)
in Theorem 11.4.4 of Lehmann and Romano (2005b). A multivariate extension of
that theorem that is relevant for the multiple testing situation studied here is given in
Lemma 3.1 of Romano and Shaikh (2008).

A certain limitation of our theoretical analysis is the assumption that n gets large
while s remains fixed. We should mention that some literature has considered the
large s situation; see, for example, Genovese and Wasserman (2004), Storey et al.
(2004), and Efron (2008). However, note that, in some ways, the problem of large s
is made easier by stronger assumptions and by the ability to average out errors over
many tests. For instance, with the commonly used mixture model, the tests cannot
be that different from one another in that their average behavior must settle down,
so that, for example, the density of the distribution of test statistics corresponding
to false null hypotheses is the same for all such test statistics and can therefore be
estimated by usual techniques. Our goal here was to see what can be accomplished
in a more general setting which allows for a great deal of heterogeneity (in the sense
that the limiting covariance matrix of the test statistics is quite general), but with s
fixed.

Sarkar and Heller present an interesting derivation of the stepdown procedure of
Gavrilov et al. (2008) as an adaptive stepdown analog of the Benjamini–Hochberg



470 J.P. Romano et al.

procedure. The procedure is adaptive in that it modifies the BH procedure by incorpo-
rating an estimate of the number of true null hypotheses s0. Interestingly, the resulting
stepdown critical constants, given by (2) in the discussion of Sarkar and Heller, are
nonrandom, even though the motivation was based on incorporating a data-dependent
estimate of s0.

We appreciate the discussion of the choice of λ = 0.5. We also redid some of our
simulations, using your suggestion of α/(1 + α); see our above rejoinder to Ferreira
and van de Wiel.

Sarkar and Heller summarize the use of augmentation methods suggested by Paci-
fico. et al. (2004) and Dudoit and van der Laan (2008). Our experience with these
methods is that they are not as powerful as other resampling methods we have con-
sidered, at least in the context of other error rates; see the comparisons in Romano
and Wolf (2007). While augmentation is a general approach that exploits the rela-
tionship between the familywise error rate and a given generally weaker measure of
error control, it appears that the idea behind augmentation is too crude in that the
construction does not really make full use of the given measure of error control de-
sired. Nor does it take into account the dependence structure in the problem, outside
the first stage where control of the familywise error rate is used. Indeed, after the first
stage, a given number of additional hypotheses are rejected at the second stage, and
this number only depends on the number of rejections at the first stage and not, for
example, on the dependence structure of the remaining test statistics to be tested.

Finally, it would be interesting to improve the procedure, perhaps by incorporating
an estimate of s0. An alternative but similar approach might first apply some kind
of thresholding (say by a familywise error rate controlling procedure) to reduce the
number of hypotheses under consideration.

5 Reply to Daniel Yekutieli

Of course, we wish we could propose a method with finite sample validity which
implicitly or explicitly accounts for the dependence structure in the problem. Unfor-
tunately, even in single testing, this is usually too much to hope for in nonparametric
problems, but we believe that resampling methods can still be quite useful and reli-
able with sufficiently informative data. Of course, we point out the obvious fact that,
in order for the BH procedure, or any other procedure which claims finite sample con-
trol based on marginal p-values, to truly exhibit finite sample control, the p-values
must be exact in the sense of (1) in the paper. Of course, this requirement is almost
never satisfied in practice, as p-values often rely on either asymptotic or resampling
approximations.

Apparently, it is indeed quite challenging to construct a reasonable scenario where
the Benjamini–Hochberg (BH) method fails to control the FDR. However, suppose
we are in a situation where the exact sampling distribution of the test statistics is
multivariate normal with a known covariance matrix Σ , which corresponds to an as-
ymptotic approximation of the problem studied here. In the case s = 2 with both null
hypotheses true and with negative correlation between the test statistics, control of
the BH method reduces to the validity of Simes inequality. In this case, it is known
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to fail; see, for example, Samuel-Cahn (1996) for a counterexample in the one-sided
case. To the best of our knowledge, it is not known in general whether the BH method
ever fails in the two-sided case, even if the covariance matrix exhibits extreme neg-
ative dependence. The statement that the FDR of the BH method approaches αs0/s

for large n and any P seems unsubstantiated, unless one has further knowledge of
the limiting covariance matrix Σ . The validity of the BH method for multivariate
normal test statistics in the two-sided case is interesting and deserves further thought.
Certainly, a highlight of our work is that no assumptions are required on the limiting
covariance matrix, in either the one- or two-sided cases.

Yekutieli’s argument for the conservatism of FDR controlling procedures when
the non-null tested effects are small is nice. The problem is essentially reduced to
the study of control of the FDR under the complete null hypothesis when all null hy-
potheses are true. However, the argument does assume exchangeability, and one must
know that the given method controls the FDR under the complete null. Of course, the
BH method may not do so in general, and one is left with deciding which method is
most appropriate.

To be clear, we do not assume that all false null hypotheses are rejected with prob-
ability tending to one; rather, it is a proven consequence of very basic assumptions
concerning the limiting behavior of the test statistics under the fixed known data
generating mechanism P . A more complete asymptotic framework would consider
uniformity with respect to P , as well as s getting large (as discussed above in the
response to Sarkar and Heller).
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