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SUMMARY
The effect of a program or treatment may vary according to observed characteristics. In such a setting, it may
not only be of interest to determine whether the program or treatment has an effect on some sub-population
defined by these observed characteristics, but also to determine for which sub-populations, if any, there is an
effect. This paper treats this problem as a multiple testing problem in which each null hypothesis in the family
of null hypotheses specifies whether the program has an effect on the outcome of interest for a particular sub-population.
We develop our methodology in the context of PROGRESA, a large-scale poverty-reduction program in Mexico.
In our application, the outcome of interest is the school enrollment rate and the sub-populations are defined by
gender and highest grade completed. Under weak assumptions, the testing procedure we construct controls the
familywise error rate—the probability of even one false rejection—in finite samples. Similar to earlier studies,
we find that the program has a significant effect on the school enrollment rate, but only for a much smaller number
of sub-populations when compared to results that do not adjust for multiple testing. Copyright © 2013 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

The effect of a program or treatment may vary according to observed characteristics, such as gender or
age. In such a setting, it may not only be of interest to determine whether the program or treatment has
an effect on some sub-population defined by these observed characteristics, but also to determine for
which sub-populations, if any, there is an effect. This paper treats this problem as a multiple testing
problem in which each null hypothesis in the family of null hypotheses specifies whether the
program has an effect on the outcome of interest for a particular sub-population. For this family of null
hypotheses, we construct under weak assumptions a multiple testing procedure that controls the
familywise error rate—the probability of even one false rejection—in finite samples.

We require control of the familywise error rate to avoid erroneously finding ‘too many’ sub-populations
for which there is an effect. Indeed, if we were to test each null hypothesis in this family of null
hypotheses in a way that controls the usual probability of a Type I error, then the probability of
some false rejection may be much greater than the nominal level. In other words, the probability
of falsely determining that the program or treatment has an effect for some sub-population maybe
much greater than the nominal level.

To achieve control of the familywise error rate in finite samples under weak assumptions, we exploit
results on stepwise multiple testing procedures developed in Romano and Wolf (2005). The resulting
multiple testing procedure differs from classical multiple testing procedures—like Bonferroni and
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Holm—in that it incorporates information about the joint dependence structure of the test statistics
when determining which null hypotheses to reject. We illustrate the improvement in power by
comparing our results with those obtained by Bonferroni and Holm. Similar adjustments for multiple
testing have been made by others when making inferences about the effect of a program on multiple
outcomes using closely related results on stepwise multiple testing developed in Westfall and Young
(1993). See, in particular, Anderson (2008), who analyzes some important early childhood interventions,
and Kling et al. (2007), who analyze the Moving to Opportunity experiment.
We describe our testing methodology in the context of PROGRESA, a large-scale poverty-reduction

program introduced by the Mexican government in 1998. Presently, approximately 2.6 million
households in nearly 50,000 rural villages in Mexico are participating in the program. The program
is widely credited with decreasing poverty and improving health and educational attainment in regions
in which it has been deployed. See, for example, Skoufias (2001), Behrman et al. (2005), Djebbari and
Smith (2008) and Angelucci and De Giorgi (2009), among others. Similar programs have also been
adopted by many other developing countries, including Brazil, Honduras, Jamaica, Chile, Malawi
and Zambia.
As described further below, a notable feature of PROGRESA is that treatment status was assigned

at the level of the village rather than the individual. For this reason, researchers often use ‘clustered
standard errors’ in their analyses of PROGRESA to allow for dependence across potential outcomes
of individuals within villages. It is therefore worth emphasizing that an important feature of our
methodology is that it allows for arbitrary dependence across potential outcomes of individuals within
villages while controlling the familywise error rate in finite samples—see Remark 3 below. In this
way, it accommodates ‘spillovers’ within villages from treatment.
Among the most commonly analyzed outcomes in previous studies of PROGRESA is school

enrollment. See Skoufias et al. (2001), Schultz (2004), Todd and Wolpin (2006) and Attanasio et al.
(2012). We therefore focus on this outcome and analyze the effect of PROGRESA on school
enrollment for different sub-populations defined by gender and highest grade completed. Gender varies
over two possible values and highest grade completed varies over 10 possible values, so there are
20 sub-populations. Even after adjusting for multiple testing, we find, similar to existing studies, that
the program has a significant effect on the school enrollment rate, but in a much smaller number of
sub-populations when compared to results that do not adjust for multiple testing.
The remainder of this paper is organized as follows. In Section 2, we provide some limited

background information on PROGRESA, including most importantly a description of the way in
which treatment status was assigned. In Section 3, we formally describe our set-up and assumptions
before developing our testing procedures in Section 4. There we first discuss the problem of testing
a single null hypothesis, before turning our attention to the problem of testing multiple null hypotheses.
In Section 5, we present the results of applying our methodology to the data from PROGRESA. Section
6 concludes.

2. DESCRIPTION OF PROGRESA

PROGRESA is a large-scale poverty-reduction program introduced by the Mexican government
in 1998. The program specifically targeted poverty in rural villages in Mexico by providing cash
payments to households in exchange for regular school attendance as well as provisions for free health
services, including nutrition supplements and educational seminars on nutrition and hygiene. The
program was expanded in May 2000 to the rest of Mexico, after which it was no longer referred to
as PROGRESA but as Oportunidades. In this paper, we only use data from the time period before
the program was expanded to the rest of Mexico. We now describe the most important aspects of
the program for our analysis in further detail.
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2.1. Eligibility

Eligibility criteria for the program were determined according to two baseline surveys conducted in
506 rural villages in Mexico in October 1997 and March 1998. Households that were sufficiently poor
according to these baseline surveys were deemed eligible for the program. In May 1998, each of these
506 villages was independently selected into treatment with probability 2/3. All eligible households in
320 of the 506 villages selected in this way were invited to participate in the program. This accounted for
approximately 78% of the households in these 320 villages. Nearly all households invited to participate in
the program chose to do so.

2.2. Treatment

Eligible households in treated villages received cash transfers every 2months for each grade-eligible
child who attended school regularly. Regular attendance was defined as an attendance rate of at least
85%. Failure to fulfill this requirement would lead to loss of the benefit. The size of the cash
transfer varied according to gender and highest grade completed. In particular, the subsidy increased
when the child entered 9th grade and the subsidy for girls in 7th through 9th grades was larger
than than for boys in 7th through 9th grades. This variation in the size of the cash transfer was
intended to offset the opportunity costs of schooling for older children and to promote gender equality
in schooling. This variation also makes sub-populations defined by gender and highest grade completed
natural for analysis.

2.3. Evaluation

After the program started, three follow-up surveys were administered to all eligible households
in the 506 villages in October 1998, May 1999 and November 1999. These surveys included a
wide variety of questions, including educational attainment, health, consumption and household
structure, and have been used by many researchers to evaluate the impact of the program on
various outcomes.

3. SET-UP AND ASSUMPTIONS

3.1. Set-Up

We index villages by j 2 J, (eligible) individuals in villages by i 2 Ij and time periods by
s2 S= Sbase∪ Sfollow� up, where Sbase and Sfollow� up are disjoint sets of time periods indexing, respec-
tively, the two baseline surveys in October 1997 and March 1998 and the three follow-up surveys in
October 1998, May 1999 and November 1999.

Denote by Yi,j,s(0) the outcome of the ith person in the jth village in the sth time period if the jth
village were not treated, by Yi,j,s(1) the outcome of the ith person in the jth village in the sth time period
if the jth village were treated, by Dj the treatment status of the jth village, and by Zi,j observed
characteristics of the ith person in the jth village that will be used to define the different sub-populations
of interest. Here,

Zi; j ¼ Gi; j;Ai; j

� �
where Gi, j is the gender of the ith person in the jth village and Ai, j is the highest grade completed by the
ith person in the jth village in the second baseline survey in March 1998. In this notation, the observed
outcome of the ith person in the jth village in the sth time period is given by
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Yi;j;s ¼ DjYi;j;s 1ð Þ þ 1� Dj

� �
Yi;j;s 0ð Þ if s 2 Sfollow�up

Yi;j;s 0ð Þ if s 2 Sbase

�
(1)

In order to state our null hypotheses precisely, it is useful to introduce the following shorthand
notation. Let

D ¼ Dj : j 2 J
� �

and define D ¼ supp Dð Þ
Z ¼ ∪

i2Ij; j2J
supp Zi; j

� �
i.e. the set of possible values for D and Z. For z 2 Z and d 2 D, define

Ybase
z ¼ Yi; j;s : i 2 Ij; j 2 J; s 2 Sbase; Zi; j ¼ z

� �
Y follow�up
z dð Þ ¼ Yi; j;s dj

� �
: i 2 Ij; j 2 J; s 2 Sfollow�up; Zi; j ¼ z

� �
Yz ¼ Yi; j;s : i 2 Ij; j 2 J; s 2 S; Zi; j ¼ z

� �
In other words, D is the vector of treatment status for the villages, Ybase

z is the vector of observed out-
comes in the baseline surveys for people in the sub-population corresponding to z, Y follow�up

z dð Þ is the
vector of potential outcomes in the counterfactual state of the world where treatment status is given by
d in the follow-up surveys for people in the sub-population corresponding to z, and Yz is simply the
vectorof observed outcomes for people in the sub-population corresponding to z.
Denote by P the distribution of

Ybase
z ; Y follow�up

z dð Þ : d 2 D; z 2 Z� �
;D

� �
which is assumed to lie in a large class of possible distributions Ω. The assumptions we impose on Ω
are described in Section 3.2 below. For each z 2 Z, let

oz ¼ P 2 Ω : Y follow�up
z dð Þ does not depend on d

� �
(2)

In other words, oz is the set of distributions for which the program had no effect on outcomes in the
sense that potential outcomes in the follow-up surveys for people in the sub-population corresponding
to z do not depend on the counterfactual state of the world.
In this notation, our goal is to test the family of null hypotheses

Hz : P 2 oz for z 2 Z (3)

in a way that controls the familywise error rate—the probability of even one false rejection—in finite
samples. More formally, let Z0 Pð Þ denote the set of true null hypotheses, i.e.

Z0 Pð Þ ¼ z 2 Z : P 2 ozf g
and define

FWERP ¼ P reject ≥ 1 Hz with z 2 Z0 Pð Þf g
In this notation, our goal is to test the family of null hypotheses (3) in a way that satisfies

FWERP≤a for all P 2 Ω (4)

for some pre-specified value of a2 (0,1) under weak assumptions on Ω.
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Remark 1. By requiring that our testing procedure satisfy equation (4), we ensure that the
probability that all of the the null hypotheses rejected by our procedure are false is at least 1� a.
The recent literature on multiple testing has considered error rates less stringent than the familywise
error rate. One example is the k-familywise error rate—the probability of k or more false rejections
for some k≥ 1. Another example is based on the false discovery proportion—the ratio of false rejections
to total rejections (defined to be zero when there are no rejections at all). With such error rates, one can
only guarantee that the probability that ‘most’ of the null hypotheses rejected by the procedure are
false is at least 1� a. However, such procedures may have much greater ability to detect false null
hypotheses. This feature may be especially valuable when the number of null hypotheses under
consideration is very large. See Romano et al. (2008) for a discussion of some procedures for control
of such error rates. We do not pursue such error rates here because in our application the number of
null hypotheses under consideration is relatively small. ■

3.2. Assumptions

In this section, we describe the assumptions we impose upon Ω. The requirements are weak.

Assumption 1. For any P2Ω,

Ybase
z ; Y follow�up

z dð Þ : d 2 D; z 2 Z� �
⫫D

under P.

Our first assumption simply states that the assignment of treatment status was in fact random in
the sense that outcomes in the baseline surveys and potential outcomes in the follow-up surveys are
independent of treatment status.

Assumption 2. For any P2Ω,
D � Bernoulli 2=3ð Þ Jj j

under P, i.e., Dj, j2 J is an i.i.d. sequence of Bernoulli(2/3) random variables.

Our second assumption simply states the precise way in which treatment status was assigned, i.
e. that each village was independently selected for treatment with probability 2/3. It can be weakened
considerably. For example, it suffices that the distribution of D is exchangeable in the sense that the
distribution of D remains invariant with respect to permutations of its components. See Section 4.1
below for further details.

Remark 2. When treatment status is assigned in more complicated ways, such as stratification,
the distribution ofDwill typically not be exchangeable, but other symmetries in the distribution of treatment
status may persist. These symmetries may be exploited in a similar way to exchangeability here to construct
tests with finite-sample validity. See Heckman et al. (2010, 2011) for examples of this approach. ■

Remark 3. We emphasize that our analysis below will only require Assumptions 1 and 2. In particular,
we will make no restrictive assumptions about the dependence structure of outcomes in the baseline surveys
and potential outcomes in the follow-up surveys of individuals within the same village. Our methodology
therefore accommodates ‘spillovers’ within villages from treatment. See Barrios et al. (2012) for
related discussion. ■
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4. METHODOLOGY

In Section 4.1 below, we consider the problem of testing a single null hypothesis of the form

HZ0 : P 2 ∩
z2Z0

oz (5)

for someZ0⊆Z in a way that controls the usual probability of a Type I error at level a. WhenZ0 is not a
singleton, such a null hypothesis is sometimes referred to as a joint null hypothesis. Importantly,
rejection ofHZ0 allows the researcher to conclude that the program has an effect on potential outcomes
for some z 2 Z0 ,but does not allow the researcher to conclude for which z 2 Z0 the program has an
effect on potential outcomes. We therefore extend these methods in Section 4.2 to test the family of
null hypotheses (3) in a way that satisfies equation (4).

4.1. Testing a Single (Joint) Null Hypothesis

LetZ0⊆Z be given. In order to describe our test of the single (joint) null hypothesis (5), we first require
a test statistic. To this end, define

XZ0 ¼ Yz : z 2 Z0ð Þ;Dð Þ
and let

TZ0 ¼ TZ0 XZ0ð Þ

be a test statistic for equation (5). Note that we impose the mild requirement that TZ0 only depend on
XZ0 . In particular, we assume that it does not depend on Yz for z 2 Z0 . We assume further that large
values of TZ0 provide evidence against the null hypothesis.
We now describe our construction of a critical value with which to compareTZ0. For this purpose, the

following lemma is useful.

Lemma 1. Let Z0⊆Z. If Assumption 1 holds, then

Yz : z 2 Z0ð Þ⫫D

under any P 2 ∩z2Z0oz.

Proof. From Assumption 1 we have that

Ybase
z ; Y follow�up

z dð Þ : d 2 D; z 2 Z0� �
⫫D

Since P 2 ∩z2Z0oz, we have that

Ybase
z ; Y follow�up

z dð Þ� � ¼ Yz

for all d 2 D and z 2 Z0. The desired result thus follows. ■
In order to describe an important implication of Lemma 1, it is useful to introduce the following

notation. Denote by |J| the number of elements in the set J. Let G be the group of permutations
on |J| elements and define the action of g2G on a |J|-dimensional vector v as follows:
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gv ¼ vg 1ð Þ; . . . ; vg Jj jð Þ
� �

Here, the term group is used to describe the mathematical structure of the set of all permutations on |J|
elements. Similarly, define the action of g2G on XZ0 as follows:

gXZ0 ¼ Yz : z 2 Z0ð Þ; gDð Þ (6)

Note that Lemma 1 implies that

gXZ0 ¼d XZ0

whenever P 2 ∩z2Z0oz and g2G. This symmetry in the distribution of the data suggests that we can
construct a critical value with which to compare our test statistic by re-evaluating on the data gXZ0

for each g2G. More specifically, we can use

cZ0 XZ0 ; 1� að Þ ¼ inf t 2 R :
1
Gj j

X
g2G

I TZ0 gXZ0ð Þ≤ tf g≥1� a

( )
(7)

as our critical value.
The following theorem formalizes the test proposed above.

Theorem 1. Under Assumptions 1 and 2, the test that rejects HZ0 whenever

TZ0 XZ0ð Þ > cZ0 XZ0 ; 1� að Þ

where cZ0 XZ0 ; 1� a
� �

is defined by equation (7) controls the usual probability of a Type I error at level
a, i.e.

P TZ0 XZ0ð Þ > cZ0 XZ0 ; 1� að Þf g≤a

for all P 2 ∩z2Z0oz.

Proof. Consider P 2 ∩z2Z0oz. Define

’ XZ0
� � ¼ I TZ0 XZ0

� �
> cZ0 XZ0 ; 1� a

� �� �
Recall that Lemma 1 implies that equation (6) holds under any such P. Hence,

EP

X
g2G

f gXZ0ð Þ
" #

¼
X
g2G

EP f gXZ0ð Þ½ �

¼
X
g2G

EP f XZ0ð Þ½ �

¼ Gj jEP f XZ0ð Þ½ �

(8)

On the other hand, because G is a group,
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cZ0 gXZ0 ; 1� að Þ ¼ cZ0 XZ0 ; 1� að Þ

for any g2G. We therefore have that

EP

X
g2G

f gXZ0ð Þ
" #

≤ Gj ja

It follows from equations (8) and (9) that

EP f XZ0ð Þ½ �≤a (9)

from which the desired conclusion follows immediately. ■

Remark 4. Once equation (6) is established, the proof of Theorem 1 follows from the usual
arguments that underlie the validity of ‘randomization tests’. See, for example, chapter 15 of Lehmann
and Romano (2005) for a textbook discussion of such methods. Nevertheless, we include the details of
the argument for completeness. ■

Remark 5. Note that cZ0 XZ0 ; 1� að Þ defined in equation (7) requires computing TZ0 gXZeð Þ for every
g2G. Since |G| is large in our case, this is computationally infeasible. We therefore resort to the
stochastic approximation to equation (7) defined as follows:

ĉZ0 XZ0 ; 1� að Þ ¼ inf t 2 R :
1
B

X
1≤i≤B

I TZ0 giXZ0ð Þ≤ t
� �

≥1� a

( )
(10)

where g1 is the identity element and g2, . . ., gB are i.i.d. Unif(G) for some fixed value B. Theorem 1
remains true with ĉZ0 XZ0 ; 1� að Þ in place of cZ0 XZ0 ; 1� að Þ . See section 15.2 of Lehmann and
Romano (2005) for details. In our empirical application below, we compute critical values using such
an approximation with B= 3000. ■

Remark 6. Note that our analysis only depends on the specific definition of oz in equation (2)
through Lemma 1. Hence, our analysis is unaffected by changes in the definition of oz provided
that Lemma 1 continues to hold. For instance, if Z0 were a singleton, then Lemma 1 would continue
to hold for

oz ¼ P 2 Ω : the distribution of Ybase
z ; Y follow�up

z dð Þ� �
does not depend on d

� �
(11)

As a result, the methodology described above may be used to test the null hypothesis that P2oz for oz

defined by equation (11) in a way that controls the usual probability of a Type I error at level a. The
need to consider null hypotheses of the form in equation (5) withZ0 not a singleton only arises because
of our desire in Section 4.2 below to improve upon multiple testing procedures like Bonferroni and
Holm-type corrections. If this were not the case, then it would be possible to define oz as in
equation (11) throughout our analysis. ■
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4.2. Testing Multiple Null Hypotheses

We now return to the problem of testing the family of null hypotheses (3) in a way that satisfies
equation (4). Under Assumptions 1 and 2, it is straightforward to calculate a p-value p̂z for each Hz

using Theorem 1 by simply applying the theorem with Z0 ¼ zf g and computing the smallest value
of a for which the null hypothesis is rejected. The resulting p-values will satisfy

P p̂z≤uf g≤u

for all u2 (0,1) and P2oz. A crude solution to the multiplicity problem would therefore be
to apply a Bonferroni or Holm-type correction. See, for example, Romano et al. (2010) for
further details. Such an approach would indeed satisfy equation (4), as desired, but implicitly
relies upon a ‘least favorable’ dependence structure among the p-values. To the extent that
the true dependence structure differs from this ‘least favorable’ one, improvements may be
possible. For that reason, we use results on stepwise multiple testing procedures developed by
Romano and Wolf (2005) for control of the familywise error rate to implicitly incorporate
information about the dependence structure when deciding which null hypotheses to reject.
Our discussion follows that in Romano and Shaikh (2010), wherein the algorithm is generalized
to allow for possibly uncountably many null hypotheses. See also Heckman et al. (2010, 2011),
where a similar procedure is employed to re-evaluate the High/Scope Perry Preschool program.

In order to describe our testing procedure, we first require a test statistic for each null hypothesis
such that large values of the test statistic provide evidence against the null hypothesis. As before, we
impose the requirement that the test statistic for Hz depends only on X{z}. Denote such a test statistic
by Tz(X{z}). Next, for Z0⊆Z, define

TZ0 XZ0ð Þ ¼ max
z2Z0

Tz X zf g
� �

Finally, for Z0⊆Z, denote by cZ0 XZ0 ; 1� að Þ the critical value defined in equation (7) with this choice
ofTZ0 XZ0ð Þ.

Our testing procedure is summarized in the following algorithm.

Algorithm 1.
Step 1. Set Z1 ¼ Z. If

max
z2Z1

Tz X zf g
� �

≤cZ1 XZ1 ; 1� að Þ

then stop and reject no null hypotheses; otherwise, reject any Hz with

Tz X zf g
� �

> cZ1 XZ1 ; 1� að Þ
and go to Step 2.

⋮

Step j. Let Zj denote the indices of remaining null hypotheses. If

max
z2Zj

Tz X zf g
� �

≤cZj XZj ; 1� a
� �

then stop and reject no null hypotheses; otherwise, reject any Hz with
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Tz X zf g
� �

> cZj XZj ; 1� a
� �

and go to Step j+ 1.

⋮

Theorem 2. Under Assumptions 1 and 2, Algorithm 1 satisfies equation (4).

Proof. The claim follows from Theorem 1 and arguments given in Romano andWolf (2005) or Romano
and Shaikh (2010). Since the argument is brief, we include it here for completeness.
Suppose that a false rejection occurs. Let ĵ be the smallest step at which a false rejection occurs. By

the minimality of ĵ, we must have

Z ĵ⊇Z0 Pð Þ (12)

It follows that

cZ ĵ
XZ ĵ

; 1� a
� �

≥cZ0 Pð Þ XZ0 Pð Þ; 1� a
� �

(13)

Since a false rejection occurred, we must also have

max
z2Z0 Pð Þ

Tz X zf g
� �

> cZ ĵ
XZ ĵ

; 1� a
� �

Hence,

max
z2Z0 Pð Þ

Tz X zf g
� �

> cZ0 Pð Þ XZ0 Pð Þ; 1� a
� �

and the probability of this event is bounded above by a by Theorem 1. ■
We conclude this section by discussing the choice of Tz(X{z}) in Algorithm 1. While a

researcher may use any choice, we choose to use Tz X zf g
� � ¼ 1� p̂z , where p̂z is a (multiplicity-

unadjusted) p-value for testing Hz. As described at the beginning of Section 4.2, such a
p-value may be computed as the smallest value of a for which Hz is rejected when applying
Theorem 1. We compute p-values for each Hz in this way using two different choices of underlying
test statistic. In our first specification, the underlying test statistic is the following ‘difference
in means’:

X
j2J;i2Ij;s2Sfollow�up:Zi;j¼z

DjYi;j;sX
j2J;i2Ij;s2Sfollow�up:Zi;j¼z

Dj

�
X

j2J;i2Ij;s2Sfollow�up:Zi;j¼z
1� Dj

� �
Yi;j;sX

j2J;i2Ij;s2Sfollow�up:Zi;j¼z
1� Dj

� � (14)

In our second specification, the underlying test statistic is the following ‘difference in differences’:

HETEROGENEOUS TREATMENT EFFECTS 621

Copyright © 2013 John Wiley & Sons, Ltd. J. Appl. Econ. 29: 612–626 (2014)
DOI: 10.1002/jae



X
j2J;i2Ij;s2Sfollow�up:Zi;j¼z

DjYi;j;sX
j2J;i2Ij;s2Sfollow�up:Zi;j¼z

Dj

�
X

j2J;i2Ij;s2Sfollow�up:Zi;j¼z
1� Dj

� �
Yi;j;sX

j2J;i2Ij;s2Sfollow�up:Zi;j¼z
1� Dj

� �
8<
:

9=
;

�
X

j2J;i2Ij;s2Sbase:Zi;j¼z
DjYi;j;sX

j2J;i2Ij;s2Sbase:Zi;j¼z
Dj

�
X

j2J;i2Ij;s2Sbase:Zi;j¼z
1� Dj

� �
Yi;j;sX

j2J;i2Ij;s2Sbase:Zi;j¼z
1� Dj

� �
8<
:

9=
;

(15)

It may also be desirable to Studentize equation (14) or (15) in some way, but we do not pursue
such modifications here. By using p-values based on these test statistics rather than the test statistics
themselves, we ensure that the testing procedure is ‘balanced’ in the sense that the probability of
rejecting any true null hypothesis is roughly equal. See Romano and Wolf (2010) for further details.
Note further that this approach remains computationally feasible because the same permutations used
to compute p̂z may be used in Algorithm 1.

Remark 7. Theorem 2 remains true if critical values ĉZ0 XZ0 ; 1� a
� �

defined in equation (10) are
used in place of cZ0 XZ0 ; 1� a

� �
provided that g1, . . ., gB remain the same throughout the algorithm.

If this is not the case, then equation (13) may not hold.

Remark 8. It is straightforward to calculate a multiplicity-adjusted p-value p̂adjz for each Hz using
Theorem 2 by simply computing the smallest value of a for which each null hypothesis isrejected.
The resulting p-values have the property that the procedure that rejects any Hz with p̂adjz ≤a satisfies (4).

Remark 9. As an alternative to equation (14) or (15) as the choice of underlying test statistic for
testing Hz, a researcher may wish to use the coefficient on Dj from a linear regression involving
X{z}. As an example, one might consider the linear regression of Yi,j,s for some s2 Sfollow� up on
Dj using only those observations for which Zi,j = z.

Remark 10. The first step of Algorithm 1 may be interpreted as a joint test of the null hypothesis that
the program has no effect on any of the sub-populations. A similar testing problem is considered in
Mitnik et al. (2008). The authors there note, as was mentioned previously, that rejection of such a null
hypothesis only allows one to conclude that there is some sub-population for which the program
has an effect. In particular, it does not permit one to answer the more ambitious question of for which
sub-populations the program had an effect.

5. EMPIRICAL RESULTS

We use all five of the surveys, i.e. the two baseline and three follow-up surveys, to examine the effect
of PROGRESA on school enrollment. Data from each of the five surveys are available from the official
website of the program.1 Following Schultz (2004), we restrict our sample to children whose ages were
between 6 and 16 at the time of the first baseline survey in October 1997 and were surveyed in all five
of the surveys. See, in particular, Table 3 in Schultz (2004).

1 http://evaluacion.oportunidades.gob.mx:8010/en/index.php.
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5.1. Summary Statistics

Table 1 displays for each of the five surveys the total number of treated and untreated children as
well as the following five quantities for both the treated and untreated children: (i) fraction of
girls; (ii) average age; (iii) average school enrollment rate (for both girls and boys); (iv) average
school enrollment rate for boys; and (v) average school enrollment rate for girls. For each of these five
quantities, we also report a p-value from an (asymptotic) test of whether the corresponding difference
between the treated and untreated children equals zero.

In the baseline surveys, we see little evidence of any differences between the treated and
untreated children. This is consistent with the randomization of treatment status. See, for exam-
ple, Behrman and Todd (1999). On the other hand, in the follow-up surveys, we see evidence
that the program had an effect on the school enrollment rate (both for boys and girls together
and for boys and girls separately).

5.2. Main Results

Table 2 displays for each of the 20 sub-populations of interest the following eight quantities: column 1
displays a (multiplicity-unadjusted) p-value computed using Theorem 1; column 2 displays a (multi-
plicity-adjusted) p-value computed using Theorem 2; column 3 displays a (multiplicity-adjusted) p-
value obtained by applying a Bonferroni adjustment to the p-values in column 1; column 4 displays
a (multiplicity-adjusted) p-value obtained by applying a Holm adjustment to the p-values in column
1; column 5 displays a (multiplicity-unadjusted) p-value computed using Theorem 2; column 6 displays

Table II. Main results

DI DID

Multiplicity adj. Multiplicity adj.

HCG
Unadj.

Thm. 4.2 (1) Thm. 4.2 (2) Bonf. (3) Holm (4)
Unadj. Thm.

4.1 (5) Thm. 4.2 (6) Bonf. (7) Holm (8)

Girls
0 0.908 0.908 1.000 0.908 0.810 0.999 1.000 1.000
1 0.617 0.940 1.000 1.000 0.905 0.905 1.000 0.905
2 0.237 0.939 1.000 1.000 0.032** 0.382 0.633 0.475
3 0.030** 0.344 0.593 0.445 0.709 1.000 1.000 1.000
4 0.037** 0.373 0.746 0.485 0.000*** 0.000*** 0.007*** 0.007***
5 0.001*** 0.017** 0.027** 0.023** 0.020** 0.295 0.407 0.346
6 0.001*** 0.006*** 0.013** 0.012** 0.018** 0.276 0.360 0.324
7 0.549 0.979 1.000 1.000 0.040** 0.401 0.793 0.515
8 0.544 0.988 1.000 1.000 0.396 0.986 1.000 1.000
9+ 0.256 0.937 1.000 1.000 0.293 0.967 1.000 1.000
Boys
0 0.727 0.926 1.000 1.000 0.812 0.992 1.000 1.000
1 0.001*** 0.007*** 0.013** 0.013** 0.031** 0.394 0.620 0.496
2 0.386 0.985 1.000 1.000 0.862 0.981 1.000 1.000
3 0.001*** 0.006*** 0.013* 0.013* 0.003*** 0.055* 0.067* 0.063*
4 0.230 0.949 1.000 1.000 0.806 1.000 1.000 1.000
5 0.025** 0.311 0.493 0.395 0.188 0.920 1.000 1.000
6 0.034** 0.368 0.686 0.481 0.036** 0.397 0.720 0.504
7 0.598 0.971 1.000 1.000 0.786 1.000 1.000 1.000
8 0.393 0.979 1.000 1.000 0.439 0.990 1.000 1.000
9+ 0.414 0.974 1.000 1.000 0.269 0.967 1.000 1.000

Note: HGC, ‘highest grade completed’; DI, ‘difference in means’; DID, ‘difference in differences’. Single, double and triple
asterisks indicate p-values less than 10%, 5% and 1%, respectively.
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a (multiplicity-adjusted) p-value computed using Theorem 2; column 7 displays a (multiplicity-adjusted)
p-value obtained by applying a Bonferroni adjustment to the p-values in column 5; column 8 displays a
(multiplicity-adjusted) p-value obtained by applying a Holm adjustment to the p-values in column 5.
Regardless of the choice of underlying test statistic, we see in columns 2 and 6 that after accounting

for multiple testing we only find that the program had an effect on the school enrollment rate for a
limited number of sub-populations. In particular, if, out of concern about initial differences in the school
enrollment rate, we were to use a test statistic based on equation (15) (‘differences-in-differences’), then
we would find that the program only had an effect on two sub-populations, namely girls whose highest
grade completed was four and boys whose highest grade completed was three. This finding may merit
further investigation, especially since the p-values for girls and boys for all other values of highest grade
completed are quite large. On the other hand, we see in columns 1 and 5 that by ignoring the multiplicity of
comparisons being made one would conclude that the program had an effect on the school enrollment rate
for a much larger number of sub-populations. In particular, if we were again to use a test statistic based on
equation (15), then we would find that the program had an effect on eight different sub-populations.
As mentioned previously, the p-values from Theorem 2 improve upon p-values obtained by apply-

ing Bonferroni or Holm adjustments by incorporating information about the joint dependence structure
of the test statistics when determining which null hypotheses to reject. This feature is evident in Table 2,
as the p-values from columns 2 and 6 are always smaller (and sometimes by a considerable margin)
than the p-values in columns 3–4 and 7–8, respectively.

6. CONCLUSION

In this paper, we provide a framework for determining the sub-populations for which a program or
treatment has an effect on an outcome of interest. More specifically, we develop under weak assumptions
a procedure for testing the family of nullhypotheses in which each null hypothesis specifies whether the
program has an effect on the outcome of interest for a particular sub-population in a way that controls
the familywise error rate in finite samples. We have applied our methodology to data from PROGRESA
and examined the effect of the program on school enrollment and how this effect varies by gender and
highest grade completed. Notably, our methodology does not require any restrictions on the dependence
structure across potential outcomes of individuals within villages. Similar to earlier studies, we find that
the program has a significant effect on the school enrollment rate, but only for a much smaller number
of sub-populations when compared to results that do not adjust for multiple testing. We believe our
framework will be useful to researchers analyzing similar questions in other empirical settings.
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