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Abstract

This paper studies inference for the average treatment effect in randomized controlled trials where

treatment status is determined according to a “matched pairs” design. By a “matched pairs” design, we

mean that units are sampled i.i.d. from the population of interest, paired according to observed, baseline

covariates and finally, within each pair, one unit is selected at random for treatment. This type of design

is used routinely throughout the sciences, but fundamental questions about its implications for inference

about the average treatment effect remain. The main requirement underlying our analysis is that pairs

are formed so that units within pairs are suitably “close” in terms of the baseline covariates, and we

develop novel results to ensure that pairs are formed in a way that satisfies this condition. Under this

assumption, we show that, for the problem of testing the null hypothesis that the average treatment

effect equals a pre-specified value in such settings, the commonly used two-sample t-test and “matched

pairs” t-test are conservative in the sense that these tests have limiting rejection probability under the

null hypothesis no greater than and typically strictly less than the nominal level. We show, however,

that a simple adjustment to the standard errors of these tests leads to a test that is asymptotically

exact in the sense that its limiting rejection probability under the null hypothesis equals the nominal

level. We also study the behavior of randomization tests that arise naturally in these types of settings.

When implemented appropriately, we show that this approach also leads to a test that is asymptotically

exact in the sense described previously, but additionally has finite-sample rejection probability no greater

than the nominal level for certain distributions satisfying the null hypothesis. A simulation study and

empirical application confirm the practical relevance of our theoretical results.
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1 Introduction

This paper studies inference for the average treatment effect in randomized controlled trials where treatment

status is determined according to a “matched pairs” design. By a “matched pairs” design, we mean that

units are sampled i.i.d. from the population of interest, paired according to observed, baseline covariates

and finally, within each pair, one unit is selected at random for treatment. This method is used routinely

in all parts of the sciences. Indeed, commands to facilitate its implementation are included in popular

software packages, such as sampsi in Stata. References to a variety of specific examples can be found,

for instance, in the following surveys of various field experiments: Riach and Rich (2002), List and Rasul

(2011), White (2013), Crépon et al. (2015), Bertrand and Duflo (2017), and Heard et al. (2017). See also

Bruhn and McKenzie (2009), who, based on a survey of selected development economists, report that 56% of

researchers have used such a design at some point. Despite the widespread use of “matched pairs” designs,

fundamental questions about its implications for inference about the average treatment effect remain. The

main requirement underlying our analysis is that pairs are formed so that units within pairs are suitably

“close” in terms of the baseline covariates. We develop novel results to ensure that pairs are formed in a way

that satisfies this condition. See, in particular, Theorems 4.1–4.3 below. Under this assumption, we derive a

variety of results pertaining to the problem of testing the null hypothesis that the average treatment effect

equals a pre-specified value in such settings.

We first study the behavior of the two-sample t-test and “matched pairs” t-test, which are both used

routinely in the analysis of this type of data. Several specific references are provided in Sections 3.1 and

3.2 below. Our first pair of results establish that these commonly used tests are conservative in the sense

that these tests have limiting rejection probability under the null hypothesis no greater than and typically

strictly less than the nominal level. For each of these tests, we additionally provide a characterization of

when the limiting rejection probability under the null hypothesis is in fact strictly less than the nominal

level. In a simulation study, we find that the rejection probability of these tests may in fact be dramatically

less than the nominal level, and, as a result, they may have very poor power when compared to other tests.

Intuitively, the conservative feature of these tests is a consequence of the dependence in treatment status

across units and between treatment status and baseline covariates resulting from the “matched pairs” design.

We show, however, that a simple adjustment to the usual standard error of these tests leads to a test that

is asymptotically exact in the sense that its limiting rejection probability under the null hypothesis equals

the nominal level. We refer to this test as the “adjusted” t-test.

Next, we study the behavior of some randomization tests that arise naturally in these types of settings.

More specifically, we study randomization tests based on the idea of permuting only treatment status for

units within pairs. When implemented with a suitable choice of test statistic, specifically the test statistic

employed in the aforementioned “adjusted” t-test, we show that this approach also leads to a test that is

asymptotically exact in the sense described previously. We emphasize, however, that this result relies heavily

upon the choice of test statistic. Indeed, as explained further in Remark 3.16, when implemented with other

choices of test statistics, randomization tests may behave in large samples like the “matched pairs” t-test

described above. On the other hand, regardless of the specific way in which they are implemented, these tests
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have the attractive feature that they have finite-sample rejection probability no greater than the nominal

level for certain distributions satisfying the null hypothesis. We highlight these properties in a simulation

study.

The analysis of data from experiments with matched pairs has received considerable attention recently.

Much of this literature differs from the present paper in at least one of two important ways: first, the

parameter of interest is in many instances not the average treatment effect, but instead the sample average

treatment effect or the conditional average treatment effect; second, the sampling scheme differs from ours

in that the pairs of units are sampled rather than the units, which are then subsequently paired. We

emphasize that the subsequent pairing of the sampled units significantly complicates the analysis in that

pairing may only be approximate in the case of continuous covariates and also leads to dependence in the

pairs themselves, which must be taken into account, as done in our analysis below. Indeed, Athey and Imbens

(2017) advocate against the use of matched pair designs due to difficulties with consistent estimation of the

appropriate variance stemming from these complications, which we overcome in our analysis. Examples of

papers where at least one of these two distinctions are present include Abadie and Imbens (2008), Imai

(2008), Ding (2017) and Fogarty (2018a,b). Remarks 3.7–3.9 below provide further discussion of some of

these important, related contributions. A notable exception to this characterization of the literature is van

der Laan et al. (2012), who consider a more general framework that includes ours as a special case. By

specializing his results to our setting, it is possible to recover results related to some of ours, especially those

pertaining to the conservativeness of the “matched pairs” t-test and the possibility of adjusting it to obtain

an asymptotically exact test. Even for these results, we note that there are important distinctions between

our results and theirs. Furthermore, there is no analysis of the usual two-sample t-test or randomization

tests of any kind. We elaborate on these points in Remark 3.12 below.

The remainder of the paper is organized as follows. In Section 2, we describe our setup and notation. In

particular, there we describe the precise sense in which we require that units in each pair are “close” in terms

of their baseline covariates. Our main results concerning the two-sample t-test, the “matched pairs” t-test,

“adjusted” t-test and randomization tests are contained in Section 3. In Section 4, we develop some results

that ensure that units in each pair are suitably “close” in terms of their baseline covariates. In Section 5,

we examine the finite-sample behavior of these tests via a small simulation study. In Section 6, we provide

a brief empirical illustration of our proposed tests using data from an experiment replicating one of the

arms in DellaVigna and Pope (2018). Finally, we conclude in Section 7 with some recommendations for

empirical practice guided by both our theoretical results and our simulation study. As explained further in

that section, for the testing problem considered here, we do not recommend the use of the two-sample t-test

or “matched pairs” t-test because they are conservative in the sense described above; we instead encourage

the use of the “adjusted” t-test or randomization tests that employ the same test statistic because they are

asymptotically exact, and, as a result, considerably more powerful. Proofs of all results are provided in the

Supplemental Appendix.
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2 Setup and Notation

Let Yi ∈ R denote the (observed) outcome of interest for the ith unit, Di ∈ {0, 1} be an indicator for whether

the ith unit is treated, and Xi ∈ Rk denote observed, baseline covariates for the ith unit. Further denote

by Yi(1) the potential outcome of the ith unit if treated and by Yi(0) the potential outcome of the ith unit

if not treated. As usual, the (observed) outcome and potential outcomes are related to treatment status by

the relationship

Yi = Yi(1)Di + Yi(0)(1−Di) . (1)

For a random variable indexed by i, Ai, it will be useful to denote by A(n) the random vector (A1, . . . , A2n).

Denote by Pn the distribution of the observed data Z(n), where Zi = (Yi, Di, Xi), and by Qn the distribution

of W (n), where Wi = (Yi(1), Yi(0), Xi). Note that Pn is jointly determined by (1), Qn, and the mechanism

for determining treatment assignment. We assume throughout that W (n) consists of 2n i.i.d. observations,

i.e., Qn = Q2n, where Q is the marginal distribution of Wi. We therefore state our assumptions below in

terms of assumptions on Q and the mechanism for determining treatment assignment. Indeed, we will not

make reference to Pn in the sequel and all operations are understood to be under Q and the mechanism for

determining treatment assignment.

Our object of interest is the average effect of the treatment on the outcome of interest, which may be

expressed in terms of this notation as

∆(Q) = E[Yi(1)− Yi(0)] . (2)

For a pre-specified choice of ∆0, the testing problem of interest is

H0 : ∆(Q) = ∆0 versus H1 : ∆(Q) 6= ∆0 (3)

at level α ∈ (0, 1).

We now describe our assumptions on Q. We restrict Q to satisfy the following mild requirement:

Assumption 2.1. The distribution Q is such that

(a) 0 < E[Var[Yi(d)|Xi]] for d ∈ {0, 1}.

(b) E[Y 2
i (d)] <∞ for d ∈ {0, 1}.

(c) E[Yi(d)|Xi = x] and E[Y 2
i (d)|Xi = x] are Lipschitz for d ∈ {0, 1}.

Assumptions 2.1(a)–(b) are mild restrictions imposed, respectively, to rule out degenerate situations and

to permit the application of suitable laws of large numbers and central limit theorems. See, in particular,

Lemma S.1.3 in the Supplemental Appendix for a novel law of large numbers for independent and non-

identically distributed random variables that is useful in establishing our results. Assumption 2.1(c), on the

other hand, is a smoothness requirement that ensures that units that are “close” in terms of their baseline
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covariates are suitably comparable. Such smoothness requirements have been employed in establishing some

types of optimality of “matched pairs” designs. See, in particular, Kallus (2018) and Bai (2020).

Next, we describe our assumptions on the mechanism determining treatment assignment. In order to

describe these assumptions more formally, we require some further notation to define the relevant pairs of

units. The n pairs may be represented by the sets

{π(2j − 1), π(2j)} for j = 1, . . . , n ,

where π = πn(X(n)) is a permutation of 2n elements. Because of its possible dependence on X(n), π

encompasses a broad variety of different ways of pairing the 2n units according to the observed, baseline

covariates X(n). Given such a π, we assume that treatment status is assigned as described in the following

assumption:

Assumption 2.2. Treatment status is assigned so that (Y (n)(1), Y (n)(0)) ⊥⊥ D(n)
∣∣X(n) and, conditional on

X(n), (Dπ(2j−1), Dπ(2j)), j = 1, . . . , n are i.i.d. and each uniformly distributed over the values in {(0, 1), (1, 0)}.

Our analysis will require some discipline on the way in which the pairs are formed. In particular, we will

require that the units in each pair are “close” in terms of their baseline covariates in the sense described by

the following assumption:

Assumption 2.3. The pairs used in determining treatment status satisfy

1

n

∑
1≤j≤n

|Xπ(2j) −Xπ(2j−1)|r
P→ 0

for r = 1 and r = 2.

It will at times be convenient to require further that units in consecutive pairs are also “close” in terms of

their baseline covariates. One may view this requirement, which is formalized in the following assumption,

as “pairing the pairs” so that they are “close” in terms of their baseline covariates.

Assumption 2.4. The pairs used in determining treatment status satisfy

1

n

∑
1≤j≤bn2 c

|Xπ(4j−k) −Xπ(4j−`)|2
P→ 0

for any k ∈ {2, 3} and ` ∈ {0, 1}.

In Section 4 below, we provide results to facilitate constructing pairs satisfying Assumptions 2.3–2.4 under

weak assumptions on Q. We emphasize, however, that Assumption 2.4, in contrast to Assumptions 2.1–2.3,

will not be required for many of our results. Furthermore, given pairs satisfying Assumption 2.3, it will

frequently be possible to “re-order” them so that Assumption 2.4 is satisfied. See Theorem 4.3 below for

further details.
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Remark 2.1. At the expense of some additional notation, it is straightforward to allow π to depend further

on a uniform random variable U that is independent of (Y (n)(1), Y (n)(0), X(n)), but we do not pursue this

generalization here.

Remark 2.2. The treatment assignment scheme described in this section is an example of what is termed

in some parts of the literature as a covariate-adaptive randomization scheme, in which treatment status is

assigned so as to “balance” units assigned to treatment and the units assigned to control in terms of their

baseline covariates. For a review of these types of treatment assignment schemes focused on their use in

clinical trials, see Rosenberger and Lachin (2015). In some such schemes, units are sampled i.i.d. from the

population of interest, stratified into a finite number of strata according to observed, baseline covariates, and

finally, within each stratum, treatment status is assigned so as to achieve “balance” within each stratum. For

instance, within each stratum, a researcher may assign (uniformly) at random half of the units to treatment

and the remainder to control. Bugni et al. (2018, 2019) develop a variety of results pertaining to these

ways of assigning treatment status, but their analysis relies heavily upon the requirement that the units

are stratified using the baseline covariates into only a finite number of strata. As a result, their framework

cannot accommodate “matched pairs” designs, where the number of strata is equal to the number of pairs

and therefore proportional to the sample size.

3 Main Results

3.1 Two-Sample t-Test

In this section, we consider using the two-sample t-test to test (3) at level α ∈ (0, 1). In order to define this

test, for d ∈ {0, 1}, define

µ̂n(d) =
1

n

∑
1≤i≤2n:Di=d

Yi (4)

σ̂2
n(d) =

1

n

∑
1≤i≤2n:Di=d

(Yi − µ̂n(d))2 (5)

and let

∆̂n = µ̂n(1)− µ̂n(0) . (6)

The two-sample t-test is given by

φt−test
n (Z(n)) = I{|T t−test

n (Z(n))| > z1−α2 } , (7)

where

T t−test
n (Z(n)) =

√
n(∆̂n −∆0)√
σ̂2
n(1) + σ̂2

n(0)
(8)

and z1−α2 is the 1− α
2 quantile of the standard normal distribution. While its properties are far from clear in

our setting, this classical test is used routinely in the analysis of such data. See, for example, Riach and Rich
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(2002), Gelman and Hill (2006, page 174), Duflo et al. (2007), Bertrand and Duflo (2017) and the references

therein. See also Imai et al. (2009) for the use of an analgous test in a setting with cluster-level treatment

assignment.

The following theorem establishes the asymptotic behavior of the two-sample t-statistic defined in (8)

and, as a consequence, the two-sample t-test defined in (7). In particular, the theorem shows that the

limiting rejection probability of the two-sample t-test under the null hypothesis is generally strictly less than

the nominal level.

Theorem 3.1. Suppose Q satisfies Assumption 2.1 and the treatment assignment mechanism satisfies As-

sumptions 2.2–2.3. Then, √
n(∆̂n −∆(Q))√
σ̂2
n(1) + σ̂2

n(0)

d→ N(0, ς2t−test) , (9)

where

ς2t−test = 1− 1

2

E
[
((E[Yi(1)|Xi]− E[Yi(1)]) + (E[Yi(0)|Xi]− E[Yi(0)]))

2
]

Var[Yi(1)] + Var[Yi(0)]
.

Thus, for the problem of testing (3) at level α ∈ (0, 1), φt−testn (Z(n)) defined in (7) satisfies

lim
n→∞

E[φt−testn (Z(n))] = P{ςt−test |G| > z1−α2 } ≤ α , (10)

where G ∼ N(0, 1), whenever Q additionally satisfies the null hypothesis, i.e., ∆(Q) = ∆0. Furthermore,

the inequality in (10) is strict unless

E[Yi(1) + Yi(0)] = E[Yi(1) + Yi(0)|Xi] (11)

with probability one under Q.

Remark 3.1. Theorem 3.1 shows that the limiting rejection probability of the two-sample t-test under

the null hypothesis is strictly less than the nominal level unless the baseline covariates are irrelevant for

potential outcomes in the sense described by (11). We note that the conservativeness of the two-sample

t-test is mentioned in Athey and Imbens (2017), but without any formal results. The magnitude of the

difference between the limiting rejection probability and the nominal level, however, will depend further on

Q through the value of ς2t−test. In our simulation study in Section 5, we find that the rejection probability

can be severely less than the nominal level and that this difference translates into significant power losses

when compared with tests studied below that are asymptotically exact in the sense that they have limiting

rejection probability under the null hypothesis equal to the nominal level.

Remark 3.2. In our definition of the two-sample t-test above, we have used the unpooled estimator of

the variance rather than the pooled estimator of the variance. Using Lemma S.1.5 in the Supplemental

Appendix, it is straightforward to show that the pooled estimator of the variance tends in probability to

Var[Yi(1)] + Var[Yi(0)]

2
+

(E[Yi(1)]− E[Yi(0)])2

4
.

From this and Lemma S.1.4 in the Supplemental Appendix, it is possible to deduce that with this choice of
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an estimator of the variance the test may even have limiting rejection probability under the null hypothesis

that strictly exceeds the nominal level.

3.2 “Matched Pairs” t-Test

Instead of the two-sample t-test studied in the preceding section, it is often recommended to use a “matched

pairs” t-test when analyzing such data, which treats the differences of the outcomes within a pair as the

observations. This test is also sometimes referred to as the “paired difference-of-means” test. For some

examples of its use, see Athey and Imbens (2017), Hsu and Lachenbruch (2007), and Armitage et al. (2008).

Formally, this test is given by

φpaired
n (Z(n)) = I{|T paired

n (Z(n))| > z1−α2 } , (12)

where

T paired
n (Z(n)) =

√
n(∆̂n −∆0)√

1
n

∑
1≤j≤n(Yπ(2j) − Yπ(2j−1))2 − ∆̂2

n

(13)

and, as before, z1−α2 is the 1− α
2 quantile of the standard normal distribution. Again, despite its widespread

use, the properties of this test are not transparent in our setting.

The following theorem describes the asymptotic behavior of the “matched pairs” t-statistic defined in

(13), and, as a consequence, the “matched pairs” t-test defined in (12). The theorem shows, in particular,

that the behavior of the “matched pairs” t-test is qualitatively similar to that of the two-sample t-test studied

in the preceding section.

Theorem 3.2. Suppose Q satisfies Assumption 2.1 and the treatment assignment mechanism satisfies As-

sumptions 2.2–2.3. Then,

√
n(∆̂n −∆(Q))√

1
n

∑
1≤j≤n(Yπ(2j) − Yπ(2j−1))2 − ∆̂2

n

d→ N(0, ς2paired) , (14)

where

ς2paired = 1− 1

2

E
[
((E[Yi(1)|Xi]− E[Yi(1)])− (E[Yi(0)|Xi]− E[Yi(0)]))

2
]

(
E[Var[Yi(1)|Xi]] + E[Var[Yi(0)|Xi]]

+ E
[
((E[Yi(1)|Xi]− E[Yi(1)])− (E[Yi(0)|Xi]− E[Yi(0)]))2

] )
.

Thus, for the problem of testing (3) at level α ∈ (0, 1), φpairedn (Z(n)) defined in (12) satisfies

lim
n→∞

E[φpairedn (Z(n))] = P{ςpaired |G| > z1−α2 } ≤ α , (15)

where G ∼ N(0, 1), whenever Q additionally satisfies the null hypothesis, i.e., ∆(Q) = ∆0. Furthermore,
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the inequality in (15) is strict unless

E[Yi(1)− Yi(0)] = E[Yi(1)− Yi(0)|Xi] (16)

with probability one under Q.

Remark 3.3. While Theorem 3.2 is qualitatively similar to Theorem 3.1, it is worth emphasizing the

difference between (11) and (16). Both conditions determine a sense in which the baseline covariates are

irrrelevant for potential outcomes, but the latter condition holds, in particular, whenever the treatment effect

Yi(1)− Yi(0) is constant.

Remark 3.4. The test statistic in (13) is particularly convenient for the purposes of constructing a confidence

interval for ∆(Q), but we note that it is possible to studentize differently if one is only interested in testing

(3). In particular, the result in (15) continues to hold for the test formed by replacing the ∆̂n in the

denominator on the right-hand side of (13) with ∆0. On the other hand, since ∆̂n solves

min
∆

1

n

∑
1≤j≤n

(Yπ(2j) − Yπ(2j−1) −∆)2 ,

doing so would lead to a test that is less powerful than the one considered here.

Remark 3.5. In the context of observational studies under an unconfoundedness assumption, Abadie and

Imbens (2012) also analyze the left-hand side of (14); see, in particular, Theorem 1 and equation (5) in their

paper when M = 1. In their setting, this quantity converges in distribution to a standard normal distribution.

The difference between their result and ours above seems striking when one observes that their framework

allows each treated unit to be “matched” to a control unit in a way that satisfies our Assumption 2.3. We

emphasize, however, that, in contrast to the setting considered here, treatment status in their framework is

i.i.d. This important difference significantly complicates the analysis and explains the diverging results for

the same quantities.

Remark 3.6. The literature has also at times advocated estimation of ∆(Q) via estimation by ordinary

least squares of the coefficient on Di in

Yi = βDi +
∑

1≤j≤n

λjI{i ∈ {π(2j), π(2j − 1)}}+ εi . (17)

See, for example, Duflo et al. (2007) and Glennerster and Takavarasha (2013, page 363) as well as Crépon

et al. (2015), who estimate ∆(Q) in the same way, but in a setting with cluster-level treatment assignment.

In our setting, it is straightforward to see that the ordinary least squares estimator of β in (17) equals ∆̂n.

It is also possible to show that the usual heteroskedasticity-consistent estimator variance equals

1

n

∑
1≤j≤n

(Yπ(2j) − Yπ(2j−1))
2 − ∆̂2

n .

Hence, the resulting test is identical to the “matched pairs” t-test studied in this section.
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Remark 3.7. In an asymptotic framework that differs from ours in that pairs of units are sampled rather

than the units themselves, Fogarty (2018a) considers the use of the “matched pairs” t-test considered here

for inference about the sample average treatment effect as well as the average treatment effect. For inference

about the average treatment effect, it is clear that in this different asymptotic framework, the “matched

pairs” t-test would in fact be asymptotically exact. In the case of the sample average treatment effect, it is

generally conservative. Fogarty (2018a) therefore further suggests some improved tests for the case of the

sample average treatment effect, but he notes that those improvements do not carry over to the average

treatment effect. See Section 5 of Fogarty (2018a) for further discussion.

Remark 3.8. In an asymptotic framework that again differs from ours in that pairs of units are sampled

rather than the units themselves, Fogarty (2018b) considers various “regression-assisted” estimators for

different treatment effect parameters. For the average treatment effect, he considers, instead of ∆̂n, the

estimator of ∆(Q) given by the ordinary least squares estimator of the intercept parameter in a linear

regression of (Yπ(2j)−Yπ(2j−1))(Dπ(2j)−Dπ(2j−1)) on a constant and (Xπ(2j)−Xπ(2j−1))(Dπ(2j)−Dπ(2j−1)).

Denote this estimator by α̂n and by β̂n the corresponding estimator of the slope parameters. In Section

S.1.1 of the Supplemental Appendix, we show that quite generally

√
n(α̂n −∆(Q)) =

√
n(∆̂n −∆(Q)) + oP (1) . (18)

In this sense, there is no benefit to using such estimators instead of ∆̂n in our asymptotic framework.

Note, however, that this does not preclude the possibility of improvements from using “regression-assisted”

estimators that make use of covariates that are not included in Xi.

3.3 “Adjusted” t-Test

The proofs of Theorems 3.1 and 3.2 in the Supplemental Appendix rely upon Lemma S.1.4, which establishes

that
√
n(∆̂n −∆(Q))

d→ N(0, ν2) ,

where

ν2 = Var[Yi(1)] + Var[Yi(0)]− 1

2
E
[
((E[Yi(1)|Xi]− E[Yi(1)]) + (E[Yi(0)|Xi]− E[Yi(0)]))

2
]
. (19)

Using this observation, it is possible to provide an adjustment to these tests that leads to a test that is

asymptotically exact in the sense that its limiting rejection probability under the null hypothesis equals the

nominal level by providing a consistent estimator of (19). As discussed further in Remark 3.11 below, there

exist multiple consistent estimators of (19), but a convenient one for our purposes is given by

ν̂2
n = τ̂2

n −
1

2
(λ̂2
n + ∆̂2

n) , (20)
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where

τ̂2
n =

1

n

∑
1≤j≤n

(Yπ(2j) − Yπ(2j−1))
2 (21)

λ̂2
n =

2

n

∑
1≤j≤bn2 c

(
(Yπ(4j−3) − Yπ(4j−2))(Yπ(4j−1) − Yπ(4j))

×(Dπ(4j−3) −Dπ(4j−2))(Dπ(4j−1) −Dπ(4j))
)
. (22)

In order to provide some intuition for the form of this estimator, note that the expression in (19) qualitatively

involves two types of quantities: quantities like E[Yi(1)], which can be consistently estimated in a straight-

forward fashion by averaging across pairs outcomes corresponding to treated observations, as explained in

Lemma S.1.5 in the Supplemental Appendix; and quantities like E[E[Yi(1)|Xi]E[Yi(0)|Xi]], which are more

problematic, but can be consistently estimated by averaging across “pairs of pairs” the product of outcomes

corresponding to a treated and untreated observation in adjacent pairs. It is for this reason that the esti-

mator in (20) involves a quantity like (22), which averages across “pairs of pairs.” The following theorem

shows that the “adjusted” t-test, given by

φt−test,adj
n (Z(n)) = I{|T t−test,adj

n (Z(n))| > z1−α2 } (23)

with

T t−test,adj
n (Z(n)) =

√
n(∆̂n −∆0)

ν̂n
, (24)

satisfies the desired property.

Theorem 3.3. Suppose Q satisfies Assumption 2.1 and the treatment assignment mechanism satisfies As-

sumptions 2.2–2.4. Then, √
n(∆̂n −∆(Q))

ν̂n

d→ N(0, 1) . (25)

Thus, for the problem of testing (3) at level α ∈ (0, 1), φt−test,adjn (Z(n)) defined in (23) satisfies

lim
n→∞

E[φt−test,adjn (Z(n))] = α , (26)

whenever Q additionally satisfies the null hypothesis, i.e., ∆(Q) = ∆0.

Remark 3.9. Note that

ν̂2
n =

1

2
(τ̂2
n − ∆̂2

n) +
1

2
ζ̂2
n , (27)

where

ζ̂2
n =

1

n

∑
1≤j≤bn2 c

(
(Yπ(4j−3) − Yπ(4j−2))(Dπ(4j−3) −Dπ(4j−2))− (Yπ(4j−1) − Yπ(4j))(Dπ(4j−1) −Dπ(4j))

)2

.

Since τ̂2
n ≥ ∆̂2

n, this decomposition reveals that ν̂2
n is non-negative. We note that the quantity ζ̂2

n appears in

Abadie and Imbens (2008), who show in an asymptotic framework that differs from ours that it is consistent
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for Var[∆̂n|X(n)] under Assumption 2.1(c) and Assumption 2.3. They therefore suggest its use for inference

about the conditional average treatment effect. The decomposition in (27) reveals, however, that using this

estimator of the variance in place of ν̂2
n in (24) would lead to a test that in our asymptotic framework for

inference about the average treatment effect may even have limiting rejection probability under the null

hypothesis that strictly exceeds the nominal level.

Remark 3.10. While our discussion has focused on two-sided null hypotheses as described in (3), the

convergence in distribution results described in (9), (14) and (25) have straightforward implications for

other tests, such related tests of one-sided null hypotheses.

Remark 3.11. As mentioned previously, other consistent estimators of (19) exist. For instance, one may

consider the estimator given by

ν̃2
n = σ̂2

n(1) + σ̂2
n(0)− 1

2

(
λ̃2
n − (µ̂n(1) + µ̂n(0))2

)
, (28)

where

λ̃2
n =

2

n

∑
1≤j≤bn2 c

(Yπ(4j−3) + Yπ(4j−2))(Yπ(4j−1) + Yπ(4j)) .

Using arguments similar to those used in establishing Theorem 3.3, it is possible to show that Theorem 3.3

remains true when ν̂2
n defined in (20) is replaced by ν̃2

n defined in (28). Indeed, one could use the minimum

of multiple consistent estimators of (19). One could even include in the minimum any estimators known to

converge in probability to something weakly larger, such as the variance estimators employed in the usual

two-sample t-test and the “matched pairs” t-test.

Remark 3.12. As mentioned previously, van der Laan et al. (2012) consider a more general framework

that includes as a special case the one considered here. When specialized to our setting, their results also

enable one to obtain the limit in distribution of
√
n(∆̂n−∆(Q)), though the expression they provide for the

variance of the limiting distribution differs from ours and, in particular, appears to depend on the sample

size (van der Laan et al., 2012, Theorem 3). Using this result, they analyze the behavior of the “matched

pairs” t-test and find that it should quite generally be conservative in the sense that it has limiting rejection

probability no greater than the nominal level under the null hypothesis. Their analysis, however, relies upon

higher-level conditions than ours and, as a consequence, they are unable to articulate the circumstances

under which the “matched pairs” t-test has limiting rejection probability under the null hypothesis strictly

less than the nominal level as succinctly and clearly as in our Theorem 3.2. They go on to suggest a test

like our “adjusted” t-test with limiting rejection probability under the null hypothesis equal to nominal level

even when these circumstances hold, though no explicit description or formal results about it are provided.

In particular, the description of their test relies upon a consistent estimator of the variance of the limiting

distribution of
√
n(∆̂n − ∆(Q)), which in turn depends upon a “super learner” of a reference distribution

that they make use of in their analysis. Finally, these similarities not withstanding, we emphasize that van

der Laan et al. (2012) provide no analysis of the usual two-sample t-test or any of the randomization tests

considered below.
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3.4 Randomization Tests

In this section, we study the properties of randomization tests based on the idea of permuting treatment

status for units within pairs. For ease of exposition, it is convenient to describe the test for the problem

of testing (3) with ∆0 = 0; for the problem of testing (3) more generally, the construction below may be

applied with Yi replaced with Yi −Di∆0. See Remark 3.15 below for further details.

In order to describe the test formally, it is useful to introduce some further notation. To this end, denote

by Gn the group of all permutations of 2n elements and by Gn(π) the subgroup that only permutes elements

within the pairs defined by π, i.e.,

Gn(π) = {g ∈ Gn : {π(2j − 1), π(2j)} = {g(π(2j − 1)), g(π(2j)) for 1 ≤ j ≤ n}} .

Define the action of g ∈ Gn(π) on Z(n) as follows:

gZ(n) = {(Yi, Dg(i), Xi) : 1 ≤ i ≤ 2n} ,

i.e., g ∈ Gn(π) acts on Z(n) by permuting treatment assignment. For a given choice of test statistic Tn(Z(n)),

the randomization test is given by

φrand
n (Z(n)) = I{Tn(Z(n)) > R̂−1

n (1− α)} , (29)

where

R̂n(t) =
1

|Gn(π)|
∑

g∈Gn(π)

I{Tn(gZ(n)) ≤ t} . (30)

Here, R̂−1
n (1−α) is understood to be inf{t ∈ R : R̂n(t) ≥ 1−α}. We also emphasize that difference choices

of Tn(Z(n)) lead to different randomization tests and some of our results below will rely upon a particular

choice of Tn(Z(n)).

Remark 3.13. In some situations, |Gn(π)| = 2n may be too large to permit computation of R̂n(t) de-

fined in (30). In such cases, a stochastic approximation to the test may be used by replacing Gn(π) with

Ĝn = {g1, . . . , gB}, where g1 is the identity permutation and let g2, . . . , gB are i.i.d. Unif(Gn(π)). Theorem

3.4 below remains true with such an approximation; Theorem 3.5 below also remains true with such an

approximation provided that B →∞ as n→∞.

3.4.1 Finite-Sample Results

Before developing the large-sample properties of the randomization test given by (29), we present some

finite-sample properties of the test. We show, in particular, that for any choice of test statistic the random-

ization test defined in (29) has rejection probability no greater than the nominal level for the following more

restrictive null hypothesis:

H̃0 : Yi(1)|Xi
d
= Yi(0)|Xi . (31)
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While the proof of the result follows closely classical arguments that underlie the finite-sample validity of

randomization tests more generally, it is presented in the Supplemental Appendix for completeness. Similar

results can also be found in Heckman et al. (2011) and Lee and Shaikh (2014).

Theorem 3.4. Suppose the treatment assignment mechanism satisfies Assumption 2.2. For the problem of

testing (31) at level α ∈ (0, 1), φrand
n (Z(n)) defined in (29) with any Tn(Z(n)) satisfies

E[φrand
n (Z(n))] ≤ α (32)

whenever Q additionally satisfies the null hypothesis, i.e., Yi(1)|Xi
d
= Yi(0)|Xi.

Remark 3.14. By modifying the test defined in (29) so that it rejects with positive probability when

Tn(Z(n)) = ĉrand
n (1 − α), it is possible to ensure that the test has rejection probability exactly equal to α

whenever Q satisfies the null hypothesis, rather than simply less than or equal to α, as described in (32).

See Lehmann and Romano (2005, Chapter 15) for further details.

3.4.2 Large-Sample Properties

In this section, we establish the large-sample validity of the randomization test given by (29) with a suitable

choice of test statistic for testing (3). In particular, we show that the limiting rejection probability of the

proposed test equals the nominal level under the null hypothesis.

Theorem 3.5. Suppose Q satisfies Assumption 2.1 and the treatment assignment mechanism satisfies As-

sumptions 2.2–2.4. Let Tn(Z(n)) = |T t−test,adjn (Z(n))|, where T t−test,adjn (Z(n)) is defined in (24). For such a

choice of Tn(Z(n)),

sup
t∈R

∣∣∣R̂n(t)− (Φ(t)− Φ(−t))
∣∣∣ P→ 0 , (33)

where Φ(·) is the standard normal c.d.f. Thus, for the problem of testing (3) with ∆0 = 0 at level α ∈ (0, 1),

φrand
n (Z(n)) with such a choice of Tn(Z(n)) satisfies

lim
n→∞

E[φrand
n (Z(n))] = α , (34)

whenever Q additionally satisfies the null hypothesis, i.e., ∆(Q) = 0.

Remark 3.15. For completeness, we briefly describe the way in which Theorem 3.5 extends to testing (3)

with ∆0 6= 0 in further detail. To this end, let Z̃i = (Yi −Di∆0, Di, Xi) and define the action of g ∈ Gn(π)

on Z̃(n) as follows:

gZ̃(n) = {(Yi −Di∆0, Dg(i), Xi) : 1 ≤ i ≤ 2n} .

Consider the test, φrand
n (Z̃(n)), obtained by replacing Z(n) in the test described in Theorem 3.5 with Z̃(n).

For such a test, we have, under the assumptions of Theorem 3.5, that

lim
n→∞

E[φrand
n (Z̃(n))] = α

whenever Q additionally satisfies the null hypothesis, i.e., ∆(Q) = ∆0.
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Remark 3.16. The conclusion in Theorem 3.5 depends heavily on the choice of test statistic in the definition

of (29). In order to illustrate this phenomenon, consider the test defined by (29) with Tn(Z(n)) = |
√
n∆̂n|.

Using Lemmas S.1.4 and S.1.8 in the Supplemental Appendix, it is possible to show that this test behaves

similarly under the null hypothesis to the “matched pairs” t-test described in Section 3.2. In particular, it

has limiting rejection probability under the null hypothesis no greater than α and strictly less than α unless

(16) holds. A growing literature suggests that it should be possible to achieve limiting rejection probability

under the null hypothesis equal to α by studentizing the test statistic using a consistent estimator of (19).

See, for example, Janssen (1997), Chung and Romano (2013, 2016), DiCiccio and Romano (2017) and Bugni

et al. (2018). The problem considered here, however, illustrates that this need not be sufficient. To see this,

consider the test defined by (29) with Tn(Z(n)) = |
√
n∆̂n|
ν̃n

, where ν̃2
n is defined in (28). It is possible to show

using arguments similar to those used in establishing Theorem 3.3 that this test also behaves similarly under

the null hypothesis to the “matched pairs” t-test described in Section 3.2. The problem can be traced to the

following peculiar phenomenon: even though ν̃2
n is consistent for (19), as discussed in Remark 3.11, ν̃2

n, in

contrast to ν̂2
n, is not consistent for the variance of the distribution to which the randomization distribution

of
√
n∆̂n converges. See, in particular, Lemmas S.1.8–S.1.9 in the Supplemental Appendix.

4 Algorithms for Pairing

In this section, we describe different algorithms for pairing units so that Assumptions 2.3–2.4 are satisfied.

For the case where dim(Xi) = 1, a particularly simple algorithm leads to pairs that satisfy these assumptions.

In particular, we show that in order to satisfy Assumptions 2.3–2.4 it suffices to pair units simply by first

ordering the units from smallest to largest according to Xi and then defining pairs according to adjacent

units.

Theorem 4.1. Suppose dim(Xi) = 1 and E[X2
i ] < ∞. Let π be any permutation of 2n elements such that

that

Xπ(1) ≤ · · · ≤ Xπ(2n) .

Then, π satisfies Assumptions 2.3–2.4.

For the case where dim(Xi) > 1, it is helpful to assume that supp(Xi) lies in a known, bounded set,

which, without loss of generality, we may assume to be [0, 1]k. Because u2 ≤ u for all 0 ≤ u ≤ 1, it follows

that for any permutation π̌ of 2n elements

1

n

∑
1≤j≤n

|Xπ̌(2j−1) −Xπ̌(2j)|2 ≤
1

n

∑
1≤j≤n

|Xπ̌(2j−1) −Xπ̌(2j)| . (35)

In order to satisfy Assumption 2.3, it is therefore natural to choose π so as to minimize the right-hand side

of (35). Such minimization problems have been previously considered by Greevy et al. (2004) in the context

of “matched pairs” designs in order to achieve “balance” in the sense of Remark 2.2. Algorithms for solving

this minimization problem in a polynomial number of operations exist. See, for example, the “blossom”

algorithm described in Edmonds (1965) as well as the algorithm described in Derigs (1988) and implemented
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in the R package nbpMatching. The following theorem derives a finite-sample bound on the right-hand

side of (35) for π minimizing the right-hand side of (35), which implies, in particular, that pairing units in

this way satisfies Assumption 2.3.

Theorem 4.2. Suppose supp(Xi) ⊆ [0, 1]k. Let π be any permutation of 2n elements minimizing the right-

hand side of (35). Then, for each integer m > 1, we have that

1

n

∑
1≤j≤n

|Xπ(2j) −Xπ(2j−1)| ≤
√
k

m
+
mk−12

√
k

n
. (36)

In particular, if m � n 1
k , then π satisfies Assumption 2.3.

Given a pairing satisfying Assumption 2.3, we now turn our attention to ensuring that the pairing further

satisfies Assumption 2.4. To this end, choose π̄ so as to minimize

2

n

∑
1≤j≤bn2 c

|X̄π̌(2j) − X̄π̌(2j−1)| , (37)

where

X̄j =
Xπ(2j) +Xπ(2j−1)

2
. (38)

We note that the aforementioned algorithms may also be used to solve this minimization problem in a

polynomial number of operations. The following theorem establishes that by re-ordering the pairs according

to π̄, we can ensure that the pairing satisfies Assumption 2.4 in addition to Assumption 2.3.

Theorem 4.3. Suppose supp(Xi) ⊆ [0, 1]k. Let π be a permutation of 2n elements such that Assumption 2.3

is satisfied and π̄ be any permutation of n elements minimizing (37). Define a permutation π̃ of 2n elements

so that

π̃(2j) = π(2π̄(j)) and π̃(2j − 1) = π(2π̄(j)− 1) (39)

for 1 ≤ j ≤ n. Then, π̃ satisfies Assumptions 2.3–2.4.

5 Simulations

In this section, we examine the finite-sample behavior of several different tests of (3) with ∆0 = 0 at nominal

level α = .05 with a simulation study. For d ∈ {0, 1} and 1 ≤ i ≤ 2n, potential outcomes are generated

according to the equation:

Yi(d) = µd +md(Xi) + σd(Xi)εd,i ,

where µd, md(Xi), σd(Xi) and εd,i are specified in each model as follows. In each of following specifications,

n = 100, (Xi, ε0,i, ε1,i), i = 1 . . . 2n are i.i.d., µ0 = 0 and µ1 = ∆, where ∆ = 0 to study the behavior of

the tests under the null hypothesis and ∆ = 1
4 to study the behavior of the tests under the alternative

hypothesis.
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Model 1: Xi ∼ Unif[0, 1]; m1(Xi) = m0(Xi) = γ(Xi− 1
2 ); εd,i ∼ N(0, 1) for d = 0, 1; σ0(Xi) = σ0 = 1

and σ1(Xi) = σ1.

Model 2: As in Model 1, but m1(Xi) = m0(Xi) = sin(γ(X − 1
2 )).

Model 3: As in Model 2, but with m1(Xi) = m0(Xi) +X2
i − 1

3 .

Model 4: As in Model 1, but m0(Xi) = 0 and m1(Xi) = 10(X2
i − 1

3 ).

Model 5: As in Model 4, but m0(Xi) = −10(X2
i − 1

3 ).

Model 6: As in Model 4, but σ0(Xi) = X2
i and σ1(Xi) = σ1X

2
i .

Model 7: Xi = (Φ(Vi1),Φ(Vi2))′, where Φ(·) is the standard normal c.d.f. and

Vi ∼ N

((
0

0

)
,

(
1 ρ

ρ 1

))
;

m1(Xi) = m0(Xi) = γ′Xi − 1; εd,i ∼ N(0, 1) for d = 0, 1; σ0(Xi) = σ0 = 1 and σ1(Xi) = σ1.

Model 8: As in Model 7, but m1(Xi) = m0(Xi) + 10(Φ−1(Xi1)Φ−1(Xi2)− ρ).

Model 9: As in Model 7, but m0(Xi) = 5(Φ−1(Xi1)Φ−1(Xi2)− ρ) and m1(Xi) = −m0(Xi).

Model 10: Xi = (Φ(Vi1),Φ(Vi2),Φ(Vi3),Φ(Vi4),Φ(Vi5))′, where Φ(·) is the standard normal c.d.f. and

Vi ∼ N(0,Σ), for Σ with 1 on the diagonal and ρ on all other entries. m1(Xi) = m0(Xi) = γ′(Xi− 1
2 );

εd,i ∼ N(0, 1) for d = 0, 1; σ0(Xi) = σ0 = 1 and σ1(Xi) = σ1.

Model 11: As in Model 10, but m1(Xi) = m0(Xi) + 10
∑5
j=1 Φ−1(Xij).

Model 12: As in Model 10, but m0(Xi) = 5
∑5
j=1 Φ−1(Xij) and m1(Xi) = −m0(Xi).

Model 13: As in Model 10 with analogous functional forms form1(Xi) andm0(Xi), but dim(X) = 100.

Model 14: As in Model 11 with analogous functional forms form1(Xi) andm0(Xi), but dim(X) = 100.

Model 15: As in Model 12 with analogous functional forms form1(Xi) andm0(Xi), but dim(X) = 100.

For our subsequent discussion, it is useful to note that Models 5, 9, 12, and 15 satisfy (11), Models 1–2, 7,

10, and 13 satisfy (16), and Models 1–2, 7, 10, and 13 with σ1 = 1 satisfy (31) under the null hypothesis.

Treatment status is determined according to Assumption 2.2, where the pairs are calculated as follows. If

dim(Xi) = 1, then pairs are calculated by sorting the Xi as described in Theorem 4.1. Note that this ensures

that both Assumptions 2.3 and 2.4 are satisfied. If dim(Xi) > 1, then the pairs are calculated by finding π

that minimizes the right-hand side of (35) using the R package nbpMatching. Theorem 4.2 ensures that

these pairs satisfy Assumption 2.3. In order to further ensure that the pairs satisfy Assumption 2.4, we

re-order the pairs by finding π̄ that minimizes (37) using the same R package and applying Theorem 4.3.

The results of our simulations are presented in Tables 1–3 below. Columns are labeled in the following

way:
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t-test: The two-sample t-test studied in Theorem 3.1.

näıve: The randomization test defined in (29) with Tn(Z(n)) = |
√
n∆̂n| and discussed in Remark 3.16.

We henceforth refer to this test as the näıve randomization test.

MP-t: The “matched pairs” t-test studied in Theorem 3.2.

t-adj: The “adjusted” t-test studied in Theorem 3.3.

R-adj: The randomization test studied in Theorem 3.5. We henceforth refer to this test as the

“adjusted” randomization test.

The tables vary according to the values of γ, σ1 and ρ, which were not specified in the description of

the different models above. Rejection probabilities are calculated using 104 replications and presented in

percentage points. Because 2n is large, we employ a stochastic approximation as described in Remark 3.13

with B = 1000 when computing each of the randomization tests. We organize our discussion of the results

by test:

t-test: As expected in light of Theorem 3.1, the two-sample t-test has rejection probability under the

null hypothesis no greater than the nominal level. In some cases, the rejection probability under the

null hypothesis is far below the nominal level – see, for instance, Models 4, 6–8, 10–11, and 13–14. In

other cases, the rejection probability is close to the nominal level – see, in particular, Models 5, 9, 12,

and 15, which satisfy (11) and are therefore expected to exhibit this phenomenon. In almost all cases,

the two-sample t-test is among the least powerful tests, but, as expected, this feature is especially acute

when it has rejection probability under the null hypothesis severely below the nominal level.

näıve: As expected following the discussion in Remark 3.16, the näıve randomization test has rejection

probability under the null hypothesis no greater than the nominal level. In some cases, the rejection

probability under the null hypothesis is far below the nominal level – see, for instance, Models 4–6,

8–9, 11–12, and 14–15. In other cases, the rejection probability is close to the nominal level – see,

in particular, Models 1–2, 7, 10, and 13, which satisfy (16) and are therefore expected to exhibit this

phenomenon. Models 1–2, 7, 10, and 13 with σ1 = 1 (corresponding to Tables 1 and 3) in fact satisfy

(31) under the null hypothesis, so the rejection probability is exactly equal to the nominal level up to

simulation error, in agreement with Theorem 3.4. If its rejection probability is close to the nominal

level, then it is also among the most powerful tests, but it otherwise fares poorly in terms of power,

especially when compared to the “adjusted” randomization test.

MP-t: As expected in light of Theorem 3.2, the “matched pairs” t-test has rejection probability under

the null hypothesis no greater than the nominal level. In some cases, the rejection probability under

the null hypothesis is far below the nominal level – see, for instance, Models 4–6, 8–9, 11–12, and

14–15. In other cases, the rejection probability is close to the nominal level – see, in particular, Models

1–2, 7, 10, and 13, which satisfy (16) and are therefore expected to exhibit this phenomenon. In almost

all cases, the “matched pairs” t-test is among the least powerful tests, but, as expected, this feature is
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especially acute when it has rejection probability under the null hypothesis severely below the nominal

level.

t-adj: As expected in light of Theorem 3.3, the “adjusted” t-test has rejection probability under the

null hypothesis close to the nominal level in all cases. In all cases, it is the most powerful test.

R-adj: As expected in light of Theorem 3.5, the “adjusted” randomization test has rejection probability

under the null hypothesis close to the nominal level in almost all cases. The exception is Model 8, for

which the test exhibits some under-rejection under the null hypothesis. For Models 1–2, 7, 10, and 13

with σ1 = 1 (corresponding to Tables 1 and 3), which, as mentioned previously, satisfy (31) under the

null hypothesis, the rejection probability is again exactly equal to the nominal level up to simulation

error, in agreement with Theorem 3.4. In all cases, it is nearly as powerful as our most powerful test,

the “adjusted” t-test.

In Section S.1.11 of the Supplemental Appendix, we present further simulations largely similar to the spec-

ifications presented except either n = 40 instead of n = 100 or εd,i ∼ t4 instead of a standard normal

distribution. The results remain qualitatively the same. To further emphasize the important power dif-

ferences between the tests discussed above, we additionally present in Section S.1.11 of the Supplemental

Appendix power curves for the different tests for a single specification.
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Under H0 — ∆ = 0 Under H1 — ∆ = 1/4
Model t-test näive MP-t t-adj R-adj t-test näive MP-t t-adj R-adj

1 4.25 5.02 5.31 5.29 4.97 40.16 41.87 43.20 43.17 41.44
2 4.32 4.93 5.43 5.42 4.93 39.23 41.37 42.52 42.29 40.78
3 3.51 4.73 5.04 5.15 4.73 35.90 40.09 41.56 42.05 40.67
4 1.28 1.13 1.29 4.89 4.27 5.43 5.12 5.51 15.97 14.45
5 5.69 0.79 0.90 5.68 4.98 9.65 1.94 2.18 9.61 8.60
6 0.87 0.65 0.75 5.33 4.83 4.80 4.03 4.70 19.41 17.36
7 3.29 4.94 5.30 5.44 5.28 35.82 41.56 43.07 43.17 42.16
8 1.00 0.93 1.03 4.56 4.26 0.94 0.93 0.96 4.75 4.37
9 5.30 0.65 0.71 4.28 3.87 7.18 1.52 1.65 6.17 5.83
10 1.20 4.90 5.19 5.23 4.93 22.70 41.39 42.75 42.73 41.62
11 0.66 0.67 0.74 4.42 4.24 0.53 0.58 0.71 4.50 4.17
12 5.05 0.65 0.68 4.18 3.95 5.57 0.79 0.80 4.66 4.32
13 0.00 4.57 4.96 5.00 4.67 0.00 7.93 8.46 8.73 8.26
14 0.75 0.85 0.99 4.76 4.50 0.76 0.84 0.99 4.92 4.63
15 4.93 0.61 0.72 4.77 4.47 4.89 0.62 0.80 4.89 4.74

Table 1: Rej. prob. for Models 1–15 with γ = ιdim(X) for Models 1–15, σ1 = 1, ρ = 0.2.

Under H0 — ∆ = 0 Under H1 — ∆ = 1/4
Model t-test näive MP-t t-adj R-adj t-test näive MP-t t-adj R-adj

1 4.75 5.11 5.37 5.46 5.06 29.46 30.26 31.51 31.49 30.24
2 4.23 4.59 5.03 5.20 4.70 29.33 29.99 31.39 30.89 29.52
3 4.16 4.84 5.27 5.39 5.09 26.60 28.78 30.07 30.30 29.27
4 1.65 1.53 1.65 5.24 4.74 5.80 5.31 5.91 14.95 13.72
5 5.27 0.68 0.81 5.21 4.67 9.59 2.19 2.53 9.54 8.45
6 0.83 0.81 0.91 5.50 4.86 4.89 4.23 4.66 18.25 16.43
7 0.39 5.21 5.66 5.85 5.54 7.38 30.04 31.01 31.20 30.56
8 1.50 1.58 1.66 5.71 5.27 0.69 0.70 0.77 4.80 4.36
9 5.73 1.34 1.42 5.24 4.87 8.28 2.13 2.22 7.33 6.93
10 0.65 4.99 5.46 5.33 5.12 9.74 29.53 30.67 30.63 29.93
11 0.63 0.71 0.76 5.21 4.98 0.60 0.64 0.77 4.94 4.61
12 5.51 0.72 0.82 5.26 4.89 5.42 0.72 0.76 5.18 4.86
13 0.00 4.93 5.39 5.24 5.20 0.00 10.07 10.75 10.74 10.17
14 0.58 0.60 0.67 5.35 5.03 0.61 0.68 0.78 5.08 4.79
15 5.44 0.66 0.66 5.55 5.20 5.04 0.63 0.73 5.18 4.81

Table 2: Rej. prob. for Models 1–15 with γ = 1 for Models 1–6, γ′ = (1, 4) for Models 7–9, γ = ιdim(X) for
Models 10–15, σ1 = 2, ρ = 0.7.

6 Empirical Application

In this section, we apply several different tests of (3) to a real-world example. For this purpose, we run a

button-pressing experiment on Amazon Mechanical Turk (MTurk) as in DellaVigna and Pope (2018). In
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Under H0 — ∆ = 0 Under H1 — ∆ = 1/4
Model t-test näive MP-t t-adj R-adj t-test näive MP-t t-adj R-adj

1 4.51 5.19 5.62 5.66 5.24 39.09 40.88 42.09 41.92 40.56
2 4.09 4.68 5.03 5.08 4.58 39.95 41.59 42.84 42.43 41.20
3 3.67 4.91 5.26 5.55 5.26 35.10 39.48 40.89 41.48 40.15
4 1.07 0.98 1.13 4.83 4.28 5.43 5.00 5.47 16.52 14.95
5 5.21 0.69 0.79 5.21 4.61 9.98 2.17 2.35 9.93 8.89
6 0.67 0.65 0.69 5.17 4.44 5.11 4.50 4.89 19.03 17.23
7 0.28 4.91 5.19 5.50 5.23 11.20 41.61 43.01 43.18 42.06
8 0.70 0.67 0.81 4.41 4.03 0.95 0.96 1.11 5.26 4.75
9 5.37 0.71 0.79 4.30 4.00 6.93 0.95 1.02 5.52 5.10
10 2.28 5.02 5.42 5.39 5.17 29.53 40.23 41.72 41.84 40.74
11 0.90 1.03 1.10 4.12 3.82 1.07 1.10 1.23 3.99 3.75
12 5.35 0.97 1.03 4.02 3.76 5.01 0.86 0.91 3.60 3.41
13 2.71 4.88 5.22 5.29 5.15 6.51 10.08 10.84 10.78 10.47
14 3.92 3.68 4.04 4.79 4.55 4.38 4.15 4.52 5.19 4.84
15 5.20 2.94 3.18 4.25 3.97 5.61 3.07 3.38 4.36 4.13

Table 3: Rej. prob. for Models 1–12 with γ = 1 for Models 1–6, γ′ = (4, 1) for Models 7–9, γ = ιdim(X) for
Models 10–15, σ1 = 1, ρ = 0.

the experiment, participants are asked to press buttons ‘a’ and ‘b’ alternately as much as possible in 5

minutes. The outcome Yi is number of presses. The treatment Di is an indicator for whether participants

receive financial incentives for the button-pressing task: Di = 1 if a unit is treated, i.e., she receives financial

incentives for pressing more buttons, and Di = 0 if a unit is untreated, i.e., she receives no financial incentives.

The sample size is 2n = 120. Following DellaVigna and Pope (2018), each treated unit receives an additional

cent for every 100 points they score, where one point corresponds to one alternate press. The covariate Xi

is a scalar variable which denotes the individual’s performance in prior version of the task with no financial

incentives. Units are paired according to Xi as in Theorem 4.1. Using the usual duality between hypothesis

testing and constructing confidence intervals, we construct a 95% confidence interval for (2) by inverting

the corresponding test. The results are presented in Table 4 below along with the point estimator of ∆(Q)

given by ∆̂n. In the case of the two-sample t-test, “matched pairs” t-test and “adjusted” t-test, it is possible

to describe the corresponding confidence intervals in terms of a standard error, so we include those in the

table as well. In the case of the two randomization tests, it is not possible to do this; in these instances,

the confidence intervals are instead computed by inverting tests of (3) along a grid of equally spaced points

from 0 to 700.

t-test näive MP-t t-adj R-adj

∆̂n 219 219 219 219 219
std. errors 81 - 55 52 -
conf. int. [59, 379] [109, 332] [109, 329] [116, 322] [115, 322]

Table 4: Inferences about ∆(Q) using different tests in the empirical application.

We note the following features of our empirical results: (a) the confidence interval given by the “ad-

justed” t-test is shorter than the one given by the two-sample t-test; (b) the confidence interval given by

the “adjusted” t-test is shorter than the one given by the “matched pairs” t-test; and (c) the confidence
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interval given by the “adjusted” randomization test is shorter than the one given by the näive randomization

test. From our theoretical results, (a) suggests (11) is not satisfied, while (b) and (c) suggest that (16) is

not satisfied either. Our simulation study confirms that when (11) or (16) are not satisfied, there can be

dramatic benefits from using the asymptotically exact methods.

7 Recommendations for Empirical Practice

We conclude with some recommendations for empirical practice based on our theoretical results as well as

the simulation study above. For inference about the average treatment effect in the type of “matched pairs”

design studied in this paper, we do not recommend the two-sample t-test, the “matched pairs” t-test or the

näıve randomization test, which are often considerably less powerful than both the “adjusted” t-test and the

“adjusted” randomization test. In our simulations the “adjusted” t-test is always the most powerful among

the tests we consider, though sometimes by a small margin in comparison to the “adjusted” randomization

test. We also note that the modest gain in power of the “adjusted” t-test is accompanied by the generally

higher rejection probability under the null hypothesis of the “adjusted” t-test as well. The “adjusted”

randomization test, however, retains the attractive feature that the finite-sample rejection probability under

the null hypothesis is no greater than the nominal size for certain distributions satisfying the null hypothesis.

To the extent that this feature is deemed important, the “adjusted” randomization test may be preferred to

the “adjusted” t-test despite having slightly lower power.
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