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INFERENCE FOR THE IDENTIFIED SET IN PARTIALLY
IDENTIFIED ECONOMETRIC MODELS

BY JOSEPH P. ROMANO AND AZEEM M. SHAIKH1

This paper provides computationally intensive, yet feasible methods for inference
in a very general class of partially identified econometric models. Let P denote the
distribution of the observed data. The class of models we consider is defined by a pop-
ulation objective function Q(θ�P) for θ ∈Θ. The point of departure from the classical
extremum estimation framework is that it is not assumed that Q(θ�P) has a unique
minimizer in the parameter space Θ. The goal may be either to draw inferences about
some unknown point in the set of minimizers of the population objective function or to
draw inferences about the set of minimizers itself. In this paper, the object of interest
is Θ0(P)= arg minθ∈Θ Q(θ�P), and so we seek random sets that contain this set with at
least some prespecified probability asymptotically. We also consider situations where
the object of interest is the image of Θ0(P) under a known function. Random sets that
satisfy the desired coverage property are constructed under weak assumptions. Condi-
tions are provided under which the confidence regions are asymptotically valid not only
pointwise in P , but also uniformly in P . We illustrate the use of our methods with an
empirical study of the impact of top-coding outcomes on inferences about the parame-
ters of a linear regression. Finally, a modest simulation study sheds some light on the
finite-sample behavior of our procedure.

KEYWORDS: Partially identified model, incomplete model, identified set, identifiable
parameter, subsampling, uniform coverage, confidence region, moment inequalities.

1. INTRODUCTION

A PARTIALLY IDENTIFIED MODEL is any model in which the parameter of inter-
est is not uniquely defined by the distribution of the observed data. This paper
provides computationally intensive yet feasible methods for inference for one
large class of such models. Let P denote the distribution of the observed data.
The class of models we consider is defined by a population objective function
Q(θ�P) for θ ∈Θ. The point of departure from the classical extremum estima-
tion framework is that it is not assumed thatQ(θ�P) has a unique minimizer in
the parameter space Θ. The goal may be either to draw inferences about some
unknown point in the set of minimizers of the population objective function or
to draw inferences about the set of minimizers itself. In this paper we consider
the second of these two goals. The object of interest is

Θ0(P)= arg min
θ∈Θ

Q(θ�P)�(1)

We henceforth refer to Θ0(P) as the identified set. In this instance, given in-
dependent and identically distributed (i.i.d.) data Xi� i = 1� � � � � n, generated

1We would like to thank Michael Wolf for a careful reading of the paper and useful sugges-
tions. We also thank Nese Yildiz for pointing out the need for the nonzero variance condition in
Example 2.1.
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from P , we seek random sets Cn = Cn(X1� � � � �Xn) that contain the identified
set with at least some prespecified probability asymptotically. That is, we re-
quire

lim inf
n→∞

P{Θ0(P)⊆ Cn} ≥ 1 − α�(2)

We refer to such sets as confidence regions for the identified set that are pointwise
consistent in level. This terminology reflects the fact that the confidence regions
are valid only for a fixed probability distribution P and helps distinguish this
coverage requirement from others discussed later in which we will demand
that the confidence regions are valid uniformly in P . We show that the problem
of constructing Cn that satisfy (2) is equivalent to a multiple hypothesis testing
problem in which one wants to test the family of null hypothesesHθ :θ ∈Θ0(P)
indexed by θ ∈Θ while controlling the familywise error rate, the probability of
even one false rejection under P . Using this duality, we go on to construct Cn
that satisfy (2) under weak assumptions on P .

In the first goal, the object of interest is some unknown point θ ∈ Θ0(P).
We refer to any θ ∈ Θ0(P) as an identifiable parameter. In this case, given
i.i.d. data Xi, i = 1� � � � � n, generated from P , we seek random sets Cn =
Cn(X1� � � � �Xn) that contain each identifiable parameter with at least some pre-
specified probability asymptotically. The problem of constructing such sets is
treated in a companion paper (Romano and Shaikh (2008)).

Our results on confidence regions for the identified set build upon the earlier
work of Chernozhukov, Hong, and Tamer (2007), who were the first to con-
sider inference for the same class of partially identified models. An important
feature of our procedure for constructing confidence regions for the identified
set is that it avoids the need for an initial estimate of Θ0(P). In general, our
procedure is first-order asymptotically equivalent with the procedure proposed
by Chernozhukov, Hong, and Tamer (2007). On the other hand, when the set
of minimizers of Q̂n(θ) does not provide a consistent estimate of Θ0(P), our
results provide a justification for iterating their procedure until a stopping cri-
terion is met to produce confidence regions that are typically strictly smaller
while still maintaining the coverage requirement.

In this paper, we also wish to construct confidence regions whose coverage
probability is close to the nominal level not just for a fixed probability distrib-
ution P , but rather uniformly over all P in some large class of distributions P.
Confidence regions that fail to satisfy this requirement have the feature that for
every sample size n, however large, there is some probability distribution P ∈ P
for which the coverage probability of the confidence region under P is not close
to the prescribed level. Researchers may, therefore, feel that inferences made
on the basis of asymptotic approximations are more reliable if the confidence
regions exhibit good uniform behavior. Of course, such a requirement will typi-
cally require restrictions on P beyond those required for pointwise consistency
in level. Bahadur and Savage (1956), for example, showed that if P is suitably
large, then there exists no confidence interval for the mean with finite length
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and good uniform behavior. Romano (2004) extended this nonexistence result
to a number of other problems. We provide restrictions on P under which the
confidence regions in this paper have good uniform behavior. Concretely, we
provide conditions under which Cn satisfies

lim inf
n→∞

inf
P∈P
P{Θ0(P)⊆ Cn} ≥ 1 − α�(3)

By analogy with our earlier terminology, sets that satisfy (3) are referred to as
confidence regions for the identified set that are uniformly consistent in level. Note
that if the identified set Θ0(P) consists of a single point θ0(P), then this defi-
nition reduces to the usual definition of confidence regions that are uniformly
consistent in level; that is,

lim inf
n→∞

inf
P∈P
P{θ0(P) ∈ Cn} ≥ 1 − α�

Imbens and Manski (2004) analyzed the special case of the above class of
partially identified models in which the identified set is an interval whose upper
and lower endpoints are means or at least behave like means asymptotically.
For this special case, they constructed confidence regions that contain each
identifiable parameter with at least some prespecified probability asymptoti-
cally and are valid uniformly in P . Romano and Shaikh (2008) constructed con-
fidence regions with this same coverage property for the more general class of
models considered here. To the best of our knowledge, this paper is the first to
consider confidence regions for the identified set that are valid uniformly in P .

We have so far assumed that the object of interest is the identified set,Θ0(P),
itself. More generally, the object of interest may be the image of the identified
set under a known function. A typical example of such a function is the projec-
tion of Rk onto one of the axes. We extend the above definitions of confidence
regions to this setting as follows. Consider a function f :Θ → Λ. Denote by
Λ0(P) the image of Θ0(P) under f ; that is,

Λ0(P)= {f (θ) :θ ∈Θ0(P)}�(4)

We refer to a set Cf
n as a confidence region for a function of the identified set that

is pointwise consistent in level if it satisfies

lim inf
n→∞

P{Λ0(P) ∈ Cf
n } ≥ 1 − α�(5)

As before, we may also demand uniformly good behavior over a class of prob-
ability distributions P by requiring that Cf

n satisfy

lim inf
n→∞

inf
P∈P
P{Λ0(P) ∈ Cf

n } ≥ 1 − α�(6)

By analogy with our earlier terminology, sets that satisfy (6) are referred to as
confidence regions for a function of the identified set that are uniformly consistent
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in level. We adapt our constructions of confidence regions for the identified
set to provide constructions of confidence sets that satisfy these alternative
coverage requirements.

The remainder of the paper is organized as follows. In Section 2, we consider
the problem of constructing confidence regions that satisfy the coverage prop-
erties (2) and (3). The construction exploits a useful equivalence between the
construction of confidence regions for the identified set and a suitable multi-
ple hypothesis testing problem. We then extend this methodology to construct
confidence regions that satisfy (5) and (6). We provide an illustration of our
methods in Section 3. In Section 4, we shed some light on the finite-sample
behavior of our methodology via a small simulation study. Data and programs
are provided as Supplemental Material (Romano and Shaikh (2010)).

2. CONFIDENCE REGIONS FOR THE IDENTIFIED SET

In this section, we consider the problem of constructing confidence regions
for the identified set. We begin by treating the construction of sets that sat-
isfy (2) before turning our attention to the problem of constructing sets that
satisfy (3).

2.1. Pointwise Consistency in Level

2.1.1. Equivalence With a Multiple Testing Problem

We will first show that the problem of constructing confidence regions that
satisfy (2) is equivalent to a certain multiple hypothesis testing problem. The
problem is to test the family of hypotheses

Hθ :Q(θ�P)= 0 for θ ∈Θ(7)

in a way that asymptotically controls the familywise error rate (FWERP), the
probability of one or more false rejections under P , at level α. Formally,

FWERP = P{
reject at least 1 null hypothesis Hθ s.t. Q(θ�P)= 0

}
�(8)

and by asymptotic control of the FWERP at level α, we mean the requirement
that

lim sup
n→∞

FWERP ≤ α�(9)

The following lemma establishes the equivalence between these two problems.

LEMMA 2.1: Let P denote the true distribution of the data. Given any procedure
for testing the family of null hypotheses (7) which yields a decision for each of the
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null hypotheses, the set of θ values for which the corresponding null hypothesisHθ

is accepted, Cn, satisfies

P{Θ0(P)⊆ Cn} = 1 − FWERP�

whereΘ0(P) is defined by (1). Conversely, given any random set Cn, the procedure
for testing the family of hypotheses (7) in which a null hypothesis Hθ is accepted if
and only if θ ∈ Cn satisfies

FWERP = 1 − P{Θ0(P)⊆ Cn}�

PROOF: To establish the first conclusion, note that by the definition ofΘ0(P)
we have

P{Θ0(P)⊆ Cn} = P
{
reject no null hypothesis Hθ s.t. Q(θ�P)= 0

}
= 1 − FWERP�

The second conclusion follows from the same reasoning. Q.E.D.

It follows from Lemma 2.1 that given any procedure for testing the family
of null hypotheses (7) that satisfy (9), the set of θ values corresponding to the
set of accepted hypotheses, Cn, satisfies (2). We thus turn to the problem of
constructing tests of (7) that satisfy (9).

2.1.2. Single-Step Control of the Familywise Error Rate

First, we briefly discuss a single-step approach to asymptotic control of the
FWERP at level α, since it serves as a building block for the more powerful
stepdown procedures that we will develop in the next section. As before, we
will require a test statistic for each null hypothesis Hθ such that large values
of the test statistic provide evidence against the null hypothesis. The statistic
anQ̂n(θ) for some sequence an → ∞ will be used for this purpose. We assume
that the sequence an is known and that it does not depend on θ, but both of
these requirements can be relaxed using ideas in Chapter 8 of Politis, Romano,
and Wolf (1999).

For K ⊆ Θ, let cn(K�1 − α�P) denote the smallest 1 − α quantile of the
distribution of

sup
θ∈K

anQ̂n(θ)(10)

under P ; that is,

cn(K�1 − α�P)= inf
{
x :P

{
sup
θ∈K

anQ̂n(θ)≤ x
}

≥ 1 − α
}
�
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Consider the idealized test in which a null hypothesis Hθ is rejected if and
only if anQ̂n(θ) > cn(Θ0(P)�1 −α�P). This is a single-step method in the sense
that each anQ̂n(θ) is compared with a common value so as to determine its
significance. Clearly, such a test satisfies FWERP ≤ α. To see this, note that

FWERP = P
{
anQ̂n(θ) > cn(Θ0(P)�1 − α�P) for some θ ∈Θ0(P)

}
= 1 − P

{
sup

θ∈Θ0(P)

anQ̂n(θ)≤ cn(Θ0(P)�1 − α�P)
}

≤ α�

But this test is infeasible, as the critical value depends on the unknown P .
A crude solution to this difficulty is available if estimators ĉn(K�1 − α) of
cn(K�1 − α�P) are available that satisfy two properties. First, we require that
ĉn(K�1 − α) be a “good” estimator when K =Θ0(P) in the sense that

lim sup
n→∞

P
{

sup
θ∈Θ0(P)

anQ̂n(θ) > ĉn(Θ0(P)�1 − α)
}

≤ α�(11)

Second, we require that the estimators be monotone in the sense that

ĉn(K�1 − α)≥ ĉn(Θ0(P)�1 − α) for any K ⊇Θ0(P)�(12)

Since Θ0(P) ⊆ Θ, it follows that under these assumptions we have that
ĉn(Θ�1 −α) asymptotically provides a conservative estimator of cn(Θ0(P)�1 −
α�P). Hence, the single-step method in which each statistic anQ̂n(θ) is com-
pared with the common cutoff ĉn(Θ�1−α) asymptotically controls the FWERP

at level α provided that these two assumptions are satisfied. We will refrain
from stating this result more formally because it will follow from the analy-
sis of the more powerful step-down method in the next section. We will also
provide an explicit construction of such estimators in the subsequent section.

2.1.3. Step-Down Control of the Familywise Error Rate

Step-down methods begin by first applying a single-step method, but then
additional hypotheses may be rejected after this first stage by proceeding in
a stepwise fashion, which we now describe. In the first stage, test the entire
family of hypotheses using a single-step procedure; that is, reject all null hy-
potheses whose corresponding test statistic is too large, where large is deter-
mined by some common critical value as described above. If no hypotheses are
rejected in this first stage, then stop; otherwise, test the family of hypotheses
not rejected in the first stage using a single-step procedure. If no further hy-
potheses are rejected in this second stage, then stop; otherwise, test the family
of hypotheses not rejected in the first and second stages using a single-step
procedure. Repeat this process until no further hypotheses are rejected. We
now formally define this procedure, which can be viewed as a generalization
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of Romano and Wolf (2005), who only considered a finite number of hypothe-
ses.

ALGORITHM 2.1:
1. Let S1 =Θ. If supθ∈S1

anQ̂n(θ)≤ ĉn(S1�1 − α), then accept all hypotheses
and stop; otherwise, set S2 = {θ ∈Θ :anQ̂n(θ)≤ ĉn(S1�1 − α)} and continue.
���
j. If supθ∈Sj anQ̂n(θ) ≤ ĉn(Sj�1 − α), then accept all hypotheses Hθ with

θ ∈ Sj and stop; otherwise, set Sj+1 = {θ ∈Θ :anQ̂n(θ)≤ ĉn(Sj�1 −α)} and con-
tinue.
���

We now prove that this algorithm provides asymptotic control of the FWERP

under the monotonicity assumption (11) and (12).

THEOREM 2.1: Let P denote the true distribution generating the data. Consider
Algorithm 2.1 with critical values that satisfy (12). Then

FWERP ≤ P
{

sup
θ∈Θ0(P)

anQ̂n(θ) > ĉn(Θ0(P)�1 − α)
}
�(13)

Hence, if the critical values also satisfy (11), then

lim sup
n→∞

FWERP ≤ α�

PROOF: To establish (13), denote by ĵ the smallest random index for which
there is a false rejection; that is, there exists θ′ ∈ Θ0(P) such that anQ̂n(θ

′) >
ĉn(Sĵ�1 − α). By definition of ĵ, we must have that Θ0(P) ⊆ Sĵ . Thus, by (12)
we have that ĉn(Sĵ�1 − α)≥ ĉn(Θ0(P)�1 − α). Hence, it must be the case that

sup
θ∈Θ0(P)

anQ̂n(θ)≥ anQ̂n(θ
′) > ĉn(Θ0(P)�1 − α)�

The second conclusion follows immediately. Q.E.D.

2.1.4. A Subsampling Construction

It follows from Theorem 2.1 that under the two restrictions (11) and (12), the
set of θ values corresponding to the accepted hypotheses from Algorithm 2.1,
Cn, satisfies (2). We now provide a concrete construction of critical values that
satisfy these two properties under a weak assumption on the asymptotic behav-
ior of the test statistics anQ̂n(θ).
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The construction will be based on subsampling. To define the critical values
precisely, some further notation is required. Let b = bn < n be a sequence of
positive integers tending to infinity, but satisfying b/n→ 0. Let Nn = (

n

b

)
and

let Q̂n�b�i(θ) denote the statistic Q̂n(θ) evaluated at the ith subset of data of
size b from the n observations. For K ⊆Θ and α ∈ (0�1), define

r̂n(K�1 − α)= inf
{
x :

1
Nn

∑
1≤i≤Nn

I
{

sup
θ∈K

abQ̂n�b�i(θ)≤ x
}

≥ 1 − α
}
�(14)

Note that by construction, the critical values defined by (14) satisfy the
monotonicity restriction (12). We now provide conditions under which they
also satisfy (11).

THEOREM 2.2: Let Xi� i= 1� � � � � n, be an i.i.d. sequence of random variables
with distribution P and let b = bn < n be a sequence of positive integers tend-
ing to infinity, but satisfying b/n → 0. Let Jn(·�P) denote the distribution of
supθ∈Θ0(P)

anQ̂n(θ) under P . Suppose Jn(·�P) converges in distribution to a limit
distribution J(·�P) and that J(·�P) is continuous at its smallest 1 − α quantile.
Then the following statements are true:

(i) Condition (11) holds when ĉn(Θ0(P)�1 − α) is given by (14) with K =
Θ0(P).

(ii) Algorithm 2.1 with ĉn(K�1 − α) given by (14) provides asymptotic control
of the FWERP at level α.

(iii) The set of θ values corresponding to accepted hypotheses from Algo-
rithm 2.1 with ĉn(K�1 − α) given by (14), Cn, satisfies (2).

PROOF: The first result follows from Theorem 2.1.1 of Politis, Romano, and
Wolf (1999). The second follows from Theorem 2.1. The third follows from
Lemma 2.1. Q.E.D.

REMARK 2.1: Because
(
n

b

)
may be large, it is often more practical to use the

following approximation to (14). Let the sequence Bn → ∞ as n→ ∞ and let
I1� � � � � IBn be chosen randomly with or without replacement from the numbers
1� � � � �Nn. Then it follows from Corollary 2.4.1 of Politis, Romano, and Wolf
(1999) that one may approximate (14) by

inf
{
x :

1
Bn

∑
1≤i≤Bn

I
{

sup
θ∈K

abQ̂n�b�Ii (θ)≤ x
}

≥ 1 − α
}

without affecting the conclusions of Theorem 2.2.

REMARK 2.2: Throughout this paper, we assume that the observations
Xi� i= 1� � � � � n, are an i.i.d. sequence of random variables with distribution P .
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Many of the results, however, can be extended to certain time series settings.
Consider, for example, the following extension of Theorem 2.2. Let

r̂n(K�1 − α)(15)

= inf
{
x :

1
n− b+ 1

∑
1≤i≤n−b+1

I
{

sup
θ∈K

abQ̂n�b�i(θ)≤ x
}

≥ 1 − α
}
�

where i = 1� � � � � n − b + 1 now indexes only the subsets of data of size b
whose observations are consecutive. If one assumes that the Xi� i = 1� � � � � n,
are observations from a distribution P for which the corresponding α-mixing
sequence αX(m)→ 0 as m→ ∞, but otherwise maintains the assumptions of
Theorem 2.2, then it follows from Theorem 3.2.1 of Politis, Romano, and Wolf
(1999) that the conclusions of the theorem continue to hold.

We now consider two important examples and use Theorem 2.2 to provide
conditions under which Algorithm 2.1 with ĉn(K�1 − α) given by (14) asymp-
totically controls the FWERP and thus the set of θ values corresponding to the
accepted hypotheses, Cn, satisfies (2).

EXAMPLE 2.1—Moment Inequalities: Let Xi� i = 1� � � � � n, be an i.i.d. se-
quence of random variables with distribution P on Rk. For j = 1� � � � �m, let
gj(x�θ) be a real-valued function on Rk × Rl. The identified set is assumed
to be Θ0(P) = {θ ∈ Rl :EP[gj(Xi� θ)] ≤ 0 ∀j s.t. 1 ≤ j ≤ m}. This set may be
characterized as the set of minimizers of

Q(θ�P)=
∑

1≤j≤m

(
EP[gj(Xi�θ)]

)2

+�

where (x)+ = max{x�0}. The sample analog of Q(θ�P) is given by

Q̂n(θ)=
∑

1≤j≤m

(
1
n

∑
1≤i≤n

gj(Xi� θ)

)2

+
�

Let an = n and suppose P is such that (i)

{gj(·� θ) : 1 ≤ j ≤m�θ ∈Θ0(P)} is P-Donsker�

(ii) for every K ⊆ {1� � � � �m} and sequence θn ∈ Θ0(P) such that EP[gj(Xi�
θn)] → 0 for all j ∈ K, there exists a subsequence nk and a θ ∈ Θ0(P) such
that EP[gj(Xi� θ)] = 0 for all j ∈ K and ρP�j(θnk� θ)→ 0 for all j ∈ K, where
ρ2
P�j(θ�θ

′) = EP[(gj(Xi� θ) − gj(Xi�θ
′))2] → 0. To rule out degenerate situa-

tions, assume further that (iii) there exist 1 ≤ j∗ ≤m and θ∗ ∈Θ0(P) such that
EP[gj∗(Xi�θ

∗)] = 0 and VarP[gj∗(Xi�θ
∗)]> 0. Assumption (i) is known to hold

provided that the class of functions is not too large; for general results to this
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end and numerous applications, see van der Vaart and Wellner (1996). The
conditions of Theorem 2.2 are verified for α < 1

2 under these assumptions in
Section A.2 of the Appendix.

EXAMPLE 2.2—Regression With Interval Outcomes: The following exam-
ple allows for inference in a linear regression model in which the dependent
variable is interval-censored. Let (Xi�Y1�i�Y2�i�Y

∗
i )� i = 1� � � � � n, be an i.i.d.

sequence of random variables with distribution P∗ on Rk × R × R × R. The pa-
rameter of interest, θ0, is known to satisfy EP∗ [Y ∗

i |Xi] =X ′
iθ0, but Y ∗

i is unob-
served, which precludes conventional estimation of θ0. Let P denote the distri-
bution of the observed random variables (Xi�Y1�i�Y2�i). The random variables
(Y1�i�Y2�i) are known to satisfy Y1�i ≤ Y ∗

i ≤ Y2�i with probability 1 under P∗.
Thus, θ0 ∈ Θ0(P) = {θ ∈ Rk :EP[Y1�i|Xi] ≤ X ′

iθ ≤ EP[Y2�i|Xi] P-a.s.}. This set
may be characterized as the set of minimizers of

Q(θ�P)=EP
[
(EP[Y1�i|Xi] −X ′

iθ)
2
+ + (X ′

iθ−EP[Y2�i|Xi])2
+
]
�

Manski and Tamer (2002) characterized the identified set in this setting and
also considered the case where Y ∗

i is observed, but Xi is interval-censored.
Let an = n and suppose P is such that (i) suppP(Xi)= {x1� � � � � xm} and (ii)

the variances of Y1 and Y2, σ2
1 (P) and σ2

2 (P), exist. To rule out degenerate
situations, assume further that (iii) there exist θ∗ ∈ Θ, 
∗ ∈ {1�2}, and j∗ ∈
{1� � � � �m} such that EP[Y
∗�i|Xi = xj∗ ] = x′

j∗θ
∗ and VarP[Y
∗�i|Xi = xj∗ ]> 0. For


 ∈ {1�2} and j ∈ {1� � � � �m}, let τ
(xj�P)=EP[Y
�i|Xi = xj] and

τ̂
(xj)= 1
n(xj)

∑
1≤i≤n:Xi=xj

Yl�i�

where n(xj)= |{1 ≤ i≤ n :Xi = xj}|. Let

Q̂n(θ)=
∑

1≤j≤m

n(xj)

n

{
(τ̂1(xj)− x′

jθ)
2
+ + (x′

jθ− τ̂2(xj))
2
+
}
�

We now verify the conditions of Theorem 2.2 under these assumptions for
α< 1

2 .
To this end, note that

anQ̂n(θ)=
∑

1≤j≤m

∑
1≤
≤2

(√
n

n(xj)

1√
n

×
∑

1≤i≤n
(−1)
−1(Y
�i − x′

jθ)I{Xi = xj}
)2

+
�
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For K ⊆ {1� � � � �m} × {1�2} let

Θ0(K�P)= {
θ ∈Θ0(P) :EP[Y
�i|Xi = xj] = x′

jθ for all (j� 
) ∈K}
�

Hence, except for the multiplicative factors
√
n/n(xj), which are asymptoti-

cally constant anyway, the structure here is the same as the structure of Exam-
ple 2.1. As a result, we may use arguments nearly identical to those given for
Example 2.1 above in Section A.2 of the Appendix to show that the limiting
behavior of

sup
θ∈Θ0(P)

anQ̂n(θ)(16)

is equal to the limiting behavior of

max
K

sup
θ∈Θ0(K�P)

∑
(j�
)∈K

(
1√
p(xj)

1√
n

×
∑

1≤i≤n
(−1)
−1(Y
�i − x′

jθ)I{Xi = xj}
)2

+

= max
K

sup
θ∈Θ0(K�P)

∑
(j�
)∈K

(
1√
p(xj)

1√
n

×
∑

1≤i≤n
(−1)
−1(Y
�i −EP[Y
�i|Xi = xj])I{Xi = xj}

)2

+
�

where p(xj) = P{Xi = xj}, the maximum over K is understood to be over all
subsets of {1� � � � �m} × {1�2}, and the supremum over the empty set is under-
stood to be zero. The vector whose (j� 
) component is given by

1√
n

∑
1≤i≤n

(−1)
−1(Y
�i −EP[Y
�i|Xi = xj])I{Xi = xj}

tends in distribution to a multivariate normal random variable. Let Zj�
(P) de-
note the (j� 
) component of this limiting multivariate normal random variable.
It follows by the continuous mapping theorem that (16) tends in distribution to

max
K

sup
θ∈Θ0(K�P)

∑
(j�
)∈K

(
1√
p(xj)

Zj�
(P)

)2

+
�(17)

To determine for which α (17) is continuous at its 1 −α quantile, first note that
(17) is a convex function of Z(P). By Theorem 11.1 of Davydov, Lifshits, and
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Smorodina (1998), the distribution of (17) is continuous everywhere except
possibly at zero, but

P

{
max
K

sup
θ∈Θ0(K�P)

∑
(j�
)∈K

(
1√
p(xj)

Zj�
(P)

)2

+
≤ 0

}

≤ P
{(

1√
p(xj∗)

Zj∗�
∗(P)

)2

+
≤ 0

}
≤ 1

2
�

where j∗, 
∗, and θ∗ are as in assumption (iii) above. Hence, (17) is continuous
at its 1 − α quantile for α< 1

2 .

REMARK 2.3: A Tobit-like model is a special case of the above setup if we
suppose further that Y2�i = Y ∗

i and Y1�i = Y ∗
i if Y ∗

i > 0, and Y2�i = 0 and Y1�i =
−∞ (or some large negative number if there is a plausible lower bound on Y ∗

i )
if Y ∗

i ≤ 0.

REMARK 2.4: Our construction of critical values has used subsampling. Fol-
lowing Andrews (2000), it is possible to show that a naive bootstrap construc-
tion fails to approximate the distribution of (10) when K =Θ0(P). It may still
be the case that (11) is satisfied, but in simulations it seems to be too conserv-
ative in practice. Bugni (2007) showed that a suitably modified version of the
bootstrap can be used to estimate the distribution of (10) when K = Θ0(P).
His approximation depends crucially on the structure of Example 2.1 and does
not extend easily to more general models, but it is worthwhile to note that it
can be used as an ingredient in Algorithm 2.1. Specifically, we may replace
ĉn(K�1 − α) with the 1 − α quantile of his bootstrap approximation to the dis-
tribution of (10). It follows from the analysis of Bugni (2007) that these critical
values will satisfy (11) under weak assumptions. Since they also satisfy (12), the
conclusions of Theorem 2.1 follow.

REMARK 2.5: When the set of minimizers of Q̂n(θ) provides a consistent es-
timate of Θ0(P), Chernozhukov, Hong, and Tamer (2007) proposed construct-
ing confidence regions that satisfy (2) using a single-step method in which

S1 = Θ̃0�n = arg min
θ∈Θ

Q̂n(θ)(18)

and critical values are given by (14); that is,

Cn = {θ ∈Θ :anQ̂n(θ)≤ r̂n(Θ̃0�n�1 − α)}�
Such an approach can be shown by example to fail to lead to confidence re-
gions that satisfy (2) when the set of minimizers of Q̂n(θ) does not provide a
consistent estimate of Θ0(P). See Example 2.7 of Romano and Shaikh (2006)
for details.
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REMARK 2.6: When the set of minimizers of Q̂n(θ) does not provide a con-
sistent estimate of Θ0(P), Chernozhukov, Hong, and Tamer (2007) proposed
constructing confidence regions that satisfy (2) using a single-step method in
which

S1 = Θ̂0�n = {θ ∈Θ : Q̂n(θ) < εn}�(19)

where εn is a positive sequence of constants tending to zero slowly. Because of
this restriction on the rate at which εn tends to zero, they were able to show
that

P{Θ0(P)⊆ S1} → 1�(20)

The proof of Theorem 2.1 requires that the initial set S1 be such that Θ0(P)⊆
S1, but one can allow for S1 to be random provided that it satisfies (20) without
affecting the argument in any way. Hence, using our results, it follows that this
construction satisfies (2). Unfortunately, the specific choice of εn in finite sam-
ples is arbitrary and the confidence region resulting from application of their
method may thus be very large or very small depending on the choice of εn. Our
results provide a justification of iterating their procedure until a stopping crite-
rion is met, thereby removing this arbitrariness, and produce typically smaller
confidence regions while still maintaining the coverage requirement.

REMARK 2.7: It follows from the discussion in Remark 2.5 that there are
no first-order differences between the confidence regions from our step-down
procedure with S1 given by (19) and those of Chernozhukov, Hong, and Tamer
(2007). Even with such a delicate choice of S1, we expect the iterative approach
to perform better in finite samples. To this end, it is worthwhile to examine
second-order differences. In Section A.3 of the Appendix, we show in the con-
text of a simple example that our confidence region is smaller to second order
than the one proposed by Chernozhukov, Hong, and Tamer (2007). In the ex-
ample we consider, it is important to note that the set of minimizers of Q̂n(θ)
provides a consistent estimate of Θ0(P), so one could instead use a single-step
procedure with S1 given by (18). Compared with this procedure, our confidence
region is not smaller to second order. We simply use the example to illustrate
a phenomenon that we expect to persist even when the set of minimizers of
Q̂n(θ) does not provide a consistent estimate of Θ0(P).

2.2. Uniform Consistency in Level

We now provide conditions under which the set of θ values corresponding to
the accepted hypotheses from Algorithm 2.1, Cn, satisfies (3).
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THEOREM 2.3: Let Xi� i= 1� � � � � n, be an i.i.d. sequence of random variables
with distribution P and let b = bn < n be a sequence of positive integers tend-
ing to infinity, but satisfying b/n → 0. Let Jn(·�P) denote the distribution of
supθ∈Θ0(P)

anQ̂n(θ) under P . Suppose P ∈ P and

lim sup
n→∞

sup
P∈P

sup
x∈R

{Jb(x�P)− Jn(x�P)} ≤ 0�(21)

Then the set of θ values corresponding to the accepted hypotheses from Algo-
rithm 2.1 using critical values given by (14), Cn, satisfies (3).

PROOF: By Theorem 2.1, we have that

FWERP ≤ 1 − P
{

sup
θ∈Θ0(P)

anQ̂n(θ)≤ r̂n(Θ0(P)�1 − α)
}
�

By Theorem 3.1(iv) of Romano and Shaikh (2008), it follows that

lim inf
n→∞

inf
P∈P
P

{
sup

θ∈Θ0(P)

anQ̂n(θ)≤ r̂n(Θ0(P)�1 − α)
}

≥ 1 − α�(22)

Thus,

lim sup
n→∞

sup
P∈P

FWERP ≤ α�

The asserted claim now follows immediately from Lemma 2.1. Q.E.D.

The intuition behind condition (21) is as follows. Lemma A.1 shows un-
der weak conditions that the subsampling estimator of the distribution of
supθ∈Θ0(P)

anQ̂n(θ) approximates Jb(x�P) well uniformly over both x ∈ R and
P ∈ P. Condition (21) implies that critical values from Jb(x�P) are no smaller
than those from Jn(x�P). Hence, under this assumption, Theorem 3.1 of
Romano and Shaikh (2008) implies that subsampling behaves well over P ∈ P
in the sense that (22) holds.

We now apply Theorem 2.3 to construct confidence regions that satisfy the
coverage requirement (3) for the two examples considered in Section 2.

EXAMPLE 2.3—Moment Inequalities: Recall the setup of Example 2.1. We
will now use Theorem 2.3 to show that for this example the set of θ values
corresponding to the accepted hypotheses from Algorithm 2.1, Cn, satisfies (3)
for a large class of distributions P. To this end, let an = n, let P be such that (i)

{gj(·� θ) : 1 ≤ j ≤m�θ ∈Θ} is P-Donsker and pre-Gaussian
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uniformly in P ∈ P and (ii) Θ is compact with respect to the metric

ρ̄(θ�θ′)= sup
P∈P

max
1≤j≤m

ρP�j(θ�θ
′)�

where ρ2
P�j(θ�θ

′) = EP[(gj(X�θ) − gj(X�θ
′))2]. To rule out degenerate situ-

ations, assume further that (iii) there exists ε > 0 such that for each P ∈ P
there exist 1 ≤ j∗ ≤ m and θ∗ ∈ Θ0(P) such that EP[gj∗(Xi�θ

∗)] = 0 and
VarP[gj∗(Xi�θ

∗)] ≥ ε. Assumption (i) is again known to hold provided that the
class of functions is not too large; for general results to this end and numerous
applications, see van der Vaart and Wellner (1996). In the Appendix, we verify
that the required condition (21) holds under these assumptions.

EXAMPLE 2.4—Regression With Interval Outcomes: Recall the setup of Ex-
ample 2.2. As argued there, the structure of this example is similar to that of
Example 2.3. Since we provide details in the case of Example 2.3 above, we do
not do so here.

2.3. Confidence Regions for Functions of the Identified Set

In this section, we consider the problem of constructing sets that satisfy (5)
and (6). Let f :Θ→Λ be given. Our construction again relies on equivalence
with an appropriate multiple testing problem, but in this case the family of null
hypotheses is given by

Hλ :λ ∈Λ0(P) for λ ∈Λ�(23)

where Λ0(P) is defined by (4). The alternative hypotheses are understood to
be

Kλ :λ /∈Λ0(P) for λ ∈Λ�
As before, it suffices to consider the problem of testing this family of null hy-
potheses in a way that controls the FWERP at level α.

For λ ∈Λ, let f−1(λ)= {θ ∈Θ : f (θ)= λ}. Note that

λ ∈Λ0(P)⇐⇒ ∃θ ∈ f−1(λ) s.t. Q(θ�P)= 0

�⇒ inf
θ∈f−1(λ)

Q(θ�P)= 0�

This suggests a natural test statistic for each of these null hypotheses Hλ:

inf
θ∈f−1(λ)

anQ̂n(θ)�(24)

where anQ̂n(θ) is the test statistic used earlier to test the null hypothesis that
Q(θ�P)= 0.
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We may now proceed as before, but with this test statistic in place of our
earlier test statistic anQ̂n(θ). For K ⊆ Λ, let ĉfn(K�1 − α) be an estimator of
the 1 − α quantile of distribution of

sup
λ∈K

inf
θ∈f−1(λ)

anQ̂n(θ)

and consider the following modification of Algorithm 2.1.

ALGORITHM 2.2:
1. Let S1 =Λ. If supλ∈S1

infθ∈f−1(λ) anQ̂n(θ)≤ ĉfn(S1�1−α), then accept allHλ

and stop; otherwise, set S2 = {λ ∈ Λ : infθ∈f−1(λ) anQ̂n(θ) ≤ ĉfn(S1�1 − α)} and
continue.
���
j. If supλ∈Sj infθ∈f−1(λ) anQ̂n(θ)≤ ĉfn(Sj�1 −α), then accept all Hλ with λ ∈ Sj

and stop; otherwise, set Sj+1 = {λ ∈ Λ : infθ∈f−1(λ) anQ̂n(θ) ≤ ĉfn(Sj�1 − α)} and
continue.
���

We now provide conditions under which the set of θ values corresponding
to accepted hypotheses from Algorithm 2.2 leads to confidence regions that
satisfy (5) and (6). For K ⊆Λ and α ∈ (0�1), let

r̂fn (K�1 − α)(25)

= inf
{
x : 1
Nn

∑
1≤i≤Nn

I
{

sup
λ∈K

inf
θ∈f−1(λ)

abQ̂n�b�i(θ)≤ x
}

≥ 1 − α
}
�

THEOREM 2.4: Let Xi� i= 1� � � � � n, be an i.i.d. sequence of random variables
with distribution P and let b = bn < n be a sequence of positive integers tend-
ing to infinity, but satisfying b/n → 0. Let Jn(·�P) denote the distribution of
supλ∈Λ0(P)

infθ∈f−1(λ) anQ̂n(θ) under P . Let Cf
n denote the set of θ values corre-

sponding to accepted hypotheses from Algorithm 2.2 when ĉfn(K�1 − α) is given
by (25).

(i) Suppose Jn(·�P) converges in distribution to J(·�P) and that J(·�P) is con-
tinuous at its smallest 1 − α quantile. Then Cf

n satisfies (5).
(ii) Suppose P ∈ P and

lim sup
n→∞

sup
P∈P

sup
x∈R

{Jb(x�P)− Jn(x�P)} ≤ 0�(26)

Then Cf
n satisfies (6).
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The proof follows immediately from the arguments given in Sections 2.1
and 2.2.

We now provide a simple illustration of the use of Theorem 2.4.

EXAMPLE 2.5: Let (Xi�Yi)� i = 1� � � � � n, be an i.i.d. sequence of random
variables with distribution P on R2. The parameter of interest, θ0, is known
to satisfy θ0�1 ≥ μX(P) and θ0�2 ≥ μY(P). The identified set is therefore given
by Θ0(P) = {θ ∈ R2 :θ1 ≥ μX(P) and θ2 ≥ μY(P)}. This set may be character-
ized as the set of minimizers of

Q(θ�P)= (μX(P)− θ1)
2
+ + (μY(P)− θ2)

2
+�

The sample analog of Q(θ�P) is given by Q̂n(θ) = (X̄n − θ1)
2
+ + (Ȳn − θ2)

2
+.

Suppose the object of interest is the projection of Θ0(P) onto its first com-
ponent rather than the entire set Θ0(P); that is, the object of interest is
Λ0(P)= f (Θ0(P)), where f : R2 → R is defined by f (θ)= θ1 instead of Θ0(P).
Note that Λ0(P) is simply {θ1 ∈ R :θ1 ≥ μX(P)}.

First consider the problem of constructing sets that satisfy (5). Let an = n
and suppose P is such that σ2

X(P) exists. Assume without loss of generality
that μX(P)= 0. Then

sup
θ1∈Λ0(P)

inf
f−1(θ1)

anQ̂n(θ)= sup
θ1≥0

inf
θ2∈R

n(X̄n − θ1)
2
+ + n(Ȳn − θ2)

2
+

= n(X̄n)
2
+

L→ (σX(P)Z)
2
+�

where Z is a standard normal random variable. It now follows from Theo-
rem 2.4(i) that the set of θ values corresponding to accepted hypotheses from
Algorithm 2.2 when ĉfn(K�1 − α) is given by (25), Cf

n , satisfies (5).
Now consider the problem of constructing sets that satisfy (6). As before, let

an = n and let P be a set of distributions for which the marginal distribution
of X satisfies

lim
λ→∞

sup
P∈P

EP

[ |X −μ(P)|2

σ2(P)
I

{ |X −μ(P)|
σ(P)

> λ

}]
= 0�(27)

After noting that supθ1∈Λ0(P)
inff−1(θ1)

anQ̂n(θ) is simply n(X̄n)
2
+, it is straightfor-

ward to apply Lemma 11.4.1 of Lehmann and Romano (2005) to show that (26)
holds. Therefore, it follows from Theorem 2.4(ii) that the set of θ values cor-
responding to accepted hypotheses from Algorithm 2.2 when ĉfn(K�1 − α) is
given by (25), Cf

n , satisfies (6).

REMARK 2.8: Given a confidence region for the identified set Cn, one con-
struction of a confidence region for a function of the identified set is the image



186 J. P. ROMANO AND A. M. SHAIKH

of Cn under the function of interest. Such a construction will typically be con-
servative in the sense that the coverage probability will exceed the nominal
level.

3. EMPIRICAL ILLUSTRATION

In this section, we use the techniques developed above to examine the im-
pact of top-coding outcomes on the inferences that can be made about the
parameters of a linear regression. By top-coding a random variable, we mean
the practice of recording the realization of the random variable if and only if it
is below a certain threshhold. This model is a special case of our Example 2.2,
and so the theory developed above applies here under the appropriate assump-
tions. A similar empirical example can be found in Chernozhukov, Hong, and
Tamer (2004).

The motivation for our exercise stems from the following observation. To
study changes in the wage structure and earnings inequality, researchers often
regress the logarithm of hourly wages on various demographic characteristics.
Data sets used for this purpose invariably top-code wages for reasons of con-
fidentiality. One approach to deal with the top-coding of wages is to replace
all of the top-coded outcomes with a common value. In practice, this common
value is often taken to be a scalar multiple of the threshhold. This approach
is justified theoretically under the assumption that the distribution of wages
conditional on top-coding is distributed as a Pareto random variable. See, for
example, Katz and Autor (1999), wherein the scalar used for this purpose is
taken to be 1.5. Of course, we do not wish to impose any parametric assump-
tions.

To examine this issue, we begin with a sample of observations from the An-
nual Demographic Supplement of the Current Population Survey for the year
2000. For each individual in the survey, the survey records a variety of de-
mographic variables as well as information on wages and salaries. We select
observations with the following demographic characteristics: (1) race is white;
(2) age is between 20 and 24 years; (3) at least college graduates; (4) primary
source of income is wages and salaries; (5) worked at least 2 hours per week
on average. There are 305 such observations, none of which suffers from top-
coding of wages and salaries. We treat this sample of individuals as the distrib-
ution of the observed data P and draw an i.i.d. sample of n= 1000 observations
from this P . We will analyze these data both for the benchmark case of no top-
coding and for cases in which some amount of top-coding has been artificially
imposed on the data.

Recall the setup of Example 2.2. To allow for graphical illustration of the
confidence regions, we consider only a model in which k = 2; specifically, we
take Xi = (1�Di), where Di is 1 if the sex is female and 0 otherwise. The latent
outcome variable Y ∗

i = log(wage∗
i /Hi), where wage∗

i is total wages and salaries,
which is possibly unobserved in the presence of top-coding, and Hi is total
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hours worked. We assume that wage∗
i is bounded above by wage = $108. In the

benchmark case in which there is no top-coding, we will let Y1�i = Y2�i = Y ∗
i .

In the cases in which there is some top-coding, let wage be the threshhold
above which wages are not observed. Define Y1�i = Y2�i = Y ∗

i if wage∗
i ≤ wage;

otherwise, let Y1�i = Y i = log(wage/Hi) and Y2�i = Y i = log(wage/Hi).
Below we will construct confidence regions of level 1−α= 0�95 for the iden-

tified set for each of three different scenarios. For the sake of completeness,
we will also construct confidence regions for identifiable parameters, as de-
scribed in Romano and Shaikh (2008). More specifically, following Romano
and Shaikh (2008), we consider{

θ ∈ R2 :anQ̂n(θ)≤ r̂n({θ}�1 − α)}�
where r̂n({θ}�1 − α) is given by (14). We will compare the inferences that can
be drawn from these confidence regions with those that can be drawn from
regressing Ya

i on Xi, where, in the benchmark case of no top-coding, Ya
i = Y ∗

i ,
and, in cases with top-coding, Ya

i = Y ∗
i if wage∗

i ≤ wage and Ya
i = 1�5 × Y i

otherwise.
Before proceeding, we discuss some computational details. First, consider

the choice of b. In practice, one would like to use a data-dependent subsample
size; see Politis, Romano, and Wolf (1999) for a review of several algorithms
for choosing the subsample size in this way. For the purposes of this exercise,
however, we use the same subsample size, b= 30, in each of the constructions.
As a result, differences among the confidence regions below are not driven by
variation in the choice of subsample size. Note that the results below remain
similar for subsample sizes between 20 and 40, the range of subsample sizes for
which the simulation results in the following section suggest that the procedure
behaves well in finite samples. Second, when computing critical values, we also
used an approximation as described in Remark 2.1 with B= 200 because

(
n

b

)
is

too large to compute critical values exactly. Finally, following the discussion in
Remark 2.5, in the first step of Algorithm 2.1, we let

S1 = {θ ∈ R2 : Q̂n(θ)≤ 1000}�
The results below remain similar for much larger choices of S1.

We first consider the case in which there is no top-coding. Algorithm 2.1
converged after 11 steps and the confidence region for the identified set is
given by

Cn = S11 = {θ ∈ R2 : Q̂n(θ)≤ 0�0055}�
We also regress Ya

i on Xi and obtain a Wald-style confidence region of the
form

{θ ∈ R2 : (θ̂n − θ)′Σ̂−1
n (θ̂n − θ)≤ 5�99}�
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FIGURE 1.—Confidence regions with no top-coding and wage = $108: green = confidence
region for identifiable parameters, red = confidence region for identified set, blue = Wald-style
confidence region.

where Σ̂n is the usual heteroskedasticity-robust estimator of the variance of θ̂n.
These two confidence regions together with the confidence region for identifi-
able parameters are displayed in Figure 1. Since the true P that generates the
data is known, it is also possible to calculate the identified set, which in this
case is a singleton. It is given by Θ0(P) = {(2�047�0�042)}. As one would ex-
pect, in this instance all three confidence regions are of similar shape and size.
The largest is the confidence region for the identified set and the smallest is
the Wald-style confidence region. The confidence region for identifiable para-
meters is contained strictly within the confidence region for the identified set.

Next, we consider a case in which there is some amount of top-coding
and repeat the exercise above. For concreteness, we choose wage = $41,000,
which corresponds to 5% of the population being subject to top-coding. Algo-
rithm 2.1 converged after 12 steps and the confidence region for the identified
set is given by

Cn = S12 = {θ ∈ R2 : Q̂n(θ)≤ 0�0182}�
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FIGURE 2.—Confidence regions with 5% top-coding and wage = $108: green = confidence
region for identifiable parameters, red = confidence region for identified set, blue = Wald-style
confidence region, black = identified set.

The resulting confidence regions are displayed in Figure 2. Again, we may also
calculate the identified set, which is no longer a singleton due to top-coding. It
is given by{

θ ∈ R2 :E{Y1�i|Di = 0} ≤ θ1 ≤ E{Y2�i|Di = 0}�
E{Y1�i|Di = 1} ≤ θ1 + θ2 ≤E{Y2�i|Di = 1}}

and is therefore a parallelogram. This set is also displayed in Figure 2. Both
the confidence region for the identified set and the confidence region for iden-
tifiable parameters contain the identified set, but, as before, the confidence
region for identifiable parameters is contained strictly within the confidence
region for the identified set. The Wald-style confidence region, though still the
smallest, covers only a small portion of the identified set. As a result, infer-
ences based on the Wald-style confidence region might be very misleading if
the assumptions used to achieve identification are not correct.



190 J. P. ROMANO AND A. M. SHAIKH

To make this point more forcefully, we carry out the same exercise for the
case in which there is even more top-coding. Specifically, we reduce wage to
$35,000, which corresponds to 10% of the population being subject to top-
coding. Algorithm 2.1 converged after 9 steps and the confidence region for
the identified set is given by

Cn = S9 = {θ ∈ R2 : Q̂n(θ)≤ 0�0361}�
The resulting confidence regions along with the identified set are displayed in
Figure 3. The qualitative features of this figure are the same as before, ex-
cept now the Wald-style confidence region covers an even smaller portion of
the identified set, and so inferences based on it may be even more mislead-
ing.

Of course, so far we have assumed a very generous upper bound on annual
wages and salaries of wage = $108. To assess how sensitive the qualitative re-
sults described above are to the value of wage, we reexamine the previous case

FIGURE 3.—Confidence regions with 10% top-coding and wage = $108: green = confidence
region for identifiable parameters, red = confidence region for identified set, blue = Wald-style
confidence region, black = identified set.
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FIGURE 4.—Confidence regions with 5% top-coding and wage = $106: green = confidence
region for identifiable parameters, red = confidence region for identified set, blue = Wald-style
confidence region, black = identified set.

in which 10% of the population is subject to top-coding with the much lower
value of wage = $106. Algorithm 2.1 converged after 12 steps and the confi-
dence region for the identified set is then given by

Cn = S12 = {θ ∈ R2 : Q̂n(θ)≤ 0�0094}�
The confidence regions from this exercise along with the identified set are dis-
played in Figure 4. Again, the qualitative features of this figure are the same
as before, but, as one would expect, the identified set is smaller than before.
This suggests that in applications, the choice of wage is important, as it will
noticeably impact the sharpness of inferences in such a setting.

4. SIMULATION RESULTS

In this section, we shed some light on the finite-sample behavior of our step-
down procedure via a small simulation study. For the simulation study, we
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use the final specification of the empirical illustration in which wage = $106�
As in the empirical illustration, the sample size n is 1000 and α = 0�05. Fol-
lowing the discussion in Remark 2.5, in the first step of Algorithm 2.1, we
set S1 = {θ ∈ R2 : Q̂n(θ) ≤ 1000}. To assess the sensitivity of our procedure
to the choice of subsample size, we consider values of b in {15�20� � � � �85}.
Finally, as described in Remark 2.1, we approximate the critical values with
B= 200.

For each of 100 simulations, we compute the variables (i) j∗, the iteration
at which Algorithm 2.1 converged, (ii) ĉn(Sj∗�1 − α), the critical value that
defines Cn, (iii) ĉn(Sj∗−1�1 − α), (iv) supΘ0(P)

Q̂n(θ), and (v) I{Θ0(P)⊆ Cn}.
In Table I, we present, for each value of b, (i) the average number of iter-

ations needed for Algorithm 2.1 to converge, that is, the average value of ĵ∗,
and (ii) the simulated probability that the identified set is covered by Cn. The
simulation results show that the average number of iterations increases with
the subsample size, but it is typically between 7 and 10. The simulation results
also show that the coverage probabilities are close to the nominal level, 1 − α,
for values of b ranging from 20 to 40.

In Table II, we present, for each value of b, (i) the mean of ĉn(Sj∗�1 − α),
(ii) the mean of ĉn(Sj∗−1�1 − α), and (iii) the simulated 1 − α quantile of
supΘ0(P)

Q̂n(θ). We label the third column “ideal” because it represents the best
possible critical value. Of course, it is infeasible, since it depends on P , which is
typically unknown. Fortunately, the simulation results show that for values of b
between 20 and 40, ĉn(Sj∗�1 −α) is close to this ideal value. The simulation re-
sults also allow for a comparison with single-step procedures. To see this, recall

TABLE I

SIMULATION RESULTS

b Coverage Probability Average Number of Iterations

15 0.98 6.99
20 0.94 7.02
25 0.97 7.64
30 0.91 7.98
35 0.98 8.04
40 0.96 8.14
45 0.97 8.87
50 1.00 8.98
55 0.98 9.08
60 0.99 9.20
65 0.99 9.77
70 0.98 9.95
75 0.99 10.02
80 1.00 10.08
85 1.00 10.24



INFERENCE IN PARTIALLY IDENTIFIED MODELS 193

TABLE II

SIMULATION RESULTS—CRITICAL VALUES

b Avg. ĉn(Sj∗ �1 − α) Avg. ĉn(Sj∗−1�1 − α) Ideal

15 0.0063 0.0066 0.0057
20 0.0069 0.0073 0.0066
25 0.0074 0.0077 0.0057
30 0.0076 0.0078 0.0077
35 0.0079 0.0082 0.0052
40 0.0084 0.0088 0.0064
45 0.0084 0.0086 0.0062
50 0.0089 0.0092 0.0047
55 0.0090 0.0093 0.0056
60 0.0093 0.0096 0.0060
65 0.0097 0.0099 0.0052
70 0.0098 0.0100 0.0071
75 0.0102 0.0105 0.0054
80 0.0103 0.0105 0.0058
85 0.0107 0.0109 0.0052

that for a single-step procedure to lead to a smaller confidence region than our
step-down procedure, we would have to choose S1 to be smaller than

{θ ∈ R2 : Q̂n(θ)≤ ĉn(Sj∗−1�1 − α)}�
Since ĉn(Sj∗−1�1 − α) is typically very small in the simulation results, we would
have to choose S1 to be very small as well for the single-step procedure to
lead to a smaller confidence region than our step-down procedure. Moreover,
such a confidence region, though smaller than ours, may have poor coverage
probabilities in finite samples.

APPENDIX

A.1. Auxiliary Results

LEMMA A.1: Let X1� � � � �Xn be a sequence of i.i.d. random variables with
distribution P . Denote by Jn(·�P) the distribution of the statistic τn(θ̂n − θ(P)).
Suppose θ̂n = θ̂n(X1� � � � �Xn) is a symmetric function of its arguments and that
θ̂n ∈ S. Let V be a Vapnik–Chervonenkis (VC) class of subsets of S with VC index v
and assume that V is permissible. For 0 < b < n, let Nn = (

n

b

)
and let kn = � n

b
�.

Then, for any ε > 0, we have that

P

{
sup
V ∈V

∣∣∣∣ 1
Nn

∑
1≤i≤Nn

I
{
τb(θ̂n�b�i − θ(P)) ∈ V } − Jb(V �P)

∣∣∣∣> ε
}

(28)
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is bounded above by

1
ε

((√
2
kn

∨ 4

√
2 log(8kvn)

kn

)
∧ 1

)
(29)

+ 32kvn
ε

√
2π
kn

[
�

(
4√
kn

)
−�

((
1√
kn

∨
√

2 log(8kvn)
)

∧ 4√
kn

)]
�

where �(·) is the standard normal distribution. We also have that for any
0< δ< 1, (28) is bounded above by

δ

ε
+ 1
ε

8kvn exp
{
−knδ

2

32

}
(30)

whenever knδ2 ≥ 2.

PROOF: For V ∈ V define

Sn(V �P;X1� � � � �Xn)

= 1
kn

∑
1≤i≤kn

I
{
τb

(
θ̂b

(
Xb(i−1)+1� � � � �Xbi

) − θ(P)) ∈ V } − Jb(V �P)�

Denote by Sn the symmetric group with n elements. Note that using this nota-
tion, we may rewrite

1
Nn

∑
1≤i≤Nn

I
{
τb(θ̂n�b�i − θ(P)) ∈ V } − Jb(V �P)

as

Zn(V �P;X1� � � � �Xn)= 1
n!

∑
π∈Sn

Sn
(
V �P;Xπ(1)� � � � �Xπ(n)

)
�

Note further that

sup
V ∈V

|Zn(V �P;X1� � � � �Xn)| ≤ 1
n!

∑
π∈Sn

sup
V ∈V

∣∣Sn(V �P;Xπ(1)� � � � �Xπ(n)

)∣∣�
which is a sum of n! identically distributed random variables. Let ε > 0 be
given. It follows that

P
{

sup
V ∈V

|Zn(V �P;X1� � � � �Xn)|> ε
}

(31)

≤ P
{

1
n!

∑
π∈Sn

sup
V ∈V

∣∣Sn(V �P;Xπ(1)� � � � �Xπ(n)

)∣∣> ε}�
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Using Markov’s inequality, the right-hand side of (31) can be bounded by

1
ε
E

{
sup
V ∈V

|Sn(V �P;X1� � � � �Xn)|
}

(32)

= 1
ε

∫ 1

0
P

{
sup
V ∈V

|Sn(V �P;X1� � � � �Xn)|> u
}
du�(33)

Recall that the generalized Glivenko–Cantelli theorem asserts that

P
{

sup
V ∈V

|Sn(V �P;X1� � � � �Xn)|> u
}

is bounded above by 8kvn exp{−knu2/32} whenever knu2 ≥ 2 and by 1 otherwise.
It follows that (33) is bounded above by

1
ε

∫ (
√

2/kn∨4
√
(2 log(8kvn))/kn)∧1

0
1du

+ 1
ε

∫ 1

(
√

2/kn∨4
√
(2 log(8kvn))/kn)∧1

8kvn exp
{
−knu

2

32

}
du�

Evaluating this last expression yields the bound (29). To establish (30), note
that for any 0< δ< 1, we have that

E
{

sup
V ∈V

|Sn(V �P;X1� � � � �Xn)|
}

(34)

≤ δ+ P
{

sup
V ∈V

|Sn(V �P;X1� � � � �Xn)|> δ
}
�

The result (30) now follows immediately by using an exponential inequality
as found in the proof of the Glivenko–Cantelli theorem for VC classes (see
Section 2 of Pollard (1984)) to bound the second term on the right-hand side
in (34). Q.E.D.

LEMMA A.2: Let F and Fn�n ≥ 1, be distribution functions on R. Suppose
Fn(x)→ F(x) for all x≥ 0 and that F is continuous on (0�∞). Then

sup
x≥0

|Fn(x)− F(x)| → 0�

For brevity, we omit the proof of this generalization of Polya’s theorem.
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A.2. Technical Details for Example 2.1

Note that we may write

sup
θ∈Θ0(P)

anQ̂n(θ)= sup
θ∈Θ0(P)

∑
1≤j≤m

(
Zn�j(θ�P)+ √

nEP[gj(Xi� θ)]
)2

+�(35)

where

Zn�j(θ�P)= 1√
n

∑
1≤i≤n

(
gj(Xi�θ)−EP[gj(Xi� θ)]

)
�(36)

Let 0> λn → 0, but so slowly that
√
nλn → −∞ and, forK ⊆ {1� � � � �m}, define

Θ′
n(K�P)= {

θ ∈Θ0(P) :λn < EP[gj(Xi� θ)] ⇐⇒ j ∈K}
�

Θn(K�P)= {
θ ∈Θ0(P) :λn < EP[gj(Xi� θ)] for all j ∈K}

�

Θ0(K�P)= {
θ ∈Θ0(P) :EP[gj(Xi�θ)] = 0 for all j ∈K}

�

Note that

Θ0(P)=
⋃

{Θ0(K�P) :K ⊆ {1� � � � �m}}
=

⋃
{Θ′

n(K�P) :K ⊆ {1� � � � �m}}
and adopt the convention that the sum over the empty set and the supremum
over the empty set are zero. Hence, (35) can be bounded from below as

max
K⊆{1�����m}

sup
θ∈Θ0(K�P)

∑
1≤j≤m

(
Zn�j(θ�P)+ √

nEP[gj(Xi� θ)]
)2

+(37)

≥ max
K⊆{1�����m}

sup
θ∈Θ0(K�P)

∑
j∈K

(
Zn�j(θ�P)+ √

nEP[gj(Xi� θ)]
)2

+

= max
K⊆{1�����m}

sup
θ∈Θ0(K�P)

∑
j∈K
(Zn�j(θ�P))

2
+�

On the other hand, (35) can be bounded from above as

max
K⊆{1�����m}

sup
θ∈Θ′

n(K�P)

∑
1≤j≤m

(
Zn�j(θ�P)+ √

nEP[gj(Xi� θ)]
)2

+

≤ max
K⊆{1�����m}

sup
θ∈Θ′

n(K�P)

∑
j∈K
(Zn�j(θ�P))

2
+

+ max
K⊆{1�����m}

sup
θ∈Θ′

n(K�P)

∑
j /∈K

(
Zn�j(θ�P)+ √

nEP[gj(Xi� θ)]
)2

+
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≤ max
K⊆{1�����m}

sup
θ∈Θn(K�P)

∑
j∈K
(Zn�j(θ�P))

2
+

+ max
K⊆{1�����m}

sup
θ∈Θ′

n(K�P)

∑
j /∈K

(
Zn�j(θ�P)+ √

nEP[gj(Xi� θ)]
)2

+(38)

= max
K⊆{1�����m}

sup
θ∈Θn(K�P)

∑
j∈K
(Zn�j(θ�P))

2
+ + oP(1)�(39)

To see the equality (39), note that

sup
θ∈Θ′

n(K�P)

∑
j /∈K

(
Zn�j(θ�P)+ √

nEP[gj(Xi�θ)]
)2

+

≤m
(

sup
θ∈Θ0(P)

max
1≤j≤m

|Zn�j(θ�P)| +
√
nλn

)2

+
�

By assumption (i),

sup
θ∈Θ0(P)

max
1≤j≤m

|Zn�j(θ�P)| =OP(1)�(40)

It thus follows from the assumption that
√
nλn → −∞ that (38) tends in prob-

ability to zero, which in turn implies the equality (39).
Next, we argue that

sup
θ∈Θn(K�P)

∑
j∈K
(Zn�j(θ�P))

2
+ − sup

θ∈Θ0(K�P)

∑
j∈K
(Zn�j(θ�P))

2
+

P→ 0�(41)

Since Θ0(K�P)⊆Θn(K�P), the left-hand side of (41) is bounded from below
by zero. It therefore suffices to show that (41) is bounded from above by zero
in probability. To this end, note that the left-hand side of (41) is bounded from
above by

∑
j∈K
(Zn�j(θ̂n�P))

2
+ + εn − sup

θ∈Θ0(K�P)

∑
j∈K
(Zn�j(θ�P))

2
+�(42)

where 0< εn → 0 and θ̂n ∈Θn(K�P) are such that

sup
θ∈Θn(K�P)

∑
j∈K
(Zn�j(θ�P))

2
+ <

∑
j∈K
(Zn�j(θ̂n�P))

2
+ + εn�
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It is therefore enough to show that (42) is bounded from above in probability
by zero. To see this, suppose by way of contradiction that there exists δ > 0
such that

P

{∑
j∈K
(Zn�j(θ̂n�P))

2
+ − sup

θ∈Θ0(K�P)

∑
j∈K
(Zn�j(θ�P))

2
+ > δ

}
�→ 0�

By assumption (ii), it follows that there exists a subsequence nk and a θ̂ ∈
Θ0(K�P) such that ρP�j(θ̂nk� θ̂)→ 0 for all j ∈K and

P

{∑
j∈K

(
Znk�j

(
θ̂nk�P

))2

+ −
∑
j∈K

(
Znk�j(θ̂�P)

)2

+ > δ
}

�→ 0�(43)

Since fK : Rm → R given by fK(x) = ∑
j∈K(xj)

2
+ is a continuous function, it is

uniformly continuous on a compact set. Hence, for any M > 0 there exists a
ω=ω(M) > 0 for which the left-hand side of (43) is bounded from above by

P
{

sup
θ∈Θ0(P)

max
j∈K

∣∣Znk�j(θ�P)∣∣>M}
(44)

+ P
{

max
j∈K

∣∣Znk�j(θ̂nk�P) −Znk�j(θ̂�P)
∣∣>ω}

�

But it follows from assumption (i) that Zn(θ�P) is asymptotically equicontinu-
ous in the sense that for every 1 ≤ j ≤m and δ > 0,

lim
η→0

lim sup
n→∞

P
{

sup
ρP�j(θ�θ

′)<η
|Zn�j(θ�P)−Zn�j(θ′�P)|> δ

}
= 0�

It thus follows from (40) and assumption (iii) that (44) tends to zero asM → ∞
and k→ ∞. This yields a contradiction to (43), so (41) is established.

The asymptotic behavior of (35) is therefore given by the asymptotic behav-
ior of (37). By assumption (i) and the continuous mapping theorem, (37) tends
in distribution to

max
K⊆{1�����m}

sup
θ∈Θ0(K�P)

∑
j∈K
(Zj(θ�P))

2
+�(45)

where Z(θ�P)= (Z1(θ�P)� � � � �Zm(θ�P)) is a mean-zero multivariate Gauss-
ian process with covariance kernel

Cov(Zj(θ�P)�Zj′(θ′�P))=EP[gj(Xi� θ)gj′(Xi�θ
′)]�

It remains to show that (45) is continuous at its 1−α quantile for appropriate
values of α. To analyze this question, first note that (45) is a convex function
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of Z(θ�P). It therefore follows from Theorem 11.1 of Davydov, Lifshits, and
Smorodina (1998) that the distribution of (45) is continuous everywhere except
possibly at zero. Next, note that

P

{
max

K⊆{1�����m}
sup

θ∈Θ0(K�P)

∑
j∈K
(Zj(θ�P))

2
+ ≤ 0

}
≤ P{

(Zj∗(θ
∗�P))2

+ ≤ 0
} ≤ 1

2
�

where j∗ and θ∗ are as in assumption (iii). Hence, (45) is continuous at its 1−α
quantile for all α< 1

2 .

A.3. Technical Details for Remark 2.7

Let (Xi�Yi)� i = 1� � � � � n, be an i.i.d. sequence of random variables with
distribution P on R2. Let μX(P) denote the mean of the first component
of the distribution P and let μY(P) denote the mean of the second compo-
nent of the distribution P . The parameter of interest, θ0, is known to satisfy
μX(P) ≤ θ0 ≤ μY(P). The identified set is therefore given by Θ0(P) = {θ ∈
R :μX(P) ≤ θ ≤ μY(P)}. This set may be characterized as the set of minimiz-
ers of

Q(θ�P)= (μX(P)− θ)2
+ + (θ−μY(P))2

+�

The sample analog of Q(θ�P) is given by Q̂n(θ)= (X̄n − θ)2
+ + (θ− Ȳn)2

+.
Let an = n and suppose P is such that E[|(Xi�Yi)|4]<∞ and that Cramer’s

condition holds, that is,

lim sup
|s|→∞

|ψP(s)|< 1�

whereψP(s) denotes the characteristic function of P . Assume further thatXi ≤
Yi with probability 1 under P . This assumption is not essential, but it simplifies
the analysis, while still allowing us to make our comparison. See Remark A.1
below for further discussion.

Let

Θ̂0�n = {θ ∈ R :n(X̄n − θ)2
+ + n(θ− Ȳn)2

+ ≤ λn}�
where λn > 0 is an increasing sequence tending to infinity, but so slowly that
λn/n → 0. Chernozhukov, Hong, and Tamer (2007) suggested, for example,
λn = log(n). Consider the confidence region given by

C ′
n = {

θ ∈ R :n(X̄n − θ)+ + n(θ− Ȳn)2
+ ≤ r̂n(Θ̂0�n�1 − α)}�

To obtain a second-order accurate expression for r̂n(Θ̂0�n�1 −α), first note that

Θ̂0�n =
{
θ ∈ R : X̄n −

√
λn

n
≤ θ≤ Ȳn +

√
λn

n

}
�(46)
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We therefore have that r̂n(Θ̂0�n�1 − α) is the 1 − α quantile of

Ln(x)= 1
Nn

∑
1≤i≤Nn

I

{
max

{
b

(
X̄n�b�i − X̄n +

√
λn

n

)2

+
�

b

(
Ȳn − Ȳn�b�i +

√
λn

n

)2

+

}
≤ x

}
�

which, for x≥ 0, we may rewrite as

1
Nn

∑
1≤i≤Nn

I

{√
b(X̄n�b�i − X̄n)≤ √

x−
√
λnb

n
�

√
b(Ȳn − Ȳn�b�i)≤ √

x−
√
λnb

n

}
�

Now consider

L̃n(x� y)= 1
Nn

∑
1≤i≤Nn

I
{√
b(X̄n�b�i − X̄n)≤ x�√b(Ȳn − Ȳn�b�i)≤ y}

and the related

Un(x� y)= 1
Nn

∑
1≤i≤Nn

I
{√
b(X̄n�b�i −μX(P))≤ x�

√
b(μY(P)− Ȳn�b�i)≤ y}�

It follows from Lemma A.1 that

Un(x� y)= Jb(x� y�P)+OP
(√

log(kn)
kn

)

uniformly in x and y , where Jb(x� y�P) = P{√b(X̄n − μX(P)) ≤ x�
√
b ×

(μY(P)− Ȳn) ≤ y}. To see this, simply take δ= 4
√

5
√

log(kn)/kn in equation
(30) of Lemma A.1. From Lemma 5.4 of Hall (1992), we have, under our above
assumptions on P , that

Jb(x� y�P)=�σX(P)�σY (P)�ρ(P)(x� y)+ 1√
b
f (x� y�P)+OP

(
1
b

)

uniformly in x and y , where �σX(P)�σY (P)�ρ(P)(x� y) is the bivariate normal cu-
mulative distribution function with variances σ2

X(P) and σ2
Y (P) and covari-

ance ρ(P), and f (x� y�P) is a smooth function of x and y that depends on P
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through its second- and third-order cumulants. Now, since
√
b/n is of smaller

order than
√

log(kn)/kn,

√
b|X̄n −μX(P)| =OP(

√
b/n)≤OP(

√
log(kn)/kn)�

and similarly for Ȳn. Using these facts, we can argue as in the proof of Lemma 2
of Bertail (1997) that

L̃n(x� y)=Un(x� y)=OP(
√

log(kn)/kn)�

Therefore,

L̃n(x� y)=�σX(P)�σY (P)�ρ(P)(x� y)+ 1√
b
f (x� y�P)

+OP
(

1
b

∨
√

log(kn)
kn

)

uniformly in x and y . From this expression for L̃n(x� y), we can deduce that
ĉn = inf{x ∈ R : L̃n(x�x)≥ 1 − α} satisfies

ĉn = c + δ√
b

+OP
(

1
b

∨
√

log(kn)
kn

)
�

where c is such that �σX(P)�σY (P)�ρ(P)(c� c)= 1 − α and

δ= − f (c� c)

∇x�y�σX(P)�σY (P)�ρ(P)(x� y)|′x=c�y=c(1�1)
�

Hence,

r̂n(Θ̂0�n�1 − α)=
(
ĉn +

√
λnb

n

)2

(47)

=
(
c+ δ√

b
+

√
λnb

n
+OP

(
1
b

∨
√

logkn
kn

))2

�(48)

Now consider the confidence region Cn given by Algorithm 2.1. First note
that

sup
θ∈Θ̂0�n

anQ̂n(θ)= λn�
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From the above expression for r̂n(Θ̂0�n�1 − α), we therefore have that

P
{

sup
θ∈Θ̂0�n

anQ̂n(θ) > r̂n(Θ̂0�n�1 − α)
}

→ 1�

It follows that Cn is no larger than{
θ ∈ R :n(X̄n − θ)2

+ + n(θ− Ȳn)2
+ ≤ r̂n(C ′

n�1 − α)}
with probability tending to 1. From the above analysis, we have immediately
that a second-order accurate expression for r̂n(C ′

n�1 − α) is

(
c+ δ√

b
+

√
b

n

(
c+ δ√

b
+

√
λnb

n

)
+OP

(
1
b

∨
√

log(kn)
kn

))2

�(49)

Since
√

b
n
(c + δ√

b
+ √

λnb/n) is of smaller order than
√
λnb/n, we expect

that r̂n(C ′
n�1 − α) will be smaller to second order than r̂n(Θ̂0�n�1 − α). To il-

lustrate this, consider the special case in which λn = log(n), as suggested by
Chernozhukov, Hong, and Tamer (2007), and b= n1/3, as suggested by Politis,
Romano, and Wolf (1999). In this case, (48) simplifies to

c+ δ√
b

+OP
(√

log(n)
n2/3

)
�

whereas (49) simplifies to

c+ δ√
b

+OP
(√

log(n2/3)

n2/3

)
�

Hence, r̂n(C ′
n�1−α) is smaller to second order than r̂n(Θ̂0�n�1−α), as expected.

REMARK A.1: The assumption that Xi ≤ Yi with probability 1 under P was
only used in the second-order comparison of Remark 2.7 to express Θ̂0�n as
in (46). If we were to change Q̂n(θ), then this assumption can be removed as
well. For example, if we consider

Q̂n(θ)= max{n(X̄n − θ)2
+� n(θ− Ȳn)2

+}�

then we can express Θ̂0�n as in (46) regardless of whether Xi ≤ Yi with prob-
ability 1 under P or not. The rest of the analysis can be followed without any
changes to illustrate the second-order benefits of the iterative approach.
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A.4. Technical Details for Example 2.3

We begin with some preliminaries. We can write

sup
θ∈Θ0(P)

anQ̂n(θ)= sup
θ∈Θ0(P)

∑
1≤j≤m

(
Zn�j(θ�P)+ √

nEP[gj(Xi� θ)]
)2

+�

where

Zn�j(θ�P)= 1√
n

∑
1≤i≤n

(
gj(Xi� θ)−EP[gj(Xi� θ)]

)
�

Let 0 > λn → 0, but in a way that
√
bλn → 0 and

√
nλn → −∞. For K ⊆

{1� � � � �m}, define

Θ′
n(K�P)= {

θ ∈Θ0(P) :λn < EP[gj(Xi�θ)] ⇐⇒ j ∈K}
�

Θn(K�P)= {
θ ∈Θ0(P) :λn < EP[gj(Xi�θ)] for all j ∈K}

�

Θ0(K�P)= {
θ ∈Θ0(P) :EP[gj(Xi� θ)] = 0 for all j ∈K}

�

Note that

Θ0(P)=
⋃

{Θn(K�P) :K ⊆ {1� � � � �m}}
=

⋃
{Θ′

n(K�P) :K ⊆ {1� � � � �m}}�

Below we will adopt the convention that the sum over the empty set and the
supremum over the empty set are zero.

Next, note that for any sequence Pn ∈ P, we have that

sup
θ∈Θ0(Pn)

abQ̂b(θ)(50)

= max
K⊆{1�����m}

sup
θ∈Θn(K�Pn)

∑
1≤j≤m

(
Zb�j(θ�Pn)+ √

bEPn[gj(Xi�θ)]
)2

+

≥ max
K⊆{1�����m}

sup
θ∈Θn(K�Pn)

∑
j∈K

(
Zb�j(θ�Pn)+ √

bEPn[gj(Xi� θ)]
)2

+

≥ max
K⊆{1�����m}

sup
θ∈Θn(K�Pn)

∑
j∈K
(Zb�j(θ�Pn)+ √

bλn)
2
+

= max
K⊆{1�����m}

sup
θ∈Θn(K�Pn)

∑
j∈K
(Zb�j(θ�Pn))

2
+ +Δ1�n(Pn)�
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where

Δ1�n(Pn)= max
K⊆{1�����m}

sup
θ∈Θn(K�Pn)

∑
j∈K
(Zb�j(θ�Pn)+ √

bλn)
2
+

− max
K⊆{1�����m}

sup
θ∈Θn(K�Pn)

∑
j∈K
(Zb�j(θ�Pn))

2
+�

Moreover, Δ1�n(Pn) = oPn(1). To see this, it suffices to show that for any K ⊆
{1� � � � �m},

sup
θ∈Θn(K�Pn)

∑
j∈K
(Zb�j(θ�Pn))

2
+(51)

− sup
θ∈Θn(K�Pn)

∑
j∈K
(Zb�j(θ�Pn)+ √

bλn)
2
+ = oPn(1)�

Since the left-hand side of (51) is bounded from below by

sup
θ∈Θn(K�Pn)

∑
j∈K
(Zb�j(θ�Pn))

2
+ − (Zb�j(θ�Pn)+ √

bλn)
2
+ ≥ 0�

it suffices to show that (51) is bounded from above by zero in probability. To
this end, let θ̂n ∈Θn(K�Pn) be such that

sup
θ∈Θn(K�Pn)

∑
j∈K
(Zb�j(θ�Pn))

2
+ ≤

∑
j∈K
(Zb�j(θ̂n�Pn))

2
+ + εn

for 0< εn → 0. Thus, (51) is bounded from above by

∑
j∈K
(Zb�j(θ̂n�Pn))

2
+ + εn −

∑
j∈K
(Zb�j(θ̂n�Pn)+ √

bλn)
2
+�

Since the function fK : Rm → R defined by fK(x) = ∑
j∈K(xj)

2
+ is continuous,

it is uniformly continuous on a compact set. Hence, for any δ > 0 and M > 0,
there exists ω=ω(M) > 0 such that

Pn

{∑
j∈K
(Zb�j(θ̂n�Pn))

2
+ −

∑
j∈K
(Zb�j(θ̂n�Pn)+ √

bλn)
2
+ > δ

}
(52)

≤ Pn
{

max
1≤j≤m

|Zb�j(θ̂n�Pn)|>M
}

+ Pn{
√
bλn <−ω}

≤ Pn
{

sup
θ∈Θ

max
1≤j≤m

|Zb�j(θ�Pn)|>M
}

+ I{√bλn <−ω}�
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By assumption (i),

sup
θ∈Θ

max
1≤j≤m

|Zb�j(θ�Pn)| =OPn(1)�

It therefore follows from the assumption that
√
bλn → 0 that (52) tends to zero

as n→ ∞ and then M → ∞. The desired claim thus follows.
Similarly, we have for any sequence Pn ∈ P that

sup
θ∈Θ0(Pn)

anQ̂n(θ)(53)

= max
K⊆{1�����m}

sup
θ∈Θ′

n(K�Pn)

∑
1≤j≤m

(
Zn�j(θ�Pn)+ √

nEPn[gj(Xi� θ)]
)2

+

≤ max
K⊆{1�����m}

sup
θ∈Θ′

n(K�Pn)

∑
j∈K
(Zn�j(θ�Pn))

2
+

+ max
K⊆{1�����m}

sup
θ∈Θ′

n(K�Pn)

∑
j /∈K

(
Zn�j(θ�Pn)+ √

nEPn[gj(Xi� θ)]
)2

+

≤ max
K⊆{1�����m}

sup
θ∈Θn(K�Pn)

∑
j∈K
(Zn�j(θ�Pn))

2
+ +Δ2�n(Pn)�

where

Δ2�n(Pn)= max
K⊆{1�����m}

sup
θ∈Θ′

n(K�Pn)

∑
j /∈K

(
Zn�j(θ�Pn)+ √

nEPn[gj(Xi� θ)]
)2

+�

Moreover, Δ2�n(Pn)= oPn(1). To see this, note that

sup
θ∈Θ′

n(K�Pn)

∑
j /∈K

(
Zn�j(θ�Pn)+ √

nEPn[gj(Xi�θ)]
)2

+

≤m
(

sup
θ∈Θ

max
1≤j≤m

|Zn�j(θ�Pn)| +
√
nλn

)2

+
�

By assumption (i),

sup
θ∈Θ

max
1≤j≤m

|Zn�j(θ�Pn)| =OPn(1)�

The desired claim thus follows from the assumption that
√
nλn → −∞. In fact,

we have that Δ2�n(Pn) is identically equal to zero with probability tending to 1.
We now use these facts to argue by contradiction that the required condi-

tion (21) holds. If the result were false, then there would exist a subsequence nk
and a corresponding sequence Pnk ∈ P such that

sup
x∈R

{
Jbnk

(
x�Pnk

) − Jnk
(
x�Pnk

)} → δ
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for some δ > 0. It follows from (50) and (53) that

sup
x∈R

{
J̃bnk

(
x�Pnk

) − J̄nk
(
x�Pnk

)} �→ 0�(54)

where

J̃bnk
(
x�Pnk

) = Pnk
{

max
K⊆{1�����m}

sup
θ∈Θnk (K�Pnk )

∑
j∈K

(
Zbnk �j

(
θ�Pnk

))2

+

+Δ1�nk

(
Pnk

) ≤ x
}
�

J̄nk
(
x�Pnk

) = Pnk
{

max
K⊆{1�����m}

sup
θ∈Θnk (K�Pnk )

∑
j∈K

(
Znk�j

(
θ�Pnk

))2

+

+Δ2�nk

(
Pnk

) ≤ x
}
�

By assumption (ii) and Theorem 3.85 of Aliprantis and Border (2006), the
set of all nonempty closed subsets of Θ is a compact metric space with respect
to the Hausdorff metric

ρ̄H(A�B)= inf{η> 0 :A⊆ Bη�B⊆Aη}�
where

Aη =
⋃

{a′ ∈Θ : ρ̄(a′� a) < η for some a ∈A}�
Hence, for each K ⊆ {1� � � � �m} for which Θnk(K�Pnk) is nonempty infinitely
often, there exists ∅ �= Θ∗(K) ⊆ Θ such that Θnk(K�Pnk) converges to Θ∗(K)
under ρ̄H along a subsequence. For any K ⊆ {1� � � � �m} for which Θnk(K�Pnk)
is nonempty only finitely often, let Θ∗(K) = ∅. Note that by assumption (iii)
and the pigeonhole principle there exists 1 ≤ j∗ ≤m such that infinitely often
there exists θ∗

nk
∈Θnk({j∗}�Pnk) such that VarPnk [gj∗(Xi�θ

∗
nk
)] ≥ ε.

By assumption (i), we have that

sup
θ∈Θ

max
1≤j≤m

∣∣Zbnk �j(θ�Pnk)∣∣ =OPnk (1)�

sup
θ∈Θ

max
1≤j≤m

∣∣Znk�j(θ�Pnk)∣∣ =OPnk (1)�

Hence, along a subsequence, both Zbnk (θ�Pnk) and Znk(θ�Pnk) converge
to mean-zero multivariate Gaussian processes. Since the covariance kernel
of these limiting processes is given by the limit of the covariance kernels
of Zbnk (θ�Pnk) and Znk(θ�Pnk), which are identical, the covariance kernels of
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the limiting processes must also be identical. The distributions of the limiting
processes must therefore be identical.

In summary, there exists a subsequence nk
 along which ρH(Θnk

(K�Pnk
 )�

Θ∗(K))→ 0 for all K ⊆ {1� � � � �m}, and Zbnk
 (θ�Pnk
 ) and Znk
 (θ�Pnk
 ) both
converge in distribution Z∗(θ), a mean-zero multivariate Gaussian process.
Let J∗(x) denote the distribution function of

max
K⊆{1�����m}

sup
θ∈Θ∗(K)

∑
j∈K
(Z∗

j (θ))
2
+�(55)

Furthermore, there exist 1 ≤ j∗ ≤m and θ∗ ∈Θ∗({j∗}) such that Z∗
j∗(θ

∗) is not
degenerate. Since (55) is a convex function of Z∗(θ), it follows from Theo-
rem 11.1 of Davydov, Lifshits, and Smorodina (1998) that J∗(x) is continuous
on (0�∞).

To complete the argument, we argue that

sup
x∈R

∣∣J̃bnk
 (x�Pnk
 ) − J∗(x)
∣∣ → 0�

sup
x∈R

∣∣J̄nk
 (x�Pnk
 ) − J∗(x)
∣∣ → 0�

which will lead to a contradiction of (54). Note that the distribution functions
are identically equal to zero for x < 0, so it suffices to show that

sup
x≥0

∣∣J̃bnk
 (x�Pnk
 ) − J∗(x)
∣∣ → 0�

sup
x≥0

∣∣J̄nk
 (x�Pnk
 ) − J∗(x)
∣∣ → 0�

For this purpose, we will use Lemma A.2. To apply this lemma, we first argue
that

max
K⊆{1�����m}

sup
θ∈Θnk
 (K�Pnk
 )

∑
j∈K

(
Zbnk
 �j

(
θ�Pnk


))2

+(56)

− max
K⊆{1�����m}

sup
θ∈Θ∗(K)

∑
j∈K
(Zbnk
 �j

(θ�Pnk
 ))
2
+

and

max
K⊆{1�����m}

sup
θ∈Θnk
 (K�Pnk
 )

∑
j∈K

(
Znk
 �j

(
θ�Pnk


))2

+(57)

− max
K⊆{1�����m}

sup
θ∈Θ∗(K)

∑
j∈K
(Znk
 �j(θ�Pnk
 ))

2
+
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both converge in probability to zero. We only establish the result for (56), as
essentially the same argument will establish the result for (57). It suffices to
show that

sup
θ∈Θnk
 (K�Pnk
 )

∑
j∈K

(
Zbnk
 �j

(
θ�Pnk


))2

+(58)

− sup
θ∈Θ∗(K)

∑
j∈K

(
Zbnk
 �j

(
θ�Pnk


))2

+ = oPnk
 (1)�

We first argue that the left-hand side of (58) is bounded above by zero in prob-
ability. To this end, let θ̂
 ∈Θnk


(K�Pnk
 ) be such that

sup
θ∈Θnk
 (K�Pnk
 )

∑
j∈K

(
Zbnk
 �j

(
θ�Pnk


))2

+ ≤
∑
j∈K

(
Zbnk
 �j

(
θ̂
�Pnk


))2

+ + ε


for 0< ε
 → 0, and let θ̂∗

 ∈Θ∗(K) be such that ρ̄(θ̂
� θ̂∗


)→ 0. With θ̂
 and θ̂∗



so defined, the left-hand side of (58) is bounded above by

∑
j∈K

(
Zbnk
 �j

(
θ̂
�Pnk


))2

+ + ε
 −
∑
j∈K

(
Zbnk
 �j

(
θ̂∗

�Pnk


))2

+�

Since the function fK : Rm → R defined by fK(x) = ∑
j∈K(xj)

2
+ is continuous,

it is uniformly continuous on a compact set. Hence, for any δ > 0 and M > 0,
there exists ω=ω(M) > 0 such that

Pnk


{∑
j∈K

(
Zbnk
 �j

(
θ̂
�Pnk


))2

+ −
∑
j∈K

(
Zbnk
 �j

(
θ̂∗

�Pnk


))2

+ > δ
}

(59)

≤ Pnk

{

max
1≤j≤m

∣∣Zbnk
 �j(θ̂
�Pnk
 )∣∣>M
}

+ Pnk

{

max
j∈K

∣∣Zbnk
 �j(θ̂
�Pnk
 ) −Zbnk
 �j
(
θ̂∗

�Pnk


)∣∣>ω}

≤ Pnk

{

sup
θ∈Θ

max
1≤j≤m

∣∣Zbnk
 �j(θ�Pnk
 )∣∣>M
}

+ Pnk

{

max
1≤j≤m

∣∣Zbnk
 �j(θ̂
�Pnk
 ) −Zbnk
 �j
(
θ̂∗

�Pnk


)∣∣>ω}
�

By assumption (i),

sup
θ∈Θ

max
1≤j≤m

∣∣Zbnk
 �j(θ�Pnk
 )∣∣ =OPnk
 (1)�(60)
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Assumption (i) also implies that for any ω> 0 and all 1 ≤ j ≤m,

lim
η→0

lim sup
n→∞

sup
P∈P

P
{

sup
ρP�j(θ�θ

′)<η
|Zn�j(θ�P)−Zn�j(θ′�P)|>ω

}
= 0�

It therefore follows from the assumption that ρ̄(θ̂
� θ̂∗

)→ 0 that (59) tends to

zero as 
→ ∞ and then M → ∞. By interchanging the roles of Θnk

(K�Pnk
 )

andΘ∗(K), we see that the left-hand side of (58) is also bounded below by zero
in probability. The desired result follows.

Since Δ1�nk

(Pnk
 ) and Δ2�nk


(Pnk
 ) both converge in probability to zero, we
have by the continuous mapping theorem that J̃bnk
 (x�Pnk
 ) and J̄nk
 (x�Pnk
 )
both converge in distribution to J∗(x). Since J∗(x) is continuous on (0�∞), we
have for every x > 0 that

J̃bnk


(
x�Pnk


) → J∗(x)�

J̄nk


(
x�Pnk


) → J∗(x)�

To apply Lemma A.2, we therefore need only show that these convergences
hold at x= 0.

Consider first J̃bnk
 (x�Pnk
 ). Since Δ1�nk

(Pnk
 )≤ 0, we have that

J̃bnk


(
0�Pnk


) ≥ Pnk

{

max
K⊆{1�����m}

sup
θ∈Θnk
 (K�Pnk
 )

∑
j∈K

(
Zbnk
 �j

(
θ�Pnk


))2

+ ≤ 0
}

= Pnk


{
max

K⊆{1�����m}
sup

θ∈Θnk
 (K�Pnk
 )
max
j∈K

Zbnk
 �j
(
θ�Pnk


) ≤ 0
}
�

Conversely, since Δ1�nk

(Pnk
 )= oPnk
 (1), we have for any ε > 0 that

lim sup

→∞

J̃bnk


(
0�Pnk


)

≤ lim sup

→∞

Pnk


{
max

K⊆{1�����m}
sup

θ∈Θnk
 (K�Pnk
 )

∑
j∈K

(
Zbnk
 �j

(
θ�Pnk


))2

+ ≤ ε
}

≤ lim sup

→∞

Pnk


{
max

K⊆{1�����m}
sup

θ∈Θnk
 (K�Pnk
 )
max
j∈K

(
Zbnk
 �j

(
θ�Pnk


))2

+ ≤ ε
}

= lim sup

→∞

Pnk


{
max

K⊆{1�����m}
sup

θ∈Θnk
 (K�Pnk
 )
max
j∈K

Zbnk
 �j
(
θ�Pnk


) ≤ √
ε
}
�
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But arguing as was done to establish that (56) and (57) both tended to zero in
probability, we have by the continuous mapping theorem that

max
K⊆{1�����m}

sup
θ∈Θnk
 (K�Pnk
 )

max
j∈K

Zbnk
 �j
(
θ�Pnk


) L→ max
K⊆{1�����m}

sup
θ∈Θ∗(K)

max
j∈K

Z∗
j (θ)�(61)

By letting ε→ 0 and noting that J∗(0) is equal to the probability that (61) is
less than or equal to zero, the desired result follows.

Now consider J̄nk
 (x�Pnk
 ). Since Δ2�nk

(Pnk
 ) is identically equal to zero with

probability tending to 1, we have that

lim

→∞

J̄nk


(
0�Pnk


)
≤ lim


→∞
Pnk


{
max

K⊆{1�����m}
sup

θ∈Θnk
 (K�Pnk
 )

∑
j∈K

(
Znk
 �j

(
θ�Pnk


))2

+ ≤ 0
}

= lim

→∞

Pnk


{
max

K⊆{1�����m}
sup

θ∈Θnk
 (K�Pnk
 )
max
j∈K

Znk
 �j
(
θ�Pnk


) ≤ 0
}
�

But arguing as was done to establish that (56) and (57) both tended to zero in
probability, we have by the continuous mapping theorem that

max
K⊆{1�����m}

sup
θ∈Θnk
 (K�Pnk
 )

max
j∈K

Znk
 �j
(
θ�Pnk


)

converges in distribution to the right-hand side of (61). To complete the proof,
note that J∗(0) is equal to the probability that the right-hand side of (61) is less
than or equal to zero.
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