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Abstract

This paper considers the problem of inference for partially identified econometric models. The class of models studied are defined
by a population objective function Q(!, P ) for ! ∈ ". The second argument indicates the dependence of the objective function on
P , the distribution of the observed data. Unlike the classical extremum estimation framework, it is not assumed that Q(!, P ) has
a unique minimizer in the parameter space ". The goal may be either to draw inferences about some unknown point in the set of
minimizers of the population objective function or to draw inferences about the set of minimizers itself. In this paper, the object
of interest is some unknown point ! ∈ "0(P ), where "0(P ) = arg min!∈" Q(!, P ), and so we seek random sets that contain each
! ∈ "0(P ) with at least some prespecified probability asymptotically. We also consider situations where the object of interest is
the image of some point ! ∈ "0(P ) under a known function. Computationally intensive, yet feasible procedures for constructing
random sets satisfying the desired coverage property under weak assumptions are provided. We also provide conditions under which
the confidence regions are uniformly consistent in level.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

This paper provides computationally intensive, yet feasible methods for inference for a large class of partially
identified econometric models. A partially identified model is a model in which the parameter of interest is not
uniquely defined by the distribution of the observed data. Such models arise naturally in many parts of empirical work
in economics. The class of models considered is defined by a population objective function Q(!, P ) for ! ∈ ". The
second argument indicates the dependence of the objective function on P , the distribution of the observed data. Unlike
the classical extremum estimation framework, it is not assumed that Q(!, P ) has a unique minimizer in the parameter
space ". The goal may be either to draw inferences about some unknown point in the set of minimizers of the population
objective function or to draw inferences about the set of minimizers itself. In this paper, we consider the first of these
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two goals. The object of interest is some unknown point ! ∈ "0(P ), where

"0(P ) = arg min
!∈"

Q(!, P ). (1)

We henceforth refer to any ! ∈ "0(P ) as an identifiable parameter and "0(P ) as the identified set. In this instance,
given i.i.d. data Xi, i = 1, . . . , n, generated from P , we seek random sets Cn = Cn(X1, . . . , Xn) that contain each
identifiable parameter with at least some prespecified probability asymptotically. That is, for all ! ∈ "0(P ) we have

lim inf
n→∞ P {! ∈ Cn}!1 − #. (2)

We term such sets as confidence regions for identifiable parameters that are pointwise consistent in level. This ter-
minology reflects the fact that the confidence regions are valid only for a fixed probability distribution P and helps
distinguish this coverage requirement from others discussed later in which we will demand that the confidence regions
are valid uniformly in P . We construct random sets Cn satisfying (2) under weak assumptions on P . These assumptions
are formulated in terms of restrictions on the asymptotic behavior of the estimate of the population objective function,
Q̂n(!). Most often Q̂n(!)=Q(!, P̂n) for some estimate P̂n of P . Our construction is based on the usual duality between
confidence regions and hypothesis testing: we invert tests of each of the null hypotheses H! : ! ∈ "0(P ) for ! ∈ "
that control the usual probability of a Type 1 error at level #. Typically, " is a subset of Euclidean space and so the
number of null hypotheses may be uncountably infinite. The idea of inverting tests using computer-intensive methods
can be traced to Diciccio and Romano (1990).

In the second goal, the object of interest is the identified set, "0(P ), itself. In this case, given i.i.d. data Xi, i=1, . . . , n,
generated from P , we seek instead random sets Cn =Cn(X1, . . . , Xn) that contain the identified set with at least some
prespecified probability asymptotically. The problem of constructing such sets is treated in a companion paper, Romano
and Shaikh (2006b).

Our results on confidence regions for identifiable parameters build upon the earlier work of Chernozhukov et al.
(2007), who were the first to consider inference for the same class of partially identified models. Our analysis also
extends the work of Imbens and Manski (2004), who analyze the special case of the above class of partially identified
models in which the identified set is an interval whose upper and lower endpoints are means or at least behave like
means asymptotically. The authors discuss different definitions for confidence regions in the context of this setting and
argue forcefully that it may be desirable to demand validity of confidence regions not just for each fixed probability
distribution P satisfying weak assumptions, but rather uniformly over all P in some large class of distributions P.
Confidence regions that fail to satisfy this requirement have the feature that for every sample size n, however large,
there is some probability distribution P ∈ P for which the coverage probability of the confidence region under P

is not close to the prescribed level. Researchers may therefore feel that inferences made on the basis of asymptotic
approximations are more reliable if the confidence regions exhibit good uniform behavior. Of course, such a requirement
will typically require restrictions on P beyond those required for pointwise consistency in level. Bahadur and Savage
(1956), for example, show that if P is suitably large, then there exists no confidence interval for the mean with finite
length and good uniform behavior. Romano (2004) extends this nonexistence result to a number of other problems.
We provide restrictions on P under which both types of confidence regions suggested in this paper have good uniform
behavior. Concretely, we provide conditions under which Cn satisfies

lim inf
n→∞ inf

!∈"
inf

P∈P:!∈"0(P )
P {! ∈ Cn}!1 − #. (3)

By analogy with our earlier terminology, sets satisfying (3) are referred to as confidence regions for identifiable
parameters that are uniformly consistent in level. Note that if the identified set "0(P ) consists of a single point !0(P ),
then this definition reduces to the usual definition of confidence regions that are uniformly consistent in level; that is,

lim inf
n→∞ inf

P∈P
P {!0(P ) ∈ Cn}!1 − #.

In order to provide conditions under which these coverage properties hold, we use recently developed results that
provide general conditions under which confidence regions for a parameter constructed using subsampling are uniformly
consistent in level.

We have so far assumed that the object of interest is an identifiable parameter, ! ∈ "0(P ). More generally, the object
of interest may be the image of an identifiable parameter under a known function. A typical example of such a function
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is the projection of Rk onto one of the axes. We extend the above definitions of confidence regions to this setting as
follows. Consider a function f : " → $. Denote by $0(P ) the image of "0(P ) under f ; that is,

$0(P ) = {f (!) : ! ∈ "0(P )}. (4)

We refer to a set Cf
n as a confidence region for a function of identifiable parameters that is pointwise consistent in level

if for any % ∈ $0(P ) we have that

lim inf
n→∞ P {% ∈ C

f
n }!1 − #. (5)

As before, we may also demand uniformly good behavior over a class of probability distributions P by requiring that
C

f
n satisfy

lim inf
n→∞ inf

%∈$
inf

P∈P:%∈$0(P )
P {% ∈ C

f
n }!1 − #. (6)

By analogy with our earlier terminology, sets satisfying (6) are referred to as confidence regions for a function of
identifiable parameters that are uniformly consistent in level. We adapt our constructions of confidence regions for
identifiable parameters to provide constructions of confidence sets satisfying these alternative coverage requirements.

Methods for drawing inferences in partially identified models have allowed economists to solve many empirical
problems that previously either were intractable or relied on untenable assumptions to achieve identification. Manski
(2003) has argued forcefully against invoking such assumptions to make inferences in the context of missing outcome
data and treatment response, as it degrades the credibility of inferences made under those assumptions. Another class
of models that may only be partially identified is given by game-theoretic models with multiple equilibria. When
confronted with such models, researchers often impose identification by assuming some sort of an ad hoc equilibrium
selection mechanism. More recently, the empirical literature has explored inferences based on exploiting only those
restrictions implied by equilibrium behavior that do not depend on the particular equilibrium being played by the
agents. These restrictions are often defined by a system of moment inequalities, which is a special case of the class of
models considered in this paper. Cilberto and Tamer (2004) and Borzekowski and Cohen (2005), for example, use this
idea to analyze an entry model and a coordination game, respectively. Benkard et al. (2007) consider the problem of
making inferences in dynamic models of imperfect competition, where in the absence of additional assumptions, the
unknown parameters of the model are naturally restricted to a set defined by moment inequalities. Andrews et al. (2004),
Pakes et al. (2005) and Rosen (2007) consider other economic applications of systems of moment inequalities, but
develop independent methods of inference. These methods all assume some conservative upper bound on the number
of moments where the inequality holds with equality and are therefore more conservative than the methods developed
in this paper. Andrews and Guggenberger (2007) avoid this problem by considering the use of subsampling for models
defined by moment inequalities. Andrews and Soares (2007) consider the use of “moment selection” techniques to
select the moments for which the inequality holds with equality in a first stage and then use multivariate normal
approximations to construct critical values. Similar ideas have been proposed by Bugni (2007) and Canay (2007), who
use the bootstrap instead of multivariate normal approximations to construct critical values. Such methods, however,
depend on the unique structure of the moment inequality problem and therefore cannot be easily generalized to more
general partially identified models.

Importantly, the results in this paper apply not only to systems of moment inequalities, but also to other examples of
partially identified models. Bajari et al. (2007) consider inference in a semiparametric discrete choice model, which gives
rise to a maximum score-type of objective function with possibly more than one maximizer. Santos (2007) considers
the problem of inference in a nonparametric regression model with identification through instrumental variables. In
this case, if one is not willing to assume that the instrumental variables are a complete and sufficient statistic for the
regressors, then the model is only partially identified. This example is also noteworthy because the object of interest in
this case, the unknown regression function, is infinite dimensional.

Beresteanu and Molinari (2006) propose an alternative approach to inference in partially identified models that is
based on the theory of random sets. Their approach applies to a more restrictive class of models than considered here.
Moreover, their construction of confidence regions for identifiable parameters is more conservative than ours. Galichon
and Henry (2006) also provide an approach to inference for partially identified models, but it too is more conservative
than ours.
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The remainder of the paper is organized as follows. We begin in Section 2 by providing a number of concrete
examples that fall within the class of models we are considering. These examples not only serve as motivation, but will
also be useful later for illustrating our methodology. In Section 3, we analyze the problem of constructing confidence
sets that satisfy the coverage requirements (2) and (3). We then extend this methodology to construct confidence regions
satisfying (5) nd (6). Finally, we conclude and provide directions for future research in Section 4.

2. Some motivating examples

In this section, we provide motivation for our study of partially identified models by describing several specific
examples of such models. We will return to these examples repeatedly in the sequel as illustrations of our methodology.

Example 2.1 (One-sided mean). Perhaps the simplest example of a partially identified model is given by the following
setup. Let Xi, i = 1, . . . , n, be an i.i.d. sequence of random variables with distribution P on R. Denote by &(P ) the
mean of the distribution P . The parameter of interest, !0, is known to satisfy !0 !&(P ). For example, !0 might be
the mean of an unobservable random variable Zi with distribution Q on R that is known to satisfy Zi !Xi , and so
&(Q)!&(P ). The identified set is therefore given by "0(P ) = {! ∈ R : !!&(P )}. We may characterize this set as the
set of minimizers of the population objective function

Q(!, P ) = (&(P ) − !)2
+,

where the notation (a)+ is used as shorthand for max{a, 0}. The sample analog of Q(!, P ) is given by Q̂n(!)=(X̄n−!)2
+.

Example 2.2 (Two-sided mean). A natural generalization of Example 2.1 is to consider bivariate random variables.
To this end, let (Xi, Yi), i = 1, . . . , n, be an i.i.d. sequence of random variables with distribution P on R2. Let &X(P )

denote the mean of the first component of the distribution P and &Y (P ) the mean of the second component of the
distribution P . The parameter of interest, !0, is known to satisfy &X(P )"!0 "&Y (P ). For example, !0 might be the
mean of another distribution Q on R that is known to satisfy &X(P )"&(Q)"&Y (P ). The identified set is therefore
given by "0(P ) = {! ∈ R : &X(P )"!"&Y (P )}. This set may be characterized as the set of minimizers of

Q(!, P ) = (&X(P ) − !)2
+ + (! − &Y (P ))2

+.

The sample analog of Q(!, P ) is given by Q̂n(!) = (X̄n − !)2
+ + (! − Ȳn)

2
+.

Remark 2.1. Let Wi ∈ [0, 1] and Di ∈ {0, 1}. For example, Wi may be the answer to the question, “Do you vote
Republican or Democrat?”, and Di may be the indicator variable for whether the person asked chooses to answer the
question. Suppose the researcher observes an i.i.d. sequence (WiDi, Di), i = 1, . . . , n, with distribution P ; i.e., Wi is
observed if and only if Di = 1. The parameter of interest, !0 = E{Wi}, is not determined by the distribution of the
observed data, but the researcher can say with certainty that !0 satisfies EP {WiDi}"!0 "EP {WiDi + 1 − Di}. By
identifying Xi = WiDi and Yi = WiDi + 1 − Di , this example can be seen to be a special case of Example 2.2. This
example is analyzed in detail by Imbens and Manski (2004). See Stoye (2007) for further analysis.

Example 2.3 (Regression with interval outcomes). The following example allows for inference in a linear regression
model in which the dependent variable is interval-censored. Let (Xi, Y1,i , Y2,i , Y

∗
i ), i = 1, . . . , n, be an i.i.d. sequence

of random variables with distribution Q on Rk × R × R × R. The parameter of interest, !0, is known to satisfy
EQ{Y ∗

i |Xi}=X′
i!0, but Y ∗

i is unobserved, which precludes conventional estimation of !0. Let P denote the distribution
of the observed random variables (Xi, Y1,i , Y2,i ). The random variables (Y1,i , Y2,i ) are known to satisfy Y1,i "Y ∗

i "Y2,i

with probability 1 under Q. Thus, !0 ∈ "0(P ) = {! ∈ Rk : EP {Y1,i |Xi}"X′
i!"EP {Y2,i |Xi}P -a.s.}. This set may be

characterized as the set of minimizers of

Q(!, P ) = EP {(EP {Y1,i |Xi} − X′
i!)2

+ + (X′
i! − EP {Y2,i |Xi})2

+}.

The sample analog Q̂n(!) of Q(!, P ) is given by replacing expectations with appropriately defined estimators, the
nature of which may depend on further assumptions about P . Manski and Tamer (2002) characterize the identified set
in this setting and also consider the case where Y ∗

i is observed, but Xi is interval-censored.
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Remark 2.2. A Tobit-like model is a special case of the previous example if we suppose further that Y2,i = Y ∗
i and

Y1,i = Y ∗
i if Y ∗

i > 0, and Y2,i = 0 and Y1,i = −∞ (or some large negative number if there is a plausible lower bound
on Y ∗

i ) if Y ∗
i "0. It is worthwhile to note that conventional approaches to inference for such a model, while enforcing

identification, rely on the much stronger assumption that 'i = Y ∗
i − X′

i!0 is independent of Xi . By allowing for only
partial identification, we will be able to draw inferences under much weaker assumptions.

Example 2.4 (Moment inequalities). Consider the following generalization of Examples 2.1 and 2.2. Let Xi, i =
1, . . . , n, be an i.i.d. sequence of random variables with distribution P on Rk . For j = 1, . . . , m, let gj (x, !) be a
real-valued function on Rk × Rl . The identified set is assumed to be "0(P ) = {! ∈ Rl : EP {gj (Xi, !)}"0 ∀j s.t.
1"j "m}. This set may be characterized as the set of minimizers of

Q(!, P ) =
∑

1" j "m

(EP {gj (Xi, !)})2
+

or equivalently as {! ∈ " : Q(!, P ) = 0}. The sample analog of Q(!, P ) is given by

Q̂n(!) =
∑

1" j "m



1
n

∑

1" i "n

gj (Xi, !)




2

+

.

This choice of Q(!, P ) is especially noteworthy because it is used by Cilberto and Tamer (2004), Benkard et al. (2007)
and Borzekowski and Cohen (2005) in their empirical applications. Since any equality restriction may be thought of
as two inequality restrictions, this example may also be viewed as a generalization of the method of moments to allow
for equality and inequality restrictions on the moments, rather than just equality restrictions.

Remark 2.3. A prominent example of an econometric model which gives rise to moment inequalities is an entry
model. See, for example, Andrews et al. (2004) or Cilberto and Tamer (2004) for a detailed description of such models
and a derivation of the inequalities. Briefly, consider an entry model with two firms and let Xi be the indicator for the
event “firm 1 enters”. Because of the multiplicity of Nash equilibria, the model only gives upper and lower bounds,
L(!) and U(!), on the probability of this event as a function of the unknown parameter, !, of the econometric model.
It is therefore natural to use the functions

g1(Xi, !) = L(!) − Xi ,

g2(Xi, !) = Xi − U(!)

as a basis for inference in such a model.

3. Confidence regions for identifiable parameters

In this section, we consider the problem of constructing confidence regions for identifiable parameters. We begin in
Section 3.1 by recalling a general result about subsampling that will be used frequently throughout the remainder of the
paper. The proof of the result, which is lengthy, can be found in Romano and Shaikh (2006a). In Section 3.2, we then
treat the construction of sets satisfying (2), before turning our attention in Section 3.3 to the problem of constructing
sets satisfying (3). In Section 3.4, we generalize these constructions to confidence regions for functions of identifiable
parameters.

3.1. A useful result about subsampling

The following theorem describes conditions under which confidence sets constructed using subsampling are asymp-
totically valid for a fixed P as well as uniformly over P. The conditions for a fixed P are distinct from those described
in Politis et al. (1999) and can accommodate certain degenerate situations not covered by the results presented there.
As we will see below, this feature of the conditions will be essential for the types of problems we are considering.
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Theorem 3.1. Let Xi, i = 1, . . . , n, be an i.i.d. sequence of random variables with distribution P. Let ϑ(P ) be a real-
valued parameter and let ϑ̂n = ϑ̂n(X1, . . . , Xn) be some estimator of ϑ(P ) that is symmetric in its arguments. Denote
by Jn(·, P ) the distribution of the root (n(ϑ̂n − ϑ(P )), where (n is a sequence of known constants. Let b = bn < n be a
sequence of positive integers tending to infinity, but satisfying b/n → 0. Let Nn = ( n

b ) and

Ln(x) = 1
Nn

∑

1" i "Nn

I {(b(ϑ̂n,b,i − ϑ(P ))"x}, (7)

where ϑ̂n,b,i denotes the estimate ϑ̂n evaluated at the ith subset of data of size b. Finally, letL−1
n (1−#)= inf{x∈R : Ln(x)

!1 − #}. Then, for # ∈ (0, 1), the following statements are true:

(i) If lim supn→∞supx∈R{Jb(x, P ) − Jn(x, P )}"0, then

lim inf
n→∞ P {(n(ϑ̂n − ϑ(P ))"L−1

n (1 − #)}!1 − #.

(ii) If lim supn→∞supx∈R{Jn(x, P ) − Jb(x, P )}"0, then

lim inf
n→∞ P {(n(ϑ̂n − ϑ(P ))!L−1

n (#)}!1 − #.

(iii) If limn→∞supx∈R|Jb(x, P ) − Jn(x, P )| = 0, then

lim inf
n→∞ P

{
L−1

n

(#
2

)
"(n(ϑ̂n − ϑ(P ))"L−1

n

(
1 − #

2

)}
!1 − #.

Moreover, we have that:

(iv) If lim supn→∞supP∈Psupx∈R{Jb(x, P ) − Jn(x, P )}"0, then

lim inf
n→∞ inf

P∈P
P {(n(ϑ̂n − ϑ(P ))"L−1

n (1 − #)}!1 − #.

(v) If lim supn→∞supP∈Psupx∈R{Jn(x, P ) − Jb(x, P )}"0, then

lim inf
n→∞ inf

P∈P
P {(n(ϑ̂n − ϑ(P ))!L−1

n (#)}!1 − #.

(vi) If limn→∞supP∈P supx∈R|Jb(x, P ) − Jn(x, P )| = 0, then

lim inf
n→∞ inf

P∈P
P

{
L−1

n

(#
2

)
"(n(ϑ̂n − ϑ(P ))"L−1

n

(
1 − #

2

)}
!1 − #.

Remark 3.1. The subsampling distribution Ln(x) defined by (7) differs from the typical definition given in Politis
et al. (1999) in that it centers about the true value of the parameter ϑ(P ) instead of its estimate ϑ̂n. Strictly speaking,
it is therefore not possible to compute Ln(x) as it is defined above. We may, however, compute Ln(x) under the null
hypothesis that ϑ(P ) equals a particular value. For our purposes below, this will suffice.

3.2. Pointwise consistency in level

We assume in the remainder of the paper that inf!∈" Q(!, P ) = 0. Note that this restriction is without loss of
generality, as it can always be enforced simply by subtracting the quantity inf!∈" Q(!, P ) from the objective function
whenever inf!∈" Q(!, P ) exists.

Our construction exploits the well-known duality between 1 − # confidence regions and tests of the individual null
hypotheses

H! : Q(!, P ) = 0 for ! ∈ " (8)
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that control the usual probability of a Type 1 error at level #. The hypotheses H! are one-sided in the sense that the
alternative hypotheses are understood to be

K! : Q(!, P ) > 0 for ! ∈ ".

Typically, " will be a subset of Euclidean space, in which case there may be an uncountably infinite number of
hypotheses in this family. For each null hypothesis H!, a test statistic is required such that large values of the test
statistic provide evidence against the null hypothesis. We will use the statistic anQ̂n(!) for some sequence an → ∞
for this purpose.

The construction of critical values for these tests will be based on subsampling. In order to define the critical values
precisely, some further notation is required. Let b = bn < n be a sequence of positive integers tending to infinity, but
satisfying b/n → 0. Let Nn = ( n

b ) and let Q̂n,b,i(!) denote the statistic Q̂n(!) evaluated at the ith subset of data of
size b from the n observations. For # ∈ (0, 1), define

d̂n(!, 1 − #) = inf




x : 1
Nn

∑

1" i "Nn

I {abQ̂n,b,i(!)"x}!1 − #




 . (9)

We will test each null hypothesis H! by comparing the test statistic anQ̂n(!) with the critical value d̂n(!, 1 − #).
The set of ! values corresponding to the accepted hypotheses from this procedure will form Cn, i.e.,

Cn = {! ∈ " : anQ̂n(!)" d̂n(!, 1 − #)}. (10)

We now provide conditions under which Cn defined by (10) satisfies the desired coverage property (2).

Theorem 3.2. Let Xi, i = 1, . . . , n, be an i.i.d. sequence of random variables with distribution P and let b = bn < n

be a sequence of positive integers tending to infinity, but satisfying b/n → 0. Denote by Jn(·, !, P ) the distribution of
an(Q̂n(!) − Q(!, P )). Suppose that for every ! ∈ "0(P )

lim sup
n→∞

sup
x∈R

{Jb(x, !, P ) − Jn(x, !, P )}"0. (11)

Then, Cn defined by (10) satisfies (2).

Proof. Fix ! ∈ "0(P ). By Theorem 3.1(i), we have immediately that

lim inf
n→∞ P {anQ̂n(!)" d̂n(!, 1 − #)}!1 − #.

Thus, by the (10), it follows that (2) holds. #

Remark 3.2. It may be useful to consider confidence regions based on critical values given by

d̃n(!, 1 − #) = inf




x : 1
Nn

∑

1" i "Nn

I {ab(Q̂n,b,i(!) − Q̂n(!))"x}!1 − #




 (12)

instead of (9). Such confidence regions will satisfy the coverage requirement (2) under the assumptions of
Theorem 3.2 and the additional assumption that ab/an → 0. The critical values (12) will typically be smaller than the
ones given by (9), so the resulting confidence regions will typically be smaller as well.

Remark 3.3. Because ( n
b ) may be large, it is often more practical to use the following approximation to (9). Let Bn

be a positive sequence of numbers tending to ∞ as n → ∞ and let I1, . . . , IBn be chosen randomly with or without
replacement from the numbers 1, . . . , Nn. Then, it follows from Corollary 2.4.1 of Politis et al. (1999) that one may
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approximate (9) by

inf




x : 1
Bn

∑

1" i "Bn

I {abQ̂n,b,Ii (!)"x}!1 − #






without affecting the conclusions of Theorem 3.2.

We now revisit each of the examples described in Section 2 and provide conditions under which the hypothesis (11)
of Theorem 3.2 holds. It follows that for each of these examples Cn defined by (10) satisfies (2).

Example 3.1 (One-sided mean). Recall the setup of Example 2.1. Let an = n and suppose P is such that the variance
)2(P ) exists. We will verify that the required condition (11) holds for any such P . Consider ! ∈ "0(P ). We may assume
without loss of generality that &(P )=0. First note that because Q̂n(!)!0, we may restrict attention to x!0 in (11). There
are two cases to consider: ! > 0 and !=0. In the former case, we have for any ' > 0 that X̄n −! < '−! with probability
approaching one. By choosing ' sufficiently small, we therefore have that an(Q̂n(!) − Q(!, P )) = n(X̄n − !)2

+ = 0
with probability approaching 1. Hence, (11) holds trivially. In the latter case, an(Q̂n(!) − Q(!, P )) = n(X̄n)

2
+. Thus,

for x!0,

Jn(x, !, P ) = P {n(X̄n)
2
+ "x} = P {√nX̄n "

√
x}.

Since
√

nX̄n
L→ *)(P ), where *)(P ) is the distribution of a mean-zero normal random variable with variance )2(P ),

Polya’s Theorem implies that

sup
x∈R

|P {√nX̄n "x} − *)(P )(x)| → 0.

The desired condition (11) now follows from an appeal to the triangle inequality.

Example 3.2 (Two-sided mean). Recall the setup of Example 2.2. Let an =n and suppose P is such that the variances
)2

X(P ) and )2
Y (P ) exist and &X(P )"&Y (P ). Denote by )X,Y (P ) the covariance of Xi and Yi under P . We will verify

that the required condition (11) holds for any such P . Consider ! ∈ "0(P ). First note, as before, that because Q̂n(!)!0,
we may restrict attention to x!0 in (11). There are two cases to consider: either &X(P ) < &Y (P ) or &X(P ) = &Y (P ).

If &X(P ) < &Y (P ), then we must consider the case in which ! ∈ (&X(P ), &Y (P )) and the case in which ! ∈
{&X(P ), &Y (P )} separately. In the former case, it is easy to see that an(Q̂n(!)−Q(!, P ))=n(X̄n−!)2

++n(!−Ȳn)
2
+=0

with probability approaching 1. Hence, (11) holds trivially. In the latter case, we may assume without loss of generality
that ! = &X(P ) and &X(P ) = 0; the case in which ! = &Y (P ) is symmetric. In this case, an(Q̂n(!) − Q(!, P )) =
n(X̄n)

2
+ +n(−Ȳn)

2
+. Because &Y (P ) > 0, we have that with probability tending to 1, an(Q̂n(!)−Q(!, P ))=n(X̄n)

2
+.

The desired condition (11) now follows from the reasoning given in Example 3.1.
If &X(P ) = &Y (P ), then we may assume without loss of generality that this common value is 0. Then, an(Q̂n(!) −

Q(!, P )) = n(X̄n)
2
+ + n(−Ȳn)

2
+. Thus, for x!0,

Jn(x, !, P ) = P {n(X̄n)
2
+ + n(−Ȳn)

2
+ "x} = P {(√nX̄n, −

√
nȲn)

′ ∈ Sx},
where Sx is the appropriate convex set. Note that

(
√

nX̄n, −
√

nȲn)
′ L→ *)X(P ),)Y (P ),−)X,Y (P ),

where *)X(P ),)Y (P ),−)X,Y (P ) is a mean-zero bivariate normal distribution with variances )2
X(P ) and )2

Y (P ) and
covariance −)X,Y (P ). It follows from Theorem 2.11 of Bhattacharya and Rao (1976) that

sup
S∈S

|P {(√nX̄n, −
√

nȲn)
′ ∈ S} − *)X(P ),)Y (P ),−)X,Y (P )(S)| → 0,

where S is the set of all convex subsets of R2. Hence, the desired condition (11) again follows from an appeal to the
triangle inequality.
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Example 3.3 (Regression with interval outcomes). Recall the setup of Example 2.3. Let an = n and let {x1, . . . , xJ }
be a set of vectors in Rk . For l ∈ {1, 2} and j ∈ {1, . . . , J }, let

(l (xj , P ) = EP {Yl,i |Xi = xj }, (13)

(̂l (xj ) = 1
n(xj )

∑

1" i "n:Xi=xj

Yl,i , (14)

where n(xj ) = |{1" i"n : Xi = xj }|. Let

Q̂n(!) =
∑

1" j "J

n(xj )

n
{((̂1(xj ) − x′

j!)2
+ + (x′

j! − (̂2(xj ))
2
+}. (15)

Suppose P is such that (i) suppP (Xi) = {x1, . . . , xJ } and (ii) the variances of Y1 and Y2, )2
1(P ) and )2

2(P ), exist.
Note that it follows from the above assumptions on P that the vector whose components are given by

√
n(xj )((̂l (xj )−

(l (xj , P )) for j = 1, . . . , J converges in distribution to a multivariate normal distribution.
We will now verify that the required condition (11) holds for this setup. Consider ! ∈ "0(P ). First note, as before,

that because Q̂n(!)!0, we may restrict attention to x!0 in (11). There are two cases to consider: either ! ∈ int("0(P ))

or ! ∈ !"0(P ). In the former case, (1(xj , P ) < x′
j! < (2(xj , P ) for all j . Thus, it is easy to see that anQ̂n(!) = 0

with probability tending to 1. Hence, (11) holds trivially. In the latter case, let Il denote the set of j indices such that
(l (xj , P ) = x′

j!. Note that at most one of I1 or I2 may be empty. Then, with probability approaching 1, we have that

anQ̂n(!) =
∑

j∈I1

(√
n(xj )((̂1(xj ) − x′

j!)
)2

+
+

∑

j∈I2

(√
n(xj )(x

′
j! − (̂2(xj ))

)2

+
.

Let Ŵn(!) denote the vector whose components are given by
√

n(xj )((̂1(xj )−x′
j!) for j ∈ I1 and

√
n(xj )(x

′
j!−(̂2(xj ))

for j ∈ I2 and let W(!) denote the limiting multivariate normal distribution of Ŵn(!). For x!0, we have that

Jn(x, !, P ) = P {Ŵn(!) ∈ Sx},
where Sx is the appropriate set in S, defined by (24). It follows from Theorem 2.11 of Bhattacharya and Rao (1976)
that

sup
S∈S

|P {Ŵn(!) ∈ S} − P {W(!) ∈ S}| → 0,

where S is the set of all convex subsets of R|I1|+|I2|. Hence, the desired condition (11) again follows from an appeal
to the triangle inequality.

Example 3.4 (Moment inequalities). Recall the setup of Example 2.4. Let an = n and suppose P is such that the
variance of the vector whose components are given by gj (Xi, !) for j = 1, . . . , m exists for all ! ∈ ". It follows from
this assumption that the vector whose components are given by

1√
n

∑

1" i "n

(gj (Xi, !) − EP {gj (Xi, !)})

for j = 1, . . . , m converges in distribution to a multivariate normal random variable for each ! ∈ ". We will verify
that the required condition (11) holds for any such P .

Consider ! ∈ "0(P ). There are two cases to consider: either ! ∈ int("0(P )) or ! ∈ !"0(P ). In the former case,
EP {gj (Xi, !)} < 0 for all j , so anQ̂n(!)=0 with probability tending to 1. Hence, (11) holds trivially. In the latter case,
let I denote the set of j indices such that EP {gj (Xi, !)} = 0. Note that I must be nonempty. Then, with probability
approaching one, we have that

anQ̂n(!) =
∑

j∈I



 1√
n

∑

1" i "n

gj (Xi, !)




2

+

.



J.P. Romano, A.M. Shaikh / Journal of Statistical Planning and Inference 138 (2008) 2786–2807 2795

Let Ŵn(!) denote the vector whose components are given by

1√
n

∑

1" i "n

gj (Xi, !)

for j ∈ I and let W(!) denote the limiting multivariate normal distribution. For x!0, we have that

Jn(x, !, P ) = P {Ŵn(!) ∈ Sx},
where Sx is the appropriate convex set. It follows from Theorem 2.11 of Bhattacharya and Rao (1976) that

sup
S∈S

|P {Ŵn(!) ∈ S} − P {W(!) ∈ S}| → 0,

where S is the set of all convex subsets of R|I |. Hence, the desired condition (11) again follows from an appeal to the
triangle inequality.

Remark 3.4. In each of the examples from Section 2, there are many other choices of Q(!, P ) sharing the feature that

"0(P ) = arg min
!∈"

Q(!, P ). (16)

Consider Example 2.4. Let g(x, !) denote the vector whose components are given by gj (x, !), j =1, . . . , m and extend
the definition of (·)+ on the real line to vectors in the natural way. It is easy to see that

Q(!, P ) = (EP {g(X, !)})′+W(!)(EP {g(X, !))+},
where W(!) is a positive definite matrix for each ! ∈ " also satisfies (16) for this example. The objective function
given by

Q(!, P ) = max
1" j "m

wj (!)(EP {gj (X, !)})+,

where wj(!), j = 1, . . . , m are positive for each ! ∈ ", also satisfies (16) for this example. Each of these choices
of Q(!, P ) will lead to different test statistics anQ̂n(!), which in turn will lead to different tests of the individual
null hypotheses in (8). Of course, more powerful tests will reject more false hypotheses and thereby lead to smaller
confidence regions, so the choice of Q(!, P ) is an important direction for future research.

Remark 3.5. If it was the case that under the null hypothesis H! the statistic anQ̂n(!) converged in distribution to a
random variable that was continuous at its 1 − # quantile, then it would follow immediately from Theorem 2.2.1 of
Politis et al. (1999) that Cn defined by (10) satisfies (2). Unfortunately, in the examples from Section 2, this assertion
does not always hold. Indeed, in many instances, for ! ∈ int("0(P )), it is true that anQ̂n(!) = 0 with probability
tending to 1. For this reason, it is necessary to appeal to Theorem 3.1 to establish the desired conclusions.

Remark 3.6. Chernozhukov et al. (2007) also consider the problem of constructing confidence regions Cn satisfying
(2). In an earlier version of their paper (Chernozhukov et al., 2004), they propose a construction that relies upon an
initial estimate of "0(P ). Their estimate of "0(P ) is given by

"̂0,n = {! ∈ " : Q̂n(!) < 'n},
where 'n is a positive sequence of constants tending to zero sufficiently slowly. Because of this rate restriction,
they are able to show that "̂0,n satisfies

P {"0(P ) ⊆ "̂0,n} → 1.

They then propose the confidence region

Cn =




! ∈ " : anQ̂n(!)" sup
!′∈"̂0,n

d̂n(!′, 1 − #)




 ,
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where d̂n(!, 1 − #)} is given by (9). Of course, such a construction is clearly more conservative than the one given
by (10). Moreover, the level of 'n is completely arbitrary and the confidence region resulting from application of their
method may thus be very large or very small depending on the choice of 'n. For this reason, after learning of the results
in an earlier version of our paper, Chernozhukov et al. (2007) suggested the confidence region

Cn = {! ∈ " : anQ̂n(!)" min




 sup
!′∈"̂0,n

d̂n(!′, 1 − #), d̂n(!, 1 − #)




 ,

where d̂n(!, 1 − #)} is again given by (9). In a first-order asymptotic sense, this confidence region is equivalent to our
confidence region (10). Moreover, the extent to which this construction is smaller than ours in finite-samples depends
again on the level of 'n, which is left unspecified. For this reason, we prefer our original construction, which does not
suffer from such arbitrariness.

Remark 3.7. In certain applications, it may be of interest to test the null hypothesis that there exists some point ! ∈ "
for which Q(!, P ) = 0. Such a test may be viewed as a specification test of the model. One may test such a hypothesis
by first constructing a confidence region for identifiable parameters and then rejecting the hypothesis if the confidence
region is empty. To see this, note that under the null hypothesis, "0(P ) += ∅. Thus, there is some !′ ∈ "0(P ). Under
the assumptions of Theorem 3.2, it must be the case that

lim inf
n→∞ P {!′ ∈ Cn}!1 − #.

Thus, under the null hypothesis Cn will be nonempty with probability at least 1 − # asymptotically.

Remark 3.8. Our construction of critical values for testing H! : Q(!, P ) = 0 versus K! : Q(!, P ) > 0 has used
subsampling. We now show by example that the bootstrap may fail to approximate the distribution of the test statistic,
anQ̂n(!), under the null hypothesis.

To this end, recall the setup of Example 2.1. Let an=n and suppose that P =N(0, 1). Note that Q(!, P )=0 at !=0, so
the null hypothesis is true when !=0. Our argument follows the one given by Andrews (2000) to show that the bootstrap
is inconsistent when the parameter is on the boundary of the parameter space. Note that anQ̂n(0)= (

√
nX̄n)

2
+ ∼ (Z)2

+,
where Z is a standard normal random variable. Denote by X∗

i , i = 1, . . . , n an i.i.d. sequence of random variables with
distribution P̂n given by the empirical distribution of the original observations Xi , i = 1, . . . , n. Define

Q̂∗
n(!) = (X̄∗

n − !)2
+

and consider the event

Ac =
{
+ : lim inf

n→∞
√

nX̄n < − c
}

(17)

for c ∈ (0, ∞). The Law of the Iterated Logarithm asserts that

lim sup
n→∞

√
nX̄n√

2 log log n
= 1 P —a.s.

This in turn implies that
{√

nX̄n >
√

2 log log n i.o.
}

P —a.s.

and by symmetry that
{√

nX̄n < −
√

2 log log n i.o.
}

P —a.s.

It follows that P {Ac} = 1.
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Now consider the bootstrap approximation to the distribution of anQ̂n(!) at ! = 0, which is given by

L(an(Q̂
∗
n(0) − Q̂n(0))|Xi, i = 1, . . . , n). (18)

This approximation mimics the hypothesis that Q(0, P ) = 0 by centering Q̂∗
n(0) about Q̂n(0). For + ∈ Ac, consider

a subsequence nk of n!1 for which
√

nkX̄nk (+) < − c for all k. For such a subsequence, we have, conditionally on
Xi(+), i = 1, . . . , n, that

nk(Q̂
∗
nk

(0) − Q̂nk (0)(+)) = (
√

nkX̄
∗
nk

)2
+

= (
√

nk(X̄
∗
nk

− X̄nk (+)) + √
nkX̄nk (+))2

+
"(

√
nk(X̄

∗
nk

− X̄nk (+)) − c)2
+

L→ (Z − c)2
+,

where Z is again a standard normal random variable. The first equality and the inequality follow from the fact that√
nkX̄nk (+) < − c < 0. It follows that the bootstrap fails to approximate the distribution of anQ̂n(!) at ! = 0.
It is worthwhile to consider the actual probability of a Type 1 error if the bootstrap approximation above is used

instead of subsampling. To this end, first note that the probability of such an error is given by

P {anQ̂n(0) > ĉboot,n(1 − #)}, (19)

where ĉboot,n(1 − #) is the 1 − # quantile of (18). Recall that anQ̂n(0) = (
√

nX̄n)
2
+ ∼ (Z)2

+, where Z is a standard
normal random variable. Note that

an(Q̂
∗
n(0) − Q̂n(0)) = (

√
n(X̄∗

n − X̄n) + √
nX̄n)

2
+ − (

√
nX̄n)

2
+.

Therefore, (18) converges in distribution to

L((Z∗ + Z)2
+ − (Z)2

+|Z), (20)

where Z∗ is a standard normal random variable distributed independently of Z. The probability (19) is therefore
asymptotically equal to

P {(Z)2
+ > c(1 − #|Z)},

where c(1 − #|Z) is the 1 − # quantile of (20). Using this representation, we simulate the asymptotic value of (19) and
find that the probability of Type 1 error is controlled, but too conservatively for practical purposes. In fact, with 2000
simulations, we estimate that (19) is asymptotically equal to 0 to three significant digits for both # = .1 and # = .05.

3.3. Uniform consistency in level

We now turn our attention to providing conditions under which Cn defined by (10) satisfies (3). Recall from the
discussion in the introduction that inferences made on the basis of asymptotic arguments with confidence regions that
are not uniformly consistent in level may be very misleading in the sense that asymptotic approximations may be poor
for arbitrarily large sample sizes.

Theorem 3.3. Let Xi, i = 1, . . . , n, be an i.i.d. sequence of random variables with distribution P and let b = bn < n

be a sequence of positive integers tending to infinity, but satisfying b/n → 0. Denote by Jn(·, !, P ) the distribution of
an(Q̂n(!) − Q(!, P )). Suppose that

lim sup
n→∞

sup
!∈"

sup
P∈P:!∈"0(P )

sup
x∈R

{Jb(x, !, P ) − Jn(x, !, P )}"0. (21)

Then, Cn defined by (10) satisfies (3).
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Proof. By Theorem 3.1(iv), we have immediately that

lim inf
n→∞ inf

!∈"
inf

P∈P:!∈"0(P )
P {anQ̂n(!)" d̂n(!, 1 − #)}!1 − #.

Thus, by definition (10), it follows that (3) holds. #

We now apply Theorem 3.3 to construct confidence regions satisfying the coverage requirement (3) for each of the
examples described in Section 2.

Example 3.5 (One-sided mean). Recall the setup of Example 2.1. We will now use Theorem 3.3 to show that for this
example Cn defined by (10) satisfies (3) for a large class of distributions P. To this end, let an = n and let P be a set of
distributions satisfying

lim
%→∞

sup
P∈P

EP

[ |X − &(P )|2
)2(P )

I

{ |X − &(P )|
)(P )

> %
}]

= 0. (22)

We will argue by contradiction that the required condition (21) holds. If the result were false, then there would exist a
subsequence nj and a corresponding sequence (!nj , Pnj ) ∈ " × P such that &(Pnj )"!nj and

sup
x∈R

{Jbnj
(x, !nj , Pnj ) − Jnj (x, !nj , Pnj )} → , (23)

for some , > 0. Since anQ̂n(!nj )!0, we may restrict attention to x!0. We may thus rewrite (23) as

sup
x !0

{Pnj {(Zbnj
(Pnj ) + Tbnj

(!nj , Pnj ))
2
+ "x} − Pnj {(Znj (Pnj ) + Tnj (!nj , Pnj ))

2
+ "x}},

where

Zn(P ) = √
n(X̄n − &(P )),

Tn(!, P ) = √
n(&(P ) − !).

Since bnj "nj and &(Pnj )"!nj , we have that Tbnj
(!nj , Pnj )!Tnj (!nj , Pnj ). Thus, (23) is bounded above by

sup
x !0

{Pnj {(Zbnj
(Pnj ) + Tnj (!nj , Pnj ))

2
+ "x} − Pnj {(Znj (Pnj ) + Tnj (!nj , Pnj ))

2
+ "x}}.

By redefining x appropriately and absorbing the term Tnj (!nj , Pnj ) into x, it follows that:

sup
x∈R

{Pnj {Zbnj
(Pnj )"x} − Pnj {Znj (Pnj )"x}}!0.

By Lemma 11.4.1 of Lehmann and Romano (2005), this yields the desired contradiction.

Example 3.6 (Two-sided mean). Recall the setup of Example 2.2. As in Example 3.5, we may use Theorem 3.3 to
show that for this example Cn defined by (10) satisfies (3) for a large class of distributions P. To this end, let an = n,
let P be a set of bivariate distributions such that the marginal distributions satisfy (22) and &X(P )"&Y (P ). As before,
we will argue by contradiction that the required condition (21) holds, but we will require the following result, which
generalizes Lemma 11.4.1 of Lehmann and Romano (2005), in order to do so. For the sake of continuity, the proof of
the result is found in Appendix A.

Lemma 3.1. Let P be a set of distributions on Rk such that the marginal distributions satisfy (22). Let Xi =
(X1,i , . . . , Xk,i), i = 1, . . . , n be an i.i.d. sequence of random variables with distribution P ∈ P. Denote by *V (·)
the probability distribution of a multivariate normal random variable with mean 0 and variance V and by -(P ) the
variance of P. Then,

sup
P∈P

sup
S∈S

|P {(√n(X̄1,n − &1(P ), . . . ,
√

n(X̄k,n − &k(P )) ∈ S} − *-(P )(S)| → 0,
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where

S = {S ⊆ Rk : S convex and *V (!S) = 0 for all p.s.d. V s.t. Vi,i = 1 for 1" i"k}. (24)

Proof. See Appendix A. #
We now return to verifying (21). If the result were false, then there would exist a subsequence nj and a corresponding

sequence (!nj , Pnj ) ∈ " × P such that &X(Pnj )"!nj "&Y (Pnj ) and

sup
x∈R

{Jbnj
(x, !nj , Pnj ) − Jnj (x, !nj , Pnj )} → , (25)

for some , > 0. Note that abnj
Q̂bnj

(!nj )

(Z1,bnj
(Pnj ) + T1,bnj

(!nj , Pnj ))
2
+ + (Z2,bnj

(Pnj ) + T2,bnj
(!nj , Pnj ))

2
+,

where

Z1,n(P ) = √
n(X̄n − &X(P )),

Z2,n(P ) = √
n(&Y (P ) − Ȳn),

T1,n(!, P ) = √
n(&X(P ) − !),

T2,n(!, P ) = √
n(! − &Y (P )).

Let J̃bnj
(x, !nj , Pnj ) be the distribution of the statistic

(Z1,bnj
(Pnj ) + T1,nj (!nj , Pnj ))

2
+ + (Z2,bnj

(Pnj ) + T2,nj (!nj , Pnj ))
2
+.

Since Tk,bnj
(!nj , Pnj )!Tk,nj (!nj , Pnj ), we have that

J̃bnj
(x, !nj , Pnj )!Jbnj

(x, !nj , Pnj ).

Thus, (25) implies that

sup
x∈R

{J̃bnj
(x, !nj , Pnj ) − Jnj (x, !nj , Pnj )}!0. (26)

Since anQ̂n(!)!0, we may restrict attention to x!0. For such x, J̃bnj
(x, !nj , Pnj ) is simply the probability under Pnj

that the vector (Z1,bnj
(Pnj ), Z2,bnj

(Pnj ))
′ lies in a set Sx ∈ S, whereS is defined by (24). Importantly, Jnj (x, !nj , Pnj )

is simply the probability under Pnj that the vector (Z1,nj (Pnj ), Z2,nj (Pnj ))
′ lies in the same set. But, by Lemma 3.1,

however, we know that

sup
S∈S

|Pnj {(Z1,nj (Pnj ), Z2,nj (Pnj ))
′ ∈ S} − *)X(Pnj

),)Y (Pnj
),.(Pnj

)(S)| → 0

and

sup
S∈S

|Pnj {(Z1,bnj
(Pnj ), Z2,bnj

(Pnj ))
′ ∈ S} − *)X(Pnj

),)Y (Pnj
),.(Pnj

)(S)| → 0.

An appeal to the triangle inequality yields the desired contradiction to (26).

Remark 3.9. Recall that Imbens and Manski (2004) analyze a special case of Example 2.2 in which Xi = WiDi and
Yi = WiDi + 1 − Di where Wi ∈ [0, 1] and Di ∈ {0, 1}. The motivation for their study of this problem stems from
considering

Cn =
[
X̄n − z1−#)̂X,n√

n
, Ȳn + z1−#)̂Y,n√

n

]
, (27)
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where )̂X,n and )̂Y,n are the usual consistent estimators of )X(P ) and )Y (P ), respectively, and z1−# is the 1−# quantile
of the standard normal distribution. For any P such that P {Di = 1} < 1, Cn defined by (27) satisfies (2). To see this,
consider the two cases ! ∈ int("0(P )) and ! ∈ !"0(P ) separately. In the former case, X̄n < ! < Ȳn with probability
approaching 1, which implies that ! ∈ Cn with probability approaching 1 as well. In the latter case, ! = &X(P ) or
! = &Y (P ). Suppose ! = &X(P ); the case in which ! = &Y (P ) is completely symmetric. Then, ! < Ȳn with probability
approaching 1 and ! > X̄n − z1−#)̂X,n/

√
n with probability at least 1 − # asymptotically. We therefore have that

! ∈ Cn with probability at least 1 − # asymptotically, as desired. Imbens and Manski (2004) show, however, that this
convergence is not uniform over all P satisfying P {Di = 1} < 1. Specifically, they show that for every sample size n

there is a P with P {Di = 1} sufficiently close, but not equal, to 1 and a ! ∈ "0(P ) for which

P {! ∈ Cn} ≈ 1 − 2#.

To rectify this shortcoming, Imbens and Manski (2004) propose an alternative to Cn defined by (27) which satisfies
the uniform coverage requirement (3) for P = P′ such that

inf
P∈P′

P {Di = 1} > 0,

inf
P∈P′

)2
Wi |Di=1(P ) > 0.

We may apply the analysis of Example 3.6 and conclude immediately that Cn defined by (10) also satisfies (3) for P
such that the distributions of Xi and Yi defined above satisfy (22). This class of distributions is larger than the one
considered by Imbens and Manski (2004). To see this, first note that

inf
P∈P′

)2
WiDi

(P )! inf
P∈P′

P {Di = 1})2
Wi |Di=1(P )

! inf
P∈P′

P {Di = 1} inf
P∈P′

)2
Wi |Di=1(P ) > 0.

Since WiDi is supported on a compact set, it follows that for any , > 0

sup
P∈P′

EP

{( |WiDi − &WiDi
(P )|

)WiDi (P )

)2+,
}

< ∞.

From the pointwise inequality

x2I {x > %}" |x|2+,

%,

for % > 0 and , > 0, we therefore have that (22) holds for WiDi and P = P′. Next note that to show that

inf
P∈P′

)2
WiDi+1−Di

(P ) > 0

it suffices to show that

inf
P∈P′

.WiDi,1−Di
(P ) > − 1. (28)

But, by direct calculation, we have that

.WiDi,1−Di
(P ) = −1

√

1 +
)2

Wi |Di=1(P )

EP {Wi |Di = 1}2P {Di = 0}

.

It now follows immediately that (28) holds. We may therefore argue as above for WiDi to establish that (22) holds
for WiDi + 1 − Di and P = P′. Hence, P′ is a subset of the set of distributions obtained by applying the analysis of
Example 3.6.
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It is worthwhile to note that the shortcoming of the construction given by (27) pointed out by Imbens and Manski
(2004) disappears if we require further that the confidence region Cn = [L̂n, Ûn] is equitailed in the sense that for any
! ∈ "0(P )

lim sup
n→∞

P {! < L̂n}"
#
2

,

lim sup
n→∞

P {! > Ûn}"
#
2

.

One such confidence region is given by (27) in which z1−# is replaced by z1−#
2

. Note that even if P {Di = 1} = 1,

so "0(P ) is a singleton, the confidence region Cn defined in this way satisfies (2).

Example 3.7 (Regression with interval outcomes). Recall the setup of Example 2.3. Let an =n and let {x1, . . . , xJ } be
a set of vectors in Rk . For ! ∈ {1, 2} and j ∈ {1, . . . , J }, let (l (xj , P ) and (̂l (xj ) be given by (13) and (14), respectively.
Let Q̂n(!) be given by (15). Suppose P is a set of distributions such that (i) suppP (Xi) = {x1, . . . , xJ } for all P ∈ P,
(ii) for! ∈ {1, 2} and j ∈ {1, . . . , J }

(Y!,i − EP {Y!,i |Xi = xj })I {Xi = xj } (29)

satisfies (22), and (iii)

inf
P∈P

P {Xi = xj } > 0. (30)

We now argue that the required condition (21) holds under these assumptions. Note that we may rewrite anQ̂n(!) as

∑

1" j "m

{(√
n(xj )((̂1(xj ) − x′

j!)
)2

+
+

(√
n(xj )(x

′
j! − (̂2(xj ))

)2

+

}
.

The analysis for this example will therefore be identical to the analysis for Example 3.8 presented below provided that
we can show that a central limit theorem holds for the vector whose components are given by

√
n(xj )((̂!(xj ) − x′

j!)

uniformly in P ∈ P. To see that this holds under the above assumptions, write

√
n(xj )((̂!(xj ) − (!(xj , P )) =

√
n

n(xj )

1√
n

∑

1" i "n

(Y!,i − EP {Y!,i |Xi = xj })I {Xi = xj }.

From Lemma 3.1, we have immediately that such a central limit theorem holds for the vector whose components
are given by (29). From Chebychev’s inequality and the fact that I {Xi = xj } is bounded, we also have that n(xj )/n

converges in probability to P {Xi =xj } uniformly in P ∈ P. It follows from (30) that
√

n/n(xj ) converges in probability
to 1/P {Xi = xj } uniformly in P ∈ P. The desired conclusion now follows from Slutsky’s theorem.

Example 3.8 (Moment inequalities). Recall the setup of Example 2.4. Let an = n. Denote by -(!, P ) the variance
of (g1(Xi, !), . . . , gm(Xi, !)) under P and by )2

j (!, P ) the j th diagonal element of -(!, P ). Suppose P is a set of
distributions such that for each 1"j "m

lim
%→0

sup
P∈P

sup
!∈"0(P )

EP

[
(gj (Xi, !) − EP {gj (Xi, !)})2

)2
j (!, P )

I

{ |gj (Xi, !) − EP {gj (Xi, !)}|
)j (!, P )

> %
}]

= 0.

We now argue by contradiction that the required condition (21) holds under this assumption. If the result
were false, then there would exist a subsequence nk and a corresponding sequence (!nk , Pnk ) ∈ " × P such that
!nk ∈ "0(Pnk ) and

sup
x∈R

{Jbnk
(x, !nk , Pnk ) − Jnk (x, !nk , Pnk )} → , (31)
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for some , > 0. Note that abnk
Q̂bnk

(!nk ) equals
∑

1" j "m

(Zj,bnk
(!nk , Pnk ) + Tj,bnk

(!nk , Pnk ))
2
+,

where

Zj,n(!, P ) = 1√
n

∑

1" i "n

(gj (Xi, !) − EP {gj (Xi, !)}),

Tj,n(!, P ) = √
nEP {gj (Xi, !)}.

Let J̃bnk
(x, !nk , Pnk ) be the distribution of the statistic
∑

1" j "m

(Zj,bnk
(!nk , Pnk ) + Tj,nk (!nk , Pnk ))

2
+.

Since bnk "nk and !nk ∈ "0(Pn,k), we have that Tj,bnk
(!nk , Pnk )!Tj,nk (!nk , Pnk ), which implies, in turn, that

J̃bnk
(x, !nk , Pnk )!Jnk (x, !nk , Pnk ).

Thus, (31) implies that

sup
x∈R

{J̃bnk
(x, !nk , Pnk ) − Jnk (x, !nk , Pnk )}!0. (32)

Since anQ̂n(!)!0, we may restrict attention to x!0. For such x, J̃bnk
(x, !nk , Pnk ) is the probability under Pnj that

the vector (Z1,bnk
(!nk , Pnk ), . . . , Zm,bnk

(!nk , Pnk ))
′ lies in a set Sx ∈ S, where S is defined by (24). Importantly,

Jnk (x, !nk , Pnk ) is simply the probability under Pnk that the vector (Z1,nk (!nk , Pnk ), . . . , Zm,nk (!nk , Pnk ))
′ lies in the

same set. But, by Lemma 3.1, however, we know that

sup
S∈S

|Pnk {(Z1,nk (!nk , Pnk ), . . . , Zm,nk (!nk , Pnk ))
′ ∈ S} − *-(!nk

,Pnk
)(S)| → 0

and

sup
S∈S

|Pnk {(Z1,bnk
(!nk , Pnk ), . . . , Zm,bnk

(!nk , Pnk ))
′ ∈ S} − *-(!nk

,Pnk
)(S)| → 0.

An appeal to the triangle inequality yields the desired contradiction to (32).

Remark 3.10. Independently, Andrews and Guggenberger (2007) show using a different argument that Cn defined by
(10) satisfies (3) whenever P is such that for some , > 0

sup
P∈P

sup
!∈"

EP

[
(gj (Xi, !) − EP {gj (Xi, !)})2+,

)2+,
j (!, P )

]

< ∞.

This condition is mildly stronger than the condition imposed in Example 3.8.

3.4. Confidence regions for functions of identifiable parameters

In this section, we consider the problem of constructing sets satisfying (5) and (6). Let f : " → $ be given.
Our construction again relies upon test inversion, but in this case the individual null hypotheses are given by

H% : % ∈ $0(P ) for % ∈ $, (33)

where $0(P ) is defined by (4). The alternative hypotheses are understood to be

K% : % /∈ $0(P ) for % ∈ $.
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For % ∈ $, let f −1(%) = {! ∈ " : f (!) = %}. Note that

% ∈ $0(P ) ⇐⇒ ∃! ∈ f −1(%) s.t. Q(!, P ) = 0
2⇒ inf

!∈f −1(%)
Q(!, P ) = 0. (34)

This suggests a natural test statistic for each of these null hypotheses H%:

inf
!∈f −1(%)

anQ̂n(!), (35)

where anQ̂n(!) is the test statistic used earlier to test the null hypothesis that Q(!, P ) = 0.

Remark 3.11. Under further assumptions, the implication (34) will hold in reverse as well. In particular, if " is a
compact metric space, then it suffices to assume that f (!) and Q(!, P ) are both continuous. But in many instances,
such as Example 3.9 below, it is easy to verify that the reverse implication holds directly without relying upon such
assumptions.

We may now proceed as before, but with the test statistic (35) in place of our earlier test statistic anQ̂n(!).
For # ∈ (0, 1), define

d̂
f
n (%, 1 − #) = inf




x : 1
Nn

∑

1" i "Nn

I

{
inf

!∈f −1(%)
abQ̂n,b,i(!)"x

}
!1 − #






and let

C
f
n =

{
% ∈ $ : inf

!∈f −1(%)
anQ̂n(!)" d̂

f
n (%, 1 − #)

}
. (36)

We now have the following theorem, which generalizes Theorems 3.2 and 3.3.

Theorem 3.4. Let Xi, i = 1, . . . , n, be an i.i.d. sequence of random variables with distribution P and let b = bn < n

be a sequence of positive integers tending to infinity, but satisfying b/n → 0. Denote by Jn(·, %, P ) the distribution of

an

(
inf

!∈f −1(%)
Q̂n(!) − inf

!∈f −1(%)
Q(!, P )

)
.

(i) Suppose that for every % ∈ $0(P )

lim sup
n→∞

sup
x∈R

{Jb(x, %, P ) − Jn(x, %, P )}"0. (37)

Then, Cf
n defined by (36) satisfies (5).

(ii) Suppose that

lim sup
n→∞

sup
%∈$

sup
P∈P:%∈$0(P )

sup
x∈R

{Jb(x, %, P ) − Jn(x, %, P )}"0. (38)

Then, Cf
n defined by (36) satisfies (6).

Proof. The proof is identical to the proofs of Theorems 3.2 and 3.3. #

We now provide a simple illustration of the use of Theorem 3.4 to construct sets satisfying (5) and (6).

Example 3.9. Consider the following straightforward generalization of Example 2.1. Let (Xi, Yi), i = 1, . . . , n be
an i.i.d. sequence of random variables with distribution P on R2. The parameter of interest, !0, is known to satisfy
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!0,1 !&X(P ) and !0,2 !&Y (P ). The identified set is therefore given by "0(P )={! ∈ R2 : !1 !&X(P ) and !2 !&Y (P )}.
This set may be characterized as the set of minimizers of

Q(!, P ) = (&X(P ) − !1)
2
+ + (&Y (P ) − !2)

2
+.

The sample analog of Q(!, P ) is given by Q̂n(!) = (X̄n − !1)
2
+ + (Ȳn − !2)

2
+. Suppose interest focuses on !0,1 rather

than the entire vector !0; that is, the object of interest is f (!0), where f : R2 → R is defined by f (!) = !1, instead of
!0. Note that in this instance $0(P ) is simply {!1 ∈ R : !1 !&X(P )}.

First, consider the problem of constructing sets satisfying (5). To this end, let an = n and suppose P is such that
)2

X(P ) exists. Consider !1 ∈ $0(P ). Assume without loss of generality that &X(P ) = 0. Then,

inf
!2∈f −1(!1)

anQ̂n(!) = inf
!2∈R

n(X̄n − !1)
2
+ + n(Ȳn − !2)

2
+

= n(X̄n − !1)
2
+.

It now follows immediately from the analysis of Example 3.1 that (37) holds. Therefore, C
f
n defined by (36)

satisfies (5).
Now consider the problem of constructing sets satisfying (6). As before, let an = n and let P be a set of distributions

for which the marginal distribution of X satisfies (22). Consider !1 ∈ $0(P ). Since inf!2∈f −1(!1)
anQ̂n(!) is simply

n(X̄n −!1)
2
+, it follows immediately from the analysis of Example (3.5) that (38) holds. Therefore, Cf

n defined by (36)
satisfies (6).

Remark 3.12. Of course, given a confidence region for identifiable parameters Cn, one crude construction of a con-
fidence region for a function of identifiable parameters is available as the image of Cn under the function of interest.
Unfortunately, such a construction will typically be very conservative.

4. Conclusion

This paper has provided computationally intensive, yet feasible methods for inference for a large class of partially
identified models. The class of models we have considered are defined by a population objective function Q(!, P ).
The main problem we have considered is the construction of random sets that contain each identifiable parameter with
at least some prespecified probability asymptotically. We have also extended these constructions to situations in which
the object of interest is the image of an identifiable parameter under a known function. We have verified that these
constructions can be applied in several examples of interest.

The results developed in this paper build upon earlier work by Chernozhukov et al. (2007), who also consider the
problem of inference for the same class of partially identified models. In contrast to their analysis, we have also provided
conditions under which our confidence regions are uniformly consistent in level. Imbens and Manski (2004) consider
the problem of constructing confidence regions for identifiable parameters that are uniformly consistent in level, but
their analysis considers only the special case of our class of partially identified models in which the identified set
is an interval whose upper and lower endpoints are means or at least behave like means asymptotically. Our results
therefore provide a generalization of their results to this broader class of models. In order to prove these results, we have
relied upon recently developed results that provide general conditions under which confidence regions for a parameter
constructed using subsampling are uniformly consistent in level.

In a companion paper, Romano and Shaikh (2006b), we consider the problem of constructing random sets that
contain the entire identified set with at least some prespecified probability asymptotically. There we also provide an
empirical illustration of the methodologies in both papers.

Appendix A. Proof of Lemma 3.3.1

First note that we may assume without loss of generality that &1(P ) = · · · = &k(P ) = 0 and that the diagonal
elements of -(P ) are all equal to 1. We will now argue by induction. Induction is anchored at k = 1 by Lemma 11.4.1
of Lehmann and Romano (2005) and Theorem 2.11 of Bhattacharya and Rao (1976), so assume that the result is true
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for 1, . . . , k − 1. To show that the result holds for k, we will argue by contradiction. If the result were false, then there
would exist a subsequence nj and a corresponding sequence Pnj ∈ P such that -(Pnj ) → -∗ and

sup
S∈S

|Pnj {
√

nj (X̄1,nj , . . . , X̄k,nj ) ∈ S} − *-(Pnj
)(S)|!0.

By Theorem 2.11 of Bhattacharya and Rao (1976), we have that

sup
S∈S

|*-(Pnj
)(S) − *-∗(S)| → 0,

so we have that

sup
S∈S

|Pnj {
√

nj (X̄1,nj , . . . , X̄k,nj ) ∈ S} − *-∗(S)|!0.

There are two cases to consider.
First consider the case in which there exists (0, . . . , 0) += / ∈ Rk such that /′-∗/ = 0. We may assume without loss

of generality that /1 = −1. It follows that /′-(Pnj )/, the variance of √
nj (X̄1,nj , . . . , X̄k,nj )

′/, tends to zero. Hence,

√
nj (X̄1,nj , . . . , X̄k,nj )

′/
Pnj→ 0.

Therefore,

Pnj {
√

nj X̄1,nj "x1, . . . ,
√

nj X̄k,nj "xk}
= Pnj {

√
nj (X̄2,nj /2 + · · · + X̄k,nj /k) + oPnj

(1)"x1, . . . ,
√

nj X̄k,nj "xk}.

By the inductive hypothesis and Slutsky’s theorem, we have that this last expression converges to *-̃(Sx,/), where -̃
is the lower right k − 1 × k − 1 submatrix of - and Sx,/ is the appropriate convex subset of Rk−1. Since *-̃(Sx,/) =
*-∗((−∞, x1] × · · · × (−∞, xk]), we have that

Pnj {
√

nj X̄1,nj "x1, . . . ,
√

nj X̄k,nj "xk} → *-∗((−∞, x1] × · · · × (−∞, xk]).

By Theorem 2.11 of Bhattacharya and Rao (1976), we therefore have that

sup
S∈S

|Pnj {
√

nj (X̄1,nj , . . . , X̄k,nj ) ∈ S} − *-∗(S)}| → 0,

which yields the desired contradiction in the first case.
Now consider the case in which for all (0, . . . , 0) += / ∈ Rk , we have that /′-∗/ > 0. We will use the Cramer–Wold

device to establish that

√
nj (X̄1,nj , . . . , X̄k,nj )

L→ *-∗(·)

under Pnj . Let a ∈ Rk and consider √
nj (X̄1,nj , . . . , X̄k,nj )

′a. To show that this expression converges in distribution
to the appropriate normal distribution, it suffices by Lemma 11.4.1 of Lehmann and Romano (2005) to show that a′X
satisfies (22) when X ∼ P ∈ P and the diagonal elements of -(P ) are all equal to 1. We may assume without loss of
generality that all elements of a are nonzero, since otherwise the result would follow from the inductive hypothesis.
Moreover, since (a1X1, . . . , akXk) has a distribution in P whenever X does, we may assume further that a1=· · ·=ak=1.
Since )2

X1+···+Xk
(P ) = (1, . . . , 1)′-(P )(1, . . . , 1) and

(1, . . . , 1)′-(Pnj )(1, . . . , 1) → (1, . . . , 1)′-∗(1, . . . , 1) > 0,
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we may also assume that

)2
X1+···+Xk

(P ) > ,2 > 0.

For any % > 0 and any such P , note that

EP

[
(X1 + · · · + Xk)

2

)2
X1+···+Xk

(P )
I

{ |X1 + · · · + Xk|
)X1+···+Xk (P )

> %
}]

"EP

[
(X1 + · · · + Xk)

2

,2 I

{ |X1 + · · · + Xk|
,

> %
}]

. (39)

Using the inequality

(A1 + · · · + Ak)
2I {|A1 + · · · + Ak| > %}"k(A2

1I {|A1| > %/k} + · · · + A2
kI {|Ak| > %/k},

we may further bound (39) by

k
∑

1"!"k

EP

[
X2
!

,2 I

{ |X!|
,

>
%
k

}]

.

Thus, by the assumption on the marginal distributions of P ∈ P, we have that

lim
%→0

sup
P∈P

EP

[
(X1 + · · · + Xk)

2

)2
X1+···+Xk

(P )
I

{ |X1 + · · · + Xk|
)X1+···+Xk (P )

> %
}]

= 0,

which establishes the desired convergence. By Theorem 2.11 of Bhattacharya and Rao (1976), we have that

sup
S∈S

|Pnj {
√

nj (X̄1,nj , . . . , X̄k,nj ) ∈ S} − *-∗(S)}| → 0,

which yields the desired contradiction in the second case.
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