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Abstract

Hong and Tamer [Hong, H. and Tamer, E. (2003). Endogenous binary choice model with median restrictions.
Economics Letters, 80 219–225] provide a sufficient condition for identification of a binary choice model with
endogenous regressors. For a special case of their model, we show that this condition essentially requires that the
endogenous regressor is degenerate conditional on the instrument with positive probability. Moreover, under weak
assumptions, we show that this condition fails to rule out any possible value for the coefficient on the endogenous
regressor.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Hong and Tamer (2003) consider the following binary choice model:

y ¼ 1fyTz0g
yT ¼ xVbþ ϵ;

ð1Þ
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where 1{A} denotes the indicator function of the event A, x∈Rk is a vector of observed covariates and ϵ
is an unobserved random variable. Let xj denote the jth element of x and let βj denote the corresponding
coefficient. The first element of x, x0, will be assumed to be identically equal to 1. While the maximum
score approach of Manski (1985) imposes Med(ϵ|x)=0, Hong and Tamer (2003) instead propose an
approach based on the weaker assumption that Med(ϵ|z)=0 for some random vector z∈Rd. Thus, they
allow for x to be endogenous in the sense that Med(ϵ|x)≠0 and impose median independence in terms of
a vector of instruments z instead.

For ease of exposition, we will consider a simple example with one exogenous regressor and one
endogenous regressor; that is,

y ¼ 1fyTz 0g
yT ¼ b0 þ b1x1 þ b2x2 þ ϵ;

ð2Þ

with z=(x1, w) and Med(ϵ|z)=0. In addition, we will suppose further that β1 is known to be strictly
positive, so that without loss of generality we can impose the normalization β1=1. Our results, however,
do not depend on these assumptions and will therefore be valid more generally.

Denote by B the parameter space for β. In this case, B={(b0, 1, b2) : (b0, b2)∈R2}. Under the
assumptions that the model is given by Eq. (1), Med(ϵ|z)=0, and the conditional density of ϵ given (x, z)
is continuous and bounded away from zero in a neighborhood of zero uniformly in x and z, Hong and
Tamer (2003) show that β is point identified if for all b∈B such that b≠β,

Prfz : PrfxVb b 0 V xVbjzg ¼ 1 [ PrfxVb b 0 V xVbjzg ¼ 1gN 0: ð3Þ
Hong and Tamer (2003) note that sufficient conditions for Eq. (3) can be characterized using support
conditions on the distribution of (x, z). In particular, when x= z (so the regressors are instruments for
themselves), Eq. (3) reduces to the condition for identification found in Manski (1985). Yet the analysis of
Hong and Tamer (2003) leaves open the question of the extent to which Eq. (3) can be satisfied if x≠z, that
is, if the regressors are not instruments for themselves. We show that their analysis for point identification
only allows a mild relaxation of the assumption that the regressors are instruments for themselves. In fact,
in the special case in which x2 is a discrete endogenous regressor, a necessary condition for Eq. (3) to hold
for all b∈B such that b≠β is that x2 is degenerate conditional on z for a set of z values with positive
probability. More generally, point identification requires that for all δN0 the support of x2 conditional on z
is contained in an interval of length δ for a set of z values with positive probability. When x2 is discrete, this
condition reduces to the one above; when x2 is not discrete, however, the condition requires that the
distribution of x2 conditional on z is arbitrarily close to degenerate for a set of z values with positive
probability.

Hong and Tamer (2003) point out that even when Eq. (3) fails to point identify β, it may still be
possible to partially identify β using Eq. (3). In particular, it follows from their analysis that β does not
equal any value of b∈R that satisfies Eq. (3). Thus, β∈BI, where

BI ¼ fbaB : Prfz : PrfxVb b 0 V xVb jzg ¼ 1 [ PrfxVb b 0 V xVb j zg ¼ 1g ¼ 0g:

It follows that β2, the coefficient on the endogenous regressors, lies in the set BI,2, where

BI ;2 ¼ fb2aR : a b0 with ðb0; 1; b2ÞaBg:

Under mild restrictions on the joint distribution of the endogenous variable and the instrument, we show
that BI,2=R, so the bounds on β2 derived from the restriction (3) are typically trivial.

24 A.M. Shaikh, E. Vytlacil / Economics Letters 98 (2008) 23–28



The rest of the paper is organized as follows. In Section 2, we consider a special case of the model (2) in
which the endogenous regressor, x2, is a dummy variable. This special case helps us illustrate ideas and
also allows us to draw comparisons of this approach to dummy endogenous regressors in binary choice
models with approaches based on “identification-at-infinity” arguments. We relax the assumption that x2
is a dummy endogenous regressor in Section 3. Section 4 concludes.

2. Special case: dummy endogenous variable

In this section, we consider the special case of the model (2) in which the endogenous regressor, x2, is a
dummy variable. The next proposition shows that unless x2 is non-degenerate conditional on z for a set of
z values with positive probability, Eq. (3) will not hold for some b∈B such that b≠β. In fact, it shows
further that unless this condition is satisfied, BI,2=R, so the bounds on β2 are vacuous.

Proposition 2.1. Suppose that y is determined according to Eq.(2), x2 is a Bernoulli random variable,
Med(ϵ|z)=0, and z=(x1, w). If

Prfz : Prfx2 ¼ 0jzgN0g ¼ 1 or Prfz : Prfx2 ¼ 1jzgN0g ¼ 1; ð4Þ

then Eq.(3) does not hold for some b∈B such that b≠β. Furthermore, BI,2=R.

Proof. First suppose Pr{z :Pr{x2=0|z}N0}=1. Let b2
⁎∈R. For b=(β0, 1, b2⁎), we have that

PrfxVb b 0 V xVb jzg ¼ Prfx2 ¼ 1jzgPrfb0 þ x1 þ bT2 b 0 V b0 þ x1 þ b2jz; x2 ¼ 1g
þ Prfx2 ¼ 0jzgPrfb0 þ x1b 0 V b0 þ x1jz; x2 ¼ 0g

¼ Prfx2 ¼ 1jzg1fb0 þ x1 þ bT2 b0Vb0 þ x1 þ b2g
þ Prfx2 ¼ 0jzg1fb0 þ x1b0Vb0 þ x1g:

It follows that for any z such that Pr{x2=0|z}N0 we have Pr{x′bb0≤x′β |z}=1 only if β0+x1b0≤β0+x1.
The same argumentmutatis mutandis shows that Pr{x′βb0≤x′b|z}=1 only if β0+x1b0≤β0+x1b0. Thus,

Prfz : ðPrfxVbb0V xVbjzg ¼ 1 [ PrfxVbb0V xVbjzg ¼ 1Þ \ Prfx2 ¼ 0jzgN0g ¼ 0:

Hence, Eq. (3) cannot hold for such a value of b. Moreover, since the choice of b2
⁎ was arbitrary, we

have that BI,2=R.
Now suppose Pr{z :Pr{x2=1|z}N0}=1. As before, let b2

⁎∈R. For b=(β0+β2−b2⁎, 1, b2⁎), we have that

PrfxVbb0V xVbjzg ¼ Prfx2 ¼ 1jzgPrfb0 þ x1 þ b2b0Vb0 þ x1 þ b2jz; x2 ¼ 1g
þ Prfx2 ¼ 0jzgPrfb0 þ b2 % bT2 þ x1b0Vb0 þ x1jz; x2 ¼ 0g

¼ Prfx2 ¼ 1jzg1fb0 þ x1 þ b2b0Vb0 þ x1 þ b2g
þ Prfx2 ¼ 0jzg1fb0 þ b2 % bT2 þ x1b0Vb0 þ x1g:
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It follows that for any z such that Pr{x2=1|z}N0 we have Pr{x′bb0≤ x′β|z}=1 only if β0+ x1+
β2b0≤β0+ x1+β2. The same argument mutatis mutandis shows that Pr{x′βb0≤ x′b|z}=1 only if
β0+ x1+β2b0≤β0+ x1+β2. Thus,

Prfz : ðPrfxVbb0VxVb jzg ¼ 1 [ PrfxVbb0V xVbjzg ¼ 1Þ \ Prfx2 ¼ 1jzgN0g ¼ 0:

Hence, Eq. (3) cannot hold for such a value of b. Moreover, since the choice of b2
⁎ was arbitrary, we

have that BI,2=R. □

Remark 2.1. It is interesting to compare the approach proposed by Hong and Tamer (2003) with the
“identification-at-infinity” approach for selection models with a dummy endogenous regressor (see, for
example, Heckman (1990)).1 Proposition 2.1 shows that in order to identify the coefficient on the dummy
endogenous regressor, Hong and Tamer (2003) require that the probability that the endogenous variable
equals one conditional on covariates is exactly equal to one and zero with positive probability. In
contrast, the identification-at-infinity approach only requires the weaker condition that the probability
that the endogenous variable equals one conditional on covariates is arbitrarily close to one and zero with
positive probability. On the other hand, this approach also imposes several restrictions not imposed by
Hong and Tamer (2003); in particular, it requires that the error term is fully independent (instead of just
median independent) of the instruments and that the dummy endogenous variable is determined by a
threshold crossing model.2 Of course, both approaches allow for the possibility of partial identification
when the sufficient conditions for point identification are relaxed, but Proposition 2.1 shows that the
restriction (3) does not rule out any possible value for the coefficient on the endogenous regressor unless
the endogenous regressor is degenerate conditional on the instrument with positive probability. In
contrast, it is possible to derive nontrivial bounds for certain parameters without such strong require-
ments on the joint distribution of the endogenous regressor and the instrument when the conditions for
point identification under the identification-at-infinity approach are relaxed (see, for example, Shaikh
and Vytlacil (2007)). □

3. General case

For the case of a dummy endogenous variable, we have shown in the preceding section that a necessary
condition for Eq. (3) to be satisfied for all b∈B such that b≠β is that the endogenous variable is degenerate
conditional on the instrument with positive probability. In this section, we first show that for Eq. (3) to be
satisfied for all b∈B such that b≠β the endogenous variable must be arbitrarily close to degenerate
conditional on the instrument with positive probability. We also show under a mild restriction on the joint
distribution of the endogenous regressor and the instrument that Eq. (3) fails to rule out any possible value
for β2; that is, BI,2=R.

1 Heckman (1990) formally assumes that the outcome equation is additively separable in the regressors and the error term,
but his analysis extends immediately to the case of a binary choice model. See also Cameron and Heckman (1998) and Aakvik
et al. (1998) for identification-at-infinity arguments in the context of a system of discrete choice equations.

2 It is worthwhile to note that since Eq. (3) is only a sufficient condition for identification, it does not preclude the
possibility of an identification-at-infinity strategy for the model considered by Hong and Tamer (2003).
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Proposition 3.1. Suppose that y is determined according to Eq.(2), Med(ϵ|z)=0, and z=(x1, w).

(i) If β2≠0 and there exists δN0 such that for a.e. value of z the support of x2 conditional on z is not
contained in any interval of δ, then Eq.(3) does not hold for some b∈B such that b≠β.

(ii) If there exists a value x2⁎ such that x2⁎ is contained in the support of x2 conditional on z for a.e. value
of z, then Eq.(3) does not hold for some b∈B such that b≠β. Furthermore, BI,2=R.

Proof. (i) Suppose β2 N 0. The same argument mutatis mutandis will establish the result for β2 b 0. Let b0
satisfy

0 b jb0 % b0j b db2 ð5Þ

and define b=(b0, 1, β2). First consider z such that Pr{x′β≥0|z}=1. It follows that

PrfxVbzdb2jzgN0: ð6Þ
To see this, suppose by way of contradiction that Pr{x′β≥ δβ2| z}=0, which in turn implies that
Pr{x′β b δβ2|z}=1. Since Pr{x′β≥0|z}=1 by assumption, we have as a result that Pr{0≤ x′β b δβ2|z}=1.
Thus,

Pr
%ðb0 þ x1Þ

b2
V x2 V

%ðb0 þ x1Þ
b2

þ d j z
! "

¼ 1;

which implies that the support of x2 conditional on z is contained in an interval of length δ. This
contradiction establishes that Pr{x′β≥ δβ2|z}N0. Next note that Eq. (5) implies that

b0 V b0 þ db2:

It therefore follows from Eq. (6) that Pr{x′bN0|z}N0, which in turn implies that Pr{x′bb0≤x′β |z}b1.
Hence, Pr{z :Pr{x′bb0≤x′β |z}=1}=0.

Now consider z such that Pr{x′βb0|z}=1. An argument parallel to the one given above shows that
Pr{z : Pr{x′βb0≤ x′b|z}=1}=0. Thus, Eq. (3) does not hold for such a value of b.

(ii) Let b2
⁎∈R. Suppose z is such that x2

⁎ is an element of the support of x2 conditional on z. Consider
b=(b0

⁎, 1, b2
⁎) with b0

⁎=β0+(β2−b2⁎)x2⁎. For such b, we have that

PrfxVb b 0 V xVb jzg ¼
Z

1fbT0 þ x1 þ bT2 x2 b 0 V b0 þ x1 þ b2x2gdFðx2jzÞ:

Thus, in order to have Pr{x′bb0≤x′β |z}=1, we must have that

bT0 þ x1 þ bT2 x2b0Vb0 þ x1 þ b2x2 ð7Þ

for a.e. x2 conditional on z. In particular, Eq. (7) must hold for x2= x2
⁎, which implies that b0

⁎+ x1+
b2
⁎x2
⁎=β0+ x1+β2x2⁎bβ0+ x1+β2x2⁎. The same argument mutatis mutandis shows that in order to have

Pr{x′bb0≤ x′β |z}=1 we must have β0+ x1+β2x2⁎bβ0+ x1+β2x2⁎. Since x2
⁎ is an element of the

support of x2 conditional on z for a.e. value of z, it follows that Eq. (3) cannot hold for such a value
of b. Moreover, since the choice of b2

⁎ was arbitrary, we have that BI,2 =R. □
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Remark 3.1. Note that in the special case in which x2 is a dummy endogenous regressor the hypotheses
of both part (i) and part (ii) are satisfied when Eq. (4) holds. Thus, Proposition 3.1 generalizes the results
in the preceding section. □

Remark 3.2. As noted by Hong and Tamer (2003) and demonstrated by the above proposition, Eq. (3) is
indeed a very strong condition. More surprising, however, is the fact that under the very mild restriction
that there exists a value x2

⁎ such that x2
⁎ is contained in the support of x2 conditional on z for a.e. value of z

the restriction (3) fails to rule out any value of β2. For example, this condition is satisfied trivially when
x2=γz+u and u is distributed with support equal to the real line. Thus, the suggestion of Hong and Tamer
(2003) to use Eq. (3) to partially identify β2 may not be useful. Of course, when there is reason to believe
that the hypotheses of part (ii) of Proposition 3.1 do not hold, then it may still be possible to follow this
suggestion. □

Remark 3.3. Denote by Z a set of values for z such that x2 is degenerate conditional on z when z∈Z.
Obviously, Med(ϵ |z)=0 implies Med(ϵ|x)=0 for any z∈Z. Thus, if such a set Z with positive probability
is known to the researcher, then one may proceed by following the approach of Manski (1985) after
restricting attention to observations satisfying z∈Z. □

4. Conclusion

In a recent paper, Hong and Tamer (2003) suggest an approach for endogenous regressors in a binary
choice model that exploits median independence of the latent error term from a vector of instruments. In
this paper, we consider a special case of their model in which there is a single endogenous regressor and
show that a necessary condition for point identification in this model is essentially that the endogenous
regressor is degenerate conditional on the instrument with positive probability. Furthermore, under weak
restrictions on the joint distribution of the endogenous regressor and the instrument, we show that this
approach fails to rule out any possible value for the coefficient on the endogenous regressor.
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