
1 The Glivenko-Cantelli Theorem

Let Xi, i = 1, . . . , n be an i.i.d. sequence of random variables with distribu-

tion function F on R. The empirical distribution function is the function of

x defined by

F̂n(x) =
1
n

∑
1≤i≤n

I{Xi ≤ x} .

For a given x ∈ R, we can apply the strong law of large numbers to the

sequence I{Xi ≤ x}, i = 1, . . . n to assert that

F̂n(x) → F (x)

a.s (in order to apply the strong law of large numbers we only need to show

that E[|I{Xi ≤ x}|] < ∞, which in this case is trivial because |I{Xi ≤ x}| ≤
1). In this sense, F̂n(x) is a reasonable estimate of F (x) for a given x ∈ R.

But is F̂n(x) a reasonable estimate of the F (x) when both are viewed as

functions of x?

The Glivenko-Cantelli Thoerem provides an answer to this question. It

asserts the following:

Theorem 1.1 Let Xi, i = 1, . . . , n be an i.i.d. sequence of random variables

with distribution function F on R. Then,

sup
x∈R

|F̂n(x)− F (x)| → 0 a.s. (1)

This result is perhaps the oldest and most well known result in the very large

field of empirical process theory, which is at the center of much of modern

econometrics. The statistic (1) is an example of a Kolmogorov-Smirnov

statistic.

We will break the proof up into several steps.

Lemma 1.1 Let F be a (nonrandom) distribution function on R. For each

ε > 0 there exists a finite partition of the real line of the form −∞ = t0 <

t1 < · · · < tk = ∞ such that for 0 ≤ j ≤ k − 1

F (t−j+1)− F (tj) ≤ ε .
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Proof: Let ε > 0 be given. Let t0 = −∞ and for j ≥ 0 define

tj+1 = sup{z : F (z) ≤ F (tj) + ε} .

Note that F (tj+1) ≥ F (tj)+ε. To see this, suppose that F (tj+1) < F (tj)+ε.

Then, by right continuity of F there would exist δ > 0 so that F (tj+1 +δ) <

F (tj) + ε, which would contradict the definition of tj+1. Thus, between tj

and tj+1, F jumps by at least ε. Since this can happen at most a finite

number of times, the partition is of the desired form, that is −∞ = t0 <

t1 < · · · < tk = ∞ with k < ∞. Moreover, F (t−j+1) ≤ F (tj) + ε. To see this,

note that by definition of tj+1 we have F (tj+1− δ) ≤ F (tj) + ε for all δ > 0.

The desired result thus follows from the definition of F (t−j+1).

Lemma 1.2 Suppose Fn and F are (nonrandom) distribution functions on

R such that Fn(x) → F (x) and Fn(x−) → F (x−) for all x ∈ R. Then

sup
x∈R

|Fn(x)− F (x)| → 0 .

Proof: Let ε > 0 be given. We must show that there exists N = N(ε) such

that for n > N and any x ∈ R

|Fn(x)− F (x)| < ε .

Let ε > 0 be given and consider a partition of the real line into finitely

many pieces of the form −∞ = t0 < t1 · · · < tk = ∞ such that for 0 ≤ j ≤
k − 1

F (t−j+1)− F (tj) ≤
ε

2
.

The existence of such a partition is ensured by the previous lemma.

For any x ∈ R, there exists j such that tj ≤ x < tj+1. For such j,

Fn(tj) ≤ Fn(x) ≤ Fn(t−j+1)

F (tj) ≤ F (x) ≤ F (t−j+1) ,

which implies that

Fn(tj)− F (t−j+1) ≤ Fn(x)− F (x) ≤ Fn(t−j+1)− F (tj) .
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Furthermore,

Fn(tj)− F (tj) + F (tj)− F (t−j+1) ≤ Fn(x)− F (x)

Fn(t−j+1)− F (t−j+1) + F (t−j+1)− F (tj) ≥ Fn(x)− F (x) .

By construction of the partition, we have that

Fn(tj)− F (tj)−
ε

2
≤ Fn(x)− F (x)

Fn(t−j+1)− F (t−j+1) +
ε

2
≥ Fn(x)− F (x) .

For each j, let Nj = Nj(ε) be such that for n > Nj

Fn(tj)− F (tj) > − ε

2

and let Mj = Mj(ε) be such that for n > Mj

Fn(t−j )− F (t−j ) <
ε

2
.

Let N = max1≤j≤k max{Nj ,Mj}. For n > N and any x ∈ R, we have that

|Fn(x)− F (x)| < ε .

The desired result follows.

Lemma 1.3 Suppose Fn and F are (nonrandom) distribution functions on

R such that Fn(x) → F (x) for all x ∈ Q. Suppose further that Fn(x) −
Fn(x−) → F (x) − F (x−) for all jump points of F . Then, for all x ∈ R

Fn(x) → F (x) and Fn(x−) → F (x−).

Proof: Let x ∈ R. We first show that Fn(x) → F (x). Let s, t ∈ Q

such that s < x < t. First suppose x is a continuity point of F . Since

Fn(s) ≤ Fn(x) ≤ Fn(t) and s, t ∈ Q, it follows that

F (s) ≤ lim inf
n→∞

Fn(x) ≤ lim sup
n→∞

Fn(x) ≤ F (t) .

Since x is a continuity point of F ,

lim
s→x−

F (s) = lim
t→x+

F (t) = F (x) ,
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from which the desired result follows. Now suppose x is a jump point of F .

Note that

Fn(s) + Fn(x)− Fn(x−) ≤ Fn(x) ≤ Fn(t) .

Since s, t ∈ Q and x is a jump point of F ,

F (s) + F (x)− F (x−) ≤ lim inf
n→∞

Fn(x) ≤ lim sup
n→∞

Fn(x) ≤ F (t) .

Since

lim
s→x−

F (s) = F (x−)

lim
t→x+

F (t) = F (x) ,

the desired result follows.

We now show that Fn(x−) → F (x−). First suppose x is a continuity

point of F . Since Fn(x−) ≤ Fn(x),

lim sup
n→

Fn(x−) ≤ lim sup
n→

Fn(x) = F (x) = F (x−) .

For any s ∈ Q such that s < x, we have Fn(s) ≤ Fn(x−), which implies that

F (s) ≤ lim inf
n→∞

Fn(x−) .

Since

lim
s→x−

F (s) = F (x−) ,

the desired result follows. Now suppose x is a jump point of F . By as-

sumption, Fn(x) − Fn(x−) → F (x) − F (x−), and, by the above argument,

Fn(x) → F (x). The desired result follows.

Proof of Theorem 1.1: If we can show that there exists a set N such

that Pr{N} = 0 and for all ω 6∈ N (i) F̂n(x, ω) → F (x) for all x ∈ Q and

(ii) F̂n(x, ω)−Fn(x−, ω) → F (x)−F (x−) for all jump points of F , then the

result will follow from an application of Lemmas 1.2 and 1.3.

For each x ∈ Q, let Nx be a set such that Pr{Nx} = 0 and for all ω 6∈ Nx,

F̂n(x, ω) → F (x). Let N1 =
⋃

x∈Q. Then, for all ω 6∈ N1, F̂n(x, ω) → F (x)

by construction. Moreover, since Q is countable, Pr{N1} = 0.

4



For integer i ≥ 1, let Ji denote the set of jump points of F of size at

least 1/i. Note that for each i, Ji is finite. Next note that the set of all jump

points of F can be written as J =
⋃

1≤i<∞ Ji. For each x ∈ J , let Mx denote

a set such that Pr{Mx} = 0 and for all ω 6∈ Mx, F̂n(x, ω) − Fn(x−, ω) →
F (x)− F (x−). Let N2 =

⋃
x∈J Mx. Since J is countable, Pr{N2} = 0.

To complete the proof, let N = N1 ∪ N2. By construction, for ω 6∈ N ,

(i) and (ii) hold. Moreover, Pr{N} = 0. The desired result follows.

2 The Sample Median

We now give a brief application of the Glivenko-Cantelli Theorem. Let

Xi, i = 1, . . . , n be an i.i.d. sequence of random variables with distribution

F . Suppose one is interested in the median of F . Concretely, we will define

Med(F ) = inf{x : F (x) ≥ 1
2
} .

A natural estimator of Med(F ) is the sample analog, Med(F̂n). Under what

conditions is Med(F̂n) a reasonable estimate of Med(F )?

Let m = Med(F ) and suppose that F is well behaved at m in the sense

that F (t) > 1
2 whenever t > m. Under this condition, we can show using

the Glivenko-Cantelli Theorem that Med(F̂n) → Med(F ) a.s. We will now

prove this result.

Suppose Fn is a (nonrandom) sequence of distribution functions such

that

sup
x∈R

|Fn(x)− F (x)| → 0 .

Let ε > 0 be given. We wish to show that there exists N = N(ε) such that

for all n > N

|Med(Fn)−Med(F )| < ε .

Choose δ > 0 so that

δ <
1
2
− F (m− ε)

δ < F (m + ε)− 1
2

,
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which in turn implies that

F (m− ε) <
1
2
− δ

F (m + ε) >
1
2

+ δ .

(It might help to draw a picture to see why we should pick δ in this way.)

Next choose N so that for all n > N ,

sup
x∈R

|Fn(x)− F (x)| < δ .

Let mn = Med(Fn). For such n, mn > m− ε, for if mn ≤ m− ε, then

F (m− ε) > Fn(m− ε)− δ ≥ 1
2
− δ ,

which contradicts the choice of δ. We also have that mn < m + ε, for if

mn ≥ m + ε, then

F (m + ε) < Fn(m + ε) + δ ≤ 1
2

+ δ ,

which again contradicts the choice of δ. Thus, for n > N , |mn −m| < ε, as

desired.

By the Glivenko-Cantelli Theorem, it follows immediately that Med(F̂n) →
Med(F ) a.s.
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