1 The Glivenko-Cantelli Theorem

Let $X_i, i = 1, ..., n$ be an i.i.d. sequence of random variables with distribution function F on \mathbf{R} . The *empirical distribution function* is the function of x defined by

$$\hat{F}_n(x) = \frac{1}{n} \sum_{1 \le i \le n} I\{X_i \le x\}$$
.

For a given $x \in \mathbf{R}$, we can apply the strong law of large numbers to the sequence $I\{X_i \leq x\}, i = 1, ..., n$ to assert that

$$\hat{F}_n(x) \to F(x)$$

a.s (in order to apply the strong law of large numbers we only need to show that $E[|I\{X_i \leq x\}|] < \infty$, which in this case is trivial because $|I\{X_i \leq x\}| \leq$ 1). In this sense, $\hat{F}_n(x)$ is a reasonable estimate of F(x) for a given $x \in \mathbf{R}$. But is $\hat{F}_n(x)$ a reasonable estimate of the F(x) when both are viewed as functions of x?

The *Glivenko-Cantelli Theerem* provides an answer to this question. It asserts the following:

Theorem 1.1 Let X_i , i = 1, ..., n be an i.i.d. sequence of random variables with distribution function F on \mathbf{R} . Then,

$$\sup_{x \in \mathbf{R}} |\hat{F}_n(x) - F(x)| \to 0 \quad \text{a.s.}$$
(1)

This result is perhaps the oldest and most well known result in the very large field of *empirical process theory*, which is at the center of much of modern econometrics. The statistic (1) is an example of a *Kolmogorov-Smirnov* statistic.

We will break the proof up into several steps.

Lemma 1.1 Let F be a (nonrandom) distribution function on \mathbf{R} . For each $\epsilon > 0$ there exists a finite partition of the real line of the form $-\infty = t_0 < t_1 < \cdots < t_k = \infty$ such that for $0 \le j \le k - 1$

$$F(t_{j+1}^{-}) - F(t_j) \le \epsilon \; .$$

PROOF: Let $\epsilon > 0$ be given. Let $t_0 = -\infty$ and for $j \ge 0$ define

$$t_{j+1} = \sup\{z : F(z) \le F(t_j) + \epsilon\} .$$

Note that $F(t_{j+1}) \ge F(t_j) + \epsilon$. To see this, suppose that $F(t_{j+1}) < F(t_j) + \epsilon$. Then, by right continuity of F there would exist $\delta > 0$ so that $F(t_{j+1} + \delta) < F(t_j) + \epsilon$, which would contradict the definition of t_{j+1} . Thus, between t_j and t_{j+1} , F jumps by at least ϵ . Since this can happen at most a finite number of times, the partition is of the desired form, that is $-\infty = t_0 < t_1 < \cdots < t_k = \infty$ with $k < \infty$. Moreover, $F(t_{j+1}) \le F(t_j) + \epsilon$. To see this, note that by definition of t_{j+1} we have $F(t_{j+1} - \delta) \le F(t_j) + \epsilon$ for all $\delta > 0$. The desired result thus follows from the definition of $F(t_{j+1})$.

Lemma 1.2 Suppose F_n and F are (nonrandom) distribution functions on **R** such that $F_n(x) \to F(x)$ and $F_n(x^-) \to F(x^-)$ for all $x \in \mathbf{R}$. Then

$$\sup_{x \in \mathbf{R}} |F_n(x) - F(x)| \to 0 .$$

PROOF: Let $\epsilon > 0$ be given. We must show that there exists $N = N(\epsilon)$ such that for n > N and any $x \in \mathbf{R}$

$$|F_n(x) - F(x)| < \epsilon .$$

Let $\epsilon > 0$ be given and consider a partition of the real line into finitely many pieces of the form $-\infty = t_0 < t_1 \cdots < t_k = \infty$ such that for $0 \le j \le k-1$

$$F(t_{j+1}^-) - F(t_j) \le \frac{\epsilon}{2} \ .$$

The existence of such a partition is ensured by the previous lemma.

For any $x \in \mathbf{R}$, there exists j such that $t_j \leq x < t_{j+1}$. For such j,

$$F_n(t_j) \le F_n(x) \le F_n(t_{j+1}^-)$$

$$F(t_j) \le F(x) \le F(t_{j+1}^-),$$

which implies that

$$F_n(t_j) - F(t_{j+1}) \le F_n(x) - F(x) \le F_n(t_{j+1}) - F(t_j)$$
.

Furthermore,

$$F_n(t_j) - F(t_j) + F(t_j) - F(t_{j+1}^-) \leq F_n(x) - F(x)$$

$$F_n(t_{j+1}^-) - F(t_{j+1}^-) + F(t_{j+1}^-) - F(t_j) \geq F_n(x) - F(x) .$$

By construction of the partition, we have that

$$F_n(t_j) - F(t_j) - \frac{\epsilon}{2} \leq F_n(x) - F(x)$$

$$F_n(t_{j+1}^-) - F(t_{j+1}^-) + \frac{\epsilon}{2} \geq F_n(x) - F(x) .$$

For each j, let $N_j = N_j(\epsilon)$ be such that for $n > N_j$

$$F_n(t_j) - F(t_j) > -\frac{\epsilon}{2}$$

and let $M_j = M_j(\epsilon)$ be such that for $n > M_j$

$$F_n(t_j^-) - F(t_j^-) < \frac{\epsilon}{2} .$$

Let $N = \max_{1 \le j \le k} \max\{N_j, M_j\}$. For n > N and any $x \in \mathbf{R}$, we have that

$$|F_n(x) - F(x)| < \epsilon .$$

The desired result follows. \blacksquare

Lemma 1.3 Suppose F_n and F are (nonrandom) distribution functions on **R** such that $F_n(x) \to F(x)$ for all $x \in \mathbf{Q}$. Suppose further that $F_n(x) - F_n(x^-) \to F(x) - F(x^-)$ for all jump points of F. Then, for all $x \in \mathbf{R}$ $F_n(x) \to F(x)$ and $F_n(x^-) \to F(x^-)$.

PROOF: Let $x \in \mathbf{R}$. We first show that $F_n(x) \to F(x)$. Let $s, t \in \mathbf{Q}$ such that s < x < t. First suppose x is a continuity point of F. Since $F_n(s) \leq F_n(x) \leq F_n(t)$ and $s, t \in \mathbf{Q}$, it follows that

$$F(s) \leq \liminf_{n \to \infty} F_n(x) \leq \limsup_{n \to \infty} F_n(x) \leq F(t)$$
.

Since x is a continuity point of F,

$$\lim_{s \to x^-} F(s) = \lim_{t \to x^+} F(t) = F(x) ,$$

from which the desired result follows. Now suppose x is a jump point of F. Note that

$$F_n(s) + F_n(x) - F_n(x^-) \le F_n(x) \le F_n(t)$$
.

Since $s, t \in \mathbf{Q}$ and x is a jump point of F,

$$F(s) + F(x) - F(x^{-}) \le \liminf_{n \to \infty} F_n(x) \le \limsup_{n \to \infty} F_n(x) \le F(t)$$
.

Since

$$\lim_{s \to x^-} F(s) = F(x^-)$$
$$\lim_{t \to x^+} F(t) = F(x) ,$$

the desired result follows.

We now show that $F_n(x^-) \to F(x^-)$. First suppose x is a continuity point of F. Since $F_n(x^-) \leq F_n(x)$,

$$\limsup_{n \to} F_n(x^-) \le \limsup_{n \to} F_n(x) = F(x) = F(x^-) .$$

For any $s \in \mathbf{Q}$ such that s < x, we have $F_n(s) \leq F_n(x^-)$, which implies that

$$F(s) \leq \liminf_{n \to \infty} F_n(x^-)$$
.

Since

$$\lim_{s \to x^-} F(s) = F(x^-) \; ,$$

the desired result follows. Now suppose x is a jump point of F. By assumption, $F_n(x) - F_n(x^-) \to F(x) - F(x^-)$, and, by the above argument, $F_n(x) \to F(x)$. The desired result follows.

PROOF OF THEOREM 1.1: If we can show that there exists a set N such that $\Pr\{N\} = 0$ and for all $\omega \notin N$ (i) $\hat{F}_n(x,\omega) \to F(x)$ for all $x \in \mathbf{Q}$ and (ii) $\hat{F}_n(x,\omega) - F_n(x^-,\omega) \to F(x) - F(x^-)$ for all jump points of F, then the result will follow from an application of Lemmas 1.2 and 1.3.

For each $x \in \mathbf{Q}$, let N_x be a set such that $\Pr\{N_x\} = 0$ and for all $\omega \notin N_x$, $\hat{F}_n(x,\omega) \to F(x)$. Let $N_1 = \bigcup_{x \in \mathbf{Q}}$. Then, for all $\omega \notin N_1$, $\hat{F}_n(x,\omega) \to F(x)$ by construction. Moreover, since \mathbf{Q} is countable, $\Pr\{N_1\} = 0$. For integer $i \geq 1$, let J_i denote the set of jump points of F of size at least 1/i. Note that for each i, J_i is finite. Next note that the set of all jump points of F can be written as $J = \bigcup_{1 \leq i < \infty} J_i$. For each $x \in J$, let M_x denote a set such that $\Pr\{M_x\} = 0$ and for all $\omega \notin M_x$, $\hat{F}_n(x,\omega) - F_n(x^-,\omega) \to F(x) - F(x^-)$. Let $N_2 = \bigcup_{x \in J} M_x$. Since J is countable, $\Pr\{N_2\} = 0$.

To complete the proof, let $N = N_1 \cup N_2$. By construction, for $\omega \notin N$, (i) and (ii) hold. Moreover, $\Pr\{N\} = 0$. The desired result follows.

2 The Sample Median

We now give a brief application of the Glivenko-Cantelli Theorem. Let $X_i, i = 1, ..., n$ be an i.i.d. sequence of random variables with distribution F. Suppose one is interested in the median of F. Concretely, we will define

$$\operatorname{Med}(F) = \inf\{x : F(x) \ge \frac{1}{2}\} .$$

A natural estimator of Med(F) is the sample analog, $Med(\hat{F}_n)$. Under what conditions is $Med(\hat{F}_n)$ a reasonable estimate of Med(F)?

Let m = Med(F) and suppose that F is well behaved at m in the sense that $F(t) > \frac{1}{2}$ whenever t > m. Under this condition, we can show using the Glivenko-Cantelli Theorem that $\text{Med}(\hat{F}_n) \to \text{Med}(F)$ a.s. We will now prove this result.

Suppose F_n is a (nonrandom) sequence of distribution functions such that

$$\sup_{x \in \mathbf{R}} |F_n(x) - F(x)| \to 0 .$$

Let $\epsilon > 0$ be given. We wish to show that there exists $N = N(\epsilon)$ such that for all n > N

$$|\operatorname{Med}(F_n) - \operatorname{Med}(F)| < \epsilon$$
.

Choose $\delta > 0$ so that

$$\begin{aligned} \delta &< \ \frac{1}{2} - F(m-\epsilon) \\ \delta &< \ F(m+\epsilon) - \frac{1}{2} \end{aligned} ,$$

which in turn implies that

$$F(m-\epsilon) < \frac{1}{2} - \delta$$

$$F(m+\epsilon) > \frac{1}{2} + \delta$$

(It might help to draw a picture to see why we should pick δ in this way.) Next choose N so that for all n > N,

$$\sup_{x \in \mathbf{R}} |F_n(x) - F(x)| < \delta .$$

Let $m_n = \text{Med}(F_n)$. For such $n, m_n > m - \epsilon$, for if $m_n \leq m - \epsilon$, then

$$F(m-\epsilon) > F_n(m-\epsilon) - \delta \ge \frac{1}{2} - \delta$$
,

which contradicts the choice of δ . We also have that $m_n < m + \epsilon$, for if $m_n \ge m + \epsilon$, then

$$F(m+\epsilon) < F_n(m+\epsilon) + \delta \le \frac{1}{2} + \delta$$
,

which again contradicts the choice of δ . Thus, for n > N, $|m_n - m| < \epsilon$, as desired.

By the Glivenko-Cantelli Theorem, it follows immediately that $Med(\hat{F}_n) \rightarrow Med(F)$ a.s.