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Abstract

We show by example that empirical likelihood and other commonly used tests for moment
restrictions are unable to control the (exponential) rate at which the probability of a Type I
error tends to zero. It follows that the optimality of empirical likelihood asserted in Kitamura
(2001) does not hold without additional assumptions. Under stronger assumptions than those in
Kitamura (2001), we establish the following optimality result: (i) empirical likelihood controls
the rate at which the probability of a Type I error tends to zero and (ii) among all procedures
for which the probability of a Type I error tends to zero at least as fast, empirical likelihood
maximizes the rate at which probability of a Type II error tends to zero for “most” alternatives.
This result further implies that empirical likelihood maximizes the rate at which probability of
a Type II error tends to zero for all alternatives among a class of tests that satisfy a weaker
criterion for their Type I error probabilities.
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1 Introduction

Let Xi, i = 1, . . . n, be an i.i.d. sequence of random variables with distribution P ∈ P ⊆M where

M denotes the set of probability distributions on X ⊆ Rd (with the Borel σ−algebra). Let Θ ⊆ Rr

with m > r and g : Rd ×Θ→ Rm be given, and define

P0 = {P ∈ P : EP [g(X, θ)] = 0 for some θ ∈ Θ} . (1)

In this paper, we consider testing

H0 : P ∈ P0 versus H1 : P ∈ P1 , (2)

where P1 = P \ P0. Note that any non-randomized test of (2) can be identified with a partition

(Ω0,n,Ω1,n) of M, wherein the test rejects the null hypothesis if the empirical distribution of the

observations, denoted by P̂n, falls in Ω1,n and fails to reject it otherwise.

Following Owen (1988), Qin and Lawless (1994) propose a test of (2) based on empirical like-

lihood ratio. In order to describe their test, recall that the Kullback-Leibler divergence of P from

Q is defined as

I(Q|P ) =


∫

log(dQdP )dQ if Q� P

∞ otherwise
,

and let

M0(Q) = {P ∈M : P � Q,Q� P,EP [g(X, θ)] = 0 for some θ ∈ Θ} . (3)

Using this notation, their test can be described as rejecting the null hypothesis for large values of

inf
P∈M0(P̂n)

I(P̂n|P ) . (4)

It therefore corresponds, for some sequence of critical values {ηn > 0 : n ≥ 1}, to the partition

(Λ0(ηn),Λ1(ηn)) of M, where

Λ0(ηn) = {Q ∈M : infP∈M0(Q) I(Q|P ) < ηn}
Λ1(ηn) = M \ Λ0(ηn) .

(5)

Here, the infimum over the empty set is understood to be infinity.

Kitamura (2001) claims the empirical likelihood ratio test is optimal for testing (2) in the large

deviations sense of Hoeffding (1965) provided that the following conditions hold

P{sup
θ∈Θ
||g(X, θ)|| =∞} = 0 for all P ∈ P (6)

g(x, θ) is continuous at every θ ∈ Θ for each x ∈ Rd . (7)
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Specifically, part (a) of Theorem 2 in Kitamura (2001) asserts that for any η > 0

sup
P∈P0

lim sup
n→∞

1
n

logPn{P̂n ∈ Λ1(η)} ≤ −η , (8)

whereas part (b) of the same theorem asserts that if another test (Ω0,n,Ω1,n) satisfies

sup
P∈P0

lim sup
n→∞

1
n

logPn{P̂n ∈ Ωδ
1,n} ≤ −η

for some δ > 0, then

lim sup
n→∞

1
n

logPn{P̂n ∈ Ω0,n} ≥ lim sup
n→∞

1
n

logPn{P̂n ∈ Λ0(η)}

for any P ∈ P1. Here, the notation Aδ denotes the (open) δ-“blowup” of a set A ⊆M with respect

to Prokhorov-Lévy metric. More formally, Aδ =
⋃
P∈AB(P, δ), where B(P, δ) denotes an open ball

with center P and radius δ with respect to the Prokhorov-Lévy metric.

In Section 2, we provide two examples that demonstrate that the empirical likelihood ratio

test of Qin and Lawless (1994) in fact fails to control size as required in (8) without additional

restrictions on P. More specifically, we show that given the assumptions in Kitamura (2001), (8) is

not satisfied for any η > 0. Interestingly, these examples also reveal that most commonly used tests

of (2) suffer of the same deficiency. In Section 3, we use these examples to motivate restrictions on

P under which we establish a more limited version of Theorem 2 in Kitamura (2001). Proofs of all

results are collected in a Supplemental Appendix.

Remark 1.1. Strictly speaking, Theorem 2 of Kitamura (2001) considers a test different from that

of Qin and Lawless (1994) in that it omits the requirements P � Q and Q� P in (3).

2 Two Examples

We now provide two examples that illustrate the need for further restrictions on P in order for

(8) to hold. The family of distributions used in the first example is the same as the one used in

Romano (1989) to show that the bootstrap does not behave well uniformly over certain classes

of distributions and in Romano (2004) to show that the t-test has size one in finite samples over

certain classes of distributions.

Example 2.1. Suppose d = 1, m = 1 and g(x, θ) = x for all θ ∈ Θ. Let P be any set of probability

distributions satisfying (6) and (7) and containing

C0 = {Pc : 0 < c < 1} ,

where Pc is the measure with mass 1− c on c and mass c on −(1− c). Define the event

En = {Xi = c for all 1 ≤ i ≤ n}
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and notice that En implies that M0(P̂n) = ∅. Since the empirical likelihood ratio test rejects

whenever M0(P̂n) = ∅, we obtain for any η > 0 that

Pnc {P̂n ∈ Λ1(η)} ≥ Pnc {En} = (1− c)n . (9)

Moreover, since C0 ⊆ P0, it follows from (9) that

sup
P∈P0

lim sup
n→∞

1
n

logPn{P̂n ∈ Λ1(η)} ≥ sup
c∈(0,1)

log(1− c) = 0 . (10)

We conclude in particular that (8) cannot be satisfied for any P that includes C0.

The above example suggests that if P is “too rich” then the empirical likelihood ratio test

cannot satisfy (8) for any value of η > 0. It is important to note that that this would remain true

even if we were to allow the critical value η to depend on n. Furthermore, this shortcoming is not

unique to empirical likelihood in that it is shared by many commonly used tests. In particular,

Example 2.1 also applies to the t-test. To see this, let Pc and En be defined as in Example 2.1 and

simply note that the sample mean, X̄n, equals c and the standard error, σ̂n, defined by

σ̂2
n =

1
n

∑
1≤i≤n

(Xi − X̄n)2 ,

equals zero whenever En occurs. Hence, for any critical value η > 0,

Pnc {
√
n|X̄n| ≥ ησ̂n} ≥ Pnc {En} = (1− c)n . (11)

By arguing as in (10), it follows that the t-test also fails to control size in the sense of Hoeffding

(1965) whenever C0 ⊆ P. Note that this failure persists even if we estimate the standard error

without centering because (11) continues to hold provided
√
n ≥ η. For this reason, Example 2.1

applies to the generalized method of moments (GMM)-based J-test proposed in Hansen (1982).

A similar argument shows that Example 2.1 also applies to tests based on generalized empirical

likelihood.

The simplicity of Example 2.1 is illustrative but potentially misleading. First, it is not enough

to simply rule out discrete distributions. Indeed, one could modify Example 2.1 by “smoothing”

out the mass on either side of zero and it would still apply. Second, it is also not sufficient to rule

out distributions that have “too little” mass on one side of zero, as shown by Example 2.2 below.

Example 2.2. As in the previous example, assume d = 1, m = 1 and g(x, θ) = x for all θ ∈ Θ.

Let P be any set of probability distributions satisfying (6) and (7) and containing

K0 = {PK,c = cD−1 + (1− c)RK,c : 0 < c <
1
2
,K ≥ 2} ,

where D−1 is the degenerate distribution at −1, and RK,c is the distribution satisfying:

RK,c

{
X =

−2c
(1− c)(K − 1)

}
=

1
2
, RK,c

{
X =

2Kc
(1− c)(K − 1)

}
=

1
2
.
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As in Example 2.1, we show empirical likelihood fails to satisfy (8) by constructing an event under

which it rejects too often. To this end, define

An = {Xi 6= −1 for all 1 ≤ i ≤ n} .

Note that there is a unique measure FK,c in M0(RK,c) given by:

FK,c

{
X =

−2c
(1− c)(K − 1)

}
=

K

1 +K
, FK,c

{
X =

2Kc
(1− c)(K − 1)

}
=

1
K

.

We can therefore conclude by direct calculation that there is a Kη sufficiently large for which

inf
P∈M0(RKη,c)

I(RKη ,c|P ) = I(RKη ,c|FKη ,c) =
1
2

log(
1 +Kη

2Kη
) +

1
2

log(
1 +Kη

2
) > η .

Next, note that under RnKη ,c either M0(P̂n) = ∅ or M0(P̂n) = {FKη ,c}. It follows that

lim inf
n→∞

1
n

logRnKη ,c{P̂n ∈ Λ1(η)} = lim inf
n→∞

1
n

logRnKη ,c
{

inf
P∈M0(P̂n)

I(P̂n|P ) ≥ η
}

≥ lim inf
n→∞

1
n

logRnKη ,c
{
I(P̂n|FKη ,c) ≥ η ∩M0(P̂n) 6= ∅

}
= 0 ,

where the final inequality follows from observing that I(P̂n|FKη ,c) converges in probability to

I(RKη ,c|FKη ,c) and M0(P̂n) 6= ∅ with probability approaching one under RnKη ,c. We conclude

sup
P∈K0

lim sup
n→∞

1
n

logPn{P̂n ∈ Λ1(η)}

≥ sup
c∈(0, 1

2
)

{
lim inf
n→∞

1
n

logPnKη ,c{P̂n ∈ Λ1(η)|An}+ lim inf
n→∞

1
n

logPnKη ,c{An}
}

= sup
c∈(0, 1

2
)

{
lim inf
n→∞

1
n

logRnKη ,c{P̂n ∈ Λ1(η)}+ lim inf
n→∞

1
n

logPnKη ,c{An}
}

= sup
c∈(0, 1

2
)

log(1− c)

= 0 .

Therefore, (8) cannot be satisfied for any P that includes K0.

Both Examples 2.1 and 2.2 rely on a sequence of distributions for which the rate at which the

probability of a Type I error tends to zero itself tends to zero. In Example 2.1 this sequence is

denoted by Pc and in Example 2.2 this sequence is denoted by PKη ,c. While they appear different

in nature, these sequences are in fact linked together by the observation that

lim
c→0

Pc = lim
c→0

PKη ,c = D0 , (12)
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where D0 is the degenerate distribution at 0 and the limits should be interpreted in the weak

topology. In the special case where X = [−1, 1], d = 1, m = 1, and g(x, θ) = x for all θ ∈ Θ, it

will follow from our general results in the next section that D0 is a limit point of any sequence of

distributions for which the (exponential) rate at which the probability of a Type I error tends to

zero itself tends to zero. Therefore, by requiring that D0 not be a limit point of P, we will show

that the test of Qin and Lawless (1994) in this setting satisfies (8) at least for all sufficiently small

η > 0.

Remark 2.1. It is worth noting the implications of Example 2.1 for the ability of the empirical

likelihood ratio test to control size in finite samples when one only imposes requirements (6) and

(7) on P. To this end, recall the setup of Example 2.1 and note that (9) implies

sup
P∈P0

P{P̂n ∈ Λ1(η)} ≥ sup
c∈(0,1)

Pc{P̂n ∈ Λ1(η)} = 1 .

Indeed, when one imposes only (6) and (7) on P, it follows from Bahadur and Savage (1956)

that there is no “reasonable” test in this setting in the sense that no test can have power against

any alternative greater than size. On the other hand, Example 2.1 applies even if we impose the

additional requirement that X = [−1, 1]. With this additional requirement, the results of Bahadur

and Savage (1956) no longer apply and reasonable tests exist. See, for example, Romano and Wolf

(2000).

Remark 2.2. In parametric models where P consists of distributions with common finite support,

the likelihood ratio test for H0 : EP [X] = 0 versus H1 : EP [X] 6= 0 rejects for large values of

inf
P∈P0

I(P̂n|P ) , (13)

which equals (4) with probability approaching one under any P ∈ P as n tends to infinity; see

Newey and Smith (2004). In more general settings, however, it is important that the empirical

likelihood ratio test takes the infimum over M0(P̂n) rather than over P0. For example, if P is only

required to satisfy (6) and (7), it is straightforward to see (13) equals zero while the test statistic

of Qin and Lawless (1994) converges to a chi-squared random variable.

3 The Main Result

Our main result will require the following assumptions:

Assumption 3.1. X and Θ are compact subsets of Rd and Rr, respectively.

Assumption 3.2. g : X ×Θ→ Rm is continuous in both of its arguments.

The compactness of X , imposed in Assumption 3.1, ensures that M is itself compact in the

weak topology, a crucial point in the proof of our main result. As implied by Examples 2.1 and 2.2,
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however, additional requirements must be imposed on the set of probability measures P in order

for empirical likelihood to be able to control size as in (8). To this end, let

Θ0(P ) = {θ ∈ Θ : EP [g(X, θ)] = 0} (14)

M0 = {P ∈M : EP [g(X, θ)] = 0 for some θ ∈ Θ} . (15)

Additionally, for s(P, θ) the dimension of the convex hull of the support of g(X, θ) under P , define

D0 = {P ∈M : ∃θ ∈ Θ0(P ) with s(P, θ) < m} , (16)

which we note is equal to {D0} when d = 1 and g(x, θ) = x for all θ ∈ Θ.

The set P is then restricted by requiring that it satisfy the following additional assumptions:

Assumption 3.3. P ⊆M is closed in the weak topology.

Assumption 3.4. For each P ∈ P, Θ0(P ) is either empty or a singleton denoted θ0(P ).

Assumption 3.5. For some ε > 0, P ∩Dε
0 = ∅.

Given the compactness of M, Assumption 3.3 implies P is compact as well. It is left as a high

level assumption, but we note closed sets in the weak topology are easily constructed by imposing

moment restrictions on bounded continuous functions. Assumption 3.4 is employed to show that

θ0(P ) is continuous in P under the weak topology. Since we are typically interested in cases where

m > r, we feel that Assumption 3.4 is not particularly restrictive. Assumption 3.5 is made precisely

to avoid Examples 2.1 and 2.2 as it ensures D0 contains no limit points of P. We note that, provided

Assumption 3.4 is met, we may let P = M \Dε
0.

We are now in a position to state our main result:

Theorem 3.1. Let Xi, i = 1, . . . , n be an i.i.d. sequence of random variables with distribution

P ∈ P. Let (Λ0(η),Λ1(η)) be defined as in (5). Suppose Assumptions 3.1 - 3.5 hold. Then,

(a) There exists η̄ > 0 such that for all 0 < η ≤ η̄ we have that

sup
P∈P0

lim sup
n→∞

1
n

logPn{P̂n ∈ Λ1(η)} ≤ −η .

(b) If a test (Ω0,n,Ω1,n) satisfies

sup
P∈P0

lim sup
n→∞

1
n

logPn{P̂n ∈ Ωδ
1,n} ≤ −η (17)

for some δ > 0, then

lim sup
n→∞

1
n

logQn{P̂n ∈ Ω0,n} ≥ lim sup
n→∞

1
n

logQn{P̂n ∈ Λ0(η)}

for any Q ∈ P satisfying

inf
P∈M0\P0

√
η
2

I(Q|P ) ≥ inf
P∈P0\M0\P0

√
η
2

I(Q|P ) . (18)
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Figure 1: The larger and smaller (two-dimensional) ellipses represents M0 and M0\P0, respectively,

while the mesh ball represents M0 \P0

√
η
2 . NoteQ1 is closer to P0\M0 \P0

√
η
2 than to M0 \P0

√
η
2

while the opposite is true for Q2. Part (b) of Theorem 3.1 applies to Q1, but not Q2.

Proof: See Supplemental Appendix.

Theorem 3.1 establishes the desired optimality property of empirical likelihood to test (2). First,

the probability of a Type I error when using empirical likelihood tends to zero at a(n exponential)

rate that is bounded away from zero on P0. Second, for any distribution Q satisfying (18), the

probability of a Type II error when using empirical likelihood vanishes at a(n exponential) rate at

least as fast as that of any non-randomized test satisfying the requirement (17). We emphasize

the non-local nature of the optimality property, in that it holds for all distributions Q satisfying

(18). Heuristically, condition (18) demands that Q be “closer” to the subset of M0 over which we

demand control of the rate at which the probability of a Type I error tends to zero than to the

subset of M0 over which we do not.

As illustrated by Examples 2.1 and 2.2, commonly used tests for (2) also fail to control the

(exponential) rate at which the probability of a Type I error tends to zero if we allow for distributions

in neighborhoods of D0. Rather than examining the performance of tests on restricted sets P that
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exclude D0, an alternative way of comparing among such procedures is to require

sup
P∈P0

lim sup
n→∞

1
n

logP{P̂n ∈ (Ω1,n \Dε
0)δ} ≤ −η (19)

instead of (17). Requirement (19) should not be interpreted as “size” control, but rather as a

benchmark for tests that have difficulty controlling the rate at which the Type I error tends to zero

in neighborhoods of D0. Given the weaker criterion (19), it is clear that any optimal test must

satisfy Dε
0 ⊆ Ω1,n. For this reason, consider

Λ̃0(η) = Λ0(η) \Dε
0

Λ̃1(η) = Λ1(η) ∪Dε
0 ,

(20)

where the dependence on ε is omitted in the notation. Note that the tests (Λ0(η),Λ1(η)) and

(Λ̃0(η), Λ̃1(η)) differ only on the event P̂n ∈ Dε
0. We can use Theorem 3.1 to show that the optimal

test in this framework is given by the modified empirical likelihood test defined by (20).

Corollary 3.1. Let Xi, i = 1, . . . , n be an i.i.d. sequence of random variables with distribution

P ∈ P. Let (Λ̃0(η), Λ̃1(η)) be defined as in (20). Under Assumptions 3.1, 3.2, 3.3 and 3.4:

(a) There exists η̄(ε) > 0 such that for all 0 < η ≤ η̄(ε) we have that

sup
P∈P0

lim sup
n→∞

1
n

logPn{P̂n ∈ Λ̃1(η) \Dε
0} ≤ −η .

(b) If a test (Ω0,n,Ω1,n) satisfies

sup
P∈P0

lim sup
n→∞

1
n

logPn{P̂n ∈ (Ω1,n \Dε
0)δ} ≤ −η (21)

for some δ > 0, then for every probability measure Q ∈ P,

lim sup
n→∞

1
n

logQn{P̂n ∈ Ω0,n} ≥ lim sup
n→∞

1
n

logQn{P̂n ∈ Λ̃0(η)} . (22)

Proof: See Supplemental Appendix.

We reiterate that (19) differs from (17) only in how the former treats distributions that are close

to the set D0. Remarkably, as a result of this rather simple modification, it is possible to remove

almost all of the requirements on P. Moreover, in contrast to Theorem 3.1, (22) holds without

qualifications on Q. This result may therefore provide some guidance when choosing among tests

that have difficulty controlling the rate at which the Type I error tends to zero in neighborhoods

of D0, such as tests based on (generalized) empirical likelihood or the GMM-based J-test.
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