
1 Counterexamples to the Bootstrap

In this section, we consider counterexamples to the bootstrap. Specifically,

we will provide examples of roots Rn such that Jn(x, P̂n) (the distribution

of the root Rn under P̂n) does not converge in distribution to Jn(x, P ) (the

distribution of the root Rn under P ).

2 Extreme Order Statistic

Suppose Xi, i = 1, . . . , n are i.i.d. with distribution P . Let θ(P ) denote

the upper bound of the support of P . A natural estimator of θ(P ) is X(n),

where

X(1) ≤ · · · ≤ X(n)

denote the ordered values of the data. These statistics are sometimes re-

ferred to as the order statistics of the data. Consider the root

Rn = n(X(n) − θ(P )) ,

where θ(P ) is the upper bound of the support of P . For concreteness,

suppose P = U(0, θ) where θ ≥ 0, so θ(P ) is simply θ.

We first show that Jn(x, P ) converges in distribution to J(x, P ) = Pr{−θX ≤
x}, where X ∼ exp(1). Recall that X ∼ exp(1) if

Pr{X ≤ x} =

1− exp(−x) if x ≥ 0

0 otherwise
,

which implies that

Pr{−Xθ ≤ x} = Pr{X ≥ −x/θ} =

exp(x/θ) if x ≤ 0

1 otherwise
.

Next note that

Pr{Rn ≤ x} = Pr{n(X(n) − θ) ≤ x}

= Pr{X(n) ≤ θ +
x

n
}

= Pr{Xi ≤ θ +
x

n
}n .
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Note that

Pr{Xi ≤ θ +
x

n
} =


0 if x ≤ −nθ

θ(θ + x
n) if − nθ < x ≤ 0

1 if x > 0

.

Therefore,

Pr{Rn ≤ x} =


0 if x ≤ −nθ

(θ(θ + x
n))n if − nθ < x ≤ 0

1 if x > 0

.

Note that

(θ(θ +
x

n
))n = (1 +

x

θn
)n → exp(x/θ)

because of the identity

exp(x) = lim
n→∞

(1 +
x

n
)n .

Hence,

Pr{Rn ≤ x} →

exp(x/θ) if x ≤ 0

1 otherwise
.

Now consider a sequence of probability distributions Pn, n ≥ 1 such that

each distribution Pn puts equal mass on n distinct points. For each n, let

Xi,n, i = 1, . . . , n be an i.i.d. sequence of random variables with distribution

Pn. The distribution Jn(x, Pn) is simply the distribution of

n(X(n),n − θ(Pn))

under Pn. But, X(n),n = θ(Pn) with probability

1− (1− 1
n

)n → 1− exp(−1) .

Therefore, for any ε > 0,

Pr{n(X(n),n − θ(Pn)) ≤ −ε} = 1− Pr{n(X(n),n − θ(Pn)) > −ε}

≤ 1− Pr{n(X(n),n − θ(Pn)) = 0} → exp(−1) .
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Choose ε > 0 so that

exp(−1) < exp(−ε/θ) = Pr{−θX ≤ −ε} .

It follows that for such ε,

Pr{n(X(n),n − θ(Pn)) ≤ −ε} 6→ exp(−ε/θ) .

To complete the argument, simply note that the Xi, i = 1, . . . , n are all

distinct a.s., so P̂n satisfies the requirements on Pn a.s. Thus, Jn(x, P̂n) does

not converge in distribution to J(x, P ) a.s.

3 Parameter on the Boundary

Suppose Xi, i = 1, . . . , n are i.i.d. with distribution P . Let θ(P ) denote the

mean of P . If it is known a priori that θ(P ) ≥ 0, then a natural estimator

of the the mean is (X̄n)+, where (x)+ = max{x, 0}. Consider the root

Rn =
√

n((X̄n)+ − (θ(P ))+) .

(We could also consider the root Rn =
√

n((X̄n)+−θ(P )); the results would

be similar.) For concreteness, suppose P = N(θ, 1) where θ ≥ 0, so θ(P ) is

simply θ.

We first derive the asymptotic behavior of Jn(x, P ). Since θ(P ) ≥ 0, we

have that

√
n((X̄n)+ − (θ(P ))+) = max{

√
nX̄n, 0} −

√
nθ(P )

= max{
√

n(X̄n − θ(P )),−
√

nθ(P ))} .

Under our assumptions,
√

n(X̄n− θ(P )) ∼ Z, where Z ∼ N(0, 1). It follows

that Jn(x, P ) converges in distribution to J(x, P ), where

J(x, P ) =

Pr{(Z)+ ≤ x} if θ = 0

Pr{Z ≤ x} otherwise
.
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For each n, let Xi,n, i = 1, . . . , n be an i.i.d. sequence of random variables

with distribution Pn. The distribution of Jn(x, Pn) is simply the distribution

of
√

n((X̄n,n)+ − (θ(Pn))+)

under Pn. Even if θ(Pn) is possibly negative, we may still write

√
n((X̄n,n)+ − (θ(Pn))+) =

max{
√

n(X̄n,n − θ(Pn)) +
√

nθ(Pn), 0} −max{
√

nθ(Pn), 0} .

Suppose θ(P ) = 0. Let c > 0 and suppose
√

nθ(Pn) < −c for all n. For such

a sequence Pn,

√
n((X̄n,n)+ − (θ(Pn))+) ≤ max{

√
n(X̄n,n − θ(Pn))− c, 0} .

If Pn converges in distribution to P , θ(Pn) → θ(P ), and σ2(Pn) → σ2(P ),

then we know from our earlier results that

max{
√

n(X̄n,n − θ(Pn))− c, 0} d→ max{Z − c, 0}

under Pn, which is dominated by the distribution of (Z)+.

To complete the argument, it suffices to show that P̂n satisfies a.s. the

requirements on Pn in the above discussion. By the SLLN P̂n converges

in distribution to P a.s., θ(P̂n) → θ(P ) a.s., and σ2(P̂n) → σ2(P ) a.s. It

remains to determine whether
√

nθ(P̂n) < −c for all n a.s. Equivalently, we

need to determine whether

X̄n < − c√
n

for all n a.s. Unfortunately, the SLLN will not suffice for this purpose.

Instead, we will need the following refinement of the SLLN known as the

law of the iterated logarithm (LIL):

Theorem 3.1 Let Yi, i = 1, . . . , n be an i.i.d. sequence of random variables

with distribution P on R. Suppose µ(P ) = 0 and σ2(P ) = 1. Then,

lim sup
n→∞

Ȳn√
2 log log n

n

= 1 a.s.
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Recall that for a sequence of real numbers an, n ≥ 1

lim sup
n→∞

an = a

if and only if for any ε > 0

an > a− ε i.o.

and

an < a + ε

for all n sufficiently large. An implication of the LIL therefore is that for

any ε > 0,

Ȳn > (1− ε)

√
2 log log n

n
i.o. a.s.

Since (1− ε)
√

2 log log n > c for all n sufficiently large, it follows that

Ȳn >
c√
n

i.o. a.s.

We may apply the LIL to Yi = −Xi to conclude that

X̄n < − c√
n

i.o. a.s.

In other words, there exists a set Ω with Pr{Ω} = 1 such that for all ω ∈ Ω,

X̄n(ω) < − c√
n

i.o.

Therefore, for all ω ∈ Ω there exists a subsequence nk = nk(ω), k ≥ 1 of

n ≥ 1 such that for all k ≥ 1

X̄nk
(ω) < − c

√
nk

.

It follows that P̂n satisfies the requirements on Pn, at least along a subse-

quence, a.s. Thus, at least along a subsequence, Jn(x, P̂n) does not converge

to J(x, P ) a.s.
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