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Abstract

This paper studies models for binary outcome variables that contain a binary endogenous

regressor. More specifically, we consider a nonparametric, triangular system of equations with

binary dependent variables. The main assumption we impose is a weak separability condition on

each equation, or, equivalently, a threshold crossing model on each equation. In this setting, we

construct upper and lower bounds on the Average Structural Function (ASF) and the Average

Treatment Effect (ATE) under weak regularity conditions. The resulting bounds are narrower

the greater the strength of the instrument and the greater the degree to which the exogenous

covariates that enter the outcome equation can compensate for variation in the endogenous

regressor. We show further that the bounds on the ASF and ATE are sharp under an additional

restriction on the support of the covariates and the instrument.
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1 Introduction

This paper studies models for binary outcome variables that contain a binary endogenous regres-

sor. More specifically, we consider a nonparametric, triangular system of equations with binary

dependent variables. The main assumption we impose is a weak separability condition on each

equation, or, equivalently, a threshold crossing model on each equation. This structure nests the

bivariate probit model with structural shift of Heckman (1978) as a special case. In this setting,

we consider the problem of partially identifying the Average Structural Function (ASF) and the

Average Treatment Effect (ATE), thereby extending the identification results of Vytlacil and Yildiz

(2007).

In order to define this structure precisely, let D denote the binary endogenous regressor and

let Y denote the outcome of interest. For example, D might denote receipt of job training and Y

later employment, or D might denote receipt of a medical intervention and Y later mortality. See

Bhattacharya et al. (2009) for an application of the methodology developed in this paper to the

evaluation of the impact of Swan-Ganz catheterization on patient mortality. Consider the following

triangular system of equations:
Y = g1(D,X, ε1)

D = g2(Z, ε2) .
(1)

Here, X and Z are observed random vectors that may share elements in common, and ε1 and ε2

are unobserved random variables. Following Blundell and Powell (2004), our object of interest is

the Average Structural Function (ASF)

G1(d, x) =
∫
g1(d, x, ε1)dFε1 ,

where (d, x) denotes a potential realization of the random vector (D,X). The ASF averages against

the unconditional distribution of ε1, not the distribution of ε1 conditional on the possibly endoge-

nous regressor D, and thus gives the expected outcome of Y if D were determined exogenously.

We also consider

∆G1(x) = G1(1, x)−G1(0, x) ,

which is often referred to as the Average Treatment Effect (ATE) in the treatment effect literature.

The main assumption we impose is that g1 and g2 both satisfy weak separability of the observed

regressors from the unobserved error term. As will be further discussed in Section 2, for a binary

dependent variable, such an assumption is equivalent to assuming that the function is weakly

increasing in the error term, as in Chesher (2005), assuming the monotonicity restriction considered

by Imbens and Angrist (1994), or assuming that the model can be represented as a threshold crossing

model with an additively separable latent error, as in Heckman and Vytlacil (2005). For ease of
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analysis, we will work with the threshold crossing representation of the model, i.e.,

Y = I{ν1(D,X) ≥ ε1}
D = I{ν2(Z) ≥ ε2} .

(2)

If one assumes that ν1 and ν2 are linear functions and that (ε1, ε2) has a bivariate normal distribu-

tion, then the above model reduces to the classical bivariate probit with structural shift considered

in Heckman (1978). We will not impose any such parametric functional form or parametric distri-

butional assumptions in this paper.

In addition to the weak separability assumption described above, we will require some mild

regularity of the distribution of (ε1, ε2). We will also assume that X and Z are exogenous in the

sense that (X,Z) ⊥⊥ (ε1, ε2). Note that D may still be endogenous in the Y equation due to

possible dependence between ε1 and ε2. For example, those who receive the job training might

have the worst human capital, or those who receive the medical intervention might have the worst

latent health. The resulting bounds on the ASF or ATE are substantially narrower than alternative

bounds that do not impose our weak separability restrictions. Under certain restrictions on the

distribution of (X,Z) and the functions ν1 and ν2 in (2), we show further that the bounds we derive

on the ASF and ATE are sharp in the sense that for any value lying between the upper and lower

bounds, there will exist a distribution of unobservable variables satisfying all of the assumptions

of our analysis that is consistent with both the distribution of the observed data and the proposed

value of the ASF or the ATE.

Identification of the ASF and ATE with this structure was previously considered by Vytlacil

and Yildiz (2007). They show that when the support of the distribution of X conditional on

Pr{D = 1|Z} is sufficiently rich it is possible to point identify the ASF and the ATE. Their support

condition will fail if, for example, X is a discrete random variable, and would be expected to fail near

the boundaries of the support of X if X has bounded support. In this paper, we investigate what

can be inferred about the ASF or the ATE without imposing this support restriction. To this end,

we first use a modified instrumental variable-like procedure to determine what variation in X over-

compensates or under-compensates for ceteris paribus variation in D, and then use this information

to construct bounds on the ASF or the ATE. The resulting bounds are smaller the greater the

variation there is in X conditional on Pr{D = 1|Z}, and collapse to point identification under the

Vytlacil and Yildiz (2007) condition of sufficient variation in X conditional on Pr{D = 1|Z}.

As mentioned earlier, our weak separability restriction on the functions g1 and g2 is equivalent to

imposing that the functions are weakly increasing in the error terms ε1 and ε2, respectively. We do

not impose the stronger requirement that either function is strictly increasing in its error term, as

to do so would imply under our regularity conditions on the distribution of (ε1, ε2) that Y or D must

be continuous. For this reason, we cannot follow the control variate-approach used, e.g., in Altonji
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and Matzkin (2005), Blundell and Powell (2004), Chesher (2003), and Imbens and Newey (2010),

which would require g2 to be strictly increasing in ε2. Similarly, we cannot follow the quantile

instrumental variable-approach used in Chernozhukov and Hansen (2005) and Chernozhukov et al.

(2007), which would require g1 to be strictly increasing in ε1.

Our analysis is similar to Chesher (2005), who only assumes that g1 and g2 are weakly increasing

in ε1 and ε2, respectively. In his analysis, the object of interest is g1 itself, while in this paper we

focus more modestly on the ASF and the ATE. More importantly, his analysis requires a rank

condition that cannot hold except in trivial cases when D is binary. When D is binary, the rank

condition under which he constructs bounds for g1(0, x, τ) is that there exists some value z0 such

that Pr{D = 1|Z = z0} ≤ τ ≤ 0 and for g1(1, x, τ) that there exists some value z0 such that

1 ≤ τ ≤ Pr{D = 1|Z = z0}. These conditions cannot hold for any value of τ except τ = 0 or τ = 1,

in which case the ASF is identified following arguments in Heckman and Vytlacil (2001). See Jun

et al. (2009) for extensions of his analysis and Chesher (2007) for related analysis that considers

partial identification of g1 without imposing any restrictions on g2.

The analysis of this paper has recently been extended in subsequent work by Chiburis (2009).

While we show that our bounds are sharp whenever the support of (X,Z) may be written as the

product of the support of X and the support of Z, Chiburis (2009) shows that our bounds may

not be sharp without this restriction. On the other hand, he presents numerical evidence that

suggests that our bounds will often be close to the sharp bounds even when this restriction fails.

Moreover, our bounds are much simpler to describe than the sharp bounds derived in Chiburis

(2009). Chiburis (2009) also considers restrictions beyond what we impose, such as linear latent

index restrictions and parametric distributional assumptions.

The remainder of the paper is organized as follows. In Section 2, we formally define our

assumptions and analyze the connection between our assumptions and the assumptions considered

in the previous literature. Our main results are contained in Section 3. We conclude with a

numerical example in Section 4.

2 Model and Assumptions

In addition to assuming that Y and D are determined by (2), we will make use of the following

assumptions in our analysis:

Assumption 2.1 (X,Z) ⊥⊥ (ε1, ε2).

Assumption 2.2 The distribution of (ε1, ε2) has strictly positive density w.r.t. Lebesgue measure

on R2.
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Assumption 2.3 The support of the distribution of (X,Z), supp(X,Z), is compact.

Assumption 2.4 The functions ν1(·), and ν2(·) are continuous.

Assumption 2.5 The distribution of ν2(Z)|X is nondegenerate.

In the derivation of our bounds, we will exploit the assumption that Y and D are determined by

(2) and Assumptions 2.1 - 2.2. Formally, our analysis will not require Assumption 2.5, but when it

fails our bounds will reduce to those of Manski (1989), who imposes no structure on the equations

determining Y and D. In this sense, though formally our results will not require a variable in Z

that is not in X, they will be nontrivial only when there is a variable in Z that is not contained in

X. When this is the case, any regressor in X that is not in Z will provide an additional source of

identifying power in our analysis. We will make use of Assumptions 2.3 and 2.4 only when arguing

that the bounds are sharp.

As discussed in Vytlacil (2006), the existence of a threshold crossing representation with an

additive latent error as in (2) is equivalent to several other nonparametric monotonicity conditions

considered in the literature. In fact, by combining results from the previous literature, we have the

following lemma:

Lemma 2.1 For f : W × E 7→ {0, 1}, where W ⊆ RKW , E ⊆ RKE , the following statements are

equivalent:

(i) For any w, w̃ ∈ W, f(w, e∗) > f(w̃, e∗) for some e∗ ∈ E ⇒ f(w, e) ≥ f(w̃, e) for all e ∈ E.

(ii) There exists a function ν : E 7→ R with range R(ν) and a function g : W ×R(ν) 7→ R with

g(w, t) weakly increasing in t such that f(w, e) = g(w, ν(e)) for all (w, e) ∈ W × E.

(iii) There exists a function ν : W 7→ R with range R(ν) and a function g : R(ν) × E 7→ R with

g(t, e) weakly increasing in t such that f(w, e) = g(ν(w), e) for all (w, e) ∈ W × E.

(iv) There exists a function ν : W 7→ R and a function λ : E 7→ R such that f(w, e) = I{ν(w) ≥
λ(e)} for all (w, e) ∈ W × E.

Proof: The equivalence between (i) and (iii) follows from Theorem C.1 of Vytlacil and Yildiz

(2007). The equivalences between (i) and (iv) and between (ii) and (iv) follow from straightforward

modifications to the proof of Theorem 1 of Vytlacil (2002).

Restriction (i) in Lemma 2.1 is imposed on the model for D by Imbens and Angrist (1994).

Imbens and Angrist (1994) refer to this restriction as “monotonicity,” whereas Heckman and Vyt-

lacil (2005) refer to it as a uniformity condition. This restriction on D without the corresponding
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restriction on Y does not narrow the resulting sharp bounds on the ASF or ATE compared to not

imposing this structure on D. See Balke and Pearl (1997) for the case of binary Z and Heckman

and Vytlacil (2001) for the case of general Z. In comparison, in this paper, we impose the structure

symmetrically on both Y and D and show that the resulting bounds on the ASF and ATE are much

narrower than those obtained when not imposing this structure.

Restriction (ii) in Lemma 2.1 imposes that e is weakly separable from w, while restriction (iii)

imposes that w is weakly separable from e. In general, e weakly separable from w is not equivalent

to w weakly separable from e, though these restrictions are equivalent for binary valued functions.

Chesher (2005) imposes restriction (ii) on the structural equations for both Y and D and studies

partial identification of the equation determining Y instead of the ASF or the ATE, as we do in

this paper. More importantly, as discussed in Section 1, when D is binary, the rank condition

required in his analysis will not hold except in trivial cases. Vytlacil and Yildiz (2007) impose

restriction (iii) on the structural equations for both Y and D and show that the ASF and the ATE

are identified whenever the support of X conditional on Pr{D = 1|Z} is sufficiently rich. In this

paper, we study partial identification of the ASF and the ATE without such a restriction on the

support of (X,Z).

Restriction (iv) in Lemma 2.1 is a threshold crossing model with an additively separable latent

error. It is imposed on the equation determining D by Heckman and Vytlacil (2005), though

they do not impose the corresponding structure on Y . Therefore, as discussed above, the resulting

bounds on the ASF and the ATE in their setting are the same as those obtained when not imposing

this structure on D.

Finally, note that these restrictions are not equivalent to the monotone treatment response

(MTR) restrictions of Manski and Pepper (2000). MTR requires that the equation determining Y

is weakly monotonic in D, with the direction of the monotonicity known a priori and the direction

not depending on (X, ε1, ε2). In other words, MTR requires that D is weakly separable from (X, ε1)

and that the direction of the monotonicity in D is known a priori. See Bhattacharya et al. (2008)

for further discussion.

3 Identification Analysis

We begin by noting that it follows from Assumptions 2.1 - 2.2 that we may without loss of generality

impose the normalization that ε2 ∼ Uniform[0, 1] and ν2(Z) = P (Z) = Pr{D = 1|Z}. We may

sometimes write P in place of P (Z). After such a normalization, Assumption 2.2 becomes the

requirement that the distribution of (ε1, ε2) has a strictly positive density w.r.t. Lebesgue measure

on R× [0, 1]. Furthermore, note that Assumptions 2.1- 2.4 imply that P is bounded away from 0
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and 1. We will henceforth work with the normalized model.

We will use the following notation from the treatment effect literature:

Yd ≡ g1(d,X, ε1) = I{ν1(d,X) ≥ ε1} .

With this notation, and using that X ⊥⊥ ε1 by Assumption 2.1, the ASF and the ATE can be

expressed as

G1(d, x) = E[Yd|X = x] = Pr{Yd = 1|X = x} ,

∆G1(x) = E[Y1 − Y0|X = x] = Pr{Y1 = 1|X = x} − Pr{Y0 = 1|X = x} .

For the identification analysis, we assume that the distribution of the observed data, (Y,X,D,Z),

is known. Consider first identification of Pr{Y1 = 1|X = x} = G1(1, x). By equation (2) and

Assumption 2.1, we have that

Pr{Y1 = 1|X} = Pr{Y1 = 1|X,P (Z)}

and

Pr{D = 1|X,P (Z)} = P (Z) .

By the definition of Y1, we have that the event {D = 1, Y = 1} is the same event as {D = 1, Y1 = 1}.
Thus,

Pr{Y1 = 1|X,P (Z)} = Pr{D = 1, Y1 = 1|X,P (Z)}+ Pr{D = 0, Y1 = 1|X,P (Z)}
= Pr{D = 1, Y = 1|X,P (Z)}+ (1− P (Z)) Pr{Y1 = 1|X,P (Z), D = 0} .

The terms P (Z) and Pr{D = 1, Y = 1|X,P (Z)} are identified from the distribution of (Y,D,X,Z),

but the term Pr{Y1 = 1|X,P (Z), D = 0} is not identified from the distribution of (Y,D,X,Z).

Since Y is binary, this unidentified term is bounded from above and below by one and zero, which

immediately implies bounds on Pr{Y1 = 1|X},

Pr{D = 1, Y1 = 1|X,P (Z)} ≤ Pr{Y1 = 1|X} ≤ Pr{D = 1, Y1 = 1|X,P (Z)}+ (1− P (Z)) .

Since Pr{Y1 = 1|X} does not depend on P (Z), we can take the supremum of the lower bounds and

the infimum of the upper bounds over values of P (Z). Furthermore, using the threshold crossing

structure of the equation determining D, Heckman and Vytlacil (2001) show that the supremum

of the lower bounds and the infimum of the upper bounds are both achieved at the largest value in

the support of P (Z) conditional on X. Parallel reasoning provides bounds on Pr{Y0 = 1|X = x}.
Denote by supp(P |X) the support of P (Z) conditional on X. We have the following lemma,

adapted from Heckman and Vytlacil (2001):
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Lemma 3.1 (Heckman and Vytlacil (2001)) Suppose that Y and D are determined by (2) and that

Assumptions 2.1 - 2.2 hold. Then, whenever all conditional probabilities are well defined, we have

the following:

sup
p∈supp(P |X)

Pr{D = 1, Y = 1|X,P (Z) = p}

≤ Pr{Y1 = 1|X} ≤ inf
p∈supp(P |X)

{Pr{D = 1, Y = 1|X,P (Z) = p}+ (1− p)}

sup
p∈supp(P |X)

Pr{D = 0, Y = 1|X,P (Z) = p}

≤ Pr{Y0 = 1|X} ≤ inf
p∈supp(P |X)

{Pr{D = 0, Y = 1|X,P (Z) = p}+ p} ,

and these expressions can be simplified to

Pr{D = 1, Y = 1|X,P (Z) = pX} ≤ Pr{Y1 = 1|X} ≤ Pr{D = 1, Y = 1|X,P (Z) = pX}+ (1− pX)

Pr{D = 0, Y = 1|X,P (Z) = p
X
} ≤ Pr{Y0 = 1|X} ≤ Pr{D = 0, Y1 = 1|X,P (Z) = p

X
}+ p

X
,

where

p
X

= inf{p : p ∈ supp(P |X)}

pX = sup{p : p ∈ supp(P |X)} .

Proof: Follows from Theorem 2 of Heckman and Vytlacil (2001).

Heckman and Vytlacil (2001) impose our weak separability restriction only on the equation

determining D. They show that the bounds of Lemma 3.1 cannot be improved upon without

imposing more structure. By imposing the same weak separability restriction on the Y equation

as on the D equation, we can considerably reduce the width of the bounds. The next lemma is

central to our ability to improve upon Heckman and Vytlacil (2001). It uses the weak separability

restrictions on the equations determining Y and D together with the other assumptions of our

analysis to determine the sign of ν1(1, x′) − ν1(0, x) from a modified instrumental variables-like

term that is identified from the distribution of the observed data. Depending on the sign of

ν1(1, x′) − ν1(0, x), we will then be able to bound Pr{Y1 = 1|D = 0, X = x, P = p} and Pr{Y0 =

1|D = 1, X = x, P = p} from above or below by terms other than one or zero that are identified from

the distribution of the observed data. In other words, we first determine whether variation in X

over-compensates or under-compensates for ceteris paribus variation in D and use this information

in the construction of our bounds.
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Lemma 3.2 Suppose that Y and D are determined by (2) and that Assumptions 2.1 - 2.2 hold.

Let

h(x, x′, p, p′) =
(
Pr{D = 1, Y = 1|X = x′, P = p} − Pr{D = 1, Y = 1|X = x′, P = p′}

)
−
(
Pr{D = 0, Y = 1|X = x, P = p′} − Pr{D = 0, Y = 1|X = x, P = p}

)
.

Then, whenever all conditional probabilities are well defined, we have for p > p′ that h(x, x′, p, p′)

and ν1(1, x′)− ν1(0, x) share the same sign. In particular, the sign of h(x, x′, p, p′) does not depend

on p or p′ provided p > p′.

Proof: See Appendix.

Before proceeding with the statement of the main theorem, we illustrate the use of Lemma 3.2

in characterizing the possible values for Pr{Y1 = 1|D = 0, X = x, P = p} and Pr{Y0 = 1|D =

1, X = x, P = p}. Denote by P ′ a random variable distributed independently of P with the same

distribution as P . Define

H(x, x′) = E[h(x, x′, P, P ′)|P > P ′] , (3)

where h(x, x′, p, p′) = 0 whenever it is not well defined. Suppose there exists p > p′ for which

h(x, x′, p, p′) is well defined, i.e., p > p′ with both p and p′ in supp(P |X = x) ∩ supp(P |X = x′).

Recall that the sign of h(x, x′, p, p′) does not depend on p or p′ provided p > p′. If H(x, x′) ≥ 0,

then it follows from Lemma 3.2 that ν1(1, x′) ≥ ν1(0, x). Therefore,

Pr{Y0 = 1|D = 1, X = x, P = p} = Pr{ε1 ≤ ν1(0, X)|D = 1, X = x, P = p}

≤ Pr{ε1 ≤ ν1(1, X)|D = 1, X = x′, P = p}

= Pr{Y = 1|D = 1, X = x′, P = p} ,

where the first and third equalities follow from equation (2), and the inequality follows from the

fact that ν1(1, x′) ≥ ν1(0, x) and Assumption 2.2. If, on the other hand, H(x, x′) ≤ 0, then we can

argue along similar lines to bound Pr{Y0 = 1|D = 1, X = x, P = p} from below by Pr{Y = 1|D =

1, X = x′, P = p}. We can thus bound the unidentified terms Pr{Y0 = 1|D = 1, X = x, P = p}
and Pr{Y1 = 1|D = 0, X = x, P = p} by lower and upper bounds that differ from zero and one.

We now state our main theorem, which relies critically on Lemma 3.2. In the statement of the

theorem, it is understood that all supremums and infimums are only taken over regions where all

conditional probabilities are well defined, and we adopt the convention that the supremum over the

empty set is zero and the infimum over the empty set is one.
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Theorem 3.1 Suppose that Y and D are determined by (2). Let

X0+(x) = {x′ : H(x, x′) ≥ 0}

X0−(x) = {x′ : H(x, x′) ≤ 0}

X1+(x) = {x′ : H(x′, x) ≥ 0}

X1−(x) = {x′ : H(x′, x) ≤ 0} ,

where H(x, x′) is defined in (3) if h(x, x′, p, p′) is well defined for some p > p′, and with each

set understood to be empty if h(x, x′, p, p′) is not well defined for any p > p′. Then, we have the

following:

(i) If Assumptions 2.1 - 2.2 hold, then G1(d, x) ∈ [Ld(x), Ud(x)] for d ∈ {0, 1}, and ∆G1(x) ∈
[L∆(x), U∆(x)], where L∆(x) = L1(x)− U0(x), U∆(x) = U1(x)− L0(x), and

L0(x) = sup
p
{Pr{D = 0, Y = 1|X = x, P = p}+ sup

x′∈X0−(x)
Pr{D = 1, Y = 1|X = x′, P = p}} ,

L1(x) = sup
p
{Pr{D = 1, Y = 1|X = x, P = p}+ sup

x′∈X1+(x)
Pr{D = 0, Y = 1|X = x′, P = p}} ,

U0(x) = inf
p
{Pr{D = 0, Y = 1|X = x, P = p}+p inf

x′∈X0+(x)
Pr{Y = 1|D = 1, X = x′, P = p}} ,

U1(x) = inf
p
{Pr{D = 1, Y = 1|X = x, P = p}+(1−p) inf

x′∈X1−(x)
Pr{Y = 1|D = 0, X = x′, P = p}} .

(ii) If Assumptions 2.1 - 2.2 hold and supp(P,X) = supp(P )×supp(X), then the above expressions

for Ld(x) and Ud(x) for d ∈ {0, 1} simplify as follows:

L0(x) = Pr{D = 0, Y = 1|X = x, P = p}+ sup
x′∈X0−(x)

Pr{D = 1, Y = 1|X = x′, P = p} ,

L1(x) = Pr{D = 1, Y = 1|X = x, P = p}+ sup
x′∈X1+(x)

Pr{D = 0, Y = 1|X = x′, P = p}} ,

U0(x) = Pr{D = 0, Y = 1|X = x, P = p}+ p inf
x′∈X0+(x)

Pr{Y = 1|D = 1, X = x′, P = p} ,

U1(x) = Pr{D = 1, Y = 1|X = x, P = p}+(1−p) inf
x′∈X1−(x)

Pr{Y = 1|D = 0, X = x′, P = p} ,

where

p = inf{p : p ∈ supp(P )}

p = sup{p : p ∈ supp(P )} .

(iii) If Assumptions 2.1 - 2.4 hold and supp(P,X) = supp(P ) × supp(X), then the above bounds

are sharp.
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Proof: See Appendix.

As a corollary to Theorem 3.1, we have immediately that the sign of ∆G1(x) is always identified

from the distribution of the observed data whenever h(x, x, p, p′) is well defined for some p > p′.

This will be the case whenever Assumption 2.5 holds. This result is critical to the analysis of

Bhattacharya et al. (2009). See also Abrevaya et al. (2010), who in related analysis show how

to identify and test for the direction of the effect of an endogenous regressor in a semiparametric

model.

Corollary 3.1 Suppose that Y and D satisfy (2) and that Assumptions 2.1 - 2.2 and 2.5 hold.

Then, the sign of ∆G1(x) is identified.

Remark 3.1 The bounds of Theorem 3.1 reduce to those in Manski (1989) if there is no variable

in Z that is excluded from X, i.e., if Assumption 2.5 does not hold. The bounds will be smaller

the more variation there is in X conditional on P (Z). In the extreme case where X is degenerate

conditional on P (Z), the bounds reduce to the same form as the Manski and Pepper (2000) bounds

under monotone treatment response even though the assumptions of the bounds are different. See

the analysis in Bhattacharya et al. (2008) for details.

Remark 3.2 Part (iii) of Theorem 3.1 immediately implies that the bounds will be sharp if there

are no X regressors in the Y equation, i.e., if Y = ν1(D, ε1).

Remark 3.3 It is interesting to ask when the upper and lower bounds will equal one another for

the ASF or the ATE, i.e,, when the bounds imply that the ASF or the ATE is point-identified.

Suppose that supp(P,X) = supp(P ) × supp(X), and further suppose that the sets Xd+(x) and

Xd−(x) for d ∈ {0, 1} are nonempty. First consider G1(0, x) = E[Y0|X = x]. The analysis for

G1(1, x) is similar. The width of the bounds on G1(0, x) is given by U0(x)− L0(x) and is equal to

inf
x′∈X0+(x)

Pr{D = 1, Y = 1|X = x′, P = p} − sup
x′∈X0−(x)

Pr{D = 1, Y = 1|X = x′, P = p} . (4)

Suppose there exists x∗ such that H(x, x∗) = 0. It follows that x∗ ∈ X0+(x) ∩X0−(x) and (4) is

less than or equal to

Pr{D = 1, Y = 1|X = x∗, P = p} − sup
x′∈X0−(x)

Pr{D = 1, Y = 1|X = x′, P = p} ,

which in turn is less than or equal to zero. Since (4) is greater than or equal to zero by construction,

it follows that G1(0, x) is identified whenever there exists x∗ such that H(x, x∗) = 0. Using Lemma

3.2, we may state this condition equivalently as the existence of a x∗ such that ν1(1, x) = ν1(0, x∗).
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Similarly, it is possible to show that the width of the bounds on the ATE is equal to

inf
x′∈X1−(x)

Pr{D = 0, Y = 1|X = x′, P = p} − sup
x′∈X1+(x)

Pr{D = 0, Y = 1|X = x′, P = p}

+ inf
x′∈X0+(x)

Pr{D = 1, Y = 1|X = x′, P = p} − sup
x′∈X0−(x)

Pr{D = 1, Y = 1|X = x′, P = p} .

Using the same reasoning as above, we see that the average treatment effect is identified whenever

there exists x∗ and x∗∗ such that H(x∗, x) = 0 and H(x, x∗∗) = 0. Equivalently, the average

treatment effect is identified whenever there exists x∗ and x∗∗ such that ν1(1, x) = ν1(0, x∗) and

ν1(1, x∗∗) = ν1(0, x).

Remark 3.4 For the special case of our model in which there are no exogenous covariates and Z

is binary, Bhattacharya et al. (2009) adapt the results of Romano and Shaikh (2008) and Romano

and Shaikh (2010) for inference on the ATE. More generally, the bounds described in Theorem 3.1

fall into the framework studied by Chernozhukov et al. (2009), and the methods described there

can be adapted for inference on the ASF or ATE.

Remark 3.5 It is worth noting that there are several testable implications of equation (2) and

Assumptions 2.1 - 2.2. A straightforward implication is that Pr{D = 1|X,Z} does not depend on

X, and, as noted earlier, Lemma 3.2 implies that h(x, x′, p, p′) does not depend on p or p′ provided

p > p′ whenever all conditional probabilities are well defined. It is also possible to show that for

d ∈ {0, 1}, there exists a real-valued function Qd(·) such that

Pr{Y = 1, D = d|X,Z} = Pr{Y = 1, D = d|Qd(X), P (Z)} .

Moreover, Pr{Y = 1, D = 1|Q1(X) = q, P = p} is strictly increasing in both q and p, while

Pr{Y = 1, D = 0|Q0(X) = q, P = p} is strictly increasing in q and strictly decreasing in p.

4 Numerical Illustration

We now provide a numerical illustration of the bounds on the ATE from Theorem 3.1. We first

consider an example without any X variation to be exploited when forming the bounds, and then

consider an example with such variation. Variation in X greatly reduces the width of the bounds.

Consider the following special case of our model without X regressors:

Y = I{αD − ε1 ≥ 0}
D = I{δZ − ε2 ≥ 0} ,

(5)
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with (ε1, ε2) ∼ N(0, I) and supp(Z) = {−1, 1}. In Figure 1, we hold constant the strength of the

effect of the treatment on the outcome while varying the strength of the instrument from very

weak to very strong. In particular, we set α = 1/4 and plot the ATE together with the bounds of

Theorem 3.1 for δ ∈ (0, 2]. The width of the bounds is decreasing in δ, and the width asymptotically

approaches zero as δ goes to infinity, i.e., as the strength of the instrument becomes arbitrarily large.

This phenomenon is an example of “identification at infinity,” as in Heckman (1990). In Figure

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

−0.6
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0.2

0.4

0.6

δ

Figure 1: Bounds of Theorem 3.1 on the ATE for the model (5) with α = 1/4. The ATE is indicated

by the solid line and the upper and lower bounds are indicated, respectively, by the upwards and

downwards pointing triangles.

2, we hold constant the strength of the instrument while varying the strength of the effect of the

treatment. In particular, we set δ = 1/4 and plot the ATE together with the bounds of Theorem

3.1 for α ∈ [−2, 2]. The width of the bounds decrease as α approaches zero with a discontinuity at

the point α = 0, where the ATE is identified and equal to zero.
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Figure 2: Bounds of Theorem 3.1 on the ATE for the model (5) with δ = 1/4. The ATE is indicated

by the solid line and the upper and lower bounds are indicated, respectively, by the upwards and

downwards pointing triangles.

Now consider the following special case of our model with X covariates:

Y = I{βX + αD − ε1 ≥ 0}
D = I{δZ − ε2 ≥ 0} ,

(6)

with (ε1, ε2) ∼ N(0, I) and supp(X,Z) = {−2,−1, 0, 1, 2} × {−1, 1}. Note that this model condi-

tional on X = 0 reduces to (5). In Figure 3, we hold constant both the strength of the effect of the

treatment and the strength of the instrument while varying the effect of the exogenous regressor

X. In particular, we set δ = 1/4, α = 1/4, and plot ∆G1(0) together with the bounds of Theorem

3.1 for β ∈ [1/8, 1/4]. By comparing the bounds in Figure 3 with the bounds in Figures 1 and 2,

we see that the bounds that exploit variation in X dramatically improve upon the bounds that do

not exploit variation in X. Note that the bounds provide point identification when β = 1/8 or 1/4,

which corresponds to the case where there is variation in X that exactly compensates for variation

in D.
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Figure 3: Bounds of Theorem 3.1 on ∆G1(0) for the model (6) with α = 1/4 and δ = 1/4. The solid

line represents ∆G1(0) and the upwards and downwards pointing triangles represent, respectively,

the upper and lower bounds.

5 Appendix

Proof of Lemma 3.2: First recall the simplifications following from Assumptions 2.1 - 2.2 noted at the

beginning of Section 3. Next, note from equation (2) and Assumption 2.1 that

Pr{D = 1, Y = 1|X = x′, P = p} = Pr{ε2 ≤ p, ε1 ≤ ν1(1, x′)}

and

Pr{D = 1, Y = 1|X = x′, P = p′} = Pr{ε2 ≤ p′, ε1 ≤ ν1(1, x′)} .

Thus, for p > p′,

Pr{D = 1, Y = 1|X = x′, P = p} − Pr{D = 1, Y = 1|X = x′, P = p′}

is equal to

Pr{p′ < ε2 ≤ p, ε1 ≤ ν1(1, x′)} .

It follows similarly that

Pr{D = 0, Y = 1|X = x, P = p′} = Pr{ε2 > p′, ε1 ≤ ν1(0, x)}
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and

Pr{D = 0, Y = 1|X = x, P = p} = Pr{ε2 > p, ε1 ≤ ν1(0, x)} .

Therefore,

Pr{D = 0, Y = 1|X = x, P = p′} − Pr{D = 0, Y = 1|X = x, P = p}

is equal to

Pr{p′ < ε2 ≤ p, ε1 ≤ ν1(0, x)} .

Hence,

h(x, x′, p, p′) =


Pr{p′ < ε2 ≤ p, ν1(0, x) < ε1 ≤ ν1(1, x′)} if ν1(1, x′) > ν1(0, x)

0 if ν1(1, x′) = ν1(0, x)

−Pr{p′ < ε2 ≤ p, ν1(1, x′) < ε1 ≤ ν1(0, x)} if ν1(1, x′) < ν1(0, x) .

The desired conclusion now follows immediately from Assumption 2.2.

Proof of Theorem 3.1: Consider part (i) of the theorem. We derive bounds on G1(0, x) = Pr{Y0 =

1|X = x}; the bounds on G1(1, x) and on ∆G1(x) follow from parallel arguments.

Note that

Pr{Y0 = 1|X = x, P = p} = Pr{D = 0, Y0 = 1|X = x, P = p}+ Pr{D = 1, Y0 = 1|X = x, P = p} .

By Lemma 3.2, equation (2) and Assumption 2.1,

Pr{D = 1, Y0 = 1|X = x, P = p} ≤ Pr{D = 1, Y = 1|X = x′, P = p}

for all x′ ∈ X0+(x) and

Pr{D = 1, Y0 = 1|X = x, P = p} ≥ Pr{D = 1, Y = 1|X = x′, P = p}

for all x′ ∈ X0−(x). Thus, Pr{Y0 = 1|X = x, P = p} is bounded from below by

Pr{D = 0, Y = 1|X = x, P = p}+ sup
x′∈X0−(x)

Pr{D = 1, Y = 1|X = x′, P = p}

and from above by

Pr{D = 0, Y = 1|X = x, P = p}+ p inf
x′∈X0+(x)

Pr{Y = 1|D = 1, X = x′, P = p} ,

where all supremums and infimums are only taken over regions where all conditional probabilities are well

defined, and with the convention that the supremum over the empty set is zero and the infimum over the

empty set is one. The stated result now follows by noting that equation (2) and Assumption 2.1 imply that

Pr{Y0 = 1|X = x} = Pr{Y0 = 1|X = x, P = p}.

Consider part (ii) of the theorem. We prove the result for the term L0(x); the result for the other terms

follows from parallel arguments.

Suppose supp(P ) is not a singleton, for otherwise there is nothing to prove. Since supp(X,P ) =

supp(X) × supp(P ), h(x, x′, p, p′) is well defined for some p < p′ with (p, p′) ∈ supp(P )2 and any (x, x′) ∈
supp(X)2. Hence, by Lemma 3.2, we have that

X0−(x) = {x′ : ν1(1, x′) ≤ ν1(0, x)} . (7)
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It follows from Assumptions 2.3 - 2.4 that X0−(x) is compact. Hence, by Assumption 2.4, there exists

xl0(x) ∈ X0−(x) such that

ν1(1, xl0(x)) = sup
x′∈X0−(x)

ν1(1, x′) .

From equation (2), we therefore have for any p ∈ supp(P ) that

sup
x′∈X0−(x)

Pr{D = 1, Y = 1|X = x′, P = p} = Pr{D = 1, Y = 1|X = xl0(x), P = p} ,

from which it follows that

L0(x) = sup
p
{Pr{D = 0, Y = 1|X = x, P = p}+ Pr{D = 1, Y = 1|X = xl0(x), P = p}} .

To complete the argument, note for any p > p′ that

(Pr{D = 0, Y = 1|X = x, P = p}+ Pr{D = 1, Y = 1|X = xl0(x), P = p})

− (Pr{D = 0, Y = 1|X = x, P = p′}+ Pr{D = 1, Y = 1|X = xl0(x), P = p′})

= Pr{ε1 ≤ ν1(1, xl0(x)), p′ < ε2 ≤ p} − Pr{ε1 ≤ ν1(0, x), p′ < ε2 ≤ p} ≤ 0 ,

where the final inequality follows from the fact that xl0(x) ∈ X0−(x) and (7).

Finally, consider part (iii) of the theorem. Before proceeding, we introduce some notation. Let (ε∗1, ε
∗
2)

denote a random vector with (ε∗1, ε
∗
2) ⊥⊥ (X,Z) and with (ε∗1, ε

∗
2) having density f∗1,2 with respect to Lebesgue

measure on R2. Let f∗2 denote the corresponding marginal density of ε∗2 and let f∗1|2 denote the corresponding

density of ε∗1 conditional on ε∗2. Let f1,2, f1|2 and f2 denote the corresponding density functions for (ε1, ε2).

We will also make use of F1,2, the c.d.f. for (ε1, ε2), and F1,−2, the c.d.f. for (ε1,−ε2).

In order to show that our bounds on G1(0, x), G1(1, x) and G1(1, x) − G1(0, x) are sharp, it suffices to

show that for any x ∈ supp(X) and (s0, s1) ∈ [L0(x), U0(x)]× [L1(x), U1(x)] there exists a density function

f∗1,2 such that:

(A) f∗1,2 is strictly positive on R2.

(B) the proposed model is consistent with the observed data, i.e.,

(i) Pr{D = 1|X = x̃, P = p} = Pr{ε∗2 ≤ p}

(ii) Pr{Y = 1|D = 1, X = x̃, P = p} = Pr{ε∗1 ≤ ν1(1, x̃) | ε∗2 ≤ p}

(iii) Pr{Y = 1|D = 0, X = x̃, P = p} = Pr{ε∗1 ≤ ν1(0, x̃) | ε∗2 > p}

for all (x̃, p) ∈ supp(X,P ).

(C) the proposed model is consistent with the specified values of G1(0, x) and G1(1, x), i.e.,

(i) Pr{ε∗1 ≤ ν1(0, x)} = s0

(ii) Pr{ε∗1 ≤ ν1(1, x)} = s1 .
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Let x ∈ supp(X) and (s0, s1) ∈ [L0(x), U0(x)] × [L1(x), U1(x)] be given. We prove the result for the

case where Xd−(x) 6= ∅, Xd+(x) 6= ∅, and Xd−(x) ∩Xd+(x) = ∅ for d ∈ {0, 1}; the result in the other cases

follows from analogous arguments. Note that by aruging as in Remark 3.3 this implies in particular that

Ld(x) < Ud(x) for d ∈ {0, 1}. For brevity, we also only consider (s0, s1) ∈ (L0(x), U0(x)) × (L1(x), U1(x));

the case where sd equals Ld(x) or Ud(x) for some d ∈ {0, 1} follows from a straightforward modification of

the argument below.

Recall that h(x, x′, p, p′) is well defined for some p < p′ with (p, p′) ∈ supp(P )2 and any (x, x′) ∈ supp(X)2

because supp(X,P ) = supp(X)× supp(P ). Arguing as in the proof of part (ii) of the theorem, we have that

L0(x) = Pr{D = 0, Y = 1|X = x, P = p}+ Pr{D = 1, Y = 1|X = xl0(x), P = p}
U0(x) = Pr{D = 0, Y = 1|X = x, P = p}+ Pr{D = 1, Y = 1|X = xu0 (x), P = p}
L1(x) = Pr{D = 1, Y = 1|X = x, P = p}+ Pr{D = 0, Y = 1|X = xl1(x), P = p}
U1(x) = Pr{D = 1, Y = 1|X = x, P = p}+ Pr{D = 0, Y = 1|X = xu1 (x), P = p} ,

(8)

where xld(x) and xud(x) for d ∈ {0, 1} denote evaluation points such that

Pr{D = 1, Y = 1|X = xl0(x), P = p} = sup
x′∈X0−(x)

Pr{D = 1, Y = 1|X = x′, P = p}

Pr{D = 1, Y = 1|X = xu0 (x), P = p} = inf
x′∈X0+(x)

Pr{D = 1, Y = 1|X = x′, P = p}

Pr{D = 0, Y = 1|X = xl1(x), P = p} = sup
x′∈X1+(x)

Pr{D = 0, Y = 1|X = x′, P = p}

Pr{D = 0, Y = 1|X = xu1 (x), P = p} = inf
x′∈X1−(x)

Pr{D = 0, Y = 1|X = x′, P = p} .

Let

s∗0 = s0 − Pr{D = 0, Y = 1|X = x, P = p}

s∗1 = s1 − Pr{D = 1, Y = 1|X = x, P = p} .

Using equation (8) and the fact that sd ∈ (Ld(x), Ud(x)) for d ∈ {0, 1}, we have that

s∗0 ∈ (F1,2(ν1(1, xl0(x)), p), F1,2(ν1(1, xu0 (x)), p))

s∗1 ∈ (F1,−2(ν1(0, xl1(x)),−p), F1,−2(ν1(0, xu1 (x)),−p)) .
(9)

These intervals are non-empty because Ld(x) < Ud(x) for d ∈ {0, 1}. It follows by Lemma 3.2 that

ν1(d, xl1−d(x)) < ν1(1− d, x) < ν1(d, xu1−d(x)) (10)

for d ∈ {0, 1}, where the strict inequalities follow from our assumption that Xd−(x) ∩ Xd+(x) = ∅ for

d ∈ {0, 1}. Furthermore, by the construction of xld(x) and xud(x) for d ∈ {0, 1}, it must be the case for

d ∈ {0, 1} and x̃ ∈ supp(X) that

ν1(d, x̃) /∈ (ν1(d, xl1−d(x)), ν1(d, xu1−d(x))) . (11)

We now construct the proposed density f∗1,2 as follows. Let f∗1,2(t1, t2) = f∗1|2(t1|t2)f∗2 (t2), where f∗2 (t2) =
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f2(t2) = I{0 ≤ t2 ≤ 1} and

f∗1|2(t1|t2) =



a(t2)f1|2(t1|t2) if ν1(1, xl0(x)) < t1 < ν1(0, x) and t2 < p

b(t2)f1|2(t1|t2) if ν1(0, x) ≤ t1 < ν1(1, xu0 (x)) and t2 < p

c(t2)f1|2(t1|t2) if ν1(0, xl1(x)) ≤ t1 < ν1(1, x) and t2 > p

d(t2)f1|2(t1|t2) if ν1(1, x) ≤ t1 < ν1(0, xu1 (x)) and t2 > p

f1|2(t1|t2) otherwise ,

with

a(t2) =
Pr{ν1(1, xl0(x)) < ε1 < ν1(1, xu0 (x))|ε2 = t2}

Pr{ν1(1, xl0(x)) < ε1 < ν1(0, x)|ε2 = t2}
s∗0 − F1,2(ν1(1, xl0(x)), p)

F1,2(ν1(1, xu0 (x)), p)− F1,2(ν1(1, xl0(x)), p)

b(t2) =
Pr{ν1(1, xl0(x)) < ε1 < ν1(1, xu0 (x))|ε2 = t2} − a(t2) Pr{ν1(1, xl0(x)) < ε1 < ν1(0, x)|ε2 = t2}

Pr{ν1(0, x) < ε1 < ν1(1, xu0 (x))|ε2 = t2}

c(t2) =
Pr{ν1(0, xl1(x)) < ε1 < ν1(0, xu1 (x))|ε2 = t2}

Pr{ν1(0, xl1(x)) < ε1 < ν1(1, x)|ε2 = t2}
s∗1 − F1,−2(ν1(0, xl1(x)),−p)

F1,−2(ν1(0, xu1 (x)),−p)− F1,−2(ν1(0, xl1(x)),−p)

d(t2) =
Pr{ν1(0, xl1(x)) < ε1 < ν1(0, xu1 (x))|ε2 = t2} − c(t2) Pr{ν1(0, xl1(x)) < ε1 < ν1(1, x)|ε2 = t2}

Pr{ν1(1, x) < ε1 < ν1(0, xu0 (x))|ε2 = t2}
.

These quantities are well defined because of the fact that the intervals in (9) are non-empty, (10) and

Assumption 2.2.

We now argue that f∗1,2 satisfies claim (A), i.e., that it is a strictly positive density on R2. For this

purpose, it suffices to show that f∗1|2 integrates to one and is strictly positive on R. First consider whether

f∗1|2 integrates to one. For t2 ∈ [p, p], f∗1|2(·|t2) = f1|2(·|t2) and so the result follows immediately. For t2 < p,∫ ∞
−∞

f∗1|2(t1|t2)dt1

=
∫ ν1(1,x

l
0(x))

−∞
f1|2(t1|t2)dt1 + a(t2)

∫ ν1(0,x)

ν1(1,xl
0(x))

f1|2(t1|t2)dt1 + b(t2)
∫ ν1(1,x

u
0 (x))

ν1(0,x)

f1|2(t1|t2)dt1

+
∫ ∞
ν1(1,xu

0 (x))

f1|2(t1|t2)dt1

= Pr{ε1 ≤ ν1(1, xl0(x))|ε2 = t2}+ Pr{ν1(1, xl0(x)) < ε1 < ν1(1, xu0 (x))|ε2 = t2}

+ Pr{ε1 ≥ ν1(1, xu0 (x))|ε2 = t2}

= 1.

A similar argument shows that
∫
f∗1|2(t1|t2)dt1 = 1 for t2 > p.

Since f1|2 is strictly positive on R, in order to establish that f∗1|2 is strictly positive on R it suffices to

show that a(t2), b(t2), c(t2) and d(t2) are all strictly positive. Consider a(t2) and b(t2); the proof for c(t2) and

d(t2) follows from similar arguments. From (9), we have that s∗0 > F1,2(ν1(1, xl0(x)), p), which together with

(10) and Assumption 2.2 implies that a(t2) > 0. Similarly, from (9), we have that s∗0 < F1,2(ν1(1, xu0 (x)), p),

which implies that
s∗0 − F1,2(ν1(1, xl0(x)), p)

F1,2(ν1(1, xu0 (x)), p)− F1,2(ν1(1, xl0(x)), p)
< 1 .
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It therefore follows from (10) and Assumption 2.2 that

Pr{ν1(1, xl0(x)) < ε1 < ν1(1, xu0 (x))|ε2 = t2} − a(t2) Pr{ν1(1, xl0(x)) < ε1 < ν1(0, x)|ε2 = t2}

= Pr{ν1(1, xl0(x)) < ε1 < ν1(1, xu0 (x))|ε2 = t2}

(
1−

s∗0 − F1,2(ν1(1, xl0(x)), p)
F1,2(ν1(1, xu0 (x)), p)− F1,2(ν1(1, xl0(x)), p)

)
> 0 ,

so b(t2) > 0.

We now argue that f∗1,2 satisfies claim (B). Since f∗2 = f2, we have immediately that Pr{ε∗2 ≤ p} =

Pr{D = 1|X = x̃, P = p} for all (x̃, p) ∈ supp(X,P ). Consider Pr{ε∗1 ≤ ν1(1, x̃)|ε∗2 ≤ p}. From (11), we have

that ν1(1, x̃) ≤ ν1(1, xl0(x)) or ν1(1, x̃) ≥ ν1(1, xu0 (x)) for any x̃ ∈ supp(X). For (x̃, p) ∈ supp(X,P ) such

that ν1(1, x̃) ≤ ν1(1, xl0(x)), we have

Pr{ε∗1 ≤ ν1(1, x̃)|ε∗2 ≤ p} =
1
p

∫ p

0

∫ ν1(1,x̃)

−∞
f∗1,2(t1, t2)dt1dt2

=
1
p

∫ p

0

∫ ν1(1,x̃)

−∞
f1,2(t1, t2)dt1dt2

= Pr{ε1 ≤ ν1(1, x̃)|ε2 ≤ p} = Pr{Y = 1 | D = 1, X = x̃, P = p} .

For (x̃, p) ∈ supp(X,P ) such that ν1(1, x̃) ≥ ν1(1, xu0 (x)), we have

Pr{ε∗1 ≤ ν1(1, x̃)|ε∗2 ≤ p}

=
1
p

∫ p

0

∫ ν1(1,x̃)

−∞
f∗1,2(t1, t2)dt1dt2

=
1
p

{∫ p

p

∫ ν1(1,x̃)

−∞
f1,2(t1, t2)dt1dt2 +

∫ p

0

[∫ ν1(1,x
l
0(x))

−∞
f1|2(t1|t2)dt1 + a(t2)

∫ ν1(0,x)

ν1(1,xl
0(x))

f1|2(t1|t2)dt1

+b(t2)
∫ ν1(1,x

u
0 (x))

ν1(0,x)

f1|2(t1|t2)dt1 +
∫ ν1(1,x̃)

ν1(1,xu
0 (x))

f1|2(t1|t2)dt1

]
dt2

}
=

1
p

{
Pr{ε1 ≤ ν1(1, x̃), p < ε2 ≤ p}+ Pr{ε1 ≤ ν1(1, x̃), ε2 ≤ p}

}
= Pr{ε1 ≤ ν1(1, x̃)|ε2 ≤ p} = Pr{Y = 1 | D = 1, X = x̃, P = p} .

The proof that Pr{ε∗1 ≤ ν1(0, x̃)|ε∗2 > p} = Pr{Y = 1 | D = 0, X = x̃, P = p} for all (x̃, p) ∈ supp(X,P )

follows from an analogous argument.

Finally, we argue that f∗1,2 satisfies claim (C). Consider Pr{ε∗1 ≤ ν1(0, x)}. From (11), we have that
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ν1(1, x) ≤ ν1(1, xl0(x)) or ν1(1, x) ≥ ν1(1, xu0 (x)). In the former case, we have that

Pr{ε∗1 ≤ ν1(0, x)}

=
∫ 1

0

∫ ν1(0,x)

−∞
f∗1,2(t1, t2)dt1dt2

=
{∫ p

0

(∫ ν1(1,x
l
0(x))

−∞
f∗1,2(t1, t2)dt1 +

∫ ν1(0,x)

ν1(1,xl
0(x))

f∗1,2(t1, t2)dt1

)
dt2 +

∫ 1

p

∫ ν1(0,x)

−∞
f∗1,2(t1, t2)dt1dt2

}

=
{∫ p

0

(∫ ν1(1,x
l
0(x))

−∞
f1,2(t1, t2)dt1 + a(t2)

∫ ν1(0,x)

ν1(1,xl
0(x))

f1,2(t1, t2)dt1

)
dt2

+
∫ 1

p

∫ ν1(0,x)

−∞
f1,2(t1, t2)dt1dt2

}
= s∗0 + Pr{D = 0, Y = 1|X = x, P = p} = s0 .

In the latter case, it suffices to show that∫ 1

p

∫ ν1(0,x)

−∞
f∗1,2(t1, t2)dt1dt2 =

∫ 1

p

∫ ν1(0,x)

−∞
f1,2(t1, t2)dt1dt2 .

For this purpose, it suffices to show that∫ 1

p

∫ ν1(0,x
u
1 (x))

ν1(0,xl
1(x))

f∗1,2(t1, t2)dt1dt2 =
∫ 1

p

∫ ν1(0,x
u
1 (x))

ν1(0,xl
1(x))

f1,2(t1, t2)dt1dt2 ,

since outside of this region of integration f∗1,2 = f1,2. Note that∫ 1

p

∫ ν1(0,x
u
1 (x))

ν1(0,xl
1(x))

f∗1,2(t1, t2)dt1dt2

=
∫ 1

p

c(t2)
∫ ν1(0,x)

ν1(0,xl
1(x))

f1|2(t1|t2)dt1dt2 +
∫ 1

p

d(t2)
∫ ν1(0,x

u
1 (x))

ν1(0,x)

f1|2(t1|t2)dt1dt2

=
∫ 1

p

c(t2) Pr{ν1(0, xl1(x)) < ε1 < ν1(0, x)|t2}dt2 +
∫ 1

p

d(t2) Pr{ν1(0, x) < ε1 < ν1(0, xu1 (x))|t2}dt2

=
∫ 1

p

Pr{ν1(0, xl1(x)) < ε1 < ν1(1, xu1 (x))|t2}dt2

=
∫ 1

p

∫ ν1(0,x
u
1 (x))

ν1(0,xl
1(x))

f1,2(t1, t2)dt1dt2 ,

as desired. The proof that Pr{ε∗1 ≤ ν1(1, x)} = s1 follows from an analogous argument.
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